8,140 research outputs found

    Change detection in optical aerial images by a multilayer conditional mixed Markov model

    Get PDF
    In this paper we propose a probabilistic model for detecting relevant changes in registered aerial image pairs taken with the time differences of several years and in different seasonal conditions. The introduced approach, called the Conditional Mixed Markov model (CXM), is a combination of a mixed Markov model and a conditionally independent random field of signals. The model integrates global intensity statistics with local correlation and contrast features. A global energy optimization process ensures simultaneously optimal local feature selection and smooth, observation-consistent segmentation. Validation is given on real aerial image sets provided by the Hungarian Institute of Geodesy, Cartography and Remote Sensing and Google Earth

    As-Built 3D Heritage City Modelling to Support Numerical Structural Analysis: Application to the Assessment of an Archaeological Remain

    Get PDF
    Terrestrial laser scanning is a widely used technology to digitise archaeological, architectural and cultural heritage. This allows for modelling the assets’ real condition in comparison with traditional data acquisition methods. This paper, based on the case study of the basilica in the Baelo Claudia archaeological ensemble (Tarifa, Spain), justifies the need of accurate heritage modelling against excessively simplified approaches in order to support structural safety analysis. To do this, after validating the 3Dmeshing process frompoint cloud data, the semi-automatic digital reconstitution of the basilica columns is performed. Next, a geometric analysis is conducted to calculate the structural alterations of the columns. In order to determine the structural performance, focusing both on the accuracy and suitability of the geometric models, static and modal analyses are carried out by means of the finite element method (FEM) on three different models for the most unfavourable column in terms of structural damage: (1) as-built (2) simplified and (3) ideal model without deformations. Finally, the outcomes show that the as-built modelling enhances the conservation status analysis of the 3D heritage city (in terms of realistic compliance factor values), although further automation still needs to be implemented in the modelling process

    Identifying Smokestacks in Remotely Sensed Imagery via Deep Learning Algorithms

    Get PDF
    Locating smokestacks in remote sensing imagery is a crucial first step to calculating smokestack heights, which allows for the accurate modeling of dioxin pollution spread and the study of resulting health impacts. In the interest of automating this process, this thesis examines deep learning networks and how changes in input datasets and network architecture affect image detection accuracy. This initial image detection serves as the first step in automated object recognition and height calculation. While this is applicable to general land use classification, this study specifically addresses detecting smokestack images. Different dataset scenarios are generated from the massive Functional Map of the World dataset, ranging from two to sixty-two classes, and network architectures from recent studies are used. Each dataset and network is analyzed in their performance by way of F-measure. Image characteristics are also analyzed from images that were correctly/incorrectly labeled by the algorithms, providing answers on what images the algorithms best predict and what qualities the algorithms cannot discern. The smokestack’s accuracy is reported at its highest through a five class training dataset, using an Adam Optimizer over six epochs. More or less classes returned lower scores, as did using the Stochastic Gradient Descent optimizer. Extended epochs did not return significantly higher or lower scores. The study concludes that while using more data can be effective in creating more accurate algorithms, using less data which is better structured for the problem at hand can have a greater effect

    Large Area Land Cover Mapping Using Deep Neural Networks and Landsat Time-Series Observations

    Get PDF
    This dissertation focuses on analysis and implementation of deep learning methodologies in the field of remote sensing to enhance land cover classification accuracy, which has important applications in many areas of environmental planning and natural resources management. The first manuscript conducted a land cover analysis on 26 Landsat scenes in the United States by considering six classifier variants. An extensive grid search was conducted to optimize classifier parameters using only the spectral components of each pixel. Results showed no gain in using deep networks by using only spectral components over conventional classifiers, possibly due to the small reference sample size and richness of features. The effect of changing training data size, class distribution, or scene heterogeneity were also studied and we found all of them having significant effect on classifier accuracy. The second manuscript reviewed 103 research papers on the application of deep learning methodologies in remote sensing, with emphasis on per-pixel classification of mono-temporal data and utilizing spectral and spatial data dimensions. A meta-analysis quantified deep network architecture improvement over selected convolutional classifiers. The effect of network size, learning methodology, input data dimensionality and training data size were also studied, with deep models providing enhanced performance over conventional one using spectral and spatial data. The analysis found that input dataset was a major limitation and available datasets have already been utilized to their maximum capacity. The third manuscript described the steps to build the full environment for dataset generation based on Landsat time-series data using spectral, spatial, and temporal information available for each pixel. A large dataset containing one sample block from each of 84 ecoregions in the conterminous United States (CONUS) was created and then processed by a hybrid convolutional+recurrent deep network, and the network structure was optimized with thousands of simulations. The developed model achieved an overall accuracy of 98% on the test dataset. Also, the model was evaluated for its overall and per-class performance under different conditions, including individual blocks, individual or combined Landsat sensors, and different sequence lengths. The analysis found that although the deep model performance per each block is superior to other candidates, the per block performance still varies considerably from block to block. This suggests extending the work by model fine-tuning for local areas. The analysis also found that including more time stamps or combining different Landsat sensor observations in the model input significantly enhances the model performance

    Human gesture classification by brute-force machine learning for exergaming in physiotherapy

    Get PDF
    In this paper, a novel approach for human gesture classification on skeletal data is proposed for the application of exergaming in physiotherapy. Unlike existing methods, we propose to use a general classifier like Random Forests to recognize dynamic gestures. The temporal dimension is handled afterwards by majority voting in a sliding window over the consecutive predictions of the classifier. The gestures can have partially similar postures, such that the classifier will decide on the dissimilar postures. This brute-force classification strategy is permitted, because dynamic human gestures show sufficient dissimilar postures. Online continuous human gesture recognition can classify dynamic gestures in an early stage, which is a crucial advantage when controlling a game by automatic gesture recognition. Also, ground truth can be easily obtained, since all postures in a gesture get the same label, without any discretization into consecutive postures. This way, new gestures can be easily added, which is advantageous in adaptive game development. We evaluate our strategy by a leave-one-subject-out cross-validation on a self-captured stealth game gesture dataset and the publicly available Microsoft Research Cambridge-12 Kinect (MSRC-12) dataset. On the first dataset we achieve an excellent accuracy rate of 96.72%. Furthermore, we show that Random Forests perform better than Support Vector Machines. On the second dataset we achieve an accuracy rate of 98.37%, which is on average 3.57% better then existing methods

    Line Based Multi-Range Asymmetric Conditional Random Field For Terrestrial Laser Scanning Data Classification

    Get PDF
    Terrestrial Laser Scanning (TLS) is a ground-based, active imaging method that rapidly acquires accurate, highly dense three-dimensional point cloud of object surfaces by laser range finding. For fully utilizing its benefits, developing a robust method to classify many objects of interests from huge amounts of laser point clouds is urgently required. However, classifying massive TLS data faces many challenges, such as complex urban scene, partial data acquisition from occlusion. To make an automatic, accurate and robust TLS data classification, we present a line-based multi-range asymmetric Conditional Random Field algorithm. The first contribution is to propose a line-base TLS data classification method. In this thesis, we are interested in seven classes: building, roof, pedestrian road (PR), tree, low man-made object (LMO), vehicle road (VR), and low vegetation (LV). The line-based classification is implemented in each scan profile, which follows the line profiling nature of laser scanning mechanism.Ten conventional local classifiers are tested, including popular generative and discriminative classifiers, and experimental results validate that the line-based method can achieve satisfying classification performance. However, local classifiers implement labeling task on individual line independently of its neighborhood, the inference of which often suffers from similar local appearance across different object classes. The second contribution is to propose a multi-range asymmetric Conditional Random Field (maCRF) model, which uses object context as post-classification to improve the performance of a local generative classifier. The maCRF incorporates appearance, local smoothness constraint, and global scene layout regularity together into a probabilistic graphical model. The local smoothness enforces that lines in a local area to have the same class label, while scene layout favours an asymmetric regularity of spatial arrangement between different object classes within long-range, which is considered both in vertical (above-bellow relation) and horizontal (front-behind) directions. The asymmetric regularity allows capturing directional spatial arrangement between pairwise objects (e.g. it allows ground is lower than building, not vice-versa). The third contribution is to extend the maCRF model by adding across scan profile context, which is called Across scan profile Multi-range Asymmetric Conditional Random Field (amaCRF) model. Due to the sweeping nature of laser scanning, the sequentially acquired TLS data has strong spatial dependency, and the across scan profile context can provide more contextual information. The final contribution is to propose a sequential classification strategy. Along the sweeping direction of laser scanning, amaCRF models were sequentially constructed. By dynamically updating posterior probability of common scan profiles, contextual information propagates through adjacent scan profiles

    3D Classification of Power Line Scene Using Airborne Lidar Data

    Get PDF
    Failure to adequately maintain vegetation within a power line corridor has been identified as a main cause of the August 14, 2003 electric power blackout. Such that, timely and accurate corridor mapping and monitoring are indispensible to mitigate such disaster. Moreover, airborne LiDAR (Light Detection And Ranging) has been recently introduced and widely utilized in industries and academies thanks to its potential to automate the data processing for scene analysis including power line corridor mapping. However, today’s corridor mapping practice using LiDAR in industries still remains an expensive manual process that is not suitable for the large-scale, rapid commercial compilation of corridor maps. Additionally, in academies only few studies have developed algorithms capable of recognizing corridor objects in the power line scene, which are mostly based on 2-dimensional classification. Thus, the objective of this dissertation is to develop a 3-dimensional classification system which is able to automatically identify key objects in the power line corridor from large-scale LiDAR data. This dissertation introduces new features for power structures, especially for the electric pylon, and existing features which are derived through diverse piecewise (i.e., point, line and plane) feature extraction, and then constructs a classification model pool by building individual models according to the piecewise feature sets and diverse voltage training samples using Random Forests. Finally, this dissertation proposes a Multiple Classifier System (MCS) which provides an optimal committee of models from the model pool for classification of new incoming power line scene. The proposed MCS has been tested on a power line corridor where medium voltage transmission lines (115 kV and 230 kV) pass. The classification results based on the MCS applied by optimally selecting the pre-built classification models according to the voltage type of the test corridor demonstrate a good accuracy (89.07%) and computationally effective time cost (approximately 4 hours/km) without additional training fees
    • …
    corecore