32,349 research outputs found

    Consistency of Spectral Hypergraph Partitioning under Planted Partition Model

    Full text link
    Hypergraph partitioning lies at the heart of a number of problems in machine learning and network sciences. Many algorithms for hypergraph partitioning have been proposed that extend standard approaches for graph partitioning to the case of hypergraphs. However, theoretical aspects of such methods have seldom received attention in the literature as compared to the extensive studies on the guarantees of graph partitioning. For instance, consistency results of spectral graph partitioning under the stochastic block model are well known. In this paper, we present a planted partition model for sparse random non-uniform hypergraphs that generalizes the stochastic block model. We derive an error bound for a spectral hypergraph partitioning algorithm under this model using matrix concentration inequalities. To the best of our knowledge, this is the first consistency result related to partitioning non-uniform hypergraphs.Comment: 35 pages, 2 figures, 1 tabl

    Domain Adaptation on Graphs by Learning Graph Topologies: Theoretical Analysis and an Algorithm

    Full text link
    Traditional machine learning algorithms assume that the training and test data have the same distribution, while this assumption does not necessarily hold in real applications. Domain adaptation methods take into account the deviations in the data distribution. In this work, we study the problem of domain adaptation on graphs. We consider a source graph and a target graph constructed with samples drawn from data manifolds. We study the problem of estimating the unknown class labels on the target graph using the label information on the source graph and the similarity between the two graphs. We particularly focus on a setting where the target label function is learnt such that its spectrum is similar to that of the source label function. We first propose a theoretical analysis of domain adaptation on graphs and present performance bounds that characterize the target classification error in terms of the properties of the graphs and the data manifolds. We show that the classification performance improves as the topologies of the graphs get more balanced, i.e., as the numbers of neighbors of different graph nodes become more proportionate, and weak edges with small weights are avoided. Our results also suggest that graph edges between too distant data samples should be avoided for good generalization performance. We then propose a graph domain adaptation algorithm inspired by our theoretical findings, which estimates the label functions while learning the source and target graph topologies at the same time. The joint graph learning and label estimation problem is formulated through an objective function relying on our performance bounds, which is minimized with an alternating optimization scheme. Experiments on synthetic and real data sets suggest that the proposed method outperforms baseline approaches

    Modularity bounds for clusters located by leading eigenvectors of the normalized modularity matrix

    Get PDF
    Nodal theorems for generalized modularity matrices ensure that the cluster located by the positive entries of the leading eigenvector of various modularity matrices induces a connected subgraph. In this paper we obtain lower bounds for the modularity of that set of nodes showing that, under certain conditions, the nodal domains induced by eigenvectors corresponding to highly positive eigenvalues of the normalized modularity matrix have indeed positive modularity, that is they can be recognized as modules inside the network. Moreover we establish Cheeger-type inequalities for the cut-modularity of the graph, providing a theoretical support to the common understanding that highly positive eigenvalues of modularity matrices are related with the possibility of subdividing a network into communities

    Spectral Embedding Norm: Looking Deep into the Spectrum of the Graph Laplacian

    Full text link
    The extraction of clusters from a dataset which includes multiple clusters and a significant background component is a non-trivial task of practical importance. In image analysis this manifests for example in anomaly detection and target detection. The traditional spectral clustering algorithm, which relies on the leading KK eigenvectors to detect KK clusters, fails in such cases. In this paper we propose the {\it spectral embedding norm} which sums the squared values of the first II normalized eigenvectors, where II can be significantly larger than KK. We prove that this quantity can be used to separate clusters from the background in unbalanced settings, including extreme cases such as outlier detection. The performance of the algorithm is not sensitive to the choice of II, and we demonstrate its application on synthetic and real-world remote sensing and neuroimaging datasets
    corecore