56 research outputs found

    A Polynomial-Time Algorithm for the Lambek Calculus with Brackets of Bounded Order

    Get PDF
    Lambek calculus is a logical foundation of categorial grammar, a linguistic paradigm of grammar as logic and parsing as deduction. Pentus (2010) gave a polynomial-time algorithm for determining provability of bounded depth formulas in L*, the Lambek calculus with empty antecedents allowed. Pentus\u27 algorithm is based on tabularisation of proof nets. Lambek calculus with brackets is a conservative extension of Lambek calculus with bracket modalities, suitable for the modeling of syntactical domains. In this paper we give an algorithm for provability in Lb*, the Lambek calculus with brackets allowing empty antecedents. Our algorithm runs in polynomial time when both the formula depth and the bracket nesting depth are bounded. It combines a Pentus-style tabularisation of proof nets with an automata-theoretic treatment of bracketing

    Comparing and evaluating extended Lambek calculi

    Get PDF
    Lambeks Syntactic Calculus, commonly referred to as the Lambek calculus, was innovative in many ways, notably as a precursor of linear logic. But it also showed that we could treat our grammatical framework as a logic (as opposed to a logical theory). However, though it was successful in giving at least a basic treatment of many linguistic phenomena, it was also clear that a slightly more expressive logical calculus was needed for many other cases. Therefore, many extensions and variants of the Lambek calculus have been proposed, since the eighties and up until the present day. As a result, there is now a large class of calculi, each with its own empirical successes and theoretical results, but also each with its own logical primitives. This raises the question: how do we compare and evaluate these different logical formalisms? To answer this question, I present two unifying frameworks for these extended Lambek calculi. Both are proof net calculi with graph contraction criteria. The first calculus is a very general system: you specify the structure of your sequents and it gives you the connectives and contractions which correspond to it. The calculus can be extended with structural rules, which translate directly into graph rewrite rules. The second calculus is first-order (multiplicative intuitionistic) linear logic, which turns out to have several other, independently proposed extensions of the Lambek calculus as fragments. I will illustrate the use of each calculus in building bridges between analyses proposed in different frameworks, in highlighting differences and in helping to identify problems.Comment: Empirical advances in categorial grammars, Aug 2015, Barcelona, Spain. 201

    TR-2003005: Lambek Calculus Is NP-Complete

    Full text link

    Hybrid Type-Logical Grammars, First-Order Linear Logic and the Descriptive Inadequacy of Lambda Grammars

    Full text link
    In this article we show that hybrid type-logical grammars are a fragment of first-order linear logic. This embedding result has several important consequences: it not only provides a simple new proof theory for the calculus, thereby clarifying the proof-theoretic foundations of hybrid type-logical grammars, but, since the translation is simple and direct, it also provides several new parsing strategies for hybrid type-logical grammars. Second, NP-completeness of hybrid type-logical grammars follows immediately. The main embedding result also sheds new light on problems with lambda grammars/abstract categorial grammars and shows lambda grammars/abstract categorial grammars suffer from problems of over-generation and from problems at the syntax-semantics interface unlike any other categorial grammar

    Type-driven natural language analysis

    Get PDF
    The purpose of this thesis is in showing how recent developments in logic programming can be exploited to encode in a computational environment the features of certain linguistic theories. We are in this way able to make available for the purpose of natural language processing sophisticated capabilities of linguistic analysis directly justified by well developed grammatical frameworks. More specifically, we exploit hypothetical reasoning, recently proposed as one of the possible directions to widen logic programming, to account for the syntax of filler-gap dependencies along the lines of linguistic theories such as Generalized Phrase Structure Grammar and Categorial Grammar. Moreover, we make use, for the purpose of semantic analysis of the same kind of phenomena, of another recently proposed extension, interestingly related to the previous one, namely the idea of replacing first-order terms with the more expressive λ-terms of λ-Calculus

    Sequents and link graphs: contraction criteria for refinements of multiplicative linear logic

    Get PDF
    In this thesis we investigate certain structural refinements of multiplicative linear logic, obtained by removing structural rules like commutativity and associativity, in addition to the removal of weakening and contraction, which characterizes linear logic. We define a notion of sequent that is able to capture these subtle structural distinctions. For each of our calculi (MLL, NCLL, CNL, and NLR) we introduce a theory of two-sided proof structures, which, in many respects, turns out to be more appropriate than the standard one-sided approach. We prove correctness criteria, stating which among those proof structures correspond to proofs, i.e. are proof nets. For this we introduce a contraction relation defined on the space of link graphs, a notion sufficiently general to capture both proof structures and sequents, and the key-concept in this work, which is a step towards a unification of the logical core of many distinct calculi

    Proof nets for linguistic analysis

    Get PDF
    This book investigates the possible linguistic applications of proof nets, redundancy free representations of proofs, which were introduced by Girard for linear logic. We will adapt the notion of proof net to allow the formulation of a proof net calculus which is soundand complete for the multimodal Lambek calculus. Finally, we will investigate the computational and complexity theoretic consequences of this calculus and give an introduction to a practical grammar development tool based on proof nets
    • …
    corecore