49,246 research outputs found

    Design, implementation, and testing of advanced virtual coordinate-measuring machines

    Get PDF
    Copyright @ 2011 IEEE. This article has been made available through the Brunel Open Access Publishing Fund.Advanced virtual coordinate-measuring machines (CMMs) (AVCMMs) have recently been developed at Brunel University, which provide vivid graphical representation and powerful simulation of CMM operations, together with Monte-Carlo-based uncertainty evaluation. In an integrated virtual environment, the user can plan an inspection strategy for a given task, carry out virtual measurements, and evaluate the uncertainty associated with the measurement results, all without the need of using a physical machine. The obtained estimate of uncertainty can serve as a rapid feedback for the user to optimize the inspection plan in the AVCMM before actual measurements or as an evaluation of the measurement results performed. This paper details the methodology, design, and implementation of the AVCMM system, including CMM modeling, probe contact and collision detection, error modeling and simulation, and uncertainty evaluation. This paper further reports experimental results for the testing of the AVCMM

    Automated Model Selection with AMSFin a production process of the automotive industry

    Get PDF
    Machine learning, statistics and knowledge engineering provide a broad variety of supervised learning algorithms for classification. In this paper we introduce the Automated Model Selection Framework (AMSF) which presents automatic and semi-automatic methods to select classifiers. To achieve this we split up the selection process into three distinct phases. Two of those select algorithms by static rules which are derived from a manually created knowledgebase. At this stage of AMSF the user can choose between different rankers in the third phase. Currently, we use instance based learning and a scoring scheme for ranking the classifiers. After evaluation of different rankers we will recommend the most successful to the user by default. Besides describing the architecture and design issues, we additionally point out the versatile ways AMSF is applied in a production process of the automotive industr

    Iterative annotation to ease neural network training: Specialized machine learning in medical image analysis

    Get PDF
    Neural networks promise to bring robust, quantitative analysis to medical fields, but adoption is limited by the technicalities of training these networks. To address this translation gap between medical researchers and neural networks in the field of pathology, we have created an intuitive interface which utilizes the commonly used whole slide image (WSI) viewer, Aperio ImageScope (Leica Biosystems Imaging, Inc.), for the annotation and display of neural network predictions on WSIs. Leveraging this, we propose the use of a human-in-the-loop strategy to reduce the burden of WSI annotation. We track network performance improvements as a function of iteration and quantify the use of this pipeline for the segmentation of renal histologic findings on WSIs. More specifically, we present network performance when applied to segmentation of renal micro compartments, and demonstrate multi-class segmentation in human and mouse renal tissue slides. Finally, to show the adaptability of this technique to other medical imaging fields, we demonstrate its ability to iteratively segment human prostate glands from radiology imaging data.Comment: 15 pages, 7 figures, 2 supplemental figures (on the last page

    Ecological IVIS design : using EID to develop a novel in-vehicle information system

    Get PDF
    New in-vehicle information systems (IVIS) are emerging which purport to encourage more environment friendly or ‘green’ driving. Meanwhile, wider concerns about road safety and in-car distractions remain. The ‘Foot-LITE’ project is an effort to balance these issues, aimed at achieving safer and greener driving through real-time driving information, presented via an in-vehicle interface which facilitates the desired behaviours while avoiding negative consequences. One way of achieving this is to use ecological interface design (EID) techniques. This article presents part of the formative human-centred design process for developing the in-car display through a series of rapid prototyping studies comparing EID against conventional interface design principles. We focus primarily on the visual display, although some development of an ecological auditory display is also presented. The results of feedback from potential users as well as subject matter experts are discussed with respect to implications for future interface design in this field
    • 

    corecore