3 research outputs found

    Deep reinforcement learning-based resource allocation strategy for energy harvesting-powered cognitive machine-to-machine networks

    Get PDF
    Machine-to-Machine (M2M) communication is a promising technology that may realize the Internet of Things (IoTs) in future networks. However, due to the features of massive devices and concurrent access requirement, it will cause performance degradation and enormous energy consumption. Energy Harvesting-Powered Cognitive M2M Networks (EH-CMNs) as an attractive solution is capable of alleviating the escalating spectrum deficient to guarantee the Quality of Service (QoS) meanwhile decreasing the energy consumption to achieve Green Communication (GC) became an important research topic. In this paper, we investigate the resource allocation problem for EH-CMNs underlaying cellular uplinks. We aim to maximize the energy efficiency of EH-CMNs with consideration of the QoS of Human-to-Human (H2H) networks and the available energy in EH-devices. In view of the characteristic of EH-CMNs, we formulate the problem to be a decentralized Discrete-time and Finite-state Markov Decision Process (DFMDP), in which each device acts as agent and effectively learns from the environment to make allocation decision without the complete and global network information. Owing to the complexity of the problem, we propose a Deep Reinforcement Learning (DRL)-based algorithm to solve the problem. Numerical results validate that the proposed scheme outperforms other schemes in terms of average energy efficiency with an acceptable convergence speed

    Survey on the state-of-the-art in device-to-device communication: A resource allocation perspective

    Get PDF
    Device to Device (D2D) communication takes advantage of the proximity between the communicating devices in order to achieve efficient resource utilization, improved throughput and energy efficiency, simultaneous serviceability and reduced latency. One of the main characteristics of D2D communication is reuse of the frequency resource in order to improve spectral efficiency of the system. Nevertheless, frequency reuse introduces significantly high interference levels thus necessitating efficient resource allocation algorithms that can enable simultaneous communication sessions through effective channel and/or power allocation. This survey paper presents a comprehensive investigation of the state-of-the-art resource allocation algorithms in D2D communication underlaying cellular networks. The surveyed algorithms are evaluated based on heterogeneous parameters which constitute the elementary features of a resource allocation algorithm in D2D paradigm. Additionally, in order to familiarize the readers with the basic design of the surveyed resource allocation algorithms, brief description of the mode of operation of each algorithm is presented. The surveyed algorithms are divided into four categories based on their technical doctrine i.e., conventional optimization based, Non-Orthogonal-MultipleAccess (NOMA) based, game theory based and machine learning based techniques. Towards the end, several open challenges are remarked as the future research directions in resource allocation for D2D communication
    corecore