
Sequents and Link Graphs

Contraction criteria for refinements of

multiplicative linear logic

Sequenten en Linkgrafen
Contractiecriteria voor verfijningen van multiplicatieve lineaire logica

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht op gezag van de Rector Magnificus,
Prof.dr. H.O. Voorma, ingevolge het besluit van het
College voor Promoties in het openbaar te verdedigen
op vrijdag 26 januari 2001 des ochtends te 10.30 uur

door

Geert-Willem Quintijn Puite

geboren op 28 september 1971 te Ede

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39700275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Promotor: Prof.dr. I. Moerdijk
Co-promotor: Dr. H.A.J.M. Schellinx

Faculteit Wiskunde en Informatica
Universiteit Utrecht

2000 Mathematics Subject Classification: 03B20, 03B22, 03B35, 03B40, 03B47, 03B60,
03B65, 03B70, 03F03, 03F05, 03F07, 03F50, 03F52, 68Q42

Puite, Geert-Willem Quintijn
Sequents and Link Graphs, Contraction criteria for refinements of multiplicative linear
logic
Proefschrift Universiteit Utrecht — Met een samenvatting in het Nederlands.

ISBN 90-393-2614-2

Typeset by LATEX; diagrams typeset by XY-pic, version 3.7 of 1999/02/16 by Kristoffer
H. Rose and Ross Moore; proof trees typeset by bussproofs.sty, version 0.6b by
Samuel R. Buss.
Printed by PrintPartners Ipskamp, Enschede.

Preface

The results of my first preprint [Puite 98] are included in this thesis in Chapter 2 and
Section 3.2. Lemma 3.2.4 explains the connection between the two-sided proof structures
as defined in the preprint on the one hand, and the new definition as a special kind of
link graphs on the other hand. Although the preprint concentrates on MLL and the
switching criterion. In Chapter 4, however, we will extensively study non-commutative
MLL (i.e. NCLL) and the contraction criterion, which we think aligns better with the
next chapters. Chapter 4 is central in the sense that most proof theoretical notions and
facts are defined in this chapter only; in this sense, NCLL will serve as the starting-point
for most of the theory. Chapter 5 will be completely in the same line as Chapter 4. Hence,
if possible, we will leave out the details of proofs in this chapter.

Chapter 6 is the result of my joint preprint with Richard Moot. This independent
chapter will also appear as [MP 00]. The reader should observe that some notions in this
final chapter are either new or differ from the corresponding ones in previous chapters;
see Section 5.8 for the connections between the distinct descriptions. (In particular, there
is a discrepancy between the numbering of the premisses/conclusions of a link: in the first
chapters this numbering is anti-clockwise, starting with 0 at the main formula (page 49);
in the last chapter (page 193) both the premisses and the conclusions are numbered from
left to right. In many cases, however, these indices will be left out anyway, in which case
the given geometrical order is meant. Also the notion of proof net alters; in the first
chapters a proof net is a sequentializable proof structure; in the last chapter it is a proof
structure which is correct in the sense of the correctness criterion. Anyway, as the main
theorem of each chapter states that the sequentializable proof structures are precisely the
correct ones, the original difference in definition does not matter.)

Chronologically, Chapter 6 should precede Chapter 5: the theory of NL3R led us
to attempts to define a classical extension, and raised the demand for the corresponding
contraction criterion. The new system CNL of [dGL 00] turned out to be exactly the
calculus we were looking for, and our contraction criterion turned out to generalize to this
classical conservative extension of NL. This generalization is naturally described within
the framework of link graphs (Chapter 3), which are introduced precisely to this purpose.

We have listed the calculi that are central to this thesis in Appendix A.
For the notation we refer to page 245.

iii

Contents

Preface iii

Chapter 1. Introduction 1
1.1. Proof theory 1
1.2. Hilbert systems 2
1.3. Natural deduction systems 2
1.4. λ-Calculus 4
1.5. Sequent calculus systems 5
1.6. Classical logic 5
1.7. Cut elimination 6
1.8. Denotational semantics 6
1.9. Linear logic 7
1.10. Multiplicative linear logic 7
1.11. Proof nets and proof structures 8
1.12. Structural refinements 9
1.13. Categorial grammars 10
1.14. New contributions 11
On two-sided proof net systems 12
Sequents and link graphs 14
Controlled linear structural rules 14
Side results 14
Refinements vs. refinements 15

Chapter 2. Preliminaries 17
2.1. Formulas 17
2.1.1. One-sided language 17
2.1.2. Two-sided language 18
2.1.3. Data types 18
2.1.4. Polarized formulas 20
2.1.5. π, ν and ψ 21
2.1.6. Counting connectives and atoms 26
2.2. De Morgan equivalence 29
2.2.1. Two-sided language 29
2.2.2. De Morgan quotient on two-sided language 31
2.2.3. Intuitionistic language 34
2.3. Adding associativity 36
2.3.1. Two-sided language 36
2.3.2. Intuitionistic language 37

Chapter 3. Link graphs and proof structures 41
v

vi Contents

3.1. Link graphs 41
3.2. Proof structures 44
3.2.1. One-sided proof structures 45
3.2.2. Two-sided proof structures 46
3.2.3. Basic operations 52
3.2.4. η-Expanded cut-free proof structures and axiom linkings 55
3.2.5. Translations 62

Chapter 4. Two-sided proof nets for Cyclic Linear Logic 67
4.1. Sequent calculus 68
4.2. Cut elimination 79
4.2.1. Weak normalization 80
4.2.2. Strong normalization 82
4.2.3. Logical cuts and substitution 87
4.3. Proof nets 89
4.4. Contraction criterion 97
4.4.1. Completeness 101
4.4.2. Confluence on LG

′
2 105

4.4.3. Structurality 112
4.5. Cut elimination by means of proof nets 113
4.6. Dualizable proof nets 119
4.7. One-sided nets 128
4.8. The category of proof nets 132
4.9. Intuitionistic fragment 137
4.9.1. Lambek calculus 138
4.9.2. Proof nets and contraction criterion 140
4.9.3. Dualizable L-proof nets 141
4.10. Adding Exchange 145

Chapter 5. A contraction criterion for CNL 149
5.1. Cyclic trees 149
5.2. Sequent calculus 157
5.3. Contraction criterion 162
5.3.1. Proof nets 163
5.3.2. Completeness 167
5.4. Adding structural rules 168
5.5. Cut elimination 172
5.6. Dualizable proof nets 174
5.7. One-sided nets 176
5.8. Intuitionistic fragment 178
5.8.1. Non-associative Lambek calculus 178
5.8.2. Proof nets and contraction criterion 181
5.8.3. Dualizable NL-proof nets 182
5.8.4. Adding structural rules 183

Chapter 6. Proof nets for the Multimodal Lambek Calculus 185
6.1. Structure Trees 185
6.2. The calculus 188

Contents vii

6.3. Proof structures 193
6.4. Soundness 205
6.5. Sequentialisation 209
6.6. Cut elimination 214
6.7. Automated deduction 217

Appendix A. Systems 225
A.1. MLL 225
A.2. NCLL 226
A.3. CNL 227

Bibliography 231

Samenvatting 235

Dankwoord/Acknowledgements 239

Curriculum vitae Quintijn Puite 241

List of preprints and publications 243

Notation 245

CHAPTER 1

Introduction

1.1. Proof theory

Proof theory originated in Hilbert’s programme for the foundations of mathematics.
This programme was a reaction to the debate usually referred to as ‘Grundlagenstreit’, in
which Brouwer openly doubted certain principles of reasoning. Hilbert on the contrary,
tried to show the correctness of parts of mathematics, by means of broadly accepted fini-
tary formalistic concepts. His ambitious programme was the beginning of an attempt to
reduce mathematics to the art of mechanical manipulation of symbols according to certain
rules; to completely formalize mathematics, including the logical steps in mathematical
arguments. As an example, instead of considering the construction of the natural num-
bers N = {0, 1, 2, 3, . . .}, he based himself on their axiomatization: the axioms of Peano
arithmetic (PA), consisting in the defining properties of addition and multiplication, and
the principle of mathematical induction. However, Gödel’s first incompleteness theorem
for PA showed that there is a sentence A (in the appropriate formal first-order language)
such that it has no proof (it cannot be deduced from the axioms of PA), but also its
negation ¬A has no proof. Yet one of the two holds in the standard model (N; +, ·, S, 0),
so there is a sentence, holding for N, which is nevertheless unprovable. (Below we will see
that this sentence must hence be false in another model of PA.) All this said, Hilbert’s
programme failed at least to the extent that it had turned out impossible to fully capture
the properties of the natural numbers by an axiomatic approach.

Gödel’s completeness theorem clarifies the close relation between truth and derivabil-
ity. Let us first illustrate the dichotomy in logic between semantics on the one hand
and syntax on the other hand, by the example of group theory (but we can equally well
consider PA, or any other theory). A group can be described as a structure (G; ·, e, −1)
consisting of an underlying set G, a binary multiplication −·− on G, a constant e in G and
a unary map (−)−1 on G, by definition satisfying the first-order sentences of associativity,
the unitary law and the inverse law:

Γgt := { ∀x,y,z[x · (y · z) = (x · y) · z] ,

∀x[[x · e = x] ∧ [e · x = x]] ,

∀x[[x · x−1 = e] ∧ [x−1 · x = e]] }

Otherwise said: among all structures G = (G; ·, e, −1) groups are exactly those for which
the axioms Γgt hold: G |= Γgt. We say a theorem A (in the first-order language of group
theory) is true (or holds) (w.r.t. group theory) whenever it holds for all groups, in which
case we say A is a semantical consequence of Γgt; on the other hand A is derivable (w.r.t.
group theory) if there exists a formal proof from the axioms Γgt, in which case A is called
a syntactical consequence of Γgt. Gödel’s completeness theorem (for classical predicate

1

2 1. Introduction

logic) now states that these notions coincide:

(A holds) ∀∀G [[G|=Γgt]⇒[G|=A]] ⇐⇒ ∃∃P [P formally proves Γgt`A] (A is derivable)

This was a deep result at the time, as the two notions are totally different: the first one
is set theoretical, while the latter is rather of a finitary combinatorial nature.

In contrast to theories like group theory, in which one tries to capture a large class of
non-isomorphic structures, Peano introduced the language of arithmetic with the inten-
tion to describe (N; +, ·, S, 0) up to isomorphism. However, as we saw in the discussion of
Gödel’s incompleteness theorem, there is a sentence A, holding for N but unprovable from
PA. By the completeness theorem, A must be false in some model of PA. We conclude
that Peano’s axioms do not characterize a unique structure.

There are several formalizations of the notion of a ‘proof’. The three principle types
of formalism are Hilbert system, Natural deduction system and Sequent calculus system
(see [TS 96]).

1.2. Hilbert systems

A Hilbert system is based on axiom schemes and only two rules, viz. modus ponens
(→-elimination) and the rule of generalization (∀-introduction):

A A→ B modus ponens
B

A generalization (under certain conditions)
∀yA[y/x]

A derivation is a finite tree labeled with formulas, such that the immediate successors of
a node C are the premisses of a rule having C as a conclusion. The root of the tree is the
conclusion of the whole derivation. The maximal elements (i.e. the leaves of the tree) are
required to be axioms. On the one hand there are purely logical axioms which define the
logical connectives, e.g.

A→(B→(A∧B)) ; A→(B→A) ; [A→(B→C)]→[(A→B)→(A→C)]

In addition, there will be axioms for the particular theory (for example, the axioms
of group theory).

The following is an example of a derivation of A → A in a Hilbert system. Axioms
are overlined, as they should be considered as conclusions of 0-ary rules.

k
A→ (A→ A)

k
A→ ((A→ A)→ A)

s
[A→ ((A→ A)→ A)]→ [(A→ (A→ A))→ (A→ A)]

mp
(A→ (A→ A))→ (A→ A)

mp
A→ A

1.3. Natural deduction systems

Another formalism is the system of Natural deduction, first introduced by Gentzen in
[Gentzen 35], and later developed by [Prawitz 65]. While the logical connectives in a
Hilbert style derivation are characterized by the logical axioms, in a Natural deduction
system the deduction rules determine them: in addition to modus ponens and the rule
of generalization, there are introduction and elimination rules for each of the logical
connectives. Instead of merely deriving a formula A as in the Hilbert system formalism

1.3. Natural deduction systems 3

from logical and additional axioms at the top of our tree, we now deduce A from a set of
so-called open assumptions, which we shall make more precise shortly.

A deduction in the system of Natural deduction again is a tree of formulas with a
unique conclusion C. However, there is an additional ‘linking structure’. Some of the
leaves at the top of the tree are ‘linked to’ exactly one rule in the tree. These leaves are
called ‘closed’ assumptions; the others are called ‘open’. This is characteristic for Nat-
ural deduction: for some of the rules (viz. →-introduction, ∨-elimination, ∃-elimination
and reductio ad absurdum), application of them allows certain open assumptions to be-
come closed (by fixing the ‘link’). Only the remaining open assumptions are the ‘real
assumptions’ on the basis of which one is allowed to conclude C.

The Hilbert system and the Natural deduction system for a theory are deductively
equivalent, in the sense that there is a (Hilbert style) derivation with conclusion C if and
only if there is a deduction (in the Natural deduction formalism) with conclusion C and
with (open) assumptions belonging to the axioms for the particular theory.

As an example, let us consider the ∧-introduction rule of Natural deduction. It states
that, given a deduction with conclusion A and one with conclusion B

assumptions
· · ·
A

assumptions
· · ·
B

,

we can build a new deduction with conclusion A ∧B:

assumptions
· · ·
A

assumptions
· · ·
B ∧I

A ∧ B

Another rule, the →-introduction rule, states that, given a deduction with conclusion
C, we can build a new deduction with conclusion D → C, which allows (but does not
oblige) for the open assumptions D being ‘linked’ (and hence becoming closed). With
these rules we can form the following deduction, where the linking structure is indicated
by the indices 1 and 2.

A B ∧I
A ∧ B

A [B]1 ∧I
A ∧B →I,1

B → (A ∧ B)

[A]2 [B]1 ∧I
A ∧B →I,1

B → (A ∧B) →I,2
A→ (B → (A ∧ B))

We thus deduced the logical axiom A → (B → (A ∧ B)) of a Hilbert system from no
assumptions. The other way around, this axiom gives rise to the deduction rule ∧I, as
the following compound Hilbert style rule illustrates:

B

A A→ (B → (A ∧B))
mp

B → (A ∧ B)
mp

A ∧B

9>=
>; ∧ I

4 1. Introduction

1.4. λ-Calculus

The natural deduction rule ‘reductio ad absurdum’ (RAA) states that whenever ¬A
leads to a contradiction, we may conclude A. Logics without this rule are intuitionistic
logics (see [TvD 88]). They admit the Brouwer-Heyting-Kolmogorov (BHK) interpreta-
tion, explaining by constructive methods what it means to prove a compound statement
in terms of what it means to prove its components: a construction D proves A∧B if it is
a pair (D0,D1) consisting of a proof D0 of A and a proof D1 of B; D proves A∨B if D is
either of the form (0,D0), and D0 proves A, or of the form (1,D1), and D1 proves B; D
proves A→ B if D is a construction transforming any proof D0 of A into a proof D(D0)
of B; ⊥ is a proposition without proof. A formalized version of the BHK-interpretation
is given by the so-called λ-calculus, consisting of ‘terms’ of certain ‘types’ (the latter for
the moment being considered as logical formulas). For each type A there is a countably
infinite supply of variables xA, yA, . . ., and each of them is by definition a term of that
type. Moreover, if t is a term of type B and xA a variable (possibly occurring several
times in B), then λxAt is a term of type A → B, which closely corresponds to function
abstraction, but also to →-introduction; if t is a term of type A→ B and s is a term of
type A, then ts is a term of type B, which closely corresponds to function application,
but also to →-elimination. As a final example, if s is a term of type A and b is a term of
type B, there is a term 〈s, t〉 of type A ∧B. Let us now start with appropriate variables
xA and yB, then 〈xA, yB〉 is a term of type A ∧ B, whence λyB 〈xA, yB〉 is a term of type
B → (A ∧B), yielding that λxAλyB 〈xA, yB〉 is a term of type A→ (B → (A ∧B)). This
illustrates the so-called Curry-Howard isomorphism, or the formulas-as-types paradigm:
a term carries all information of a deduction, while the other way around a deduction
defines a term. The ‘links’ between closed assumptions and rules are taken care of by
the scope of λx, bound variables corresponding to closed assumptions, and free variables
to open assumptions. This suggests that we may regard a type C as the collection of
all its terms, and we can reformulate deducibility questions as follows: (the formula) C
is deducible iff (the type) C contains a closed term. More general, C is deducible from
(open) assumptions in Γ iff C contains a term with free variables of types among the
types in Γ. As an example we give the construction tree of the above constructed λ-term,
which coincides with the deduction tree mentioned earlier:

[xA : A]2 [yB : B]1 ∧I
〈xA, yB〉 : A ∧B →I,1

λyB 〈xA, yB〉 : B → (A ∧ B) →I,2
λxAλyB 〈xA, yB〉 : A→ (B → (A ∧B))

As a consequence of the Curry-Howard isomorphism, phenomena occurring in λ-calculus
have a direct counterpart in natural deduction. For example, the so-called β-reduction

(λxAt)s reduces to t [s/xA]

corresponds to a certain operation on deduction trees. This is actually the explanation
for the word isomorphism instead of bijection.

1.6. Classical logic 5

1.5. Sequent calculus systems

The last type of formalism, also due to Gentzen, is the Sequent calculus system (or
Gentzen system), which operates with sequents Γ ` A, where Γ is a finite set of formulas
(in fact, a multiset). The intended meaning of “Γ ` A is valid” is “A is implied by the
conjunction of the formulas in Γ”. A (sequent) derivation is a tree labeled with sequents,
which propagate from the identity axioms

A ` A

according to the inference rules towards the unique conclusion sequent. The dependence
on (open) assumptions of a formula in a natural deduction, is now captured in the an-
tecedent part of the corresponding sequent in the sequent calculus derivation. So no
assumption management (as by means of the ‘links’ in natural deduction) is needed.
The immediate counterparts of the →-elimination and →-introduction rule of natural
deduction can be given by

Γ ` A ∆ ` A→ B →E
Γ,∆ ` B

Γ, A, . . . , A ` B →I
Γ ` A→ B

(1)

In fact, the following formulation of the rules is more standard

Γ ` A ∆, B ` C
L→

Γ,∆, A→ B ` C

Γ, A ` B
R→

Γ ` A→ B
(2)

In order to show the pairs of rules (1) and (2) are equivalent (in the sense that we can
derive the same sequents by their application) one needs the following so-called structural
rules of weakening and contraction

Γ ` B LW
Γ, A ` B

Γ, A,A ` B
LC

Γ, A ` B
(3)

as well as the cut rule, defined by

Γ ` A ∆, A ` B
Cut

Γ,∆ ` B
(4)

which relates to composition (or substitution) of deductions:

Γ
· · ·
A

∆ A
· · · · · ·
B

 7→ ∆

Γ
· · ·
A

· · · · · ·
B

Intuitively we can read Γ ` A as “there is a deduction in the system of Natural
deduction of the formula A from the (open) assumptions Γ”. Indeed, the latter holds
precisely if Γ ` A is derivable in the sequent calculus system.

1.6. Classical logic

The systems indicated above are formalizations of Intuitionistic Logic (IL). In a natu-
ral deduction system, the step to Classical Logic (CL) is made by adding the rule ‘reductio
ad absurdum’ (or equivalently, the axiom scheme (¬A → ⊥) → A, i.e. ¬¬A → A). The
corresponding increase in logical expressibility in sequent calculus is achieved by admit-
ting sequents with multiple succedents, like Γ ` ∆. This system reflects the symmetries
of classical logic; every formula can either play a role as an assumption (occurring in the
antecedent part Γ), or as a conclusion (occurring negated in the succedent part ∆). As

6 1. Introduction

Γ ` ∆ is equivalent to ` ¬Γ, ∆, we could in fact restrict to one-sided sequents: sequents
with an empty antecedent part.

In general, a sequent calculus system is called a one-sided or two-sided system de-
pending on what the sequents are. An intuitionistic system is a two-sided system in
which the sequents are restricted to a single succedent formula.

1.7. Cut elimination

In a Hilbert style or a natural deduction formalism, during a bottom-up search for a
proof of a formula B, we encounter the problem that certain formulas must be guessed
at. E.g. A in

A A→ B mp
B

need not have any relation with B. The same problem occurs in a sequent calculus
formalism when using the cut rule. However, Gentzen proved that the cut rule is actually
superfluous. This central result in proof theory, with many consequences, is sometimes,
as in Gentzen’s original paper, referred to as the Hauptsatz:

Theorem 1.7.1. (Hauptsatz) For every sequent calculus derivation in CL (or IL)
there is a Cut-free derivation of the same sequent. ♦

For example, it implies the so-called Subformula Property: whenever a formula C is
provable, there exists a proof involving only subformulas of C.

By means of cut elimination, we can also simplify natural deductions. Indeed, given
a deduction tree, translate it into a sequent calculus derivation, eliminate the cut, and
translate back. The resulting deduction is in some sense free of detours.

In the sequent calculus system, cut elimination can be viewed as a way to explicate the
contents of a proof. Even better, Gentzen’s constructive proof of the Hauptsatz provides
us with an inductive procedure to calculate such a cut free representative. Some natural
questions now arise, e.g. whether these cut free representatives are unique in some sense.

1.8. Denotational semantics

Denotational semantics is the semantics of proofs. The fundamental idea consists
in interpreting cut elimination (a ‘dynamic notion’) by equality (a ‘static notion’). Let
us consider the congruence relation on all derivations for a fixed sequent such that a
derivation is related to another one if it is obtained from the latter by a cut elimination
step. Each derivation is now given an interpretation, called its denotation, such that
congruent derivations have the same interpretation.

For CL this does not yield an interesting distinction between derivations for a fixed
sequent: due to the structural rules and the resulting non-determinism of Gentzen’s
procedure of cut elimination, we can show that they must all have the same denotation
(see [GLT 90]). The situation is different for IL, where the application of the structural
rules is restricted to the antecedent part of sequents.

Coherence spaces are mathematical structures which were originally introduced by
[Girard 87] as a denotational semantics for IL. If the denotations for derivations of a
formula A are found in the coherence space [[A]], and those of B in [[B]], then those of A∧B
are found in [[A]] ∧ [[B]], where the second ∧ is a suitable operation on coherence spaces.

1.10. Multiplicative linear logic 7

In this way, the logical connectives correspond to operations on coherence spaces. Some
of these operations turned out to admit a decomposition in more primitive operations.
For example, the function-space operation → (corresponding to the connective →) can
be defined in terms of two new operations, called linear implication (() and of course
(or storage) (!), as follows:

X → Y = (!X)(Y

Another example is the sum type (corresponding to ∨), which has the following decom-
position:

X ∨ Y = (!X)⊕ (!Y)

See the survey [Schellinx 00] for a complete overview.

1.9. Linear logic

The remarkable observation that this semantical decomposition of the intuitionistic
connectives has a syntactical counterpart, is the origin of Girard’s linear logic: the se-
mantical operations like (, ! and ⊕ actually correspond to logical operations in their
own right ([Girard 87]; an all-around introduction is given in [Troelstra 92]). This is
achieved by a severe restriction, or better, by control of the use of the structural rules
of weakening and contraction. They are given a logical status by the new logical unary
connectives like !. E.g. the structural rules (3) are replaced by, among other things, the
logical rules

Γ ` B W!
Γ, !A ` B

Γ, !A, !A ` B
C!

Γ, !A ` B
(5)

Because of the absence of structural rules, linear logic is resource sensitive: ‘A’ stands for
“exactly one copy of A”. The bridge with ordinary logic, where assumptions can be used
ad libitum because of the weakening and contraction rules, is made by ‘!’: ‘!A’ stands for
“any number of copies of the formula A”.

So, historically, linear logic originated as the calculus extracted out of a semantics for
IL. This refinement of IL survives in what is known as Intuitionistic Linear Logic (ILL).
As for CL, in order to obtain Classical Linear Logic (CLL), we have to allow for sequents
with multiple succedents (Γ ` ∆), and generalize the rules accordingly.

As a refinement of both IL and CL, CLL can be considered as a tool to investigate
behaviour and properties of intuitionistic and classical sequent calculus derivations. In
[Schellinx 94] it is shown that every classical sequent derivation is a ‘simplified’ linear
logic derivation. As an important consequence, cut elimination for CL (or IL) now
follows from cut elimination for CLL: given a classical derivation, find a corresponding
linear derivation, eliminate the Cut’s and simplify the result. As cut elimination for
CLL is essentially deterministic, the non-determinism of cut elimination for CL now can
be captured in the choice among possible corresponding linear derivations. Indeed, this
choice essentially fixes the cut elimination procedure in CLL, whence, by projection, that
in CL as well.

1.10. Multiplicative linear logic

Derivations rules for the connectives in CL (or IL) can be given by several equivalent
formulations. Because of the absence of weakening and contraction, however, such distinct
formulations may become essentially different in CLL (or ILL). It turns out that the
connectives split into two variants: context-sharing (or context-sensitive) variants (which

8 1. Introduction

are called additive), respectively context-free (or context-insensitive) variants (which are
called multiplicative). For conjunction, the additive variant is defined by the pair of rules
(6), and the multiplicative variant by (7).

Γ, Ai ` C
L∧a,i

Γ, A1 ∧a A2 ` C

Γ ` A1 Γ ` A2 R∧a
Γ ` A1 ∧a A2

(6)

Γ, A1, A2 ` C
L∧m

Γ, A1 ∧m A2 ` C

Γ ` A1 ∆ ` A2 R∧m
Γ,∆ ` A1 ∧m A2

(7)

We can understand ∧a and ∧m as natural, but essentially distinct, operational aspects of
classical conjunction: if we consider the formulas as data types, a datum of type A ∧a B
is a datum which can be used exactly once to extract a datum of type A or a datum
of type B. On the contrary, a datum of type A ∧m B is a pair of data. ?-Autonomous
categories are algebraic structures defined by an axiomatization corresponding to linear
logic. (Actually, they already existed before linear logic was invented; see [Barr 79]).
In these categories, the cartesian product corresponds to ∧a, while the tensor product
corresponds to ∧m.

The fragment of linear logic consisting precisely in these multiplicative connectives is
Multiplicative Linear Logic (MLL). This fragment constitutes the core of linear sequent
calculus: for a sequent Γ ` ∆, a comma in Γ naturally corresponds to multiplicative con-
junction, the entailment sign ` to linear implication, and a comma in ∆ to multiplicative
disjunction.

1.11. Proof nets and proof structures

In [Girard 87] Girard introduces the system of proof nets for linear logic. Proof nets
are graph-like structures that abstract from inessential distinctions due to the intrinsic
order of rules in sequent derivations. The system of proof nets can be considered as a
natural deduction system of the sequent calculus for linear logic, but with two notable
differences. First of all, there is no need for parcels of assumptions; only one assumption
at a time may be closed by a rule. And secondly, in the original definition of proof nets,
elimination rules do not occur. Instead, by linear negation and Cut they are represented
by introduction rules.

The fact that proof nets abstract from inessential order, can be seen as follows: when-
ever in an ordinary derivation there is a moment of choice, the proof net pursues both
possibilities at the same time, but in a parallel fashion. But there is a cost: while deriva-
tions are recognized in linear time, it requires more effort to check whether a candidate
for a proof net is really a proof net.

To every sequent S we can assign several potential proof nets. These so-called proof
structures only depend on the formulas of S, and certain connections between their atomic
subformulas. Indeed, every (cut-free) proof net is such a proof structure. A criterion
determining whether a proof structure also is a proof net is called a correctness criterion.
The original criterion for the system of MLL proof nets given in [Girard 87] is the long
trip condition. It closely relates to the tree condition, which more or less states that all
graphs, associated to a proof structure, must be trees (acyclic and connected) in order for
the proof structure to be a proof net. Another criterion is the contraction criterion given

1.12. Structural refinements 9

by Danos in [Danos 90]: proof nets are those proof structures that can be contracted into
one point, under a suitable contraction relation. Our contraction criteria in this thesis will
be variations on this theme. The last criterion we mention here is Métayer’s homological
criterion ([Métayer 94]): by generalizing the ordinary definition of homology for graphs,
proof nets turn out to be characterized among proof structures by their homology. The
elegance of this criterion is the fact that it enables us to give completely algebraical proofs
of proof theoretical phenomena of MLL. (See also [Puite 96] and [PS 97].)

1.12. Structural refinements

We have seen that linear logic emerges as a refinement of IL, in the sense that the
intuitionistic connectives decompose into more primitive ones. Moreover, we saw that
this system of linear logic is characterized by a restriction on the use of the structural
rules of weakening and contraction. It is hence also referred to as a substructural logic.
This restriction implies that the sequent ` Γ, A, A is to be considered different from
` Γ, A.

Still structural rules abound, be it implicitly. They differ from weakening and con-
traction in the fact that they are linear. In a linear structural rule

` Γ

` eΓ

Γ and Γ̃ consist in exactly the same formulas. Only the ‘relative positions’ of these
formulas may change. The careful analysis of these connections and interactions of the
formulas in a sequent leads to further refinements of MLL.

Do ` A, B, Γ and ` B, A, Γ stand for the same sequent? Under the structural rule
of exchange these expressions indeed are equivalent. But often there are good reasons to
abandon this structural rule too. Then the order of the formulas has to be taken into
account. This gives rise to non-commutative “refinements” of MLL. The intuitionistic
fragment of non-commutative MLL had already been known before the birth of linear
logic, viz. as “Lambek calculus” (L) ([Lambek 58], see also [Roorda 91, Lambek 95]).
There are several classical non-commutative calculi: cyclic linear logic (see [Yetter 90])
with formula cycles as sequents; the system of [Abrusci 95] with formula lists as se-
quents, which leads to the coexistence of two negations: a linear post-negation and a
linear retro-negation, that are not involutive, but cancel each other. Both these systems
conservatively extend L. Further we mention systems with coexisting commutative and
non-commutative connectives, where the sequents are given extra structure (e.g. a series-
parallel partial order), e.g. the system of [Retoré 93] (with the new non-commutative
connective “before”) and the system of [AR 98]. The specific system Non-commutative
Cyclic Linear Logic (NCLL) corresponding to [Yetter 90] will be the subject of Chap-
ter 4.

Let us go one step further and ask whether the two expressions ` . . . , (A, B), C, . . .
and ` . . . , A, (B, C), . . . represent the same sequent? Here, the brackets denote the
construction order of the sequent. There are many mathematical operations for which
this so-called bracketing does matter, e.g. the cross product in Euclidian space (not in
general (a×b)×c = a× (b×c)), or the Lie brackets of Lie algebra’s (mostly [[xy]z] 6=
[x [yz]]). As notion of sequent for non-associative and non-commutative refinements of

10 1. Introduction

MLL, bracketings as they stand are inappropriate. It would force us to an undesirable
further splitting of the connectives. For example, the one-sided counterpart of (7), given
by

` Γ , A ` B , ∆
R∧m

` Γ , A ∧m B , ∆

would require a bracketing, hence either

`
�
Γ , A

�
`
�
B , ∆

�
R∧l

m

`
��

Γ , A ∧l
m B

�
, ∆

� or
`
�
Γ , A

�
`
�
B , ∆

�
R∧r

m

`
�
Γ ,

�
A ∧r

m B , ∆
��

Apparently, we would obtain two distinct multiplicative conjunctions. This dichotomy is
overcome in [dGL 00] by a minimal identification on bracketings. In Chapter 5 we con-
sider the two-sided formulation of the system Classical Non-associative Lambek calculus
(CNL) of [dGL 00].

The controlled reintroduction of some linear structural rules in the intuitionistic frag-
ment of this system (cf. [Morrill 96, Moortgat 97]) will be the subject of Chapter 6.
Likewise ‘!’ controls the use of weakening and contraction in plain linear logic, new unary
connectives (‘3’ and ‘2’) are introduced in order to control the use of the additional
linear structural rules. The next linear structural rule is an example of a weak form of
(one direction of) associativity:

∆[A1,
�
A2,3A3

�
] ` C

∆[
�
A1, A2

�
,3A3] ` C

(8)

We thus obtain a wide variety of substructural logics. Depending on our purposes, we
can vary the set of admitted linear structural rules. Adding plain associativity takes us
back to NCLL, and also adding commutativity takes us back to MLL.

1.13. Categorial grammars

In linguistics, substructural logics can be used as parsing tools. In fact, Lambek calcu-
lus (L) was motivated by this application ([Lambek 58]); and only after the introduction
of linear logic ([Girard 87]), L turned out to be the intuitionistic non-commutative frag-
ment of linear logic.

We consider an example explaining the resource-sensitivity of natural language. “John

·talks” is a well-formed sentence. Let us assign “John” the formula N and “talks” the
formula N → S, indicating that together with an N -word (noun phrase, to be precise) it
yields a sentence (S). Then “John · talks” has the formula N ∧ (N → S), from which
S is derivable. On the contrary “John · talks · Jim” would have a surplus of N (where
“Jim” also is assigned the formula N).

Similarly, “John · sees · Jim” becomes an S, when we assign “sees” the formula
N → (N → S). But “John · sees” lacks an N in order to become an S.

Hence the logic underlying language should at least be a resource conscious one. But
we also want “talks · John” to be underivable (although, as words they can constitute
a sentence after permutation). There are hence good reasons to take L or even non-
associative Lambek calculus (NL) as the underlying logic. In such a non-commutative

1.14. New contributions 11

setting “talks” will rather be given the formula N(S, expressing that it combines only
on the left with an N -word. Similarly, the word “sees” will get the formula (N(S)

(

N ,
meaning that its combination with “Jim” on the right (i.e. “sees ·Jim”) yields the formula
N(S (indeed, the same as “talks”!), which in turn means that “John · (sees · Jim)”
becomes an S.

A categorial grammar consists of a derivation system and a lexicon. The lexicon
assigns formulas to words of a natural language. The derivation system describes the
grammatical rules of the language. Taking our underlying logic as simple as possible
(say, NL), grammatical rules can be described by a controlled reintroduction of the
linear structural rules. We can plug-in such packages of structural rules, depending on
the actual language.

The task of parsing a sentence now consists in first choosing a formula for every word
in the sentence (out of the assigned formulas), and secondly searching for a deduction of
the formula S, witnessing that the words, in the given order, constitute a grammatical
correct sentence.

1.14. New contributions

The main theme of this thesis is the general two-sided theory of proof nets for the
substructural logics MLL, NCLL, CNL and NL3R. For each of the calculi we will prove
a correctness criterion, according to which proof nets are exactly those proof structures
that appropriately contract. The intended contraction relation is defined on the space of
link graphs, a new notion which turns out to be sufficiently general to capture both proof
structures and sequents.

For MLL our contraction criterion is a combination of Danos’ well-known contraction
criterion for one-sided MLL (see [Danos 90]) and Lafonts criterion for parsing boxes
(see [Lafont 95]). For NCLL our proof nets closely relate to those of [Roorda 91]. For
CNL our contraction criterion extends the results of [dGL 00]. A notable difference in
our approach is the fact that — although a sequent is defined in terms of a certain (tree)
structure on the formulas — our notion of proof structure is free of any explicit structure
on the leaves. Instead of asking whether a certain sequent (structure of formulas) is
derivable, we will ask whether the set of formulas is somehow derivable; if yes, our
criterion yields the required structure! The gap between ‘derivable’ and ‘well-structured’,
though having decreased, has evidently not vanished. This approach implies that our
notion of proof structure is independent of the particular two-sided calculus; of course,
sequents, derivation rules, contraction steps and proof nets do depend on the calculus.
For the intuitionistic restriction of CNL, extended by multiple modalities and a fixed set
of structural rules (NL3R), our contraction criterion proves and generalizes a correctness
criterion for the labeled sequent calculus of [Gabbay 96].

For the sequent calculus system NCLL we will prove strong normalization of cut
elimination by means of a generalization of the cut rule (Subsection 4.2.2). For each of
the calculi we will prove correctness of cut elimination w.r.t. our contraction criterion
(Section 4.5, Section 5.5, Section 6.6). This requires quite deep investigations on the
dependency between the contraction steps in a given conversion sequence; it gives rise to
particular substructures called block and component. We think our proof might serve as
a key towards further results on the parallelism of the conversion steps.

Let us briefly describe the two-sided system and some of its advantages in more detail.

12 1. Introduction

On two-sided proof net systems. In the two-sided sequent calculus for MLL,
sequents are of the form Γ ` ∆. We will define a corresponding notion of proof net,
which differs from the original notion of proof net in two respects: proof nets are allowed
to have assumptions in addition to conclusions, and, secondly, rules are allowed to have
more than one conclusion, while the main formula (the formula that has the remaining
formulas as subformulas) need not be a conclusion. The latter is in contrast to the one-
sided system, in which a logical rule has exactly one conclusion which moreover also is the
main formula: it has as subformulas the premisses of the rule. In the new setting, rules
for ‘new’ connectives are naturally obtained. An example is provided by the following
novel rule, which closely relates to the modus ponens rule (→E) of Natural deduction. It
states that, given a proof net with a conclusion A and one with an assumption B

Γ
· ·
· ·
∆ A

B Γ′

· ·
· ·

∆′

,

we can build a new proof net with an assumption A→ B:

Γ
· ·
· ·
∆ A A→ B

B Γ′

· ·
· ·

∆′

The assumptions of proof nets in the new system can be interpreted as if they were
negated conclusions. It is also possible to interpret the new rules as compound one-sided
rules. It may thus be clear that our generalizations do not change logical derivability from
the one-sided point of view : our system derives Γ ` ∆ precisely if the one-sided system
derives ` ¬Γ, ∆ (Lemma 4.7.1). On the other hand, however, our two-sided theory turns
out to be more appropriate in many respects, which we will briefly discuss now.

In the one-sided system some of the basic logical laws are expressed by operations
in the formula language. By one-sidedness, they simply cannot be taken care of by the
logical inference system. As an example, consider the defined operations of negation
(¬(A ∧ B) := (¬B) ∨ (¬A), etc.) and implication (A → B := (¬A) ∨ B). A first gain
of our new system consists in the fact that we can take such operations (like ¬ and
→) as new primitive connectives. This means that A → B and (¬A) ∨ B, as they
stand, are different formulas. By means of the two-sided theory we will see, however,
that there is a close logical relation between both formulas. This is achieved by the
particularly nice notion of dualizability (see Example 3.2.8). Roughly said, turning a two-
sided proof structure up-side-down yields its dualization, and a proof net is dualizable
if this dualization is a proof net as well. We will show that in the category of formulas
and proof nets, these dual proof nets are exactly the isomorphisms (Theorem 4.8.3).
Secondly, we prove that isomorphic formulas are exactly those that are equal in the one-
sided setting (Theorem 4.6.3, Theorem 5.6.1). This gives a justification for the original
one-sided formula identifications like A → B = (¬A) ∨ B; indeed, two-sidedly these
different formulas are apparently indistinguishable at the derivational level.

1.14. New contributions 13

A second advantage is obtained with respect to subnets. The notion of a subnet in the
original theory is, in our opinion, rather artificial. The following two proof nets should
behave similarly, as they only differ by one cut elimination step. However, in the left
hand side proof net, P2 with the negated assumption is a subnet, while in the right hand
side proof net it is impossible to regard P2 as a subnet.

A ¬A
P1

A

P2

P1

A

P2

The solution to this artificial distinction is found in the two-sided theory, where also in
the right hand side proof net P2 is a subnet, with A as an assumption. (In the one-sided
theory, we sometimes encounter a temporary allowance for assumptions; cf. [Danos 90].)
Hence the two-sided theory is a better illustration of the modular point of view: proof nets
are plug-ins of several subnets. This, in turn, allows for proving our lemmas and theorems
by induction on the size of the proof net. Without going into details, we will give one
‘classical’ example of this statement for the reader acquainted with MLL. Danos’ splitting
par lemma states that a correct (in some sense) proof structure without terminal par links
(but with at least one non-terminal par link) has a splitting par link. This splitting par
lemma yields the induction step when proving sequentialization: the two substructures,
obtained by removing the splitting par, are still correct, whence sequentializable, and
hence also the original correct proof structure is. Observe that removing this par link
in a one-sided setting introduces an undesirable assumption; in the two-sided setting,
however, this does not harm. By the way, another proof of sequentialization uses the
splitting tensor lemma, where a splitting tensor is a terminal tensor which is a ‘bridge’
between two disjoint substructures. Now observe that, in our two-sided setting, we can
introduce the overall notion of a splitting formula, which generalizes both the notion of
splitting par and that of splitting tensor.

A very practical consequence of the two-sided system is the step towards the intu-
itionistic fragment (Section 4.9). The intuitionistic fragment of MLL is simply obtained
as ‘the theory of proof nets with one conclusion’. And this, in turn, is nothing else than
the linear version of Natural deduction for IL. As a corollary, we find a nice alternative
for the ∨-elimination rule, which in the non-linear system is given by:

...
A ∨B

[A]

...
C

[B]

...
C ∨E

C

As said, one of our aims consists in formulating and proving contraction criteria
for the substructural calculi mentioned above. As a last advantage of the two-sided
setting, observe that the absence of axiom links provides us with an easy description of
the contraction steps (Section 4.4). Alternatively one can argue that, conversely, those
contraction steps tell us that axioms should rather be regarded as single formulas and
not as links.

14 1. Introduction

Sequents and link graphs. In order to describe a substructural calculus, we will
define a notion of sequent which is subtle enough to admit the appropriate structural fine
treatment.

Sequents for NCLL (Chapter 4) will be defined as cyclic lists of formulas, each of
which can play the role of an assumption or a conclusion. If we would require a separation
of the assumptions and the conclusions (cf. the ordinary sequent notation Γ ` ∆),
our sequents would essentially (i.e. one-sidedly) be lists (` ¬Γ, ∆) instead of formula
cycles. We would arrive at the two-sided counterpart of the non-commutative system of
[Abrusci 95].

We will define a sequent for CNL (Chapter 5) by the geometrical notion of a cyclic
tree (Section 5.1). This is equivalent to the definition as given in [dGL 00].

Each of the mentioned substructural calculi has its own elegant, though somewhat ad
hoc definition(s). But since we are also interested in the relations between the different
calculi, we will start from a very general definition of proof structure as a particular kind
of the even more general so-called link graphs, to be defined in Section 3.1. Link graphs as
such do not have any obvious logical meaning: we should consider them as our universe
of discourse. In later chapters, for each calculus they will be used in order to define the
basic objects (viz. the sequents and the derivable sequents), as well as the corresponding
notions of proof structure and proof net. As we intend to prove that a sequent is derivable
if and only if the corresponding proof structure converts to a certain form (in fact, as we
shall see, itself a sequent), it turns out to be highly useful to have this overall notion of
link graph in which we can formulate both proof structures and sequents, as well as the
process of conversion.

Controlled linear structural rules. In the labeled sequent calculus of [Gabbay 96]
derivability splits into logical derivability as well as structural derivability. In the cor-
responding theory of labeled proof nets ([Moortgat 97]), one uniquely decorates the
formulas of an intuitionistic proof net by means of formal terms. All structural modifi-
cation is now taken care of by the term of this proof net, by which we mean the term
assigned to the unique conclusion. Our criterion in Chapter 6 is based on the Curry-
Howard-like observation that the term of a proof net is in fact nothing else than the proof
net itself. Hence, instead of defining the structural operations on terms, we can directly
define them on proof nets. Moreover, we can extend this term assignment to any proof
structure (even without the nice properties of an intuitionistic proof net): the term of a
proof structure is given by the proof structure itself! The latter is quite a generalization,
as the original way in which labels in a proof net propagate towards the unique conclu-
sion, in no way generalizes to arbitrary proof structures. These considerations have been
elaborated in joint work with Richard Moot and will appear as [MP 00]; see Chapter 6.

As NL is the intuitionistic (hence asymmetric) fragment of CNL, the former admits a
finer description of the linear structural rules. E.g. to NL we can independently add either
direction of associativity; in CNL, the two directions coincide. (The same phenomenon
occurs with respect to the weakening and contraction rules for IL; e.g. the difference
between left contraction (allowed) and right contraction (impossible) evaporates in CL.)

Side results. For MLL, it is impossible to uniquely assign a proof net to a sequent
derivation. As the sequents are multisets, due to multiple occurrences an active or main
formula of a derivation rule may be ambiguous. We will show that this problem is

1.14. New contributions 15

overcome for NCLL (and hence for further refinements). The non-periodicity of derivable
sequents (Lemma 4.1.13) turns out to solve the original ambiguity (Lemma 4.2.5).

We will define a natural section of the projection from the two-side theory to the one-
sided theory (Subsection 2.1.5). The fact that this map is a section means that a one-sided
conclusion can one-sidedly be seen as either a negation-free (two-sided) assumption or
a negation-free (two-sided) conclusion (Lemma 2.2.5). E.g., the one-sided conclusion
(¬A)∨B is a conclusion A→ B; the one-sided conclusion (¬B)∨ (¬A) is an assumption
A∧B. This provides a well-behaved embedding of one-sided systems into their two-sided
counterparts.

In Subsection 2.3.2 we will study the intuitionistic restriction of associativity. Given
two intuitionistic formulas A and C, a chain of equivalences A ' B ' C (where ' is
generated by associativity) may pass a non-intuitionistic formula B. We will show that
the well-known associative laws for the intuitionistic language are really enough to capture
the original equivalence (Subsection 2.3.2).

A small but nice result is the easy calculation of the n-th Catalan number: the number
of binary trees with n+1 leaves (Example 5.1.5). We will obtain it from the combinatorics
of cyclic trees.

Refinements vs. refinements. Let us finish with the question in which sense the
systems described in this thesis are refinements of MLL. Not every MLL-provable se-
quent can be ordered (or bracketed) such that it becomes provable in the more restric-
tive system (a counter example being provided by A ∧ B ` B ∧ A); this means that
the restrictive systems derive less formulas, whence they are ‘refinements’ in the weak
sense of ‘subsystems’. However, addition of plain associativity and commutativity to
the restrictive systems gives rise to a system with the same expressionable strength
as MLL. Indeed, a proof in MLL transforms into a proof in NCLL+commutativity
(CNL+associativity+commutativity) by explicating the originally hidden use of commu-
tativity (and associativity). These systems hence are ‘refinements’ in the stronger sense
that every ‘coarse’ derivation in MLL decomposes in smaller steps; the same formulas
are derivable, by more detailed proofs. (See also the work of [Fleury 96].)

CHAPTER 2

Preliminaries

Sequent calculi for fragments of classical linear logic are often given in a one-sided
way: sequents only consist of conclusions, and hypotheses do not appear explicitly. This
is because classical formulas by definition satisfy De Morgan identities like (X

&

Y)⊥ =
Y ⊥ ⊗X⊥, whence it is possible to consider hypotheses X as conclusions [X]⊥. This set
of formulas will be called L1, and introduced in Subsection 2.1.1.

Lambek Calculus treats intuitionistic sequents, having several hypotheses and exactly
one conclusion. These may be considered as a particular kind of two-sided sequents, in
which we allow both hypotheses and conclusions. It no longer is necessary to quotient
by the De Morgan equivalence; even better: if we do not, we are able to derive it. This
two-sided language is called L2.

Every two-sided sequent or derivation has a one-sided counterpart, obtained by turn-
ing all hypotheses into conclusions by means of negation, and then taking the De Morgan
quotient. The other way around, it is far less evident how to canonically assign a two-
sided structure to a given one-sided one. We will present a solution to this problem in
Subsection 2.1.5: every one-sided formula can be expressed uniquely (modulo outermost
[−]⊥) in atoms by means of ⊗ and

&

and the defined operations(and

(

; we take this
expression as the corresponding L2-formula, and add the sign + (−) depending on the
absence (presence) of the outermost negation. So our solution at this stage uses a form of
polarization of formulas, which in fact is not a severe generalization; the structures that
we define in later sections, will anyhow need polarized formulas, and then the outermost
negation will correspond to sign alternation.

In Section 2.2 we will show that the De Morgan equivalence is exactly the identification
made when mapping L2-formulas onto L1-formulas. The canonical representatives of each
equivalence class obtained by the already defined map in the opposite direction contain
the intuitionistic L2-formulas. The corresponding elements of L1 are then called the
intuitionistic L1-formulas.

It is well-known what generates the equivalence relation of associativity in L2. How-
ever, for e.g. intuitionistic L2-formulas a chain of such equivalences may lead us out of
the intuitionistic part. So in Section 2.3 we will give an explicit definition of associativity
completely within the intuitionistic language.

2.1. Formulas

A language is a set of formulas. Three languages will play a central role in this
thesis, viz. the one-sided classical language L1; the two-sided classical language L2; and
the intuitionistic language L2,i. Formulas of an unspecified language are denoted by
F, G, H,

2.1.1. One-sided language. Starting from an infinite denumerable set of atoms
A := {α1, α2, α3, . . .} and the set of their formal negations A⊥ := {α⊥1 , α⊥2 , α⊥3 , . . .}, which

17

18 2. Preliminaries

together constitute the set of atomic formulas, the formulas of the one-sided classical
calculi are built up with the binary connectives ⊗ (“times”) and

&

(“par”), representing
multiplicative conjunction and disjunction respectively. The resulting set of formulas will
be denoted by L1, and we will refer to L1-formulas as X, Y, Z, W,

Linear negation [−]⊥ : L1 → L1 (“perp”) of a formula is inductively defined by the
‘De Morgan laws’:

[αi]
⊥ := α⊥i

[α⊥i]⊥ := αi

[X ⊗ Y]⊥ := [Y]⊥

&

[X]⊥

[X

&

Y]⊥ := [Y]⊥ ⊗ [X]⊥

which is easily shown to be an involution: [[X]⊥]⊥ = X. Moreover, we define two
operations for linear implication, viz. “implies” (or “under”) and “if” (or “over”), by

(X \ Y :=) X(Y := [X]⊥

&

Y

(X / Y :=) X

(

Y := X

&

[Y]⊥.

2.1.2. Two-sided language. Starting from an infinite denumerable set of atoms
A := {α1, α2, α3, . . .}, the formulas of the two-sided classical calculi are built up with the
unary connective (−)⊥ and the binary connectives ⊗,

&

,(and

(

. The resulting set of
formulas will be denoted by L2, and we will refer to L2-formulas as A, B, C, D,

Within L2 we distinguish three particular subsets, viz. the De Morgan normal forms
(see page 32 for the definition of the De Morgan normal form of a formula)

L2,nf := F ::= A | (A)⊥ | F ⊗ F | F &F

which are (- and

(

-free and moreover contain negations only of atoms; secondly the
⊥-free formulas defined by

L2,⊥-free := F ::= A | F ⊗ F | F &F | F(F | F (F

and finally the intuitionistic formulas

L2,i := F ::= A | F ⊗ F | F(F | F (F
which are the ⊥- and

&

-free formulas.
The inclusion L2,i L2 is called κ.

2.1.3. Data types. The name ‘data type’ will be used for a collection of similarly
structured sets (so-called ‘settings’) of (polarized) formulas, e.g. lists or trees.

Given some formulas F0, . . . , Fm−1 (each Fi ∈ L), the set S := {F0, . . . , Fm−1} contains
at most m formulas. It is completely determined by its characteristic function L→ {0, 1}
which is precisely 1 on F ∈ S. In case we want to distinguish multiple occurrences of one
and the same formula, we have to generalize to the notion of multiset, determined by a
characteristic function L → N. A multiset of formulas is sometimes regarded as a set of
formula occurrences.

The free abelian group generated by L-formulas ZL consists of formal finite sums∑
F∈L sF F , each one characterized by the function F 7→ sF : L→ Z. A formal sum can

be regarded as a multiset in which negative multiplicities are allowed.

2.1. Formulas 19

The collection Sets (MSets) (ZL) of sets (multisets) (formal sums) is an example
of a data type. The operation assigning the set (multiset) (formal sum) S ∪ T (S] T)
(S+T) to an ordered pair (S, T) of sets (multisets) (formal sums) corresponds to truncated
addition (ordinary addition) (ordinary addition) of the associated characteristic functions
s, t : L → {0, 1} (N) (Z). This is an associative and commutative binary operation on
Sets (MSets) (ZL).

The map {0, . . . , m − 1} → L : i 7→ Fi itself determines the list (F0, . . . , Fm−1) of
length m. The concatenation (Γ, ∆) of Γ = (F0, . . . , Fm−1) and ∆ = (G0, . . . , Gn−1) is
defined to be the list determined by

{0, . . . , m + n− 1} → L : i 7→
{

Fi if i ∈ {0, . . . , m− 1}
Gi−m if i ∈ {m, . . . , m + n− 1}

List concatenation clearly is an associative operation on the data type Lists of lists

((Γ, ∆), Π) = (Γ, (∆, Π))

allowing us to write (Γ, ∆, Π), or, more generally, (Γ0, . . . , Γk). On the other hand it is
not commutative: not in general (Γ, ∆) = (∆, Γ).

Let ↔ be the smallest equivalence relation on Lists satisfying cyclic permutation (or
rotation), which is nothing else than commutativity (on the outermost level):

(Γ, ∆)↔ (∆, Γ)

The equivalence classes will be called cyclic lists, and denoted by ([F0, . . . , Fm−1]). List
concatenation does not translate into an operation on this data type CLists, as

Γ↔ Γ′ & ∆↔ ∆′ =⇒ (Γ, ∆)↔ (Γ′, ∆′)

does not generally hold.
The smallest congruence relation satisfying commutativity, or equivalently, the small-

est equivalence relation satisfying the expansions of commutativity

(Π, Γ, ∆, Σ)↔ (Π, ∆, Γ, Σ),

clearly has multisets as equivalence classes. The corresponding canonical projection θ :
(Lists, (−,−))→ (MSets,−] −) obviously is a homomorphism:

θ(Γ, ∆) = θΓ] θ∆.

All data types mentioned so far can be regarded as associative quotients on the data
type Trees of (rooted binary) trees

Trees ::= L | Trees¯ Trees.

The data type CTrees of cyclic trees is an example of a not merely associative quotient,
and will be described in Section 5.1.

The collections Lists and Trees are strictly non-commutative data types, by which we
mean that every list (tree) has a uniquely determined order on the formulas it contains.

We use the word setting for an element of a general data type, and one data type
consists of similar settings.

In the next diagram we have indicated the different data types as equivalence rela-
tions on Trees. Every arrow represents the canonical projection from the collection of
representatives to the collection of equivalence classes. Regarding all collections as quo-
tients on Trees, every arrow represents taking a quotient corresponding to the smallest

20 2. Preliminaries

equivalence relation satisfying the indicated clause in addition to the original clauses the
domain already satisfies. The actual clauses are given by the following instances and
expansions of instances of associativity and commutativity on Trees:

(Γ¯∆)¯Π↔ Γ¯ (∆¯Π) (Ass)

Ξ[(Γ¯∆)¯Π]↔ Ξ[Γ¯ (∆¯Π)] (Ass)

Γ¯∆↔ ∆¯ Γ (Comm)

Ξ[Γ¯∆]↔ Ξ[∆¯ Γ] (Comm)

¬ass & ¬comm −¯−

Trees

Ass & Comm

Ass

ass & ¬comm (−,−)

Lists

Comm

θ

Comm

CTrees

Ass

θ

CLists

Comm

θ
ass & comm −]−

MSets

This diagram will be completed in Section 5.1, to be precise in Example 5.1.5, where
we will concentrate on the various inverse images of the subcollection of MSets consisting
of one single multiset {e0, . . . , em−1} which is actually a set (i.e. all ei distinct).

2.1.4. Polarized formulas. Given a language L and a formula F ∈ L, to F we
formally associate two polarized formulas1, viz. F+ and F− (as they stand). We define
L+ := {F+ |F ∈ L} and L− := {F− |F ∈ L}. Given a finite setting (e.g. a (multi)set,
(cyclic) list, (cyclic) tree) of formulas Γ, by Γ+ we mean Γ, formula-wise provided with
a positive sign. By Γ− we mean Γ, formula-wise provided with a negative sign and in
reversed order. I.e. for trees we formally define:

〈|F |〉+ :=
〈∣∣F+

∣∣〉 〈|F |〉− :=
〈∣∣F−∣∣〉(

Γ ¦∆
)+

:= Γ+ ¦∆+
(
Γ ¦∆

)−
:= ∆− ¦ Γ−

where 〈|F |〉 denotes the singleton tree and ¦ denotes tree construction; for the other
settings, the maps are those which commute with the canonical projection: (θΓ)+ :=
θ(Γ+) and (θΓ)− := θ(Γ−), which are well-defined. For (multi)sets (lists, trees) Γ and

1One should not confuse this with extant notions of polarity of formulas, as e.g. in Girard’s ‘ludics’
(see [Girard 98]). Moreover, observe that the sign does not, in any way, propagate through a formula:
(A⊗B)+ is not the same as A+⊗B+; the latter expression as it stands is not even a polarized formula.

2.1. Formulas 21

∆, the expression Γ ` ∆ is an alternative denotation for the setting2 ∆+ ¦ Γ−, where ¦
denotes setting construction (defined for the non-cyclic data types).

For a language L we define L± := L+∪L−. We consider L as a subset of L± by means
of ι : L L± : F 7→ F+. The map which changes the polarity on L± is called sign

alternation τ : L± → L± :

{
F+ 7→ F−

F− 7→ F+ .

Let L and K be two languages. Given a map ξ : L → K, it induces sign-preserving
maps L+ → K+, L− → K− and L± → K±, which we will also denote by ξ.

Given a map ξ : L → K± : F 7→ (F •)F assigning to F the formula F • ∈ K polarized

by F ∈ {+,−}, we extend it to a map ξ± : L± → K± by3 F+ 7→ (F •)+F = ξF and

F− 7→ (F •)−F = τξF . In this way negatively polarizing an original argument F ∈ L

corresponds to sign alternation of the result ξF . Observe that ξ± and τ commute.
Given a map ξ : L± → K : F ρ 7→ ξ(F ρ), we define two maps ξ+, ξ− : L± → K± by

ξ+ : L
± → K

± : F ρ 7→
(
ξ(F ρ)

)+

ξ− : L
± → K

± : F ρ 7→
(
ξ(F−ρ)

)−
For any map ξ : L? → K∗ there is a corresponding structure-preserving map ξ from a

particular data type of L?-settings to the same data type of K∗-settings, where ?, ∗ = Ã,
+, − or ±.

2.1.5. π, ν and ψ. Every formula A of L2 may be seen as a generalized operation
on L1-formulas, together with its arguments. Indeed, all primitive connectives of L2 are
either connectives or operations of L1. Let us define π as the evaluation of this expression,
to be more precise:

π(αi) := αi

π((A)⊥) := [π(A)]⊥

π(A¤ B) := π(A)¤ π(B) (¤ = ⊗,

&

,(or

(

)

This map actually computes the ‘De Morgan quotient’ on L2, in a sense to be made
precise in the next subsection (see Proposition 2.2.3).

The other way around, every formula X of L1 is just a formula of L2 when we replace
the formal negations of atoms α⊥i by actual negations of atoms (αi)

⊥. The resulting
formula ν(X) is (- and

(

-free and contains no negations but negations of atoms (i.e.
belongs to L2,nf), and may formally be defined by:

ν(αi) := αi

ν(α⊥i) := (αi)
⊥

ν(X ⊗ Y) := ν(X)⊗ ν(Y)

ν(X

&

Y) := ν(X)

&

ν(Y)

Now the map

L1
ν

L2
π

L1

2This formula is to be understood such that U ¦ ∅ = U = ∅ ¦ U .
3Here we use the convention that −− = ++ = + and +− = −+ = +, i.e. ({+,−}, ·) ∼= (Z2,+2).

22 2. Preliminaries

is the identity on L1, showing π is surjective and ν is injective. Restricting the domain
of π and the codomain of ν to L2,nf, also the next composite

L2,nf
π′

L1
ν′

L2,nf

is easily shown to be the identity, whence L1
∼= L2,nf.

The map ν, however, turns out to be inappropriate for our purposes. The main
problem is that the negation operation cannot be mimicked in a satisfying way. We solve
this by defining another translation ψ : L1 → L

±
2 , where the [−]⊥ operation of L1 will

correspond to the sign alternation τ in L
±
2 .

Definition 2.1.1. Let X be an L1-formula. We define ψ(X) := (X•)X ∈ L
±
2 as

follows:

αi 7→ α+
i

α⊥i 7→ α−i

X ⊗ Y 7→


(X• ⊗ Y •)+ if X = + and Y = +,

(Y •

(

X•)− if X = + and Y = −,

(Y •(X•)− if X = − and Y = +,

(Y •

&

X•)− if X = − and Y = −

Y

&

X 7→


(Y •

&

X•)+ if X = + and Y = +,

(Y •(X•)+ if X = + and Y = −,

(Y •

(

X•)+ if X = − and Y = +,

(X• ⊗ Y •)− if X = − and Y = −
♦

For convenience we will sometimes write

ψ(X ⊗ Y) = ψ(X)⊗ ψ(Y) and

ψ(Y

&

X) = ψ(Y)

&

ψ(X)

where ⊗ and

&

in the right hand side are defined as maps4 L
±
2 × L

±
2 → L

±
2 by

Aρ ⊗ Bσ :=


(A⊗ B)+ if ρ = + and σ = +

(B

(

A)− if ρ = + and σ = −
(B(A)− if ρ = − and σ = +

(B

&

A)− if ρ = − and σ = −

Bσ &

Aρ :=


(B

&

A)+ if ρ = + and σ = +

(B(A)+ if ρ = + and σ = −
(B

(

A)+ if ρ = − and σ = +

(A⊗ B)− if ρ = − and σ = −
From the definition it is immediately clear that X• is ⊥-free, and that the following

boolean characterization may be used in order to compute the sign X:

4The expression α+ ⊗ β− as it stands is not an element of L
±
2 ; by definition of the operation

⊗ : L
±
2 × L

±
2 → L

±
2 it equals (β (

α)−, which expression is an element of L
±
2 .

2.1. Formulas 23

L1

connectives
0-ary αi, α⊥i
1-ary
2-ary ⊗,

&

operations
0-ary
1-ary [−]⊥

2-ary (,

(

ψ−→
X 7→ (X•)X

π←−
π(A) 7→A+

[π(A)]⊥ 7→A−

L
±
2

connectives
0-ary αi

1-ary (−)⊥

2-ary ⊗,

&

,(,

(

operations
0-ary
1-ary
2-ary

Figure 2.1. Definitions of formulas for both L1 and L2.

Lemma 2.1.2.

X ⊗ Y = + iff X = + and Y = +;

Y

&

X = + iff X = + or Y = +.

♦
For a map in the reverse direction, we extend the domain of π : L2 → L1 to L

±
2 by

composing it with

µ : L
±
2 → L2 :

{
A+ 7→ A
A− 7→ (A)⊥

Let us denote this extended map also by π : L
±
2 → L1, so that

π(A+) = π(A)

π(A−) = π((A)⊥) = [πA]⊥

and let us call χ the other composite µψ.

L1

ψ
χ

L
±
2 µ

π

L2

π

L1

L
±
2,⊥-free

π′
L1

ψ′
L
±
2,⊥-free

In the next two lemmas we will see that both of these diagrams are identities, where
in the second diagram the domain of π and the codomain of ψ have been restricted to
L
±
2,⊥-free. This yields L1

∼= L
±
2,⊥-free.

24 2. Preliminaries

Lemma 2.1.3. For every L1-formula X the following holds:

π(X•) = π((X•)+) = [π((X•)−)]⊥ (1)

π(X•) =

{
πψX if X = +,

[πψX]⊥ if X = −
(2)

πψX = X (3)

πχX = X (3’)

ψ([X]⊥) = (X•)−X (4)

([X]⊥)• = X• (4a)

[X]⊥ = −X (4b)

♦
Proof: For statement (1), observe that π((X•)+) equals by definition π(X•). Also

by definition π((X•)−) = [π(X•)]⊥, whence π(X•) = [[π(X•)]⊥]⊥ = [π((X•)−)]⊥

Proof of (2): Directly from (1), by writing ψ(X) = (X•)X .
Proof of (3): By induction on Z ∈ L1. For (3’), observe that (3) yields X = πψX =

(πµ)ψX = π(µψ)X = πχX, for the map χ defined on page 23.

As ψ([X]⊥) = (([X]⊥)•)[X]⊥ = (X•)−X iff ([X]⊥)• = X• and [X]⊥ = −X , it is clear
that (4) is equivalent to “(4a) and (4b)”. The proof of (4) is also by an easy induction
on Z. ////

Lemma 2.1.4. For every L2,⊥-free-formula A and ρ = +,− the following holds:

ψπA = A+ (1)

(πA)• = A (1a)

πA = + (1b)

χπA = A (1’)

ψπ(Aρ) = Aρ (2)

(π(Aρ))• = A (2a)

π(Aρ) = ρ (2b)

χπ(Aρ) = µAρ (2’)

♦
Proof: As ψ(πA) = ((πA)•)πA, (1) is equivalent to “(1a) and (1b)”. The proof of

(1) is by induction on C ∈ L2,⊥-free.
From (1) we obtain χπA = µψπA = µ(A+) = A, proving (1’). Moreover, (1) proves

the “ρ = +”-case of (2) as well. For ρ = −:

ψ(π(A−)) = ψ([πA]⊥)
Lemma 2.1.3(4)

= ((πA)•)−πA (1a)&(1b)
= A−.

Now (2) is equivalent to “(2a) and (2b)”, while (2’) follows after composition with µ. ////

The importance of this map ψ is the fact that it yields a partition of the L1-formulas
into two parts: the even X with X = + and the odd X with X = −. As X and [X]⊥ are

2.1. Formulas 25

of opposite parity , the involutive operation [−]⊥ on L1 yields a bijection L1,even
∼= L1,odd,

and the next diagram – where all arrows are bijections — commutes:

L1,even

ψ

[−]⊥

L
+
2,⊥-free

π

τ

L1,odd

ψ

L
−
2,⊥-free

π

In the next sections we will use ψ to embed one-sided classical link graphs, proof struc-
tures, sequents and derivations into their two-sided counterparts. Let us confine ourselves
at this point to remarking what happens to the axiom rule of MLL1. The formulas X
and [X]⊥ in an MLL1-axiom

Ax

` X, X⊥

play a completely symmetric role; indeed, one can also consider X = [[X]⊥]⊥ as the
negated formula. This would leave us a choice for the L2-formula in the corresponding
MLL2-axiom

Ax

A ` A
in case we would use ν, viz. either A = ν(X) or A = ν([X]⊥). However, (−)• maps both
X and [X]⊥ to the same L2-formula A, which is hence preferable.

Example 2.1.5. Take X = α⊥ ⊗ β in the above situation, then
Ax

` α⊥ ⊗ β, β⊥

&

α

translates to
Ax

β(α ` β(α
instead of

Ax

(α)⊥ ⊗ β ` (α)⊥ ⊗ β or
Ax

(β)⊥

&

α ` (β)⊥

&

α
♦

Example 2.1.6. An atom αi is even, while its formal negation α⊥i is odd. Hence by
Lemma 2.1.2 the L1-formulas in the upper part of this box are even, and the others are
odd.

α⊗ β β

&

α

α⊗ β⊥ β⊥

&

α

α⊥ ⊗ β β

&

α⊥

α⊥ ⊗ β⊥ β⊥

&

α⊥

These formulas may also be expressed — modulo outermost [−]⊥ — in atoms by means
of ⊗ and

&

and the defined operations(and

(

, which gives respectively

α⊗ β β

&

α

[β

(

α]⊥ β(α

[β(α]⊥ β

(

α

[β

&

α]⊥ [α⊗ β]⊥

26 2. Preliminaries

which explains the words ‘even’ and ‘odd’. In Lemma 2.1.3 we saw that we can always
express an L1-formula X in this way:

X = πψX =

{
π(X•) if X = +;

[π(X•)]⊥ if X = −.

In Lemma 2.1.4 we saw that this way of expressing L1-formulas is even unique: suppose
X is expressible as πA or [πA]⊥ where A ∈ L2,⊥-free, then X = π(Aρ), whence ψX =

ψπ(Aρ)
Lemma 2.1.4

= Aρ, which means that A = X• and ρ = X are uniquely determined. ♦

2.1.6. Counting connectives and atoms. Let #⊗(−) and # &(−) be the functions
on L1, assigning to a formula X the number of ⊗-symbols (

&

-symbols respectively)
occurring in X. So formally:

#⊗(αi) := 0

#⊗(α⊥i) := 0

#⊗(X ⊗ Y) := #⊗(X) + 1 + #⊗(Y)

#⊗(X
&

Y) := #⊗(X) + #⊗(Y);

for # &(−) an analogue definition applies. Instantaneously we see that for all X, Y ∈ L1

we have the equalities:

#⊗([X]⊥) = # &(X);

&([X]⊥) = #⊗(X);

#⊗(X(Y) = #⊗(Y

(

X) = # &(X) + #⊗(Y);

&(X(Y) = # &(Y

(

X) = #⊗(X) + 1 + # &(Y).

We extend these functions to polarized formulas by

#⊗(X+) := #⊗(X) #⊗(X−) := # &(X)

&(X+) := # &(X) # &(X−) := #⊗(X),

such that #⊗(Xρ) = # &(X−ρ). Let us finally extend these functions additively to settings
of polarized L1-formulas Γ, as in:

#�(Γ) :=
∑

Xρ∈Γ
#�(Xρ) (¤ = ⊗,

&

).

Composing these maps #�(−) : L1 → Z with π : L2 → L1, we get similar maps
on L2. The same holds for the extensions: composing #�(−) with the sign preserving
induced map π : L

±
2 → L

±
1 (the sign- and structure-preserving induced map π from

the L
±
2 -settings to the L

±
1 -settings), yields similar maps #�(−) on L

±
2 (the settings of

polarized L2-formulas).

Lemma 2.1.7. For L2-formulas A and B the following holds, where ⊗ and

&

are the
maps L

±
2 × L

±
2 → L

±
2 as defined in Subsection 2.1.5:

#⊗(Aρ ⊗ Bσ) := #⊗(Aρ) + 1 + #⊗(Bσ)

#⊗(Bσ &

Aρ) := #⊗(Bσ) + #⊗(Aρ);

for # &(−) an analogue result holds. ♦

2.1. Formulas 27

Another useful map is the algebraic interpretation of a formula. Let 〈A〉 be the free
group generated by the atoms, the unit of which we will denote by Λ. We define [[−]] as
the function from L1 to 〈A〉 by:

[[αi]] := αi[[
α⊥i

]]
:= α−1

i

[[X ¤ Y]] := [[X]] · [[Y]] (¤ = ⊗,

&

).

Instantaneously we see that for all X, Y ∈ L1 we have the equalities:[[
[X]⊥

]]
= [[X]]−1 ;

[[X(Y]] = [[X]]−1 · [[Y]] ;

[[Y

(

X]] = [[Y]] · [[X]]−1 .

Extend [[−]] to a map on L
±
1 by

[[Xρ]] := [[X]]ρ (ρ = +1,−1)

and finally to strictly non-commutative settings (i.e. lists or trees) of polarized L1-formulas
Γ, as in: [[

Xρ0

0 , . . . , X
ρm−1

m−1

]]
:=

m−1∏
j=0

[[
X

ρj
j

]]
.

For L2 similar maps may be defined, by composition with the appropriate extensions of
π : L2 → L1. We then find that

[[Aρ ⊗Bσ]] = [[Aρ &

Bσ]] = [[A]]ρ · [[B]]σ .

Only counting the positive occurrences of atoms (and neglecting the order in which
they occur), yields a map 〈[−]〉 from L1 to the free abelian group generated by the atoms
ZA, obtained as the composition 〈A〉 → ZA after [[−]]. A direct definition is given by:

〈[αi]〉 := αi〈[
α⊥i

]〉
:= −αi

〈[X ¤ Y]〉 := 〈[X]〉+ 〈[Y]〉 (¤ = ⊗,

&

).

Instantaneously we see that for all X, Y ∈ L1 we have the equalities:〈[
[X]⊥

]〉
= −〈[X]〉 ;

〈[X(Y]〉 = 〈[Y (

X]〉 = 〈[Y]〉 − 〈[X]〉 .
Extend 〈[−]〉 to a map on L

±
1 by

〈[Xρ]〉 := ρ 〈[X]〉 ,
and finally additively to settings of polarized L1-formulas Γ, as in:

〈[Γ]〉 :=
∑

Xρ∈Γ
〈[Xρ]〉 .

The last expression is well-defined for multisets and cyclic lists (trees), since the order does
not matter. For L2 similar maps may be defined, by composition with the appropriate
extensions of π : L2 → L1. We then find that

〈[Aρ ⊗ Bσ]〉 = 〈[Bσ &

Aρ]〉 = ρ 〈[A]〉+ σ 〈[B]〉 .

28 2. Preliminaries

Let us finish this subsection by defining the so-called count of negations (cf. [Pentus 93])
of an L1-formula X by

\(X) :=
1 + #⊗(X)−# &(X)− ε(〈[X]〉)

2
,

where ε is the augmentation map ZA → Z which maps
∑

ciαi to
∑

ci. By the observation
that

\(αi) = 0

\(α⊥i) = 1

\(X ⊗ Y) = \(X) + \(Y)

\(X

&

Y) = \(X) + \(Y)− 1

we see immediately that \(X) is an integer. Furthermore,

\([X]⊥) = 1− \(X);

\(X(Y) = \(Y
(

X) = \(Y)− \(X).

Knowing the extensions of #�(−) and 〈[−]〉 to polarized L1-formulas and settings of them,

we can extend the defining equation \(X) :=
1+#⊗(X)−# &(X)−ε(〈[X]〉)

2
accordingly, yielding:

\(X+) = \(X)

\(X−) = 1− \(X)

\(Xρ) =
1

2
+ ρ(\(X)− 1

2
) = ρ\(X) +

1− ρ

2
(ρ = +1,−1)

\(Γ) =
1− |Γ|

2
+

∑
Xρ∈Γ

\(Xρ)

\(Γ ¦∆) = \(Γ) + \(∆)− 1

2
.

Observe that \(−) is not additive for settings, and moreover is no longer integer if |Γ| is
even.

Knowing that \(Xρ) is an integer yields

1 + #⊗(Xρ) ≡ # &(Xρ) + ε(〈[Xρ]〉) (mod 2)

and taking the sum over Γ yields

|Γ|+ #⊗(Γ) ≡ # &(Γ) + ε(〈[Γ]〉) (mod 2)

Lemma 2.1.8. For any setting Γ, the following holds:

|Γ|+ #⊗(Γ) ≡ # &(Γ) + ε(〈[Γ]〉) (mod 2)

♦

2.2. De Morgan equivalence 29

Example 2.1.9. Suppose Γ = ((C

(

B)+, A+, (C

&

(B(A))−). Then

#⊗(Γ) = #⊗(C

(

B) + #⊗(A) + # &(C

&

(B(A))

= #⊗(C) + # &(B) + #⊗(A) + # &(C) + 1 + #⊗(B) + 1 + # &(A) = j + 2

&(Γ) = # &(C

(

B) + # &(A) + #⊗(C

&

(B(A))

= # &(C) + 1 + #⊗(B) + # &(A) + #⊗(C) + # &(B) + #⊗(A) = j + 1

where j = #⊗(A, B, C) + # &(A, B, C), while

[[Γ]] = [[C

(

B]] · [[A]] · [[C &

(B(A)]]−1

= [[C

(

B]] · [[A]] · ([[C]] · [[B]]−1 · [[A]])−1

= [[C]] · [[B]]−1 · [[A]] · [[A]]−1 · [[B]] · [[C]]−1 = Λ

♦
For later use, we also define at this place the length l(A) of an L2-formula A ∈ L2 by

l(αi) := 1

l((A)⊥) := l(A) + 1

l(A¤ B) := l(A) + 1 + l(B) (¤ = ⊗,

&

,(or

(

)

We extend it to polarized formulas by l(Aρ) = l(A), and finally additively to settings of
polarized L2-formulas Γ, as in:

l(Γ) :=
∑
Aρ∈Γ

l(Aρ).

2.2. De Morgan equivalence

2.2.1. Two-sided language.

Definition 2.2.1. Let ≡ (“De Morgan equivalence”) be the smallest equivalence re-
lation on L2-formulas satisfying:

A ≡ A′, B ≡ B′ =⇒ A¤B ≡ A′ ¤ B′ (¤ = ⊗,

(

,(or

&

) (0¤)

A ≡ A′ =⇒ (A)⊥ ≡ (A′)⊥ (0⊥)

(A⊗B)⊥ ≡ (B)⊥

&

(A)⊥ (1)

(A

&

B)⊥ ≡ (B)⊥ ⊗ (A)⊥ (2)

A(B ≡ (A)⊥

&

B (3a)

B

(

A ≡ B

&

(A)⊥ (3b)

((A)⊥)⊥ ≡ A (4)

♦
We will often use the notion of a derivation tree in order to apply induction on ≡. In

this format, equivalences are derived by the following inference rules:

30 2. Preliminaries

equivalence rules5

Refl

A ≡ A
A ≡ B

Symm

B ≡ A
A ≡ B B ≡ C

Trans

A ≡ C

congruence rules

A ≡ A′ B ≡ B′ (0�)

A¤ B ≡ A′ ¤ B′
A ≡ A′ (0⊥)

(A)⊥ ≡ (A′)⊥

De Morgan axioms

(1)

(A⊗B)⊥ ≡ (B)⊥

&

(A)⊥
(2)

(A

&

B)⊥ ≡ (B)⊥ ⊗ (A)⊥

(3a)

A(B ≡ (A)⊥

&

B
(3b)

B

(

A ≡ B

&

(A)⊥

(4)

((A)⊥)⊥ ≡ A

This set of rules is actually not the most efficient one. For example, let us show (0

&

)
is redundant, as it is derivable from others. First of all

(4)

((A

&

B)⊥)⊥ ≡ A

&

B
Symm

A

&

B ≡ ((A

&

B)⊥)⊥

(2)

(A

&

B)⊥ ≡ (B)⊥ ⊗ (A)⊥
(0⊥)

((A

&

B)⊥)⊥ ≡ ((B)⊥ ⊗ (A)⊥)⊥
Trans

A

&

B ≡ ((B)⊥ ⊗ (A)⊥)⊥

whence

A

&

B ≡ ((B)⊥ ⊗ (A)⊥)⊥

A ≡ A′ (0⊥)
(A)⊥ ≡ (A′)⊥

B ≡ B′ (0⊥)
(B)⊥ ≡ (B′)⊥

(0⊗)
(B)⊥ ⊗ (A)⊥ ≡ (B′)⊥ ⊗ (A′)⊥

(0⊥)
((B)⊥ ⊗ (A)⊥)⊥ ≡ ((B′)⊥ ⊗ (A′)⊥)⊥

Trans

A

&

B ≡ ((B′)⊥ ⊗ (A′)⊥)⊥

A′

&

B′ ≡ ((B′)⊥ ⊗ (A′)⊥)⊥
Symm

((B′)⊥ ⊗ (A′)⊥)⊥ ≡ A′

&

B′
Trans

A

&

B ≡ A′

&

B′

Similarly, we can show (0() and (0

(

) to be superfluous, given the other rules.

Proposition 2.2.2. For any two L2-formulas A and B, if A ≡ B, then we can derive
it by the rules Refl, Symm, Trans, (0⊗), (0⊥) and the axioms (1), (2), (3a), (3b) and
(4). ♦

5Instead of Symm and Trans we can use the following equivalent rule B ≡ A B ≡ C
A ≡ C .

2.2. De Morgan equivalence 31

2.2.2. De Morgan quotient on two-sided language. The following proposition
characterizes the De Morgan equivalence of L2-formulas.

Proposition 2.2.3. The relation ≡ on L2-formulas is the kernel of the map π, i.e.
for all L2-formulas A and B the following holds:

A ≡ B if and only if πA = πB

♦
Proof: =⇒ Consider ∼ := {(A, B) |πA = πB}. This is an equivalence relation

satisfying:

• (0) (since π commutes with ¤ and (−)⊥);
• (1) and (2) (by definition of [−]⊥);
• (3a) and (3b) (by definition of(and

(

);
• (4) (by the fact that [−]⊥ is an involution).

As ≡ is the smallest such equivalence relation, we must have that ≡ ⊆ ∼, i.e. if A ≡ B
then πA = πB.
⇐= We prove this by induction on the total length of the formulas A and B, distin-

guishing the 11 cases A = αi; A = A1¤A2; A = (αi)
⊥; A = (A2¤A1)

⊥ and A = ((A1)
⊥)⊥.

Suppose πA = πB.

A πA

atomic X1 ⊗X2 X1

&

X2

αi αi

A1 ⊗ A2 πA1 ⊗ πA2

A1

&

A2 πA1

&

πA2

A1(A2 [πA1]
⊥ &

πA2

A1

(

A2 πA1

&

[πA2]
⊥

(A′)⊥ : (αi)
⊥ α⊥i

(A2 ⊗A1)
⊥ [πA1]

⊥ &

[πA2]
⊥

(A2

&

A1)
⊥ [πA1]

⊥ ⊗ [πA2]
⊥

(A2(A1)
⊥ [πA1]

⊥ ⊗ πA2

(A2

(

A1)
⊥ πA1 ⊗ [πA2]

⊥

((A1)
⊥)⊥ πA1

If A = ((A1)
⊥)⊥, then

πA1 = [[πA1]
⊥]⊥ (since [−]⊥ is an involution)

= π((A1)
⊥)⊥

= πA = πB

32 2. Preliminaries

whence

A = ((A1)
⊥)⊥ ≡ A1 (by (4))

≡ B (by induction hypothesis)

The case B = ((B1)
⊥)⊥ is treated similarly.

Now suppose A and B are of the other ten forms.

• If πA = αi, then A = αi = B whence A ≡ B.

• If πA = α⊥i , then A = (αi)
⊥ = B whence A ≡ B.

• If πA = X1 ⊗ X2 for some X1 and X2, then A = A1 ⊗ A2; A = (A2

&

A1)
⊥;

A = (A2(A1)
⊥ or A = (A2

(

A1)
⊥, while B is of one of the similar forms,

yielding 16 subcases.
E.g. in the subcase that A = A1⊗A2 and B = (B2

(

B1)
⊥, then from πA = πB

it follows that πA1⊗πA2 = π((B2

(

B1)
⊥) = πB1⊗ [πB2]

⊥, whence πA1 = πB1

and πA2 = [πB2]
⊥ = π(B2)

⊥. This yields by induction hypothesis A1 ≡ B1 and
A2 ≡ (B2)

⊥, whence

A = A1 ⊗ A2 ≡ B1 ⊗ (B2)
⊥ (by (0⊗))

≡ ((B1)
⊥)⊥ ⊗ (B2)

⊥ (by (4) and (0⊗))

≡ (B2

&

(B1)
⊥)⊥ (by (2))

≡ (B2

(

B1)
⊥ = B (by (3b) and (0⊥))

The other subcases are proved analogously.

• If πA = X1

&

X2 for some X1 and X2, then A = A1

&

A2; A = A1 (A2;
A = A1

(

A2, or A = (A2⊗A1)
⊥, while B is of one of the similar forms, yielding

again 16 subcases that are also proved in a straightforward way.

////

From

πν = idL1 = πχ

we see that πA = πB is equivalent to νπA = νπB and also to χπA = χπB (which are
conditions of L2-formulas), whence we can also formulate Proposition 2.2.3 as

A ≡ B if and only if νπA = νπB

if and only if χπA = χπB

We call νπA the De Morgan normal form of A and χπA the ⊥-free normal form of A
(although χπA may have an outermost (−)⊥). As π(νπA) = (πν)πA = πA, we see that
νπA ≡ A. Similar, χπA ≡ A.

Corollary 2.2.4. L1
∼= L2/≡ ♦

Proof: We only use the result of Proposition 2.2.3 and the fact that π is epi. Let
us denote the congruence class of A ∈ L2 by [A] ∈ L2/≡. As π is epi, for every X ∈ L1

there is a ξX ∈ L2 such that πξX = X. (E.g. one can take ξ = ν or ξ = χ.) Let us

2
.2

.
D

e
M

o
rg

a
n

eq
u
iva

len
ce

3
3

L
2

• (β

&

α)⊥

&

γ

• (α⊗ β)⊥(γ

∗ ((β)⊥

&

α)(γ

∗ ((α)⊥)⊥

∗ (((α)⊥)⊥)⊥

∗ (γ)⊥ ⊗ (β(α)

• (γ)⊥ ⊗ (α⊗ β)⊥

•
(
(β

&

α)⊥

&

γ
)⊥

L
2
,⊥

-free ∪ (
L

2
,⊥

-free)⊥

• (β

&

α)(γ

• (α⊗ β)

&

γ

∗ (β(α)(γ

∗ α

∗
(
α
)⊥

∗
(
(β(α)(γ

)⊥
•

(
(α⊗ β)

&

γ
)⊥

•
(
(β

&

α)(γ
)⊥

L
2
,n

f

• ((α)⊥ ⊗ (β)⊥)

&

γ

• (α⊗ β)

&

γ

∗ ((α)⊥ ⊗ β)

&

γ

∗ α

∗ (α)⊥

∗ (γ)⊥ ⊗ ((β)⊥

&
α)

• (γ)⊥ ⊗ ((β)⊥

&

(α)⊥)

• (γ)⊥ ⊗ (β

&

α)

π
ν

χ

(
L

1
,ev

en ∪
L

1
,o

d
d)

L
1

• (α⊥ ⊗ β⊥)

&

γ

• (α⊗ β)

&

γ

∗ (α⊥ ⊗ β)

&

γ

∗ α

∗ α⊥

∗ γ⊥ ⊗ (β⊥

&
α)

• γ⊥ ⊗ (β⊥

&

α⊥)

• γ⊥ ⊗ (β

&

α)

F
i
g

u
r
e

2
.
2
.

T
h
e

p
ro

jection
π

:
L

2
→

L
1 ,

an
d

th
e

can
on

ical
rep

resen
ta-

tives
ν
X

an
d

χ
X

of
π
−

1X
for

som
e

X
∈

L
1 .

34 2. Preliminaries

consider the following maps:

L1 ¿ L2/≡
X 7→ [ξX]

πA 7→[A]

The last map is well-defined, because [A] = [B] implies πA = πB. The one composite
reads

X 7→ [ξX] 7→ πξX = X

while the other one reads

[A] 7→ πA 7→ [ξπA] = [A]

(since π(ξπA) = (πξ)πA = πA, implying ξπA ≡ A). This proves the bijective correspon-
dence between the formulas of L1 and the objects of L2/≡. ////

At first sight dividing L2 by ≡ destroys the inductive construction of the objects; the
connectives have become operations:

α̃i := [αi](
[A]

)⊥
:= [(A)⊥]

[A]¤ [B] := [A¤B] (¤ = ⊗,

&

,(or

(

)

which are well-defined by the requirements (0⊥) and (0¤). The importance of this
corollary is the fact that this quotient still has an inductive construction of the objects,
viz. the same as L1.

Combining the isomorphisms L1
∼= L2/≡ and L1

∼= L
±
2,⊥-free yields canonical repre-

sentatives for each equivalence class: Given A ∈ L2, we know πA is uniquely expressible
as either πB or π(B)⊥, where B ∈ L2,⊥-free (cf. Example 2.1.6). So A is equivalent to a

unique member of L2,⊥-free ∪
(
L2,⊥-free

)⊥
.

Lemma 2.2.5. Let A ∈ L2 and B ∈ L2,⊥-free ∪
(
L2,⊥-free

)⊥
such that A ≡ B. Then

B = χπA. ♦
Proof: We repeat the argument of Example 2.1.6. Write B = µ(Cρ) where C ∈

L2,⊥-free. From A ≡ B we get χπA = χπB = χπµ(Cρ) = χπ(Cρ) = µψπ(Cρ)
Lemma 2.1.4

=
µ(Cρ) = B. ////

Of course, we can also decide to take the formulas of L2,nf as canonical representatives.
We have sketched the situation in Figure 2.2.

2.2.3. Intuitionistic language. As we know ≡ for L2, we also know the restriction
to L2,i := F ::= A | F ⊗ F | F (F | F (F , the ⊥- and

&

-free formulas. This is
again an equivalence relation, but we cannot define it as the smallest equivalence relation
satisfying the clauses of Definition 2.2.1, as these requirements are outside the language
L2,i.

First we will show that ≡ trivializes when restricted to L2,i.

Proposition 2.2.6. For L2,i-formulas A and B the following holds:

A ≡ B if and only if A = B

♦

2.2. De Morgan equivalence 35

Proof: By Lemma 2.2.5 every L2 formula C is ≡-equivalent to exactly one formula

D ∈ L2,⊥-free ∪
(
L2,⊥-free

)⊥
(viz. χπC). So every L2 formula C is ≡-equivalent to at most

one intuitionistic formula D ∈ L2,i. In particular, an intuitionistic A is only ≡-equivalent
to itself.

Alternative proof: Suppose the L2,i-formulas A and B satisfy A ≡ B, then

A
Lemma 2.1.4(1’)

= χπA = χπB
Lemma 2.1.4(1’)

= B.

////

Let us extend the notion of “intuitionistic” objects to L2/≡ by calling an equivalence
class [A] intuitionistic whenever A ≡ B for some B ∈ L2,i. By the previous proposi-
tion, this gives a bijective correspondence between the intuitionistic [A] ∈ L2/≡ and the
intuitionistic B ∈ L2,i, viz.

[A] 7→ χπA

[B] 7→B

By the isomorphism
(
L2/≡

) ∼= L1 (defined by [A] 7→ πA; see Corollary 2.2.4) the set
of intuitionistic [A] ∈ L2/≡ corresponds to a subset of L1, which we will hence call
intuitionistic L1-formulas. These are just the π-images of L2,i-formulas. Obviously, since
L2,i ⊆ L2,⊥-free, the bijections in

L1,even

ψ

[−]⊥

L
+
2,⊥-free

π

τ

L1,odd

ψ

L
−
2,⊥-free

π

show that π(L2,i) ⊆ L1,even.
Let us define the following subsets of L1 by simultaneous induction:

L1,even,i := F ::= A | F ⊗ F | G &F | F &G
L1,odd,i := G ::= A⊥ | G &G | G ⊗ F | F ⊗ G

Lemma 2.2.7. Every X ∈ L1,even,i satisfies ψX ∈ L
+
2,i. Every X ∈ L1,odd,i satisfies

ψX ∈ L
−
2,i. ♦

Proof: By simultaneous induction, using Definition 2.1.1. Let us show one case:
Suppose we are given F ∈ F = L1,even,i and G ∈ G = L1,odd,i, satisfying by induction
hypothesis that F •, G• ∈ L2,i and moreover that F = + and G = −. Then ψ(F ⊗ G) =
(G•

(

F •)− ∈ L
−
2,i, as desired. ////

This lemma shows in particular that L1,even,i ⊆ L1,even and L1,odd,i ⊆ L1,odd.

Lemma 2.2.8. For all D ∈ L2,i the following holds: π(D+) ∈ L1,even,i and π(D−) ∈
L1,odd,i. ♦

Proof: By induction on D. Let us show one case. Given D = A1

(

A2, we have
π(D+) = πD = πA1

(

πA2 = πA1

&

[πA2]
⊥ = π(A+

1)

&

π(A−2) ∈ F &G ⊆ F while
π(D−) = [πD]⊥ = [πA1

(

πA2]
⊥ = [πA1

&

[πA2]
⊥]⊥ = πA2⊗ [πA1]

⊥ = π(A+
2)⊗π(A−1) ∈

F ⊗ G ⊆ G. For the remaining cases, the following table may be useful.

36 2. Preliminaries

D π(D+) π(D−)

α α α⊥

A1 ⊗A2 πA1 ⊗ πA2 [πA2]
⊥ &

[πA1]
⊥

A1(A2 [πA1]
⊥ &

πA2 [πA2]
⊥ ⊗ πA1

A1

(

A2 πA1

&

[πA2]
⊥ πA2 ⊗ [πA1]

⊥

////

Using the fact that π and ψ are bijections, these two lemma’s immediately yield the
following proposition and corollary.

Proposition 2.2.9. π
(
L

+
2,i

)
= L1,even,i and π

(
L
−
2,i

)
= L1,odd,i ♦

Corollary 2.2.10. For D ∈ L2 the following holds:

ψπD ∈ L
+
2,i if and only if πD ∈ L1,even,i

ψπD ∈ L
−
2,i if and only if πD ∈ L1,odd,i

♦

L1,even,i

ψ

[−]⊥

L
+
2,i

π

τ

L1,odd,i

ψ

L
−
2,i

π

Observe that the negation of a formula of the form F &G is of the form F ⊗ G (and
not G ⊗F). Indeed, negation not only changes the order of the atomic subformulas, but
also their parity (even/odd):

[π(A+
1)

&

π(A−2)]⊥ = [π(A−2)]⊥ ⊗ [π(A+
1)]⊥ = π(A+

2)⊗ π(A−1)

In Figure 2.2 we have indicated the intuitionistic L1-formulas and the members of
intuitionistic [A] ∈ L2/ ≡ by ∗ instead of •.

By an easy simultaneous induction we deduce that

Lemma 2.2.11. If X ∈ L1,even,i then \X = 0. If X ∈ L1,odd,i then \X = 1. ♦
The converse, however, does not hold. E.g. X := (α⊥ ⊗ β⊥)

&

(α

&

β) has \(X) =
1+1−2−0

2
= 0, but X 6∈ L1,even,i.

2.3. Adding associativity

2.3.1. Two-sided language. In the previous section we have proved that the quo-
tient of L2 under De Morgan equivalence equals L1. In this thesis we will not consider
languages obtained by dividing out bigger equivalence relations. Observe, though, that
many authors do, e.g. writing A ⊗ B ⊗ C. However, in MLL associativity (and com-
mutativity) are derivable (e.g. we have proofs of A ⊗ (B ⊗ C) ` (A ⊗ B) ⊗ C and
(A⊗ B)⊗ C ` A⊗ (B ⊗ C), which is associativity of ⊗). In this section we study the
equivalence relation ' generated by associativity (in addition to the clauses of Defini-
tion 2.2.1).

2.3. Adding associativity 37

Definition 2.3.1. Let ' be the smallest equivalence relation on L2-formulas satisfy-
ing:

A ' A′, B ' B′ =⇒ A¤B ' A′ ¤B′ (¤ = ⊗,

(

,(or

&

) (0¤)

A ' A′ =⇒ (A)⊥ ' (A′)⊥ (0⊥)

(A⊗B)⊥ ' (B)⊥

&

(A)⊥ (1)

(A

&

B)⊥ ' (B)⊥ ⊗ (A)⊥ (2)

A(B ' (A)⊥

&

B (3a)

B

(

A ' B

&

(A)⊥ (3b)

((A)⊥)⊥ ' A (4)

A⊗ (B ⊗ C) ' (A⊗ B)⊗ C (5⊗)

A

&

(B

&

C) ' (A

&

B)

&

C (5

&

)

♦
Again, we can show some rules to be superfluous, given the other rules.

Proposition 2.3.2. For any two L2-formulas, if A ' B, then we can derive it by
the rules Refl, Symm, Trans, (0⊗), (0⊥) and the axioms (1), (2), (3a), (3b), (4) and
(5⊗). ♦

The decision problem whether two L2-formulas are '-equivalent will be answered in
Section 4.6, where we will establish a geometrical equivalent for '. At this point we only
mention the well-known law of general associativity.

Lemma 2.3.3. Let A and B be two ⊗-only (

&

-only) L2-formulas. If A and B have
the same sequence of atoms, then A ' B.

♦
Proof: The proof is by induction on the number n of atoms. ////

The converse of this lemma also holds, and is a consequence of:

Lemma 2.3.4. For L2-formulas A and B the following holds: if A ' B, then [[A]] =
[[B]] and \(A) = \(B).

♦

2.3.2. Intuitionistic language. We have seen that ≡ trivializes when restricted to
L2,i. The following example illustrates that this does not hold for '.

Example 2.3.5. By Definition 2.3.1 we have the following chain of '-equivalent L2-
formulas:

A((B(C) ' (A)⊥

&

(B(C)

' (A)⊥

&

((B)⊥

&

C)

' ((A)⊥

&

(B)⊥)

&

C

' (B ⊗A)⊥

&

C

' (B ⊗A)(C

whence the two intuitionistic formulas A((B(C) and (B⊗A)(C are '-equivalent.
♦

38 2. Preliminaries

Definition 2.3.6. Let 'i be the smallest equivalence relation on L2,i-formulas satis-
fying:

A 'i A′, B 'i B′ =⇒ A¤ B 'i A′ ¤ B′ (¤ = ⊗,

(

or () (0¤)

A⊗ (B ⊗ C) 'i (A⊗ B)⊗ C (5⊗)

A((B(C) 'i (B ⊗ A)(C (5()

(A

(

B)

(

C 'i A

(

(C ⊗ B) (5

(

)

A((B

(

C) 'i (A(B)

(

C (5((

)

♦

= = 'i L2,i × L2,i

= ≡ ' L2 × L2

We want to prove that 'i is the restriction of ' to L2,i. Below we will give an
elementary proof of this fact (Proposition 2.3.8), fow which we will need the next lemma.
An alternative proof, using the theory of dualizable proof nets, is given in Theorem 4.9.6.

Lemma 2.3.7. Let D, E ∈ L2. Suppose D ' E, and ψπD ∈ L
ρ
2,i or ψπE ∈ L

ρ
2,i. Then

both ψπD ∈ L
ρ
2,i and ψπE ∈ L

ρ
2,i, and (πD)• 'i (πE)•. ♦

Proof: The proof is by induction on the derivation tree of D ' E, which we may
assume to consist of Refl, Symm, Trans, (0⊗), (0⊥) and the axioms (1), (2), (3a),
(3b), (4) and (5⊗) only (see Proposition 2.3.2).

Let D ' E be given such that ψπF ∈ L
+(−)
2,i for F = D or E, then — by Corol-

lary 2.2.10 — πF ∈ L1,even,i (L1,odd,i). Let us write F (G) for L1,even,i (L1,odd,i) in the
sequel.

We only prove the case that the last inference is
(5⊗)

A⊗ (B ⊗ C) ' (A⊗B)⊗ C

Let us assume we know πD = πA⊗ (πB ⊗ πC) ∈ F (G). According to the definition of
F and G we can distinguish four subcases:

• πD = πA⊗ (πB ⊗ πC) ∈ F ⊗ (F ⊗ F) ⊆ F :
Then also πE = (πA⊗ πB)⊗ πC ∈ (F ⊗F)⊗F ⊆ F and

(πD)• = (πA)• ⊗
(
(πB)• ⊗ (πC)•

)
'i

(
(πA)• ⊗ (πB)•

)
⊗ (πC)• = (πE)•

by axiom (5⊗) for 'i.
• πD = πA⊗ (πB ⊗ πC) ∈ F ⊗ (F ⊗ G) ⊆ G:

Then also πE = (πA⊗ πB)⊗ πC ∈ (F ⊗F)⊗ G ⊆ G and

(πD)• =
(
(πC)•

(

(πB)•
) (

(πA)• 'i (πC)•

((
(πA)• ⊗ (πB)•

)
= (πE)•

by axiom (5

(

) for 'i.
• πD = πA⊗ (πB ⊗ πC) ∈ F ⊗ (G ⊗ F) ⊆ G:

Then also πE = (πA⊗ πB)⊗ πC ∈ (F ⊗ G)⊗ F ⊆ G and

(πD)• =
(
(πC)•((πB)•

) (

(πA)• 'i (πC)•(
(
(πB)•

(

(πA)•
)

= (πE)•

2.3. Adding associativity 39

by axiom (5((

) (and Symm) for 'i.
• πD = πA⊗ (πB ⊗ πC) ∈ G ⊗ (F ⊗F) ⊆ G:

Then also πE = (πA⊗ πB)⊗ πC ∈ (G ⊗ F)⊗ F ⊆ G and

(πD)• =
(
(πB)• ⊗ (πC)•

)
((πA)• 'i (πC)•(

(
(πB)•((πA)•

)
= (πE)•

by axiom (5() (and Symm) for 'i.

////

Proposition 2.3.8. Let D, E ∈ L2,i. Then

D ' E if and only if D 'i E

♦
Proof: The axioms of a 'i-derivation are derivable in ' (cf. Example 2.3.5 for the

(5()-clause). The same holds for the rules (0¤), which are even the same for '. Hence
D 'i E implies D ' E.

The other way around, suppose D ' E. As D, E ∈ L2,⊥-free, Lemma 2.1.4 yields
D = (πD)•, E = (πE)• and ψπD = D+ ∈ L

+
2,i. Hence by Lemma 2.3.7

D = (πD)• 'i (πE)• = E

////

As said, an alternative proof, using the theory of dualizable proof nets, is given in
Theorem 4.9.6.

We have not used our lemma at full strength here, so we can ask whether we could
have formulated it in a more efficient way. However, if — in Lemma 2.3.7 — we would
have required that “both ψπD ∈ L

ρ
2,i and ψπE ∈ L

ρ
2,i”, the Trans-step would have

failed. If we would have required that only ψπD ∈ L
ρ
2,i, the Symm-step would have

failed. Finally, the conclusion that “both ψπD ∈ L
ρ
2,i and ψπE ∈ L

ρ
2,i” was needed in

order to be able to make use of the induction hypothesis, in particular in the Trans-step
and in the (0⊗)-step, where we obtained that (πD)• and (πE)• have coinciding main
connective ⊗,(or

(

, allowing us to apply (0¤) for 'i.
Let us, for completeness, mention a somewhat more general consequence of Lemma 2.3.7.

Recall that

µ : L
±
2 → L2 :

{
A+ 7→ A
A− 7→ (A)⊥

Proposition 2.3.9. Let D ∈ L2,i and E ∈ L2,⊥-free. Let ρ, σ ∈ {+,−}. Then

µ(Dρ) ' µ(Eσ) if and only if E ∈ L2,i and ρ = σ and D 'i E

♦
Proof: D 'i E implies D ' E, whence also µ(Dρ) ' µ(Eσ) by a possible applica-

tion of (0⊥) for ' in case ρ = σ = −.
The other way around, first of all we know by Lemma 2.1.4 that

D = (πD)• = (πµ(Dρ))•,

E = (πE)• = (πµ(Eσ))•,

ψπµ(Dρ) = ψπ(Dρ) = Dρ ∈ L
ρ
2,i and

ψπµ(Eσ) = ψπ(Eσ) = Eσ.

40 2. Preliminaries

Now suppose µ(Dρ) ' µ(Eσ). Then applying Lemma 2.3.7 on µ(Dρ), µ(Eσ) ∈ L2 gives

Eσ = ψπµ(Eσ) ∈ L
ρ
2,i and

D = (πµ(Dρ))• 'i (πµ(Eσ))• = E

from which we deduce E ∈ L2,i and ρ = σ and D 'i E. ////

The next lemma will be the intuitionistic counterpart of Lemma 2.3.3. For L2-formulas
A and B we define

A
+→ B := A(B

A
−→ B := B

(

A

Lemma 2.3.10. Let

A = An
ρn→ (An−1

ρn−1→ (. . . (A1
ρ1→ α) . . .)) and

B = Bm
σm→ (Bm−1

σm−1→ (. . . (B1
σ1→ α) . . .))

be two L2,i-formulas where all Ai and Bj are (- and

(

-free (i.e. they are ⊗-only). Let
Ak1, . . . , Akn′ be the subsequence of A1, . . . , An−1, An consisting of the Ai for which ρi is
positive, and let Ak′1

, . . . , Ak′
n′′

be the subsequence of A1, . . . , An−1, An consisting of the

Ai for which ρi is negative. Let Bl1, . . . , Blm′ be the subsequence of B1, . . . , Bm−1, Bm

consisting of the Bj for which σj is positive, and let Bl′1
, . . . , Bl′

m′′
be the subsequence of

B1, . . . , Bm−1, Bm consisting of the Bj for which σj is negative. Suppose the sequence of
atoms of the n′ formulas Ak1, . . . , Akn′ together equals the sequence of atoms of Bl1, . . . ,
Blm′ together. Moreover, suppose the sequence of atoms of the n′′ formulas Ak′

n′′
, . . . , Ak′1

together equals the sequence of atoms of Bl′
m′′

, . . . , Bl′1
together. Then A 'i B. ♦

Proof: By induction on n we can first show that

An
ρn→ (. . . (A1

ρ1→ α) . . .)

'i

(
((. . . (Ak1 ⊗Ak2) . . .)⊗Akn′)(α

) (

(Ak′
n′′
⊗ (. . . (Ak′2

⊗ Ak′1
) . . .))

where the right hand side is to be understood as(
α
) (

(Ak′
n′′
⊗ (. . . (Ak′2

⊗Ak′1
) . . .))

if n′ = 0 and n′′ 6= 0; as (
((. . . (Ak1 ⊗Ak2) . . .)⊗Akn′)(α

)
if n′ 6= 0 and n′′ = 0; as α if n = 0.

Now let A and B be given as described in the lemma, then

A 'i

(
((. . . (Ak1 ⊗ Ak2) . . .)⊗ Akn′)(α

) (

(Ak′
n′′
⊗ (. . . (Ak′2

⊗ Ak′1
) . . .))

B 'i

(
((. . . (Bl1 ⊗ Bl2) . . .)⊗Blm′)(α

) (

(Bl′
m′′
⊗ (. . . (Bl′2

⊗ Bl′1
) . . .))

and A 'i B easily follows. ////

CHAPTER 3

Link graphs and proof structures

In this chapter we will define proof structures corresponding to different calculi. Each
particular calculus has its own elegant, although somewhat ad hoc, definition(s), but since
we are also interested in the relations between the different calculi, we will start from a
very general definition of proof structure as a particular kind of the even more general
so-called link graphs, to be defined in Section 3.1. Link graphs as such do not have any
obvious logical meaning: we should consider them as our universe of discourse. In later
chapters for each calculus they will be used in order to define the basic objects (viz.
the sequents and the derivable sequents), as well as the corresponding notions of proof
structure and proof net. As we intend to prove that a sequent is derivable if and only
if the corresponding proof structure converts to a certain form (in fact, as we shall see,
itself a sequent), it turns out to be highly useful to have this overall notion of link graph
in which we can formulate both proof structures and sequents, as well as the process of
conversion.

In Section 3.2 we will define proof structures for both the one-sided and the two-sided
language. Contrary to sequents, this definition is independent of the particular one-sided
(two-sided) calculus we work in, so e.g. proof structures for MLL1, NCLL1 and CNL1

all are the same. Identity proof structures, cut elimination and dualization will be defined
in Subsection 3.2.3 for two-sided proof structures, and under the appropriate maps (to be
defined in Subsection 3.2.5) these notions immediately translate to one-sided structures.

3.1. Link graphs

In order to define proof structures and sequents, we will introduce a concept which
captures both notions, and which moreover is general enough to be adapted to the different
calculi. Within each particular calculus, however, structures may be described by more
simple means.

A link graph should be thought of as a graph with edges and vertices, where some
vertices of valence 1 are called open ends, and the rest of the vertices are called links.
In each link the order of the attached edges may be prescribed by means of a cyclic list,
and one of these attached edges may play the role of principal edge. Moreover, a labeling
assigns zero or one polarized formulas to every edge extremity. We formalize these notions
in the following definition.

Definition 3.1.1. Let L be a language. Let E be a set of (formal) edges. We call

Ẽ := ∪η∈E{η̂, η̌} the set of edge extremities, or ends.
We define three kinds of links:

• A rooted link in E is a list of ends (e0, . . . , em−1)θ (m ≥ 1) labeled by a certain
type θ. The end e0 will be called the principal end, and will also be referred to
by em.

41

42 3. Link graphs and proof structures

• A cyclic link in E is a cyclic list of ends ([e0, . . . , em−1])θ (m ≥ 0) labeled by a
certain type θ.
• A set link in E is a set of ends {e0, . . . , em−1}θ (m ≥ 0) labeled by a certain type

θ.

An L-labeling of E is a partial map λ : Ẽ L± to the set of polarized L-formulas.
An L-link graph P := (E ,L,L′, λ) consists of a finite set E of edges, a finite set L of

links in E , called the context links, a finite set L′ of links in E , called the connector links
and an L-labeling λ of E . These data are required to satisfy the following properties:

• The context links are either cyclic links or set links;
• The connector links are rooted links;
• Each end e occurs at most once in the multiset

⋃
L ∪

⋃
L′. If e does not occur

in
⋃
L ∪

⋃
L′ it is called an open end; if e occurs in

⋃
L (

⋃
L′) it is called a

context (connector) end;
• The domain of λ is exactly the set of open ends together with the connector ends.

An open end e is called an hypothesis (conclusion) of P if λ(e) is F− (F+). ♦
Actually, in Chapter 4 and Chapter 5 there will by only one type θ = ¯ for the context

links. For a link graph in Chapter 4, all the context links are cyclic links of arbitrary
valence, except for Section 4.10, in which all the context links of a link graph are set links
of arbitrary valence. For a link graph in Chapter 5, all the context links are cyclic links
with fixed valence 3. In Chapter 6, a link graph may have cyclic context links of several
types, with valence 2 or valence 3.

We will abuse language, by referring to an open end or a connector end e by means of
the assigned label occurrence λ(e). If G+

0 , G+
1 , . . . , G+

n−1, F
−
0 , F−1 , . . . , F−m−1 are the open

ends of a link graph P, we will say P is a link graph of F0, . . . , Fm−1 ` G0, . . . , Gn−1,
where the two expressions separated by the ‘ ` ’-sign are to be understood as multisets,
because different ends may be labeled by one and the same polarized formula.

We suppose the two ends η̂ and η̌ of one edge η play a completely symmetric role;
wherever we mention η̂ respectively η̌, we also mean η̌ respectively η̂. By e+ (e−) we
mean “e, labeled by a positively (negatively) polarized formula λ(e) = F+ (F−)”.

Definition 3.1.2. Let P be a link graph, and let l = (e0, . . . , em−1)θ be a connector link
of P. The positively (negatively) polarized ends of l are called the premisses (conclusions)
of l. A ±-alteration is an index j (0 ≤ j < m) such that ej and ej+1 are of opposite sign.
If there is an edge η such that η̂− ∈ l and η̌+ ∈ l′ (where l′ is also a connector link of P),
l is above l′.

The principal end e0 = em of this connector link l is also called the main end of l,
while the other ends are called the active ends of l. If the main end of l is a conclusion
(premiss) of l, then l is called a right (left) link. ♦

We graphically represent a context link l of type θ by

θ ,

to which we attach the cyclic list (set) of ends counterclockwisely (in some order), in case
it is a cyclic (set) link. A connector link will be represented similarly, with an emphasized
principal end; now also the labels of the connector ends have to be given. The rooted

3.1. Link graphs 43

link (C−, B+, A+)θ is depicted as

θ

C

−

B

+
A

+

Observe that there is a priori no relation between λ(η̂) and λ(η̌).
The underlying graph of a link graph is obtained by replacing links by vertices and

adding a vertex for each open end, connecting them by the edges appropriately.

Example 3.1.3.

⊥
(C)⊥

−
C

−
C(D

−

(C)⊥
+

⊗
C(D

+
C

+

D

−

¯ A−

D

&

E

+

−
D

&

E

B

+

Let P be the depicted link graph, i.e. there are seven edges; there is one cyclic context
link ([e0, e1, e2])¯; and there are two connector links: one ⊥-link which is above a ⊗-

link. The link of type ⊥ is a right link
((

(C)⊥
)−

, C−
)
⊥ with two conclusions: an active

end and a main end
(
(C)⊥

)−
. The link of type ⊗ is a left link

((
C(D

)+
, C+, D−

)
⊗

with two premisses and one conclusion, one premiss
(
C (D

)+
being the main end.

Moreover, the six ends which do not occur in any link are the open ends, and they split

up in three hypotheses (D

&

E)−, (C(D)− and A− and three conclusions
(
(C)⊥

)+
, (D

&

E)+ and B+. Hence P is an L2-link graph of D

&

E, C(D, A ` (C)⊥, D

&

E, B. ♦
Let L be L1, L2 or L2,i. An L-link graph P1 := (E1,L1,L′1, λ1) is a sub L-link graph

of the L-link graph P := (E ,L,L′, λ), notation P1 ⊆lg P, whenever E1 ⊆ E ; L1 ⊆ L;
L′1 ⊆ L′ and graph λ1 ⊆ graphλ. Observe that

(open ends of P1) ⊆ (open ends of P)

need not hold; some open ends of P1 may be connector ends of P.

44 3. Link graphs and proof structures

3.2. Proof structures

Proof structures for multiplicative linear logic are usually defined as the smallest set
containing axiom-links X⊥ X and closed under disjoint union and under the lower
attachment of the links

X Y
X ⊗ Y

, X Y
X

&

Y
and X⊥ X

(cf. [Girard 87]). This definition closely approximates our definition of L1-proof struc-
ture (see Subsection 3.2.1), the only difference being the fact that we do not consider
axiom-links nor cut-links, but only axiomatic edges and cut edges, which cannot be com-
posed as in

X⊥ X X⊥ X or X⊥ X

We generalize the usual notion of proof structure in two directions, which finally yields
the L2-proof structures of Subsection 3.2.2.

First, we allow a proof structure to have open hypotheses (cf. [Danos 90]); roughly
said, we consider the smallest set containing sole formulas, and closed under disjoint union
and under the (lower and upper) attachment of links like

A⊥ A , A B
A⊗ B

, et cetera.

Furthermore, this generalization enables us to introduce links corresponding to left

rules (e.g. A⊗ B
A B

) as well as links corresponding to ‘new’ connectives, e.g. to −(−

(definable as (−)⊥

&−), with link A
B B(A

.

In this section we will more precisely define proof structures for each of the languages
L = L1, L2 and L2,i. As usual, the proof structures will correspond to pseudo-derivations,
while a particular subset of them, the proof nets, will correspond to real derivations. We
will define proof structures as L-link graphs P := (E ,L,L′, λ) without context links

(L = ∅), and with (hence total) labeling λ : Ẽ → L± satisfying two additional conditions,
viz. a link condition and an edge condition. We will consider at most three types of
(connector) links, viz.

• tensor links (e0, e1, e2)⊗ (indicated by ⊗),

• par links (e0, e1, e2) &(indicated by

&

) and

• negation links (e0, e1)⊥ (indicated by ⊥).

We will not require any graph theoretical properties, like acyclicity or connectedness of
the underlying graph. Moreover, we do not require the underlying graph to have a planar
representation; the edges are allowed to intersect. The only information that counts is to
which link the edges are connected, and in what order.

For every rule L¤ (R¤) in the corresponding sequent calculus (see Section 4.1), there
will be a link subtype, i.e. an allowed way of labeling the ends of a link by corresponding
main and active formulas. However, there are no links corresponding to the identity rules
Ax and Cut. Instead, we will have axiomatic and cut edges. An edge η is axiomatic if
each of η̂ and η̌ is not the main end of any link, whereas η is a cut edge if both η̂ and η̌
are the main ends of two links. Let us call the number of main ends η possesses the role
of η, so that η is an axiomatic edge (a cut edge) iff it has role 0 (2).

3.2. Proof structures 45

3.2.1. One-sided proof structures.

Definition 3.2.1. An L1-proof structure P := (E ,L,L′, λ) is an L1-link graph with
L = ∅ and with connector links of type ⊗ and

&

, whose ends are labeled — depending on
the link type — in one of the following ways:

((
X ⊗ Y

)−
, Y +, X+

)
⊗

((
Y

&

X
)−

, X+, Y +

)

&

⊗
X ⊗ Y

−

Y

+
X

+

&

Y
&

X

−

X

+
Y

+

Moreover, for all edges η ∈ E the two ends η̂ and η̌ are labeled as follows:

X

−

+

X

X

−
[X]⊥

−
X

+

[X]⊥

+

(axiomatic edge) (cut edge)

Finally, all open ends are conclusions of P. ♦

Note that the connector links of an L1-proof structure are right links: main ends are
conclusions of the links. Even stronger: for a connector link l, an end is the main end of l
if and only if it is a conclusion of l. As negatively polarized ends are always connector ends
(indeed, each open end is a conclusion of P, whence positively polarized), we conclude
that an end is the main end of some connector link if and only if it is negatively polarized.

This implies that axiomatic edges are exactly the edges of the first type in the previous
definition, and that cut edges are exactly those of the third type in the previous definition.

46 3. Link graphs and proof structures

Example 3.2.2.

&

[X]⊥

&

X

−

X

+
[X]⊥

+

⊗
([X]⊥

&

X)⊗ Y

−

Y

+
[X]⊥

&

X

+

⊗
[Y]⊥ ⊗ [Z]⊥

−

[Z]⊥
+

[Y]⊥
+

&

Z

&

Y

−

Y

+
Z

+

([X]⊥

&

X)⊗ Y

+

[Y]⊥

+

This L1-proof structure P contains seven edges, among which four axiomatic edges and
one cut edge. There are two right

&

-links and two right ⊗-links. The two open ends

are the conclusions, viz.
(
([X]⊥

&

X) ⊗ Y
)+

and
(
[Y]⊥

)+
, so P is a proof structure of

` ([X]⊥

&

X)⊗ Y, [Y]⊥. ♦

3.2.2. Two-sided proof structures.

Definition 3.2.3. An L2-proof structure P := (E ,L,L′, λ) is an L2-link graph with
L = ∅ and with connector links of type ⊗,

&

and ⊥, whose ends are labeled — depending
on the link type — in one of the following ways (see Figure 3.1):

((
(A)⊥

)+
, A+

)
⊥

[L⊥]((
A⊗B

)+
, A−, B−

)

&

[L⊗]((
B

(

A
)+

, B−, A+

)
⊗

[L

(

]((
B(A

)+
, B+, A−

)
⊗

[L(]((
B

&

A
)+

, B−, A−
)
⊗

[L

&

]

((
(A)⊥

)−
, A−

)
⊥

[R⊥]((
A⊗ B

)−
, B+, A+

)
⊗

[R⊗]((
B

(

A
)−

, A−, B+

)

&

[R

(

]((
B(A

)−
, A+, B−

)

&

[R(]((
B

&

A
)−

, A+, B+

)

&

[R

&

]

3.2. Proof structures 47

Moreover, for all edges η ∈ E the two ends η̂ and η̌ are labeled by one and the same
formula A, polarized by opposite signs.

A

−

+

A

♦
Observe that the links of type ⊗ together may be described by(

τ(Aρ ⊗Bσ), Bσ, Aρ
)
⊗

while those of type

&

are of the form(
τ(Bσ &

Aρ), Aρ, Bσ
)

&
Recall that ⊗ and

&
are defined as maps L

±
2 × L

±
2 → L

±
2 by

Aρ ⊗ Bσ :=


(A⊗ B)+ if ρ = + and σ = +

(B

(

A)− if ρ = + and σ = −
(B(A)− if ρ = − and σ = +

(B

&

A)− if ρ = − and σ = −

Bσ &

Aρ :=


(B

&

A)+ if ρ = + and σ = +

(B(A)+ if ρ = + and σ = −
(B

(

A)+ if ρ = − and σ = +

(A⊗ B)− if ρ = − and σ = −
So, even more general, all ternary links are of the form(

τ(Aρ ¤ Bσ), Bσ, Aρ
)
�

(¤ = ⊗,

&

)

Depending on the labeling of its main end (A¤(B))ν (where ¤ is one of the connectives
⊗,

(

,(,

&

or (−)⊥) we will refer to a link by means of its subtype L¤ (for left links;
i.e. in case ν = +) and R¤ (for right links; i.e. in case ν = −). This nomenclature may
be confusing: an L⊗-link is not a tensor link, but a par link; an L

&

-link is not a par link,
but a tensor link.

The edge condition for L2-proof structures implies that E may be regarded as a set
of formula occurrences. Let us say that an edge (i.e. a formula occurrence) A ∈ E is a
conclusion (premiss; main formula; active formula) of a link l if A− ∈ l (A+ ∈ l; Aσ is
the main end of l; Aσ is an active end of l). This terminology implies that A can be at
most once the conclusion of a link and also at most once the premiss of link. But both
can happen simultaneously. And moreover, A may be main (active) formula of up to two
links. The number of links A is main formula of, is still called the role of A. In accordance
with the definition of axiomatic (cut) edge, we call A an axiomatic (cut) formula if A has
role 0 (2).

48 3. Link graphs and proof structures

⊥
(A)⊥

+
A

+

⊥
(A)⊥

−
A

−

&

A⊗B

+

A

−
B

−

⊗
A⊗B

−

B

+
A

+

⊗
B

(
A

+

B

−

A

+

&

B
(
A

−
A

−

B

+

⊗
B(A

+
B

+

A

−

&

B(A

−

A

+

B

−

⊗
B

&

A

+

B

−
A

−

&

B

&

A

−

A

+
B

+

Figure 3.1. The links of L2.

3.2. Proof structures 49

If A is not the conclusion (premiss) of any link, then P has A− (A+) among its open
ends, whence this end is an hypothesis (conclusion) of P. In this case we will also say
that A is an hypothesis (conclusion) of P. Again, A may simultaneously be hypothesis
and conclusion of P, the most simple example being the one edge proof structure

A

−

+

A

←− A

which we will soon denote by

A

These remarks inspire an alternative definition of an L2-proof structure, which we will
formulate in the following lemma.

Lemma 3.2.4. Every L2-proof structure one-to-one corresponds to a pair 〈E ,L′〉 con-
sisting of a multiset E of L2-formulas and a set L′ of ‘links in E ’ (i.e. lists of polarized
formulas of the form as in Definition 3.2.3 where the formulas belong to E), satisfying
the requirements that every formula of E is at most once a conclusion of a link, and at
most once a premiss of a link. ♦

Exploiting this idea, we obtain an alternative graphical representation of L2-proof
structures if we contract each edge into the corresponding single formula A, and draw a
connection to a link l ‘above’ (‘below’) A if A is a conclusion (premiss) of l. We will draw
these connections as arrows pointing towards the link, unless A− (A+) is the main end of l,
in which case the arrow points away from the link. For typographic reasons, links of type
⊗ (resp.

&

, ⊥) will then be represented by solid (resp. dashed, solid) horizontal bars. We
should keep in mind that the order still does matter. Note that this representation only
works due to the fact that our links at most have two ±-alterations. The representation
of a general left link

(
A+

0 , A+
1 , . . . , A+

i−1, A
−
i , . . . , A−j−1, A

+
j , . . . , A+

m−1

)
⊗

is given by

Ai−1d . . . A0t
L�

. . . Ajdi− 1 0 j
i j−1

Ai

d
. . . Aj−1

d
and similar for a right link.

50 3. Link graphs and proof structures

Let us give the representations of the possible links occurring in L2-proof structures:

Ad (A)⊥t
L⊥

1 0

1 0

A

d
(A)⊥

tR⊥
A⊗Bt

L⊗
0

1 2

A

d
B

d Ad Bd2 1
0

A⊗ B

tR⊗
B

(

At
L
(

Ad0 2
1

B

d Bd2
0 1

B

(

A

tR (

A

d
Bd B(At

L(

1 0
2

A

d Ad1
2 0

B

d
B(A

tR(
B

&
At

L

&

0
1 2

B

d
A

d Bd Ad2 1
0

B

&

A

tR &

Example 3.2.5. The following are graphical representations of one and the same
L2-proof structure P.

&

A(A

−

A

+
A

−

⊗
(A(A)⊗B

−

B

+
A(A

+

⊗
C

&

B

+

C

−
B

−

&

C

&

B

−

B

+
C

+

(A(A)⊗B

+

B

−

3.2. Proof structures 51

Cd
® ©

­ ªd
Bd

C

&

B

tR &

t
L

&Ad
® ©
­ ªd B

d
B

dA(A

tR(
d

(A(A)⊗B

tR⊗

P contains seven formulas (edges), among which four axiomatic formulas and one cut
formula. There are four links: a [R(]-link and a [R

&

]-link of type

&

, and a [R⊗]-link

and a [L

&

]-link of type ⊗. Moreover, P has one hypothesis, viz.
(
B

)−
, and one conclusion,

viz.
(
(A(A)⊗ B

)+
, so P is a proof structure of B ` (A(A)⊗ B.

Observe that in the second representation, every depicted formula D plays the role of
an edge with labels

D−

D+

The bend connections are inevitable for the [R(]-link (being above itself) and the
[L/R

&

]-links (being above each other).
In Subsection 3.2.5 we will see that this L2-proof structure is essentially the same as

the one in Example 3.2.2. ♦

The L2,i-proof structures are defined as the obvious particular subclass of L2-proof
structures.

Definition 3.2.6. An L2,i-proof structure P := (E ,L,L′, λ) is an L2,i-link graph
which, considered as an L2-link graph is an L2-proof structure. ♦

This definition implies that the connector links are of type ⊗ and

&

(no ⊥), their
ends being labeled in one of the following ways by polarized L2,i-formulas:

((
A⊗B

)+
, A−, B−

)

&

[L⊗]((
B

(

A
)+

, B−, A+

)
⊗

[L

(

]((
B(A

)+
, B+, A−

)
⊗

[L(]

((
A⊗B

)−
, B+, A+

)
⊗

[R⊗]((
B

(

A
)−

, A−, B+

)

&

[R

(

]((
B(A

)−
, A+, B−

)

&

[R(]

52 3. Link graphs and proof structures

Moreover, for all edges η ∈ E the two ends η̂ and η̌ are labeled by one and the same
L2,i-formula A, polarized by opposite signs.

A

−

+

A

Definition 3.2.7. Let L be L1, L2 or L2,i, and let P be an L-proof structure. An
L-link graph P1 is a sub L-proof structure of P, notation P1 ⊆ps P, whenever P1 ⊆lg P
(see page 43) and P1 is an L-proof structure itself. ♦

3.2.3. Basic operations. In this subsection we will define some general operations
on L2-proof structures. First we will define for an L2-formula A its identity proof structure
I(A). Secondly, for an L2-proof structure P we will define its cut-free proof structure
P ′, which has the same hypotheses and conclusions as P, but no cut formula anymore.
Finally, we will introduce the notion of a dualization P∗ of a proof structure P.

For fixed connective ¤ 6= ⊥, let us consider a left link((
B ¤A

)+
, Bσ, Aρ

)
θ

[L¤]

which is of type θ = ⊗ or

&

. Then there is a corresponding right link((
B ¤ A

)−
, A−ρ, B−σ

)
θ

[R¤]

which we have obtained by reversing the order of the original link, altering the polarities
of the ends, and changing the type θ = ⊗ (

&

) to θ =

&

(⊗). We call these two links dual
with respect to each other. Also, the links((

(A)⊥
)+

, A+

)
⊥

[L⊥] and

((
(A)⊥

)−
, A−

)
⊥

[R⊥]

are called dual.
Because of the existence of dual links, we are able to define the identity proof structure

I(A) of A ` A (for every L2-formula A), using only atomic axiomatic formulas (called an
η-expanded proof structure): for an atom αi we can take the proof structure consisting of
the sole formula αi and no links, while for a complex formula A¤ (B) we can paste the
[L¤]-link and its dual [R¤]-link to the inductively obtained identity proof structure(s)
for A (and B), as in:

3.2. Proof structures 53

A⊗ Bt
L⊗

0
1 2

A

d
B

d
µ ´
¶ ³
I(A) µ ´

¶ ³
I(B)

Ad Bd2 1
0

A⊗ B

tR⊗
To each L2-formula A we can inductively assign two proof structures, called the upper

and lower construction tree of A. Denoting the set of positive atomic subformulas1 of A
by P (A) and the set of negative ones by N(A), the upper construction tree TA is a proof
structure of P (A) ` N(A), A, while the lower construction tree TA is a proof structure
of N(A), A ` P (A). ¶ ³

µ ´TB

BdTA(B = 1
2 0

A

d
µ ´
¶ ³

TA

A(B

tR(

In these trees there are no cut formulas, and the axiomatic formulas are exactly the
atomic subformulas. The two trees TA and TA of a formula A may be pasted into one
proof structure by connecting the corresponding atomic open ends2. This is another way
to obtain the identity proof structure I(A) of A ` A.

Next, we will introduce the cut elimination procedure for proof structures. Note
that a cut formula is the main formula of two dual links l = (C−, (B′)σ,

(
(A′)ρ

)
)θ and

l∗ = (C+,
(
(A′′)−ρ

)
, (B′′)−σ)θ, where B′ and B′′ are occurrence of one and the same

formula B; similar for A′ and A′′ in case they are present. Now a reduction step is
defined in the following way. Delete these links and the cut formula, and let the active
formulas pairwise collaps: first, if the occurrences B′ and B′′ are different, identify them;
otherwise delete them. Second (in case applicable), if the occurrences A′ and A′′ are
still different (after the possible identification of B and B′′), identify them; otherwise
delete them. It is clear that the number of links decreases by 2 (and that the number
of formulas decreases by m = |l| = |l∗|), implying that this reduction is noetherian (i.e.
strongly normalizing). Moreover this reduction is confluent, whence normal forms are
unique.

We give three examples:

1The positive (negative) atomic subformulas of A are those corresponding with occurrences α (α⊥)
in πA ∈ L1.

2In Subsection 3.2.4 we demonstrate that every η-expanded cut-free proof structure is obtained as
the union of some trees, followed by an identification of the atomic formulas.

54 3. Link graphs and proof structures

µ ´
Ad1

2 0

µ ´ µ ´µ ´
B

d
Bd B(A

tR(

t
L(

Ã B A¶ ³
1 0

2

¶ ³¶ ³
A

d
¶ ³

µ ´
Ad1

2 0

B

d
B

d
µ ´

B(A

tR(

t
L(

Ã A
1 0

2

¶ ³
A

d
¶ ³

A

&

At
L

&

® ©

­ ªtR

&

0
1 2

A

d

d
A

d

d
Ã ∅

2 1
0

Given a proof structure P, we define its dualization P∗ to be the link graph obtained
by replacing every link by its dual, simultaneously reversing the labeling of every edge.
The result is easily shown to be a proof structure again. If an edge A is an hypothesis of
P (i.e. the end A− is an open end of P) and is a premiss of a link l (i.e. A+ ∈ l), then
in its dualization P∗ this edge A is a conclusion of P∗ (A+ is an open end now), and
moreover is a conclusion of the link l∗ (i.e. A− ∈ l∗). Hence, if P is a proof structure of
Γ ` ∆, then P∗ is a proof structure of ∆ ` Γ. Note that the operation P 7→ P∗ is an
involution.

Example 3.2.8. The following proof structures are the dualizations of each other. In
Section 4.6 these will prove the relation between (and

&

.

3.2. Proof structures 55

0 1 B(A

t
L(

B

d
d1 0

2

(B)⊥

tR⊥

d A

d
Ad2 1

0

(B)⊥

&

A

tR &

(B)⊥

&

At
L

&

0
1 2

(B)⊥

t
L⊥

d
A

d
d1

2 0

B

d
d0 1 B(A

tR(
♦

3.2.4. η-Expanded cut-free proof structures and axiom linkings. Let P be an
η-expanded cut-free L2-proof structure, i.e. all axiomatic formulas are atomic and there
are no cut formulas. This is equivalent to the statement that each compound formula has
role 1 (i.e. is the main formula of exactly one link). Suppose a compound formula A⊗B
of P is the main formula of, say, a R⊗ link l. Then the active formula A (B) of l is either
atomic, or compound and hence the main formula of another link. Carrying on we will
recognize the upper construction tree TA⊗B in P. In general, every compound formula
C of P will thus determine a tree TC or TC . For leaves we even better can say: every
hypothesis (conclusion) of P will thus determine a tree TC (TC). This is the intuition
behind the following proposition.

Proposition 3.2.9. An η-expanded cut-free proof structure P of A0, . . . , Am−1 `
B0, . . . , Bn−1 can be constructed by first taking the union of the construction trees TAi

of N(Ai), Ai ` P (Ai) and TBj of P (Bj) ` N(Bj), Bj, and then identifying each αk ∈⋃
i P (Ai) ∪

⋃
j N(Bj) with an αk ∈

⋃
i N(Ai) ∪

⋃
j P (Bj) in one way or the other. ♦

Proof: By induction on the size of P. If E = ∅ the result is clear. Otherwise, choose
a formula C ∈ E with maximal length l(C) (defined in Subsection 2.1.6). If l(C) = 1
then all formulas are atomic, whence there are no links, and the result clearly holds.
Otherwise, C is compound and hence the main formula of exactly one link l. It cannot
be the active formula of another link, since then there would be a formula with strictly
greater length. So C is a leaf. Removing C and l yields a strictly smaller proof structure
P ′ for which the result holds by induction hypothesis. But then the result also holds for
P (with the same identification of the atomic subformulas as used for P ′). ////

Observe that the other way around construction trees are proof structures which
are η-expanded and cut-free, properties which are preserved under disjoint union and
identification of the atomic subformulas. So η-expanded and cut-free proof structures are
precisely those “identified construction forests”.

From this proposition we can infer that there is a certain restriction in the labeling
of the open ends of any proof structure: proof structures have balanced leaves:

Corollary 3.2.10. If P is a proof structure of A0, . . . , Am−1 ` B0, . . . , Bn−1, then
the multisets

⋃
i P (Ai) ∪

⋃
j N(Bj) and

⋃
i N(Ai) ∪

⋃
j P (Bj) coincide; i.e.∑

i

〈[Ai]〉 =
∑

j

〈[Bj]〉 .

♦
Proof: Given P with the mentioned leaves, first eliminate the cut formulas, yielding

a cut-free proof structure P ′ with the same leaves. Now expand the non-atomic axiomatic
formulas C by replacing them by I(C), yielding an η-expanded cut-free proof structure
P ′′, still with the same open ends. Then the above proposition applies, and there is an

56 3. Link graphs and proof structures

identification of the atomic subformulas of the trees. As a consequence, the two multisets⋃
i P (Ai) ∪

⋃
j N(Bj) and

⋃
i N(Ai) ∪

⋃
j P (Bj) are equal. Considering both multisets

as elements of the free abelian group generated by the atoms ZA (with non-negative
coefficients), we have

∑
i

P (Ai) +
∑

j

N(Bj) =
∑

i

N(Ai) +
∑

j

P (Bj)

whence

∑
i

P (Ai)−
∑

i

N(Ai) =
∑

j

P (Bj)−
∑

j

N(Bj)

i.e.

∑
i

〈[Ai]〉 =
∑

j

〈[Bj]〉

////

Proposition 3.2.9 shows that, given the multisets of hypotheses A0, . . . , Am−1 and con-
clusions B0, . . . , Bn−1, an η-expanded cut-free proof structure P is completely determined
by a bijection

⋃
i P (Ai) ∪

⋃
j N(Bj) →

⋃
i N(Ai) ∪

⋃
j P (Bj), pairing occurrences of one

and the same atom αk ∈ A. Stated differently, P is determined by an axiom linking : a
(fixed point free) involution p on the multiset

⋃
i P (Ai)∪

⋃
j N(Bj)∪

⋃
i N(Ai)∪

⋃
j P (Bj),

such that x is an occurrence of αk in
⋃

i P (Ai) ∪
⋃

j N(Bj) if and only if p(x) is an oc-

currence of αk too in
⋃

i N(Ai) ∪
⋃

j P (Bj).

Example 3.2.11. Let α ∈ A. Let hypotheses be given by

A0 := (α⊗ α)⊗ α

A1 := α(
(
(α(α)⊗ (α)⊥

)
A2 := α

(

α

and conclusions by

B0 := α⊗ α

B1 := (α(α)

(

α

3.2. Proof structures 57

One easily verifies that these leaves are balanced. Let p be the involution determined by
the following diagram.

A0, . . . , Am−1

p p p n n p n p n

[(α ⊗ α)⊗ α] [α(
(
(α (α)⊗ (α)⊥

)
] [α (α]

[α ⊗ α] [(α (α)

(

α]

p p n p n

B0, . . . , Bn−1

This involution is indeed an axiom linking: x is an occurrence of α in
⋃

i P (Ai) (indicated
by p) or

⋃
j N(Bj) (indicated by n) precisely when p(x) is an occurrence of α in

⋃
i N(Ai)

(indicated by n) or
⋃

j P (Bj) (indicated by p). It determines the following η-expanded
cut-free proof structure:

(α⊗ α)⊗ αt
L⊗

α⊗ αt
L⊗

d
α

d

d

α

d
αd α

d
d α(

(
(α(α)⊗ (α)⊥

)
t

L(

α⊗ α

tR⊗
(α(α)⊗ (α)⊥t

L⊗

d

αd
® ©

­ ªd
α(α

tR(
d

(α(α)

(

α

tR (

α

d

d α(αt
L(

d

(α)⊥

t
L⊥

d

α

(

αt
L
(

α

d
d

α

d
d

♦
Let P be an η-expanded cut-free proof structure of A0, . . . , Am−1 ` B0, . . . , Bn−1,

determined by an axiom linking p. Suppose p′ is also an axiom linking, determining a
proof structure P ′ of A′0, . . . , A

′
m′−1 ` B′0, . . . , B

′
n′−1. If one of the Bk equals an A′l,

we consider the proof structure P0 obtained by taking the disjoint union of P and P ′,

58 3. Link graphs and proof structures

and unifying the formula Bk of P with A′l of P ′. Let P1 be the (unique) cut-free proof
structure obtained after cut elimination of P0. (If C := Bk = A′l is atomic, P0 is cut-fee
already. If C is compound however, it it a cut-formula of P0.) Observe that P1 is still
η-expanded. Now we define the composite axiom linking p′ ◦Bk=A′l

p to be the (unique)
axiom linking determined by P1.

The next example shows that composites can be calculated by ‘connecting wires’,
disregarding possibly occurring ‘cycles’. A formal definition can be given by means of
Girard’s ‘(result of the) execution formula’ for the ‘geometry of interaction’ ([Girard 87a,
Girard 89]):

p′ ◦Bk=A′l
p = (1− j2

C)
q

1− jCq
(1− j2

C) = (1− j2
C)

(∞∑
N=0

q(jCq)N

)
(1− j2

C)

where q := p+p′ on the coproduct multiset
⋃

i P (Ai)∪
⋃

j N(Bj)∪
⋃

i N(Ai)∪
⋃

j P (Bj)+⋃
i P (A′i)∪

⋃
j N(B′j)∪

⋃
i N(A′i)∪

⋃
j P (B′j) while jC is the partial bijection on the same

multiset that relates the subformulas of Bk with those of A′l.

Example 3.2.12. Let α, p and P be as in Example 3.2.11. Let hypotheses be given
by

A′0 := (α(α)

(

α = B1

A′1 := (α)⊥

and conclusions by

B′0 := (α

&

α)(α

B′1 := α

(

(α

&

α)

Let p′ be the involution determined by the following diagram:

A′0, . . . , A
′
m′−1

n
′ p

′
n
′

n
′

[(α (α)

(

α] [(α)⊥]

[(α

&

α)(α] [α

(

(α

&

α)]

n
′

n
′

p
′

p
′

n
′

n
′

B′0, . . . , B
′
n′−1

It corresponds to the following η-expanded cut-free proof structure P ′:

3.2. Proof structures 59

αd
® ©

­ ªd

α

(

(α

&

α)

tR (

α

&

α

d
t

L

&

α

d
αd α

d
d (α)⊥t

L⊥
α

&

α

d
t

L

&

(α

&

α)(α

tR(

(α(α)

(

αt
L
(

α

d

d
αd
® ©
­ ªd

α(α

d
t

L(

Connecting the conclusion B1 = (α(α)

(

α of P to the hypothesis A′0 = (α(α)

(

α
of P ′ yields a proof structure P0. Eliminating the thus obtained cut formula (α(α)

(

α
results in an η-expanded cut-free proof structure P1 which corresponds to the following
axiom linking:

p p p n n p n p n n

[(α ⊗ α)⊗ α] [α(
(
(α (α)⊗ (α)⊥

)
] [α (α] [(α)⊥]

[α ⊗ α] [(α

&

α)(α] [α

(

(α

&

α)]

p
′

p
′

n
′

n
′

p
′

p
′

n
′

n
′

60 3. Link graphs and proof structures

Hence, by definition, this is the value of the composite p′ ◦B1=A′0
p

p p p n n p n p n

[(α ⊗ α)⊗ α] [α(
(
(α (α)⊗ (α)⊥

)
] [α (α]

[α ⊗ α] [(α (α)

(

α]

p p n p n

n
′ p

′
n
′

n
′

[(α (α)

(

α] [(α)⊥]

[(α

&

α)(α] [α

(

(α

&

α)]

n
′

n
′

p
′

p
′

n
′

n
′

Another example is given by the next composite of an axiom linking p of A ` B and
p′ of B ` C. We will not specify A, B and C, but only indicate the positive and negative
atomic subformulas of each of them. The composite

p p n p n n

[α α α α α α]

[α α α α α α α α α α α α α α α α]

p n n p n p p p n p n p p n n n

p
′

n
′

n
′ p

′
n
′ p

′
p
′

p
′

n
′ p

′
n
′ p

′
p
′

n
′

n
′

n
′

[α α α α α α α α α α α α α α α α]

[α α α α]

n
′

p
′

p
′

n
′

3.2. Proof structures 61

turns out to be

p p n p n n

[α α α α α α]

[α α α α]

n
′

p
′

p
′

n
′

♦
Given an L2-formula A, we have defined the identity proof structure I(A) of A ` A.

As this proof structure is η-expanded and cut-free, it makes sense to define the identity
axiom linking iA on A as the corresponding axiom linking. Let us write A (A′) for the
hypothesis (conclusion) occurrence of the formula A in I(A). Observe that iA is an
involution3 on the multiset P (A)∪N(A′)∪N(A)∪P (A′), such that x is an occurrence of
αk in P (A)∪N(A′) precisely when iA(x) is an occurrence of αk too in N(A)∪P (A′). Even
stronger: x is an occurrence of αk in P (A) (N(A′)) precisely when iA(x) is an occurrence
of αk too in P (A′) (N(A)): there are no ‘wires’ of the form pn or np.

We will now show that whenever an arbitrary proof structure P of A ` B has such
an axiom linking without ‘wires’ of the form pn or np, then the composite of its axiom
linking with the axiom linking of P ∗ yields the identity axiom linking. Let us first give
an example which gives a good indication of this fact.

p p n n p n p p p n n p n p

[α α α α α α α] (A) [α α α α α α α]

[α α α α α α α] (B)

p n n p n p p

=

p
′

n
′

n
′

p
′

n
′

p
′

p
′

[α α α α α α α] (B′)

[α α α α α α α] (A′) [α α α α α α α]

p
′

p
′

n
′

n
′

p
′

n
′

p
′

p
′

p
′

n
′

n
′

p
′

n
′

p
′

3Note that iA is far from the identity map p(x) = x on the multiset P (A) ∪N(A′) ∪N(A) ∪ P (A′);
indeed, as an axiom linking it is fixed point free. Though, if we denote by x′ the subformula of A′

corresponding to the subformula x of A, we can describe iA by iA(x) = x′.

62 3. Link graphs and proof structures

Proposition 3.2.13. Let P be an η-expanded cut-free proof structure of A ` B,
and P∗ its dualization. Let p and p∗ be the corresponding axiom linkings. Suppose that
x ∈ P (A)∪N(A) is equivalent to p(x) ∈ P (B)∪N(B). Then p◦p∗ and p∗ ◦p are identity
axiom linkings. ♦

Proof: First of all p is an involution on the multiset P (A)∪N(B)∪N(A)∪P (B),
such that x is an occurrence of αk in P (A) ∪N(B) iff p(x) is an occurrence of αk too in
N(A)∪P (B). Similarly, p∗ is an involution on the multiset P (B′)∪N(A′)∪N(B′)∪P (A′),
such that y is an occurrence of αk in P (B′) ∪ N(A′) iff p∗(y) is an occurrence of αk too
in N(B′)∪P (A′), where A′ and B′ are the occurrences of A and B in P∗. Let jA (jB) be
the partial bijection on P (A) ∪N(B) ∪N(A) ∪ P (B) + P (B′) ∪N(A′) ∪N(B′) ∪ P (A′)
relating the corresponding subformula occurrences of A and A′ (B and B′); let j denote
their union, which is total. Now the fact that P∗ and P are dualizations of each other
leads to

j(p + p∗) = (p + p∗)j

Hence for an occurrence x of αk in P (A):

(
jB(p + p∗)

)N
(x) =


x ∈ P (A) if N = 0

jBp(x) ∈ P (B′) if N = 1

0 if N > 1

whence (1− j2
B)

(∑∞
N=0(p + p∗)(jB(p + p∗))N

)
(1− j2

B)(x) = (1− j2
B)(p+ p∗)(x+ jBpx) =

(1−j2
B)(px+jAx) = jAx = iAx. Here we used the assumption that there are no ‘wires’ of

the form pn or np, whence p(x) ∈ P (B) and p∗jBp(x) ∈ P (A′). A similar computation
can be done for y ∈ N(A′). This shows that p∗ ◦ p = iA, as desired.

The other composite follows by interchanging the roles of P and P∗.

p :

(
P (A)

jA

∪ N(B)
)
∪

(
N(A) ∪ P (B)

)
jB

j : (
P (B′) ∪ N(A′)

)
∪

(
N(B′) ∪ P (A′)

)
p∗ :

////

3.2.5. Translations. Given an L1-proof structure P with labeling λ : Ẽ → L
±
1 ,

composing this labeling with ψ± : L
±
1 → L

±
2 (see Subsection 2.1.5 for the definition of ψ

and Subsection 2.1.4 for the meaning of ψ±) yields an L2-link graph ψP which is easily
shown to be an L2-proof structure. On links this operation has the following effect((

X ⊗ Y
)−

, Y +, X+

)
⊗
7→

(
τψ(X ⊗ Y), ψY, ψX

)
⊗((

Y

&

X
)−

, X+, Y +

)

&

7→
(

τψ(Y

&

X), ψX, ψY

)

&

3.2. Proof structures 63

and by comparison of Definition 2.1.1 and Definition 3.2.3 we see that these links are
indeed of the required form. Moreover, the edge labeling changes according to:

X+ ([X]⊥)+ 7→ Aρ A−ρ

X− X+ 7→ A−ρ Aρ

X− ([X]⊥)− 7→ A−ρ Aρ

(where Aρ := ψX), whence it does satisfy the edge condition for L2-proof structures as
well.

Observe that main and active ends are preserved, whence also axiomatic and cut edges
are preserved. However, conclusions and premisses of a link are not preserved, as the sign
of an end label changes if the one-sided formula Z of this label is in L1,odd. This also means
that the conclusions ∆+ of P split up into open ends ψ±∆+ = ψ∆ = (∆•even)

+, (∆•odd)
−

of ψP, the latter hence being an L2-proof structure of ∆•odd ` ∆•even.

Example 3.2.14. Let P be the L1-proof structure of Example 3.2.2. Then ψP is
given by the proof structure of Example 3.2.5 in case X, Y, Z ∈ L1,even, where A = X•,
B = Y • and C = Z•. ♦

Remark 3.2.15. Composing the labeling λ : Ẽ → L
±
1 of an L1-proof structure P

with the sign-preserving map ν : L
±
1 → L

±
2 yields an L2-link graph with only links of

subtype [R⊗] and [R

&

]. However, this is not in general an L2-proof structure as the edge
condition may not be fulfilled. We might try to solve this by replacing the axiomatic
(cut) edges by [R⊥] ([L⊥]) links((

(νX)⊥
)−(+)

,
(
νX

)−(+)
)
⊥

[R(L)⊥]

or, depending on your strategy concerning the symmetry between [X]⊥ and X = [[X]⊥]⊥,((
(ν[X]⊥)⊥

)−(+)
,
(
ν[X]⊥

)−(+)
)
⊥

[R(L)⊥]

but even then the obtained edges (with — at least — ends of opposite polarity) are not
in general well typed, since ν[X]⊥ does not always equal (νX)⊥ (or, in the second case,
since (ν[X]⊥)⊥ does not always equal νX).

⊥
(νX)⊥

−
νX

−

X

+

[X]⊥

+

νX

+
ν[X]⊥

+

(axiomatic edge) (its replacement)

64 3. Link graphs and proof structures

However, for cut-free and η-expanded proof structures this construction does yield a
well-defined L2-proof structure νP:

⊥
(αi)

⊥

−
αi

−

αi

+

α⊥i

+

αi

+
(αi)

⊥
+

(axiomatic edge) (its replacement)
♦

The other way around, given an L2-proof structure P, we will use π : L
±
2 → L1 in

order to define its one sided counterpart πP. Recall from Subsection 2.1.4 that π+, π− :
L
±
2 → L

±
1 are defined as follows:

π+(A+) = (π(A+))+ = (πA)+

π+(A−) = (π(A−))+ = ([πA]⊥)+

π−(A+) = (π(A−))− = ([πA]⊥)−

π−(A−) = (π(A+))− = (πA)−

Given the labeling λ : Ẽ → L
±
2 of P, we define π(λ) : Ẽ → L

±
1 as follows:

π(λ) : e 7→
{

π+λe if e is an open end or an active connector end

π−λe if e is a main connector end

Then, depending on the role of the ends, the labeling of an edge η will be turned into one
of the following four possibilities:

π+ π−

A

−

+

A

([πA]⊥)+

axiomatic
edge

(πA)−

cut
edge

7→

(πA)+ ([πA]⊥)−

whence the edge condition of L1-proof structures is satisfied.

3.2. Proof structures 65

However, there are still links of type ⊥ present, violating the link condition. Let us
consider the labeling of a [L⊥] link in the resulting L1-link graph:

π+ π−

([πA]⊥)+ (πA)−

(πA)+

⊥
(A)⊥

+

−
(A)⊥

A

+

−
A

7→ ⊥
(πA)−

(πA)+ ([πA]⊥)−

We can solve this problem by successively deleting the ⊥-links, letting collaps the
involved edges: we identify them if they are (still) different and delete them if they are
equal. Obviously, the result is independent of the order in which we proceed.

The result πP = (E ′, ∅,L′, π(λ)) is a one-sided proof structure. If P is a proof structure

of Γ ` ∆, then πP has open ends π+(∆+, Γ−) =
(
π∆, [πΓ]⊥

)+
.

Lemma 3.2.16. (a) For every L1-proof structure P it holds that πψP = P.
(b) For every L2-proof structure P that also is an L2,⊥-free-link graph, it holds that ψπP =
P.

♦
By means of this lemma, the three basic operations of the previous subsection imme-

diately translate into corresponding operations on L1-proof structures:
The identity proof structure I(X) of an L1-formula X is πI(X•); for an L1-proof

structure P its cut-free proof structure P ′ can be defined by π((ψP)′); and finally, P∗ :=
π((ψP)∗).

L1

(−)•

I

L2

I

PS1 PS2π

PS1

ψ

(−)′

PS2

(−)′

PS1 PS2π

PS1

ψ

(−)∗

PS2

(−)∗

PS1 PS2π

CHAPTER 4

Two-sided proof nets for Cyclic Linear Logic

In this chapter we will consider the theory of two-sided proof nets for Non-commutative
Cyclic Linear Logic (NCLL2). Sequents are cyclic lists of formulas, each of which can
play the role of an hypothesis or a conclusion. If we would require a separation of the
hypotheses and the conclusions, our sequents would essentially be lists, which would lead
to the coexistence of two negations: a linear post-negation and a linear retro-negation
(cf. the non-commutative system of [Abrusci 95]).

In Section 4.1 we will define the sequent calculus for NCLL2. This section also
introduces proof theoretical concepts for general calculi.

In Section 4.2 cut elimination is proved. We will prove strong normalization by means
of a generalization of the cut rule in Subsection 4.2.2.

Proof nets will be defined in Section 4.3 as the proof structures of derivations. For
MLL, it is impossible to uniquely assign a proof net to a sequent derivation. As the
sequents are multisets, due to multiple occurrences an active or main formula of a deriva-
tion rule may be ambiguous. We will show that this problem is overcome for NCLL (and
hence for further refinements). The non-periodicity of derivable sequents (Lemma 4.1.13)
turns out to solve the original ambiguity (Lemma 4.2.5).

Notice that, contrary to the usual one-sided system, the translation of a derivation
into a proof net is no longer from up (the axiom-links) to down, but from middle (the
axiomatic formulas) to the leaves (the hypotheses and the conclusions). The right rules
translate in links going down, as usual, but the left rules are mapped to links going up.

The correspondence between axiomatic (cut) formulas and the corresponding identity
rules of sequent calculus will be settled (Proposition 4.3.5). We will also give a proof of
the fact that proof nets abstract from inessential distinctions due to the intrinsic order
of rules in sequent derivations.

A contraction criterion will be formulated and proved in Section 4.4. This criterion is
a combination of Danos’ contraction criterion for one-sided MLL (see [Danos 90]) and
Lafonts criterion for parsing boxes (see [Lafont 95]). The contraction relation is termi-
nating, though not confluent. However, we achieve confluence on a restricted domain,
leading us to the main contraction theorem, Theorem 4.4.12. Our contraction criterion
has the special property that a priori there is no order on the leaves of the proof structure;
if the proof structure is correct (in the sense that it contracts properly), our criterion a
posteriori provides the unique order of the leaves (Subsection 4.4.3).

We will prove correctness of cut elimination w.r.t. our contraction criterion in Sec-
tion 4.5. This requires quite deep investigations on the dependency between the contrac-
tion steps in a given conversion sequence; it gives rise to particular substructures called
block and component. We think our proof might serve as a key towards further results on
the parallelism of the conversion steps.

In Section 4.6 we will particularly exploit the two-sidedness of our proof nets. By the
notion of dualizability (see Example 3.2.8) provable equivalences will be distinguished.

67

68 4. Two-sided proof nets for Cyclic Linear Logic

Roughly said, turning a two-sided proof structure up-side-down yields its dualization,
and a proof net is dualizable if this dualization is a proof net as well. For provably
equivalent formulas A and B there are two proof nets P1 of A ` B and P2 of B ` A.
Now A and B are called dualizable-provably equivalent if moreover P1 and P2 are each
others dualization (see Subsection 3.2.3). Formulas will be shown (Theorem 4.6.3) to be
dualizable-provably equivalent precisely if they are equal modulo De Morgan equivalence
and associativity, i.e. if A ' B (see Definition 2.3.1).

By the maps in Subsection 3.2.5, we obtain the corresponding contraction criterion for
one-sided proof structures in Section 4.7. We notice that one-sided proof structures are
not a particular kind of two-sided proof structures; the ‘identity map’ ν from the one-sided
language to the two-sided language does not in general extend to proof structures (see
Remark 3.2.15). On the contrary, the translation ψ provides the appropriate embedding.
This translation avoids having to map an axiomatic (cut) edge into a right (left) ⊥-link.

In Section 4.8 we will introduce the category of formulas and proof nets, where once
again we observe the elegance of the two-sided theory. The isomorphisms in this category
are exactly the dualizable proof nets of Section 4.6 (Theorem 4.8.3).

A very practical general consequence of the two-sided system is the step towards the
intuitionistic fragment (Section 4.9), which is simply obtained as ‘the theory of proof
nets with one conclusion’. Starting from NCLL, we obtain a theory of proof nets for
the Lambek calculus (L). This theory can be viewed as the linear and non-commutative
version of Natural deduction for IL.

Finally, in Section 4.10 the connection with commutative MLL is made. MLL is
obtained from NCLL by adding the rule of Exchange.

4.1. Sequent calculus

A sequent of NCLL2 is an L2-link graph P containing exactly one cyclic link l =
([e0, . . . , em−1])¯ as context link, no connector links, and whose underlying graph is a
tree, i.e. acyclic and connected. Because of the last requirement, every edge η has ex-
actly one extremity η̂ occurring in l, whence P may be represented by the cyclic list
([λη̌0, . . . , λη̌m−1]) of open ends. Observe that a one-edge link graph

A ρ σ B

is not a sequent; there must be one context link, like in

A ρ ¯ Bσ

4.1. Sequent calculus 69

Example 4.1.1. The following are examples of NCLL2-sequents with 0, 1, 2 respec-
tively 4 open ends:

¯

([])

¯

A(A

+

��
(A(A)+

��

B ⊗ (B(A)

−

¯

A

+

��
(B ⊗ (B(A))−, A+

��

B
−

C
+

¯

A
+

C

&

(B(A)
−

��
B−, A+, (C

&

(B(A))−, C+
��

♦

By Cm−1, . . . , Ci ` C0, . . . , Ci−1 (where both sides are lists) we will denote the sequent([
C+

0 , . . . , C+
i−1, C

−
i , . . . , C−m−1

])
. A sequent which can be represented in this way is called

a separable sequent. The last example shows that for m ≥ 4 there exist non-separable
m-sequents; for m ≤ 3 every sequent is separable.

Example 4.1.2. The following are examples of separable NCLL2-sequents:

A

−

¯

B

+

A ` B

A
− B

−
C

−

¯

D

+

A,B,C ` D

¯

A
+

B

+

C
+

` A,B,C (or ` B,C,A or ` C,A,B)

♦

The calculus NCLL2 is defined by the following (elementary) rules:

70 4. Two-sided proof nets for Cyclic Linear Logic

NCLL2

Ax

([A+, A−])

([Γ, A+]) ([∆, A−])
Cut

([Γ, ∆])

([Γ, A+])
L⊥([

Γ, ((A)⊥)−
]) ([Γ, A−])

R⊥([
Γ, ((A)⊥)+

])
([Γ, B−, A−])

L⊗
([Γ, (A⊗ B)−])

([Γ, A+]) ([∆, B+])
R⊗

([Γ, (A⊗ B)+, ∆])

([Γ, A+]) ([∆, B−])
L
(

([Γ, (B

(

A)−, ∆])

([Γ, B+, A−])
R

(

([Γ, (B

(

A)+])

([Γ, A−]) ([∆, B+])
L(

([Γ, (B(A)−, ∆])

([Γ, B−, A+])
R(

([Γ, (B(A)+])

([Γ, A−]) ([∆, B−])
L

&

([Γ, (B

&

A)−, ∆])

([Γ, B+, A+])
R

&

([Γ, (B

&

A)+])

which may be condensed to

NCLL2

Ax

([A+, A−])

([Γ, A+]) ([∆, A−])
Cut

([Γ, ∆])

([Γ, Aρ])
⊥([

Γ, ((A)⊥)−ρ
])

([Γ, Aρ]) ([∆, Bσ])
⊗

([Γ, Aρ ⊗ Bσ, ∆])

([Γ, Bσ, Aρ]) &

([Γ, Bσ &

Aρ])

Recall that the latter ⊗ and

&

are the maps L
±
2 × L

±
2 → L

±
2 defined on page 22.

4.1. Sequent calculus 71

Every rule consists of a (possibly empty) list of premiss sequents, and one conclu-
sion sequent. The distinguished (polarized) formulas in the former are called the active
formulas, while those in the latter are called the main formulas. All other formulas (oc-
curring in Γ and ∆) constitute the context. We make the following observation, which is
characteristic for a multiplicative calculus:

Remark 4.1.3. (Multiplicativity) The context of the conclusion sequent equals the
concatenation of the context(s) of the premiss sequent(s) (in a specified order). ♦

The rules Ax and Cut are the identity rules. The rule indicated by ⊥ actually stands
for two rules, which we call L⊥ (if the sign −ρ of the main formula is negative) and R⊥ (if
−ρ = +). Together these two rules constitute the negation rules. Furthermore, the rule
indicated by ⊗ stands for the four so-called tensor rules R⊗, L

(

, L(, L

&

, which we
call L¤ or R¤ depending on the sign (− respectively +) and the outermost connective ¤
of its main formula Aρ⊗Bσ. Finally, the rule indicated by

&

stands for the four so-called
par rules L⊗, R

(

, R(, R

&

, referring to the main formula Bσ &

Aρ. The negation rules,
the tensor rules and the par rules together constitute the logical rules.

Remark 4.1.4. Given signs ρ and σ and L2-formulas A and B, the polarized formulas
Aρ⊗Bσ and B−σ &

A−ρ are equal up to their signs, which are opposite. Hence there is a
unique connective ¤ such that Aρ ⊗Bσ is the main formula of the tensor rule L¤ (R¤),
while B−σ &

A−ρ is the main formula of the par rule R¤ (L¤). ♦
As a consequence of the above observation that contexts behave additively, a rule is

completely determined by its active and main formulas, together with the way contexts
should be concatenated. Now this information is precisely contained in the L2-links (see
Definition 3.2.3 and Figure 3.1), when we interpret a tensor link ⊗ as to work on two

premiss sequents, and a par link

&

and a negation link ⊥ as to work on one premiss

sequent. E.g., the L(-rule is completely determined by the L(-link:

⊗
B(A

+

B

+
A

−

corresponds to

B(A

−

Γ ∆

¯ ¯

A
−

B
+

Γ ∆

¯

B(A

−

This correspondence will be exploited in the theory of proof nets in Section 4.3, and serves
as our guide when defining the contraction relation in Section 4.4.

72 4. Two-sided proof nets for Cyclic Linear Logic

A composite of instances of elementary rules is called a semi-derivation (or generalized
rule). Each sequent occurring in a semi-derivation is of the form

([
Γ̃0, A

ρ0

0 , . . . , Γ̃m−1, A
ρm−1

m−1

])
, (1)

where each Γ̃i is either vacuous, or a so-called context variable Γj for some j. The Aρi
i in

the premiss sequents are called the active formulas of the semi-derivation, while the Aρi
i

in the conclusion sequent are called the main formulas. One can easily show that every
context variable Γj of a premiss sequent occurs exactly once as a context variable of the
conclusion sequent. There are no restrictions w.r.t. multiple occurrences of (polarized)
formulas or context variables, as Example 4.1.5 illustrates.

The most simple example of a semi-derivation is a single sequent consisting of a single
context variable ([Γ]), which is the composite of zero rules, having coinciding premiss
sequent and conclusion sequent ([Γ]). A semi-derivation with no premiss sequents is a
derivation. Of course, no sequent in a derivation can contain a context variable (since no
axiom does). For a derivation D, let xDy denote its final sequent. A sequent is called
derivable iff it occurs as the final sequent of some derivation.

Example 4.1.5. This semi-derivation has three main formulas, and seven active for-
mulas.([

Γ1, C+ , Γ2, B+ , A− , B+ , Γ2, A−
]) ([

Γ4, B+
])

L(

([Γ1, C
+, Γ2, B

+, A−, B+, Γ2, (B(A)−, Γ4])
([

Γ1, C−
])

Cut

([Γ2, B
+, A−, B+, Γ2, (B(A)−, Γ4, Γ1, Γ1])

R
(([

Γ2, (B

(

A)+ , B+ , Γ2, (B(A)− , Γ4, Γ1, Γ1

])
The next semi-derivation (which is just an instance of R⊗) has three occurrences of the

context variable Γ in the conclusion sequent. Each one corresponds with an occurrence
of Γ in one of the premiss sequents (multiplicativity), but there is no canonical bijection
between both sets of occurrences.

([Γ, (A⊗ A)+, Γ, A+]) ([A+, Γ, (A⊗A)+])
R⊗

([Γ, (A⊗A)+, Γ, (A⊗ A)+, Γ, (A⊗ A)+])

The absence of a canonical bijection also holds for the occurrences of the formula (A⊗A)+;
it is impossible to distinguish between the occurrence which has just been introduced, the
occurrence originating from the left premiss sequent, and the one originating from the
right premiss sequent. In Lemma 4.2.5 we will show that nevertheless there will always be
a canonical bijection between the non-main formula occurrences of the conclusion sequent
of an elementary rule on the one hand, and the non-active formula occurrences of the
premiss sequents on the other hand, when these premiss sequents are derivable. As a
consequence, we will never encounter an instance of this semi-derivation in a derivation.

The following is an example of a semi-derivation without premiss sequents, i.e. an
NCLL2-derivation D. It shows that xDy = ([(C

(

B)+, A+, (C

&

(B(A))−]) is deriv-
able.

4.1. Sequent calculus 73

Ax

([A+, A−])
Ax

([B+, B−])
L(

([A+, (B(A)−, B−])
Ax

([C−, C+])
L

&

([B−, A+, (C

&

(B(A))−, C+])
R

(

([(C

(

B)+, A+, (C

&

(B(A))−]) ♦
An expression

([Γ0]) . . . ([Γn−1])

([Γ])
(2)

given by a list of premiss sequents ([Γi]) and a conclusion sequent ([Γ]), all of the form
(1), is an induced rule (or derived rule) if there is a semi-derivation with premiss se-
quents among the n sequents ([Γ0]) up to ([Γn−1]) (used ad libitum) and conclusion se-
quent ([Γ]). More precisely, an induced rule is given by an expression (2) together with
a semi-derivation D (with m premiss sequents ([∆k]) and conclusion sequent ([Γ])) and a
function f : {0, . . . , m− 1} → {0, . . . , n− 1}, such that ([∆k]) =

([
Γf(k)

])
.

Given only the expression (2) of an induced rule, in many cases we can reconstruct
information about the semi-derivation D and the function f because of the multiplicativity
of our calculus. Indeed, comparing the context variables of the sequent ([Γ]) to the context
variables of the ([Γi]), we can get an impression how many times |f−1(i)| a certain premiss
sequent ([Γi]) actually occurs in D. This method is useful in case the ([Γi]) have pair-wise
disjoint context variables.

We will allow application of an induced rule in a (semi-)derivation, in which case it
should be seen as an abbreviation of the corresponding semi-derivation. Formally, we
define

D0

([Γ0]) . . .

Dn−1

([Γn−1])
(D, f)

([Γ])

to denote1

Df(0)

([∆0]) . . .

Df(m−1)

([∆m−1])

. . . D . .
.

([Γ])

where some subderivations Di may have disappeared, while others may have been copied,
depending on |f−1(i)|.

Example 4.1.6. Consider the semi-derivation

D :=
([Γ, Aρ]) ([∆, Bσ])

⊗
([Γ, Aρ ⊗Bσ,∆])

1Observe that by definition (semi-)derivations only consist of elementary rules, so
D0

([Γ0]) . . .

Dn−1

([Γn−1])
(D, f)

([Γ])
is not a derivation in the proper sense of the word; it only stands for a derivation. Cf. the fact that 1 + 1
is not a natural number; it only stands for a natural number.

74 4. Two-sided proof nets for Cyclic Linear Logic

It gives rise to the induced rules

([Γ, Aρ]) ([∆, Bσ])
⊗ := (D, {0, 1}

0 7→ 0
1 7→ 1−→ {0, 1})

([Γ, Aρ ⊗Bσ,∆])

([∆, Bσ]) ([Γ, Aρ])
⊗′ := (D, {0, 1}

0 7→ 1
1 7→ 0−→ {0, 1})

([Γ, Aρ ⊗Bσ,∆])

Moreover, the next instance of D

D′ := ([Γ, Aρ]) ([Γ, Aρ])
⊗

([Γ, Aρ ⊗Aρ,Γ])

is a witness for
([Γ, Aρ])

⊗′′ := (D′, {0, 1}
0 7→ 0
1 7→ 0−→ {0})

([Γ, Aρ ⊗Aρ,Γ])

([Γ, Aρ]) ([∆, Bσ])
⊗′′′ := (D′, {0, 1}

0 7→ 0
1 7→ 0−→ {0, 1})

([Γ, Aρ ⊗Aρ,Γ])

Now let us apply the induced rules ⊗, ⊗′ and ⊗′′′ to a pair of different derivations with
coinciding final sequent ([Γ, Aρ]). Then

D0

([Γ, Aρ])
D1

([Γ, Aρ])
⊗

([Γ, Aρ ⊗Aρ,Γ])

=
D0

([Γ, Aρ])
D1

([Γ, Aρ])
⊗

([Γ, Aρ ⊗Aρ,Γ])

D0

([Γ, Aρ])
D1

([Γ, Aρ])
⊗′

([Γ, Aρ ⊗Aρ,Γ])

=
D1

([Γ, Aρ])
D0

([Γ, Aρ])
⊗

([Γ, Aρ ⊗Aρ,Γ])

D0

([Γ, Aρ])
D1

([Γ, Aρ])
⊗′′′

([Γ, Aρ ⊗Aρ,Γ])

=
D0

([Γ, Aρ])
D0

([Γ, Aρ])
⊗

([Γ, Aρ ⊗Aρ,Γ])

yielding three different derivations. ♦

When f is not surjective, the induced rule

(
([Γ0]) . . . ([Γn−1])

([Γ])
,D, f

)
is said

to have dummy premiss sequents. If it does not have dummy sequents, the expression
(2) is superfluous, as it is completely determined by D and f . When f is not injec-

tive,

(
([Γ0]) . . . ([Γn−1])

([Γ])
,D, f

)
is said to have doublings. An induced rule without

dummy premiss sequents and without doublings (i.e. with f a bijection) is clearly multi-
plicative, since every semi-derivation is. Each semi-derivation D gives rise to a particular
induced rule (D, id). In this case the list of premiss sequents of (D, id) can be given a
natural tree structure (viz. corresponding to the tree structure of D)2.

The next trivial lemma shows that — as far as derivability is concerned — we may
consider the premiss sequents of an induced rule to constitute a set.

Lemma 4.1.7. Suppose

(
([Γ0]) . . . ([Γn−1])

([Γ])
,D, f

)
is an induced rule. Then

([Γ′0]) . . .
([

Γ′n′−1

])
([Γ])

is an induced rule, whenever the lists of premiss sequents are equal as sets. ♦
2An example of such an induced rule would be

([Γ, Aρ])
(

([∆, Bσ]) ([Π, Cν])
)

([Γ, Aρ ⊗ (Bσ ⊗ Cν),Π,∆])

4.1. Sequent calculus 75

⊗
B(A

+
B

+

A

−

Figure 4.1. The L(-link of L2:

((
B(A

)+
, B+, A−

)
⊗
.

Proof: We know ([Γi]) =
([

Γ′g(i)

])
for some g : {0, . . . , n − 1} → {0, . . . , n′ − 1}.

Now compose f with g. ////

An expression (2) is an admissible rule if from derivability of the premiss sequents we
can conclude derivability of the conclusion sequent (but not necessarily by composition
with a fixed semi-derivation). An expression (2) is reversible if the n reversals

([Γ])

([Γj])

are induced rules. It is invertible if these n reversals are admissible rules.
Every semi-derivation gives rise to an induced rule, by taking f = id. Every induced

rule is an admissible rule. The converse does not generally hold. In Section 4.2 we will
show that in the Cut-free NCLL2 the Cut-rule is admissible, but not induced. Of
course, adding admissible rules to our calculus does not harm, as the set of derivable
sequents does not increase. The other way around, if a rule (2) can be added to our
calculus harmlessly, it is an admissible rule.

Observe that a par rule may only be applied to a sequent in which the two active
formulas Bσ and Aρ are next to each other, in that order. In the (semi-)derivations we
will indicate par rules by dashed horizontal lines. The reversal of a par rule will turn
out to be an induced rule. So the par rules are reversible. In the Cut-free calculus
this reversal is not an induced rule anymore (since the length3 of the premiss sequent is
strictly greater than the length of the conclusion sequent), but still admissible (simply
since Cut is admissible). We conclude the par rules are only invertible now.

Given a calculus C, two expressions Rule1 and Rule2 of the form (2) are strongly
equivalent rules if Rule1 is an induced rule in the calculus C + Rule2, and visa versa.
They are equivalent if Rule1 is an admissible rule in C + Rule2, and visa versa.

Under the presence of the identity rules, there are many alternative formulations of
NCLL2. E.g. the following rules are all strongly equivalent in the calculus without L(,
and hence each one may serve as an alternative to the L(rule:

(Ax

([(B(A)−, B−, A+])

3See Section 4.2 for a precise definition of the length l(Γ) of a list Γ.

76 4. Two-sided proof nets for Cyclic Linear Logic

([Π, (B(A)+])
R(−1

([Π, B−, A+])

([∆, B+])

([(B(A)−, ∆, A+])

([Γ, A−])

([(B(A)−, B−, Γ])

([∆, B+]) ([Γ, A−])
L(′

([(B(A)−, ∆, Γ])

([Π, (B(A)+]) ([Γ, A−])

([Π, B−, Γ])

([Π, (B(A)+]) ([∆, B+])

([Π, ∆, A+])

([Π, (B(A)+]) ([∆, B+]) ([Γ, A−])

([Π, ∆, Γ])

In the same way as the L(-rule is completely determined by the L(-link, actually
each of these rules is completely determined by the L(-link (see Figure 4.1), if we extend
some of its ends Dρ to open ends labeled by D−ρ, and interpret it as to work on a number
of premiss sequents, each one having as its unique active formula one of the remaining
link ends Eσ.

Strong equivalence of the mentioned rules will be an immediate consequence of the
theory of proof nets in Section 4.3. Also, observe that every rule is a particular instance
of

([Π, (B(A)+])
c

([∆, B+])
b

([Γ, A−])
a

((a, b, c)([(
Π

)c
,
(
(B(A)−

)1−c
,
(
∆

)b
,
(
B−

)1−b
,
(
Γ
)a

,
(
A+

)1−a
])

where a, b, c ∈ {0, 1}, and
(
X

)x
stands for x copies of the formula (sequent, derivation,

rule) X. Now we can show each of them is strongly equivalent to(Ax (i.e. the instance
(a, b, c) = (0, 0, 0)), which proves our claim.

As a consequence, we observe that the R(rule is reversible, its reversal R(−1 being
strongly equivalent to L(.

The same applies to the negation rules L⊥ and R⊥, and the other tensor rules, yielding
the next lemma. (We only give three of the eight (four) strongly equivalent formulations,
viz. (a, b, c) = (0, 0, 0), (0, 0, 1), (1, 1, 0). Here b is dummy for the negation rules, having
only one premiss sequent).

Lemma 4.1.8. In each row every pair of rules is strongly equivalent.

([
((A)⊥)−ρ, A−ρ

]) ([
Π, ((A)⊥)ρ

])
⊥−1

([Π, A−ρ])

([Γ, Aρ])
⊥([

((A)⊥)−ρ, Γ
])

([Aρ ⊗ Bσ, B−σ, A−ρ])
([Π, B−σ &

A−ρ]) &−1

([Π, B−σ, A−ρ])

([∆, Bσ]) ([Γ, Aρ])
⊗

([Aρ ⊗ Bσ, ∆, Γ])

Let us write out the particular instances for the different signs ρ and σ.

4.1. Sequent calculus 77

([
((A)⊥)−, A−

]) ([
Π, ((A)⊥)+

])
R⊥−1

([Π, A−])

([Γ, A+])
L⊥([

((A)⊥)−, Γ
])

([
((A)⊥)+, A+

]) ([
Π, ((A)⊥)−

])
L⊥−1

([Π, A+])

([Γ, A−])
R⊥([

((A)⊥)+, Γ
])

([(A⊗ B)+, B−, A−])
([Π, (A⊗B)−])

L⊗−1

([Π, B−, A−])

([∆, B+]) ([Γ, A+])
R⊗

([(A⊗ B)+, ∆, Γ])

([(B

(

A)−, B+, A−])
([Π, (B

(

A)+])
R

(−1

([Π, B+, A−])

([∆, B−]) ([Γ, A+])
L
(

([(B

(

A)−, ∆, Γ])

([(B(A)−, B−, A+])
([Π, (B(A)+])

R(−1

([Π, B−, A+])

([∆, B+]) ([Γ, A−])
L(

([(B(A)−, ∆, Γ])

([(B

&

A)−, B+, A+])
([Π, (B

&

A)+])
R

&−1

([Π, B+, A+])

([∆, B−]) ([Γ, A−])
L

&

([(B

&

A)−, ∆, Γ])

♦
Corollary 4.1.9. The negation rules and the par rules are reversible. ♦
Proof: See the second column of the previous lemma. A direct proof uses their

respective counterparts and the identity rules Ax and Cut. ////

As an immediate consequence of this corollary we have

Lemma 4.1.10. NCLL2 satisfies the following adjunctions:

A⊗ (−) aaa A((−) (for all formulas A)

(−)⊗ A aaa (−)

(

A (for all formulas A)

i.e. the following expressions and their reversals are induced rules

A⊗ B ` C m
B ` A(C

B ⊗A ` C m
B ` C

(

A

Recall that we use D ` E to denote the sequent D − ¯ E+ . ♦
The lemma even holds if we interpret the word ‘adjunction’ in the categorical sense,

in the appropriate category; see Section 4.8.
Let us mention the unit and co-unit of the first adjunction. Taking A ⊗ B for C we

find the unit is given by the derivable sequent

B ` A((A⊗B),

and taking A(C for B yields the co-unit

A⊗ (A(C) ` C.

78 4. Two-sided proof nets for Cyclic Linear Logic

The next Soundness Lemma is easily proved by induction on the derivation. For the
definitions of the counting maps #�(−), [[−]] and \(−) we refer to Subsection 2.1.6.

Lemma 4.1.11. Let ([Γ]) be derivable in NCLL2. Then the following holds:

|Γ|+ # &(Γ) = #⊗(Γ) + 2 and [[Γ]] = Λ

In particular, if ([B+]) is derivable, then # &(B)−#⊗(B) = 1 and [[B]] = Λ.
Also, if A ` B (i.e. ([A−, B+])) is derivable, then

#⊗(A)−# &(A) = #⊗(B)−# &(B)

[[A]] = [[B]]

\(A) = \(B)

so

A 7→ #⊗(A)−# &(A)

A 7→ [[A]] and

A 7→ \(A)

are so-called NCLL2-derivability invariants. ♦
As an example, observe that the derivable sequent

Γ =
([

(C

(

B)+, A+, (C

&

(B(A))−
])

of Example 4.1.5 obeys this lemma, as shown in Example 2.1.9.
From this lemma it is clear that the empty sequent ([]) is not derivable.
The converse of the final statements in our lemma does not hold: if

#⊗(A)−# &(A) = #⊗(B)−# &(B)

[[A]] = [[B]]

(and as a consequence also \(A)− \(B)) it need not be the case that A ` B is derivable.
However, in [Pentus 93] it it is shown that in this case A and B have a join (i.e. a
formula C such that both A ` C and B ` C are derivable) as well as a meet (i.e. a
formula D such that both D ` A and D ` B are derivable).

In general there are m lists which represent a sequent ∆ :=
([

Aρ0
0 , . . . , A

ρm−1

m−1

])
, viz.

Γi := Aρi
i , . . . , A

ρi+m−1

i+m−1 (0 ≤ i < m), where the indices should be read modulo m. The
sequent ∆ is periodic whenever two of the m representing lists Γi coincide. If ∆ is non-
periodic, the occurrence of a particular (polarized) formula is completely determined by
its context, in a way to be explained in the next example.

Example 4.1.12. The sequent

∆ :=

([
A+

(0)
, A+

(1)
, A+

(2)
, A+

(3)
, A+

(4)
, A−

(5)

])
is non-periodic; writing ∆ as ([A+, ∆′]) where ∆′ is the list A+, A+, A−, A+, A+ we know
this particular A+ is occurrence A+

(2)
.

On the contrary, the sequent([
A+

(0)
, A+

(1)
, A−

(2)
, A+

(3)
, A+

(4)
, A−

(5)
,

])

4.2. Cut elimination 79

is periodic; writing ∆ as ([A+, ∆′]) where ∆′ is the list A+, A−, A+, A+, A− this particular
A+ is either occurrence A+

(0)
or A+

(3)
. ♦

Lemma 4.1.13. Derivable sequents are non-periodic. ♦
Proof: Suppose a derivable ∆ is periodic, then there is a list Γ such that

∆ = ([

k times︷ ︸︸ ︷
Γ, . . . , Γ])

where k > 1. By Lemma 4.1.11 we find

k |Γ|+ k# &(Γ) = k#⊗(Γ) + 2

whence 2 is a k-fold, implying k = 2. Hence

|Γ|+ # &(Γ) = #⊗(Γ) + 1

Secondly, [[Γ, Γ]] = Λ, whence 2ε(〈[Γ]〉) = 0 and hence also ε(〈[Γ]〉) = 0. Now Lemma 2.1.8
states

|Γ|+ #⊗(Γ) ≡ # &(Γ) + ε(〈[Γ]〉) (mod 2)

which yields a contradiction. ////

4.2. Cut elimination

In this section we will show that the cut elimination theorem for NCLL2 holds, i.e.
in the Cut-free NCLL2 the Cut-rule is admissible (although it is not an induced rule).
Because of this property, shared by all decent variations of MLL, for mere derivability we
can restrict our attention to the Cut-free fragments, which posses some very important
special properties of logical derivations.

An important consequence of the cut elimination theorem is the subformula property
(see e.g. [Ono 98, TS 96]).

Theorem 4.2.1. If ([Γ]) is derivable in NCLL2, then there is a derivation D of ([Γ])
such that any formula appearing in D is a subformula of some formula in Γ. ♦

Proof: It is easy to see that a Cut-free derivation D meets the requirements, since
in every inference rule except the Cut, every formula appearing in the premiss sequent(s)
is a subformula of some formula in the conclusion sequent. ////

From this subformula property we can infer the following result on conservative ex-
tensions. Let J ⊆ {(−)⊥,⊗,

&

,(,

(} and define L2,J as the corresponding language.

L2,J := F ::= A |
(

(F)⊥
)

if (−)⊥ ∈ J

|
(
F ¤ F

)
if � ∈ J

By the J-fragment of NCLL2 we mean the sequent calculus whose rules are the same as
those of NCLL2, except that we will take only the identity rules AxA and CutA where
A ∈ L2,J , and the logical rules L¤ and R¤ for connectives ¤ ∈ J .

Theorem 4.2.2. For any sequent ([Γ]) in L2,J , ([Γ]) is derivable in NCLL2 if and only
if it is derivable in the J-fragment of NCLL2. ♦

Proof: The if-part is immediate. The other way around, suppose that a sequent
([Γ]) in L2,J is derivable in NCLL2, then by the subformula property there is a derivation
D of ([Γ]) such that any formula appearing in D is a subformula of some formula in Γ.
But then this is actually a derivation in the J-fragment of NCLL2.

80 4. Two-sided proof nets for Cyclic Linear Logic

////

This theorem immediately applies to the intuitionistic fragment of NCLL2 (a.k.a.
the Lambek Calculus L), obtained by taking J = {⊗,(,

(} such that L2,J = L2,i.
Another well-known application is to the so-called implicational fragment of NCLL2,
taking J = {(,

(}.
The cut elimination theorem also implies decidability of NCLL2, i.e. there is an

algorithm that can decide whether a given formula A is derivable in NCLL2 or not.
Indeed, given a sequent ([Γ]), it is derivable if and only if it has a Cut-free derivation. As
one easily shows by induction on the number of symbols in ([Γ]), there are only finitely
many possible Cut-free derivations.

4.2.1. Weak normalization. Having seen some consequences of the cut elimination
theorem, let us turn now to its proof. We define the rank of a CutA-rule by the length4

l(A) of the cut formula A.
Deleting all Cut-rules does not yield a calculus in which CutA is an induced rule.

This follows from the fact that every semi-derivation D with premiss sequents ([Γ0]) up
to ([Γn−1]) and conclusion sequent ([Γ]) in the Cut-free calculus satisfies5

n−1∑
i=0

l(Γi) ≤ l(Γ).

Indeed, if CutA would be an induced rule, there would be a semi-derivation with
several premiss sequents, which however all equal ([Γ, A+]) or ([∆, A−]), and with conclu-
sion sequent ([Γ, ∆]). As Γ occurs only once in the conclusion sequent, there is precisely
one premiss sequent ([Γ, A+]) in this semi-derivation, and similarly precisely one premiss
sequent ([∆, A−]). But this is impossible, because l(([Γ, A+])) + l(([∆, A−])) > l(([Γ, ∆])).

Surprisingly the Cut-free calculus is still as strong as the original, by which we mean
that a sequent ([Γ]), derivable in NCLL2, is still derivable in the Cut-free calculus, which
we will prove here.

Let the level `(D) of a derivation D be defined as the number of sequent occurrences
that it contains. So inductively:

`

 D0

([Γ0]) . . .

Dn−1

([Γn−1])
([Γ])

 = 1 +
n−1∑
i=0

`(Di) (n = 0, 1, 2).

When D =
D0

([Γ0]) . . .

Dn−1

([Γn−1])
Rule

([Γ])

we also call `(D) the level of the rule occur-

rence Rule or the level of the sequent occurrence ([Γ]).

4Usually the rank of a CutA-rule is defined by the complexity c(A) of the cut formula A. This
complexity c(A) of a formula A ∈ L2 is defined by the number of connectives contained in it, so

c(αi) := 0

c((A)⊥) := c(A) + 1

c(A¤B) := c(A) + 1 + c(B) (¤ = ⊗, &

,(or ()
However, the definition of the rank as the length also works for our purposes.

5Equality holds for the semi-derivation consisting of a single sequent ([Γ]), which is the composite of
zero rules, having coinciding premiss sequent and conclusion sequent ([Γ]).

4.2. Cut elimination 81

Lemma 4.2.3. Let D be a derivation in NCLL2 of the form

D1

([Γ, C+])

D2

([∆, C−])
CutC

([Γ, ∆])

,

where D1 and D2 are Cut-free derivations. Then there exists a Cut-free D′ with the
same conclusion. ♦

Proof: Induction on rank l(C).

Suppose the statement holds for all D̃ with l(C̃) < n1. (3)

Now we have to prove that the statement holds for all D with l(C) = n1.
Induction on level `(D).

Suppose the statement holds for all D̃ with l(C̃) = n1 and `(D̃) < n2. (4)

We have to show that it also holds for all D with l(C) = n1 and `(D) = n2. In case
not both C+ and C− are the main formulas in D1 and D2, this is proved by an easy
permutation of the rules. E.g.,

D′1
([Γ1, A

ρ])

D′2
([Bσ, Γ2, C

+, Γ3]) ⊗
([Γ1, A

ρ ⊗ Bσ, Γ2, C
+, Γ3])

D2

([∆, C−])
CutC

([Γ1, A
ρ ⊗ Bσ, Γ2, ∆, Γ3])

of level 2 + `(D′1) + `(D′2) + `(D2) reduces to

D′1
([Γ1, A

ρ])

D′2
([Bσ, Γ2, C

+, Γ3])

D2

([∆, C−])
CutC

([Bσ, Γ2, ∆, Γ3]) ⊗
([Γ1, A

ρ ⊗Bσ, Γ2, ∆, Γ3])

in which the appearing Cut is of level 1 + `(D′2) + `(D2) and of the same rank, so by (4)
we can eliminate this Cut.

Then we concentrate on the case that both C+ and C− are main. When one of them
is an axiom, CutC is in fact nothing else than the identity induced rule. And otherwise
C+ and C− must be ((A)⊥)+ and ((A)⊥)−, or Aρ⊗Bσ and τAρ⊗Bσ, i.e. B−σ &

A−ρ (in
some order), in which case we replace D of the form

D′1
([Γ1, A

ρ])

D′2
([Γ2, B

σ])
⊗

([Γ1, A
ρ ⊗Bσ, Γ2])

D′′1
([∆, B−σ, A−ρ]) &

([∆, B−σ

&

A−ρ])
CutAρ⊗Bσ

([Γ1, ∆, Γ2])

first by

D′1
([Γ1, A

ρ])

D′2
([Γ2, B

σ])

D′′1
([∆, B−σ, A−ρ])

CutB

([∆, Γ2, A
−ρ])

CutA

([Γ1, ∆, Γ2])

.

82 4. Two-sided proof nets for Cyclic Linear Logic

Now CutB may be eliminated by (3), after which the same holds for CutA. Note that
elimination of CutB might increase the level of CutA — which is originally less than the
level of CutAρ⊗Bσ — so the outer-induction on Cut rank is really needed. ////

Theorem 4.2.4. (Cut elimination) Each derivable sequent ([Γ]) of NCLL2 has a
Cut-free derivation. ♦

Proof: Induction on the number of occurring Cut-rules in the original derivation
D. We can decrease this number by taking a CutC of minimal level in D, hence with no
Cut-rules above it. By the previous lemma we can eliminate it. ////

We have proved the so-called Cut elimination theorem or weak normalization theorem
for NCLL2 here. In the next subsection we will construct two reduction processes which
may be applied to arbitrary Cut’s, instead of only Cut’s of minimal level.

4.2.2. Strong normalization. Let us consider the process where the reduction step
is defined as above, extended with the following replacement for the case that D1 (or D2)
ends with a Cut, in which case we shall replace D of the form

D′1
([Γ1, C

+, Γ2, B
+])

D′2
([Γ3, B

−])
CutB

([Γ1, C
+, Γ2, Γ3])

D2

([∆, C−])
CutC

([Γ1, ∆, Γ2, Γ3])

(5)

of level 2 + `(D′1) + `(D′2) + `(D2) by

D′1
([Γ1, C

+, Γ2, B
+])

D2

([∆, C−])
CutC

([Γ1, ∆, Γ2, B
+])

D′2
([Γ3, B

−])
CutB

([Γ1, ∆, Γ2, Γ3])

(6)

in which CutC is of lower level and of the same rank.
We may however arrive at a loop, since reducing the CutB in (6) will yield (5) again.

But when we remain reducing the occurrence CutC (instead of turning to another CutC̃

such as CutB), rank or — if not — level of this Cut will decrease. So we redefine one
reduction step as the composition6 of the elementary reduction steps as defined above,
restricting our attention to a particular CutC ; things may become exact by an inductive
definition. This yields a reduction process in which exactly one Cut is eliminated at
every step.

Another solution for the twist (5)!(6) is considering them to be one and the same
derivation

D′1
([Γ1, C

+, Γ2, B
+])

D′2
([Γ3, B

−])

D2

([∆, C−])
Cut

′

([Γ1, ∆, Γ2, Γ3])

. (7)

So we first need to generalize the notion of a Cut.
We define a cut tree T to be a link graph which can be constructed as a number

n ≥ 1 of sequents connected to each other by means of links belonging to a new type of

6Of course we mean tree-wise composition; at CutC̃ occurrences where both C̃+ and C̃− are main,
our operation may split up.

4.2. Cut elimination 83

connector link7 (called cut link) (A+, A−)Cut (indicated by ♣), and which underlying

graph is a tree (implying there are n − 1 such cut links). To T we assign a generalized
Cut rule

([Γ0]) . . . ([Γn−1])
CutT

([Γ])

with premiss sequents the n sequents ([Γi]) constituting T (in some order), and with
conclusion sequent the cyclic list ([Γ]) of polarized formulas obtained by enumerating the
open ends of T , when walking counterclockwisely around it.

E.g. (7) is CutT where T is given by

Γ1

∆ ¯ ♣ C +C− ¯ ♣B+ B − ¯ Γ3

Γ2

while the following cut tree

Γ4 ¯ ¯ Γ1

♣
A

+

A
−

Γ3 Γ2 ♣
B

+

B
−

Γ5 ¯ ♣C+ C − ¯ Γ10

♣
D

+

D
−

Γ7 Γ8 ♣
E

+

E
−

Γ6 ¯ ¯ Γ9

has generalized Cut rule��
Γ6, D+

�� ��
Γ9, E+

�� ��
Γ4, A+

�� ��
Γ5, D−, Γ7, C+, Γ3, A−

�� ��
Γ8, E−, Γ10, B+, Γ2, C−

�� ��
Γ1, B−

��
CutT

([Γ1, Γ2, Γ3, Γ4, Γ5, Γ6, Γ7, Γ8, Γ9, Γ10])

Evidently for each cut tree T the associated generalized Cut rule CutT is an induced
rule of NCLL2; there is a semi-derivation with the same premiss sequents, and containing
one elementary Cut rule for each cut link. In particular, a one-sequent (n = 1) cut tree

7The only reason we choose for a connector link, is the fact that labels are preserved. The choice for
main formula (A+) and active formula (A−) is rather ad hoc.

84 4. Two-sided proof nets for Cyclic Linear Logic

T stands for the identity induced rule
([Γ])

CutT
([Γ])

. Let us now define NCLL′2 as NCLL2

without elementary Cut’s, but with these generalized CutT .
Next we will define the reduction steps for cut elimination by an operation on T .

Defining the length of a CutT -rule as the sum
∑n

i=1 l(Γi) of the lengths of its premiss
sequents, each step reduces the sum of all CutT lengths (the “total Cut length”, from
now on called the tcl), as desired for strong normalization. This is a consequence of
deleting either a (non-empty) premiss sequent of the CutT , or at least one connective in
the concatenation of all premiss sequents.

Consider a CutT of the form

D0([
Γ0, C

ρ0

0 , Γ1, C
ρ1

1 , . . . , Γm−1, C
ρm−1

m−1

]) D1

([∆1]) . . .
Dn−1

([∆n−1])
CutT

([∆])

.

For n = 1, replace
D0

([Γ])
CutT

([Γ])
by D0

([Γ]) , reducing the tcl, because Γ is not empty (the

empty sequent ([]) being underivable).
When n > 1, each premiss sequent contains at least one cut formula Cρk

k , for a tree is
connected.

• For D0 an Ax, contract the sequent and the corresponding cut link of T , resulting
in a deletion of the first premisse.

([∆0])

¯ ♣A+ A − ¯ ♣A+ A − ¯

 ¯ ♣A+ A − ¯

or

([∆0])

¯ ♣A+ A − ¯ A+

 ¯ A+

• For D0 ending with another CutT ′, extract from T the m subtrees connected
to ([∆0]), and glue them to the appropriate open ends of T ′, yielding, say, T ′′.
(Alternatively said, replace the sequent ([∆0]) of T by T ′.) Now replace CutT
and CutT ′ by this new CutT ′′ , reducing the tcl by l(∆0). E.g., if CutT is given

4.2. Cut elimination 85

by T which equals

Γ1 Γ′′3 ♣A3+ A3 − ¯

∆ ([∆0]) Γ′3

¯

Γ′2 Γ′′′2

♣
A1

+

A1

−

Γ′′2 ♣
A2

+

A2

−

¯ ¯

(([∆0]) having m = 3 cut formulas) and ([∆0]) is the conclusion sequent of CutT ′
where T ′ equals (cf. (7))

Γ′′3

∆ ¯ ♣
C

+

C− Γ1 ♣
B

+

B − ¯ A3+

Γ′2 ¯ Γ′′′2 Γ′3

A1

+

Γ′′2

A2

−

86 4. Two-sided proof nets for Cyclic Linear Logic

(implying that the cyclic list of open ends of T ′ coincides with ([∆0])), then their
composition can be replaced by CutT ′′ where T ′′ equals

Γ′′3

∆ ¯ ♣
C

+

C− Γ1 ♣
B

+

B − ¯ ♣A3+ A3 − ¯

Γ′2 ¯ Γ′′′2 Γ′3

♣
A1

+

A1

−

Γ′′2 ♣
A2

+

A2

−

¯ ¯

• For a ⊗ inference with the main formula not a cut formula, we can split T into
two parts, and apply the ⊗ after the two new Cut’s. A

&

inference or a ⊥
inference is even more simple.

([∆0]) ¯ ¯ and ¯

A⊗B
+

A
+

B
+

• When we are not in these cases — for none of the Di — every Di ends with
a logical rule with its main formula a cut formula. So each of the n premiss
sequents determines one unique cut link amidst the n− 1 cut links. This implies
that at least one cut link is determined by two premiss sequents, say by ([∆0])
(final sequent of D0) and ([∆1]) (final sequent of D1). We can replace our original
CutT by a CutT ′ with possibly one premiss sequent more (premiss sequent
j = 0 or 1 splits if Dj is a ⊗ inference), but two connectives less, represented by
a tree T ′ obtained from T by possibly cutting it in link j.

4.2. Cut elimination 87

([∆0]) ¯ ¯ ¯

♣
A⊗B

+

A⊗B
−

 ♣
A

+

A
−

♣
B

+

B
−

([∆1]) ¯ ¯

We have defined a (non-deterministic) reduction process, where each reduction step is
very elementary (and not a disguised composition of several steps, as was the case in the
first process we discussed). The price paid for this, is the enormous increase in complexity
of the new “elementary” Cut rules.

4.2.3. Logical cuts and substitution. Given a derivation D with final sequent([
Aρ0

0 , . . . , A
ρm−1

m−1

])
,

we say Aρk
k originates from a rule Rule of D if the former is the main formula of the

latter:
D2

· · ·
Rule

· · ·Aρk
k · · ·

. . .

D1

... . .
.([

Aρ0

0 , . . . , A
ρm−1

m−1

])
Every formula of the final sequent originates unambiguously from exactly one rule, which
is either an Ax or a logical rule. Here we presuppose a correspondence between the (po-
larized) formulas in the consecutive sequents of D, which is allowed by the non-periodicity
of derivable sequents8:

Lemma 4.2.5. Given a derivation with final rule

([Γ0]) . . . ([Γn−1])

([Γ])
(n = 0, 1, 2)

there is a unique canonical bijective correspondence between all non-active formulas in
the premiss sequents and the non-main formulas in the conclusion sequent. ♦

Proof: For a list Π := (e0, . . . , em−1), let us define Πk := (ek, . . . , ek+m−1) (0 ≤ k <
m), where the indices should be read modulo m.

If the final rule is Ax, there is nothing to prove, as there is clearly a unique bijection
between two empty sets.

8This correspondence may seem trivial, but when our sequents would have been multisets instead of
cyclic list, it would not be well-defined anymore (cf. MLL).

88 4. Two-sided proof nets for Cyclic Linear Logic

If the final rule is ⊗
([∆0, A

ρ]) ([∆1, B
σ])

⊗
([∆0, A

ρ ⊗ Bσ, ∆1])

we know by the non-periodicity (Lemma 4.1.13) of derivable sequents that there are
unique k0, k1, k such that the following equalities of lists hold:

Γk0
0 = ∆0, A

ρ

Γk1
1 = ∆1, B

σ

Γk = ∆0, A
ρ ⊗Bσ, ∆1

which establishes the unicity of the correspondence9.
Finally, if the final rule is Cut or another logical rule, a similar argument applies. ////

Definition 4.2.6. Let D be a derivation in NCLL2 of the form
D1

([Γ, C+])

D2

([C−, ∆])
CutC

([Γ, ∆])

We say this CutC is logical if both C+ and C− originate from a logical rule. ♦
If a CutC is not logical, at least one of C+ and C−, say C+, originates from an Ax.

Now replacing this Ax by D2 and the consecutive occurrences of C+ in D1 by ∆ yields
again a derivation D1[D2] of ([Γ, ∆]), called the substitution of D2 into D1. A derivation
satisfying the (global) requirement that all appearing Cut’s be logical, is called a sober
derivation. Even without the cut elimination theorem one easily deduces that a derivable

9Observe that we also use the fact that the ⊗ rule has distinguishable left and right premiss sequents.
Otherwise,

Γk0
0 = ∆0, A

ρ Γk
′
1

1 = ∆0, A
ρ

Γk1
1 = ∆1, B

σ or Γk
′
0

0 = ∆1, B
σ

Γk = ∆0, A
ρ ⊗Bσ,∆1 Γk = ∆0, A

ρ ⊗Bσ,∆1

would have been the case, destroying the unicity of the correspondence iff ([Γ0]) = ([Γ1]). This is the
reason why we make a distinction between the left and the right premiss sequent of a rule. E.g. in the
following derivation

([A−ρ, Aρ]) ([B−σ, Bσ])
⊗([

A−ρ, Aρ ⊗Bσ , B−σ
])

&([
Aρ ⊗Bσ , B−σ &

A−ρ
])

([Aρ ⊗Bσ, B−σ &

A−ρ])
⊗([

Aρ ⊗Bσ , (B−σ &

A−ρ)⊗ (B−σ

&

A−ρ), Aρ ⊗Bσ
])

the boxed Aρ ⊗Bσ correspond to each other. A different derivation is given by

([
Aρ ⊗Bσ , B−σ &

A−ρ
])

([A−ρ, Aρ]) ([B−σ, Bσ])
⊗

([A−ρ, Aρ ⊗Bσ, B−σ]) &

([Aρ ⊗Bσ, B−σ &

A−ρ])
⊗([

Aρ ⊗Bσ , (B−σ &

A−ρ)⊗ (B−σ

&

A−ρ), Aρ ⊗Bσ
])

4.3. Proof nets 89

sequent always has a sober derivation; just eliminate the non-logical Cut’s by means of
these substitutions. Each such elimination reduces the total number of Cut’s by one,
while logical Cut’s remain logical; hence the total number of non-logical Cut’s decreases
by at least one10.

([C−, C+])

. . .

D1

... . .
.

([Γ, C+])

D2

([C−, ∆])
CutC

([Γ, ∆])

−→

D2

([C−, ∆])

. . .

D1

... . .
.

([Γ, ∆])

4.3. Proof nets

To a derivation D we inductively assign an L2-proof structure P(D) with open ends in
one-to-one correspondence to the open ends of the final sequent xDy of D, such that corre-
sponding open ends are labeled by the same polarized formula. We use the representation
of L2-proof structure as formulated in Lemma 3.2.4.

• (Case Ax) Take for P the one edge proof structure with end labels A− and A+:

A

• (Case Cut) Given P1 with open end η̂1 = A+ and P2 with open end η̌2 = A−,
unite them by identifying the edges η1 and η2:¶ ³

µ ´P1

A A¶ ³
µ ´P2¶ ³
µ ´P1

A¶ ³
µ ´P2

• (Case ⊥) Given P1 with open end Aρ, attach the appropriate negation link.
E.g., in case ρ = +: ¶ ³

µ ´P1

A¶ ³
µ ´P1

Ad (A)⊥t
L⊥

1 0

• (Case ⊗) Given P1 with open end Aρ and P2 with open end Bσ, make them
the active ends of a new tensor link

(
τ(Aρ ⊗ Bσ), Bσ, Aρ

)
⊗, which yields a new

open end Aρ ⊗ Bσ. E.g., in case ρ = − and σ = +:

10In fact, one other non-logical Cut may become logical, on account of the disappearance of the Ax.

90 4. Two-sided proof nets for Cyclic Linear Logic¶ ³
µ ´P1

B A¶ ³
µ ´P2¶ ³

µ ´P1

Bd B(At
L(

1 0
2

A

d
¶ ³
µ ´P2

• (Case

&

) Given P1 with open ends Aρ and Bσ, make them the active ends of
a new par link

(
τ(Bσ

&

Aρ), Aρ, Bσ
)

&, which yields a new open end Bσ

&

Aρ.
E.g., in case ρ = + and σ = −:

B¶ ³
µ ´P1

A

B

® ©

­ ªd
¶ ³
µ ´P1

Ad1
2 0

B(A

tR(
Remark 4.3.1. The operation D 7→ P(D) is well-defined on account of the correspon-

dence between (polarized) formulas in the consecutive sequents of a derivation11, settled
in Subsection 4.2.3, and also because of the inductively obtained correspondence between
the open ends of xDiy and P(Di). ♦

Definition 4.3.2. An NCLL2-proof net is an L2-proof structure that can be obtained
as the proof structure of an NCLL2-derivation. ♦

Example 4.3.3. Some examples of proof nets are given by

11Without the correspondence mentioned in Subsection 4.2.3, the operation would be ambiguous.
E.g., if a derivation D1 with proof structure P(D1) would have final sequent xD1y = ([A+, A+]) (which
— however — is impossible), there actually would be two ways to infer ([(A

&

A)+]) from it. The
corresponding proof structure would be either

¶ ³
µ ´P1

Ad Ad2 1
0

A

&

A

tR & or

¶ ³
µ ´P1

A

d
A

d2 1
0

A

&

A

tR &

i.e.

¶ ³
µ ´P1

Ad Ad1 2
0

A

&

A

tR &



4.3. Proof nets 91

A

&

Bt
L

&

0
1 2

A

d
Ad B

d
Bd2 1

0

A

&

B

tR &

AdA
® ©
­ ªd 1

2 0

A(A

tR(1 0

A

d
(A)⊥

tR⊥

♦
By definition, there is a correspondence between the open ends of P(D) and those of

xDy. Let us now consider an arbitrary sequent occurring in D, say xD′y, where D′ is
a subderivation of D. It is clear from the construction of P(D) that the latter contains
P(D′), but the open ends of P(D′) need not be open ends of P(D) anymore; however,
they are still present as ends (possibly connector ends) of P(D). In our derivation D,
let us call the set of polarized formulas corresponding to one and the same end Aρ of
P(D), the Aρ-clique12 of D. Observe that — in the situation of Lemma 4.2.5 — the
corresponding formulas are in the same clique. For Cut-free derivations, the elements
of a non-empty clique constitute a chain F0 < F1 < · · · < Fk−1 (k ≥ 1; all Fi being
occurrences in D of one and the same polarized formula): they can be linearly ordered by
means of their height in D; the first element F0 is then the occurrence of Aρ in the rule
Rule1 it originates from (i.e. the occurrence as main formula of a particular inference
(possibly Ax)), and the last element Fk−1 is either the occurrence as active formula of a
logical inference Rule2, or the occurrence in the final sequent xDy. Let us denote both
occasions as

Rule1 F0 < F1 < · · · < Fk−1 Rule2

and

Rule1 F0 < F1 < · · · < Fk−1 ∅
respectively. In derivations with Cut, the last element Fk−1 may also be the active
formula of a Cut. Observe that — as a result of identifying the edges η1 and η2 when
applying a Cut — the A+-cliques of D1 and D2 are identified, and similar for the A−-
cliques. Hence, in general, an Aρ-clique consists of several Aρ-chains. In the sequel, let

12Some cliques are empty; e.g. if D equals
Ax

([A+, A−])
Ax

([B+, B−])
L(

([A+, (B(A)−, B−])
then P(D) equals

Bd B(At
L(

1 0
2

A

d i.e. ⊗
B(A

+

−
B(A

B

+

−
B

A

−

+

A

and the main end of our connector link (B(A)+ does not correspond to any polarized formula of D.

92 4. Two-sided proof nets for Cyclic Linear Logic

us denote an Aρ-chain as

Ax

−−−−−→
Aρ-chain Cut

Rule

−−−−−→
Aρ-chain Cut

Ax

−−−−−→
Aρ-chain Rule

∗

Rule

−−−−−→
Aρ-chain Rule

∗

depending on the distinct cases for Rule1 and Rule2/∅. Here, Rule is a logical rule,
and Rule

∗ stands for either a logical rule Rule, or no rule (∅) at all (in case the last
element of our chain is the occurrence in the final sequent).

Recall that an edge η is axiomatic if each of η̂ and η̌ is not the main end of any link,
whereas η is a cut edge if both η̂ and η̌ are the main ends of two links. The number of
main ends η possesses is called the role of η, so that η is an axiomatic edge (a cut edge)
iff it has role 0 (2). In terms of the formulation in Lemma 3.2.4, a formula A may be
main (active) formula of up to two links. The number of links A is main formula of, is
still called the role of A, and we call A an axiomatic (cut) formula if A has role 0 (2).

In the next proposition we will prove that for every formula A of P(D), the A-clique
(defined as the union of the A+-clique and the A−-clique, where A+ and A− are the ends
of the edge A) is of one of the following forms13:

Rule
∗ ←−−−−−−A−ρ-chain Ax

[−−−−−→
Aρ-chain Cut

←−−−−−−
A−ρ-chain Ax

] −−−−−→
Aρ-chain Rule

∗

(called the axiomatic form)

Rule

[−−−−−→
Aρ-chain Cut

←−−−−−−
A−ρ-chain Ax

] −−−−−→
Aρ-chain Rule

∗

(called the flow form)

Rule

[−−−−−→
Aρ-chain Cut

←−−−−−−
A−ρ-chain Ax

] −−−−−→
Aρ-chain Cut

←−−−−−−
A−ρ-chain Rule

(called the cut form)

where by the expression between square brackets its 0, 1, 2, 3, . . . times repetition is meant.

Example 4.3.4. Suppose D is the following derivation:

Ax1

([A−, A+])

Ax2

([A+, A−])
R⊥([

A+, (A⊥)+
])

Ax3

([A−, A+])
L⊥([

A−, (A⊥)−
])

CutA⊥

([A+, A−])
Cut1

([A−, A+])

AxB

([B+, B−])

Ax4

([A+, A−]) fL⊥([
(A⊥)−, A−

])
L

&([
B+, (A⊥

&

B)−, A−
])

Cut2([
A−, B+, (A⊥

&

B)−
])

Then D has proof net

13By symmetry, we may suppose ρ = + for the axiomatic form and for the cut form. The cases
ρ = +,− for the flow form, however, are really different.

4.3. Proof nets 93

A⊥

&

Bt
L

&0 1
0

1 2

Ãd A⊥t
L⊥

A⊥

tR⊥
AdA
d

Ã⊥

d
tfL⊥

B

d
1 0 1 0

There are 14 chains, viz. the columns in

A+ A− Ã− Ã+

A+ (A⊥)+ Ã− (A⊥)− A+ A−

Ã− Ã+ A+ Ã− B+ B− (Ã⊥)− A−

Ã− A+ B+ (A⊥

&

B)− A−

Ã− B+ (A⊥

&

B)−

Let us determine for every formula occurrence C of P(D) the corresponding C-clique.
We have distinguished different occurrences of one and the same formula by a tilde.

The A⊥-clique consists of the chains R⊥ (A⊥)+
CutA⊥ and L⊥ (A⊥)− CutA⊥; it

turns out to be in cut form.
The Ã⊥-clique consists of only one chain L̃⊥ (Ã⊥)− L

&
, and is in flow form.

The same holds for the (A⊥

&

B)-clique, consisting of the chain L

&

(A⊥

&

B)− <
(A⊥

&

B)− ∅.
The B-clique consists of the chains AxB B+ < B+ < B+ ∅ and AxB B− L

&

, which
meet in AxB. So this clique is in axiomatic form.

The remaining four A+-chains and four A−-chains distribute over the A-clique and
the Ã-clique; schematicly we can describe their constitution by

Ax2

A− A+

Ax4

A− A+

R⊥ Cut2 L̃⊥

Ax1

Ã− Ã+

Ax3

Ã− Ã+

∅ Cut1 L⊥
whence both cliques are in axiomatic form.

We conclude that each of the axiomatic formulas of P(D) (viz. B, A and Ã) has clique
in axiomatic form; that the cut formula (A⊥) has clique in cut form; and finally that each

of the remaining formulas (Ã⊥ and A⊥

&

B) has clique in flow form. Observe that CutA⊥

is a logical cut (see Definition 4.2.6), unlike Cut1 and Cut2. ♦
Proposition 4.3.5. Let P = P(D) be the proof net of a derivation D. Every link

l of P of subtype X¤ corresponds to an X¤-rule of D. For every formula A of P, the
A-clique (in D) is in

• axiomatic form if A is an axiomatic formula,
• flow form if A is neither axiomatic nor cut,
• cut form if A is a cut formula.

94 4. Two-sided proof nets for Cyclic Linear Logic

As a consequence, every formula A of P corresponds to n AxA rules and m CutA rules
of D, and the following holds:

n−m =


1 if A is an axiomatic formula,

0 if A is neither axiomatic nor cut,

−1 if A is a cut formula.

In particular, if D is sober, there is a bijective correspondence between the axiomatic (cut)
formulas of P and the Ax (Cut) rules of D. ♦

Proof: The proof is by induction on the definition of the derivation.
The proof net of

Ax

([A+, A−]) is the sole formula A which is an axiomatic formula.

It has clique ∅
←−
A+

Ax

−→
A− ∅, which is in axiomatic form, while there are no other links

as well as no other rules, which proves this case.
If D = ⊗(D1,D2), by induction hypothesis the X¤ links of Pi correspond to the X¤

rules of Di. Hence the X¤ links of P correspond to the X¤ rules of D. Moreover, all old
formulas of P correspond to similar cliques as before (only the chains with last element
Cν ∅ change into either Cν < Cν ∅ or Cν X¤), while Aρ ⊗Bσ has clique X¤ Aρ ⊗Bσ ∅
which is in flow form. This proves the present case, since Aρ ⊗ Bσ is neither axiomatic
nor cut, while all other formulas remain of the same role.

The cases of another logical rule are proved similarly.
In case of an application of the Cut rule (say on the formula A), the first part of the

proposition is clear, and also the second part w.r.t. all formulas different from A. When
in Di the A-clique is in a form with ni Ax rules and mi Cut rules, then in D the A-clique
has n := n1 + n2 Ax rules and m := m1 + m2 + 1+ 1+ 1 Cut rules, where the two original
cliques are connected by means of Cut, yielding one of the three described forms again.
E.g., if A ∈ P1 has clique in flow form

Rule

[
. . .

] −−−−−−→
A+-chain ∅

and A ∈ P2 has clique in axiomatic form

∅
←−−−−−−
A−-chain Ax

[
. . .

] −−−−−−→
A+-chain Rule

∗

then A ∈ P has clique in flow form

Rule

[
. . .

] −−−−−−→
A+-chain Cut

←−−−−−−
A−-chain Ax

[
. . .

] −−−−−−→
A+-chain Rule

∗

4.3. Proof nets 95

P1 P2 P
n1 −m1 n2 −m2 n−m

A

d
1 Ad 1 A

d
Ad 1

A

d
1 At

L�

0 A

d
At
L�

0

A

tR�
0 Ad 1 A

tR�
Ad 0

A

tR�
0 At

L�

0 A

tR�
At
L�

−1

Depending on the role (0 or 1) of A in D1 respectively D2, we know by the induction
hypothesis the value of ni −mi, from which we can compute n−m = (n1 −m1) + (n2 −
m2)− 1, and this number turns out to correspond in the desired way with the role of the
new formula A in P.

For a sober derivation, observe that every formula A of its proof net corresponds to 0
Ax-rules on A or 0 Cut-rules on A; otherwise there would be a connecting chain between
at least on Ax and one Cut, contradicting soberness. Hence we know that an axiomatic
formula of the proof net of a sober derivation corresponds to exactly one Ax-rule; a cut
formula corresponds to exactly one Cut-rule, while a formula which is neither axiomatic
nor cut does not correspond to any Ax- or Cut-rule. ////

Different derivations may have the same proof net. The next theorem will characterize
all derivations that have the same proof net.

Theorem 4.3.6. Let D and D′ be derivations of the same sequent ([Γ]). Then their
respective proof nets P and P ′ are equal if and only if there exists a sequence of derivations
D = D0,D1, . . . ,Dn−1 = D′ such that Di and Di+1 differ only for a permutation of
two consecutive inferences, or Di is obtained from Di+1 (or the other way around) by a
substitution (i.e. elimination of a non-logical Cut). ♦

96 4. Two-sided proof nets for Cyclic Linear Logic

Proof: The if-part is clear: attaching links in a different order does not give a
different proof net, and neither does a substitution.

The other way around, suppose P and P ′ are equal. In both derivations D and D′
we can substitute for all non-logical Cut-inferences, so that we may assume that both
D and D′ are sober derivations (i.e. with only logical Cut-rules). This implies that D
and D′ have the same logical rules (one for each link of P = P ′), the same (logical)
Cut-rules (one for each cut formula of P) and the same Ax-rules (one for each axiomatic
formula). Now we proceed in a way similar to that of the proof of the corresponding
theorem for MLL, e.g. as in [BvdW 95], with this interesting difference that we do not
rely on the notion of empire. (In fact the only thing one really needs — in both cases —
is connectedness.)

Let I be the last inference of D. Via a link l (respectively an axiomatic formula
respectively a cut formula) of P = P ′ we know this inference corresponds to a similar
inference I ′ of D′ (i.e. an inference of the same type (R⊗, L⊗, Cut et cetera) and with
the same active and/or main formulas, but with possibly different context formulas). By
induction on the height ~ of I ′ in the deduction tree D′ we first show that after some
permutations of two consecutive inferences D′ may be turned into a derivation D′′ with
last inference I ′′ similar to I and I ′.

If ~ = 0, I ′ is already the last inference of D′.
If ~ > 0, denote by I ′1 the inference below I ′ in D′. This inference has active formulas

distinct from the main formula(s) of I ′, and moreover it corresponds to a similar inference
I1 of D. We distinguish four cases.

In case I ′ is an Ax-rule, an active formula of I ′1 would be a main formula of I ′;
contradiction.

In case I ′ is a negation rule or par rule, we can permute it with I ′1 (yielding two similar
inferences in the other order).

In case I ′ is a tensor rule or a Cut-rule, we can permute it in the subcases that I ′1 is
a negation rule, a tensor rule or a Cut-rule. As I ′1 cannot be an Ax-rule, we only have
to consider the subcase that I ′1 is a par rule. In order to permute the two rules, we must
show that the active formulas B1 and B2 of I ′1 originate from the same subderivation D′j
of D′ above I ′.

D1

. . .
... . .

.

([. . . Bσ1
1 , Bσ2

2])
I1

([. . . Bσ1
1

&

Bσ2
2])

. . .
... . .

.

([. . . Aρ1

1 . . . Bσ1
1

&

Bσ2
2])

D2

([. . . Aρ2

2])
I

([. . . Aρ1
1 ⊗Aρ2

2 . . . Bσ1
1

&

Bσ2
2])

D′1
. . .

... . .
.

([. . . Aρ1
1])

D′2
. . .

... . .
.

([. . . Aρ2
2])

I′

([. . . Aρ1

1 ⊗ Aρ2

2 . . . Bσ1
1 , Bσ2

2])
I′1

([. . . Aρ1

1 ⊗ Aρ2

2 . . . Bσ1
1

&

Bσ2
2])

. . .
... . .

.

A
ρj
j is a leaf of the subnet P(D′j) of P, which equals the union of P(D1) and P(D2)

together with a ⊗ link. Hence by connectedness P(D′j) ⊆ P(Dj). If w.l.o.g. I1 belongs
to D1, then the corresponding link l1 of P occurs in P(D1). But then B1 and B2 cannot
belong to D′2, and hence must belong to D′1. This means that we can permute I ′ and I ′1,
as desired.

4.4. Contraction criterion 97

Now after this permutation, ~ has decreased by 1, so that we know by induction
hypothesis that after some (more) permutations of two consecutive inferences D′ is turned
into a derivation D′′ with last inference I ′′.

Moreover, this last inference I ′′ of D′′ actually coincides with I. This is clear for the
sequent below the bar which consist of the leaves of P. Hence we are ready in the case
of an Ax-rule, while the result is immediately clear for a negation rule or a par rule. For
a tensor rule or a Cut-rule the result follows again by inspection of the subnets of the
subderivations D′′j of D′′ above I ′′, compared to the subnets P(Dj).

Finally we show by induction on the coinciding subtree of D and D′ that after some
permutations of two consecutive inferences D′ may be turned into D.

If the coinciding subtree is D we are ready.
Otherwise there is a branch of D with an inference I of minimal level such that D and

D′ coincide below I. Let us call the subderivation above this coinciding subbranch D̂ and

D̂′ respectively. Then applying the previous result we know that after some permutation

of consecutive inferences D̂′ may be turned into a derivation with last inference exactly
the same as I. Hence the coinciding subtree has increased and we may apply the induction
hypothesis. ////

4.4. Contraction criterion

Let LG2 denote the collection of L2-link graphs with well-labeled (see Figure 3.1)
connector links, viz. tensor links (e0, e1, e2)⊗ (indicated by ⊗), par links (e0, e1, e2)

&

(indicated by

&

), and negation links (e0, e1)⊥ (indicated by ⊥), and with context links

([e0, . . . , em−1])¯ (indicated by ¯). Observe that both proof structures and sequents
belong to LG2. On LG2 we will define the following conversion relation. One easily
checks that these conversion steps are well defined (i.e. they do yield an element of LG2)
and preserve the open ends.

Definition 4.4.1. • [tens/neg](l) Every tensor link or negation link l con-
verts into a context link:

⊗
B(A

+
B

+

A

−

L(→ ¯

and similar for R⊗, L

(

, L

&

, L⊥ and R⊥.
• [par](l1, l2) Given a par link l1, the active ends of which are connected to two

consecutive ends of a single context link l2 in the right order, then l1 and l2

98 4. Two-sided proof nets for Cyclic Linear Logic

together convert into one context link as follows; the two edges disappear:

¯ ¯

R(→

&

B(A

−

A

+
B

−

and similar for L⊗, R

(

and R

&

.
• [par′](l, η) Given a par link l, the active ends of which belong to the same edge

η, then l converts into a valence 1 context link, and η disappears:

&

B(A

−

A

+
B

−

R(′→ ¯

and similar for L⊗, R

(

and R

&

.

4.4. Contraction criterion 99

• [cut](l1, l2, η) Given context links l1 and l2 6= l1 connected by an edge η, then l1
and l2 together convert into one context link and η disappears:

¯

cut→ ¯

¯

• [cut′](l, η1, η2) Given a context link l of valence 2 connected to two edges η1 and
η2 6= η1, then l disappears and η1 and η2 are identified:

¯ cut’→

♦

Example 4.4.2. Let us consider a conversion sequence of the following proof structure:

100 4. Two-sided proof nets for Cyclic Linear Logic

1 0

A

d
Ad (A)⊥

tR⊥
(A)⊥t

L⊥

=
1 0

⊥
(A)⊥

−
A

−

L⊥→

⊥
(A)⊥

+
A

+

⊥
(A)⊥

−
A

−

¯

R⊥→

¯

¯

cut(’)→

¯

♦
It is easy to see that this reduction relation is terminating; in each conversion step P1 =

(E1,L1,L′1, λ1)→ P2 = (E2,L2,L′2, λ2) the non-negative integer φ(P) := |E|+ |L|+ 2 |L′|
decreases by at least one (recall that L consists of the context links, while L′ contains
the connector links):

Lemma 4.4.3. The conversion steps increase φ by ∆φ, given by:

• [tens/neg] (∆ |E| , ∆ |L| , ∆ |L′|) = (0, +1,−1), so ∆φ = −1.
• [par] (∆ |E| , ∆ |L| , ∆ |L′|) = (−2, 0,−1), so ∆φ = −4.
• [par′] (∆ |E| , ∆ |L| , ∆ |L′|) = (−1, +1,−1), so ∆φ = −2.
• [cut] (∆ |E| , ∆ |L| , ∆ |L′|) = (−1,−1, 0), so ∆φ = −2.
• [cut′] (∆ |E| , ∆ |L| , ∆ |L′|) = (−1,−1, 0), so ∆φ = −2.

♦

4.4. Contraction criterion 101

However, this conversion is not confluent. A counterexample is given by the following
link graph

A + ¯ C + ¯ B+

which converts — depending on the edge we apply [cut] on — to either

A

+

C + ¯ B+ or C + ¯ B+

A

+

Observe that even the order in which the open ends are attached to the unique context
link differs.

In the next subsections we will investigate this conversion applied on L2-proof struc-
tures. First, it is shown that for any derivation D the corresponding proof net P(D)

converts to the sequent xDy, ór to the one-edge link graph A ρ σ B

with the same open ends as xDy (the latter hence only possibly occurring in case xDy
equals A ρ ¯ Bσ).

The other way around, we will prove that a proof structure P that converts to a
sequent Γ or to a one-edge link graph Γ′ (which corresponds to a unique sequent Γ), is
actually a proof net, viz. the proof structure of a derivation D, for which moreover xDy
equals Γ.

4.4.1. Completeness.

Theorem 4.4.4. (a) Let D be an NCLL2-derivation. Then P(D)³ xDy (or P(D)³
(xDy)′).

(b) Let P ³ Γ (P ³ Γ′) be a conversion sequence from an L2-proof structure to a sequent
or a corresponding one-edge link graph. Then there is a derivation D with P = P(D)
and Γ = xDy.

♦
Proof: (a) By induction on the derivation D we will prove that P(D) converts to

the sequent xDy or to the one-edge link graph (xDy)′. Actually, [cut′] turns out to be
superfluous, but is added for practical use.

If D is Ax, the corresponding proof net is the one-edge link graph corresponding to
Γ = ([A+, A−]), so we are done in zero steps.

If D ends by Cut, the two subderivations D1 and D2 have proof nets converting to
a one-edge link graph or a sequent. Connecting the two proof nets in A then yields the

102 4. Two-sided proof nets for Cyclic Linear Logic

proof net of D, which converts to a one-edge link graph, a single sequent, or two sequents
connected in A, further on converting by [cut].

If D ends by R⊗, L

(

, L(, L

&

, L⊥ or R⊥, connecting the corresponding tensor or
negation link to the inductively obtained proof net(s) yields the proof net of D, that con-
verts by induction hypothesis first to a single tensor or negation link, perhaps connected
to one or two sequents, converting on by [tens/neg] and zero, one or two times [cut].

If D ends by L⊗, R

(

, R(or R

&

, connecting the corresponding par link to the
inductively obtained proof net yields the proof net of D, that converts to a single par link
or to a par link connected to a sequent, converting on by [par′] respectively [par].

(b) By induction on the length of the conversion sequence we will prove that if P ³ Γ
(Γ′), then there is a derivation D with P = P(D) and Γ = xDy.

If the length is zero, P is a one-edge proof structure (corresponding to the derivation
Ax) or a sequent, which is not a proof structure.

Suppose the last conversion is a [tens/neg]-step P ′ → Γ. Since Γ has exactly one
context node, P ′ only contains a single tensor link or negation link(

τ(Aρ ⊗Bσ), Bσ, Aρ
)
⊗ or

(
(A⊥)ρ, Aρ

)
⊥.

So P consists of three (two) proof nets P0, P1 (and P2) attached to one another in a tensor
link (negation link), each of which converts to one edge. We find three (two) derivations
which may be combined by application of the corresponding tensor (negation) rule and
a Cut (i.e. by the appropriate semi-derivation corresponding to the induced rule with
(a, b, c) = (1, 1, 1); see page 76). The proof net of this derivation indeed equals P.

If the last conversion is [par′], the same reasoning yields P consists of two proof nets
P0, P1 attached to one another in a par link in the given way, each of which converts
to one edge. We find two derivations which may be combined by application of the
corresponding par rule and a Cut. The proof net of this derivation indeed equals P.

The case [par] is similar, although now P1 converts to a sequent Γ1.
If the last conversion is [cut], P consists of two proof nets P1 and P2 attached in A,

both converting to a sequent. Apply a Cut rule to the inductively obtained derivations.
If the last conversion is [cut′] P ′ → Γ′, the result holds since P ³ P ′ is already a

conversion sequence to a sequent. If the last conversion is [cut′] P ′ → Γ, P consists of
two proof nets P1 and P2 attached in A, both converting to a sequent. Apply a Cut rule
to the inductively obtained derivations. ////

Corollary 4.4.5. Let Γ be an NCLL2-sequent. Then the following are equivalent:

(i) Γ is derivable in NCLL2;
(ii) There is a proof structure P and a conversion sequence P ³ Γ or to its correspond-

ing one-edge link graph Γ′.

♦
Given P and a conversion sequence P ³ Γ (Γ′), we find a unique derivation D of

Γ by the second part of this proof. It is clear that there is a correspondence between
the conversion steps in P ³ Γ (Γ′) on the one hand, and the logical and Cut rules of
D on the other hand. Moreover, knowing that P = P(D), Proposition 4.3.5 gives us
a correspondence between the links of P and the logical rules of D. Observe, however,
that a Cut formula of P may correspond to several Cut rules of D (and hence to several
conversion steps [cut]), and that an Ax formula of P may correspond to several Ax rules
of D.

4.4. Contraction criterion 103

We claim that it is possible to adapt part (b) of the proof of Theorem 4.4.4 in such a
way that the derivation D of Γ we find is sober, yielding, by Proposition 4.3.5, a bijective
correspondence between the axiomatic (cut) formulas of P and the Ax (Cut) rules of D
(in addition to the correspondence between the links of P and the logical rules of D).

To this purpose, we strengthen Theorem 4.4.4 by adding the statement that there is a
bijective correspondence between the axiomatic formulas C (of P) and the AxC rules (of
D), and moreover that every axiomatic conclusion or hypothesis Cρ (of P) corresponds
to a conclusion or hypothesis Cρ of (the final sequent of) D that originates from an Ax:

([C−ρ, Cρ])

. . .

D
... . .

.

([∆, Cρ])

We adapt the proof in case the length of the conversion sequence P ³ Γ (Γ′) is non-zero:
we know that P consists of some proof nets attached in a link with main formula A, or
connected by a formula A, and each of these proof nets converts to a sequent or an edge.
Now, if A is a cut formula of P we proceed as described earlier: apply a Cut rule (after
possibly the logical rule) to the inductively obtained derivations. However, if A is not a
cut formula, then A is an axiomatic leaf of at least one of the involved proof nets, whence
we can apply a substitution instead of a Cut (after possibly the logical rule):

not

([A−, A+])

. . .

D1

... . .
.

([∆1, A
+])

D2

([A−, ∆2])
CutA

([∆1, ∆2])

but

D2

([A−, ∆2])

. . .

D1

... . .
.

([∆1, ∆2])

Observe that D is not unique anymore now: if A is an axiomatic formula of P, then it
is an axiomatic leaf of both proof nets P1 and P2, whence we can either substitute D1 in
D2 or D2 in D1.

Theorem 4.4.6. (a) Let D be an NCLL2-derivation. Then P(D)³ xDy (or P(D)³
(xDy)′).

(b) Let P ³ Γ (P ³ Γ′) be a conversion sequence from an L2-proof structure to a
sequent or a corresponding one-edge link graph. Then there is a sober derivation D
with P = P(D) and Γ = xDy.

♦
Proof: (b) An outline of the elegant proof is given above. Alternatively we can

proceed as follows. By Theorem 4.4.4 there is a derivation D of Γ with P(D) = P.
Eliminating the non-logical Cut’s of D by means of substitutions yields a sober derivation
D′ (see Subsection 4.2.3), and by Theorem 4.3.6 P(D′) = P(D). Hence D′ meets the
requirements. ////

Example 4.4.7. Consider the proof structure

0 1 B(A

t
L(

B

d
d1 0

2

(B)⊥

tR⊥

A

d
having an axiomatic formula B. It may be converted as indicated:

104 4. Two-sided proof nets for Cyclic Linear Logic

⊥
(B)⊥

−
B

−
B(A

−

⊗
B(A

+
B

+

A

−

B⊥

+

A

+

R⊥→ P1
L(→ P2

cut→

B(A

−

¯

B⊥
+

A

+

Analyzing the last step, we have to combine two inductively obtained derivations, corre-
sponding to the sub conversions

⊥
(B)⊥

−
B

−

B⊥

+

B

+

R⊥→ ¯

B⊥

+

B

+

and

B

−
B(A

−

⊗
B(A

+
B

+

A

−

A

+

L(→

B

−
B(A

−

¯

A

+

say

D1 =

Ax

([B+, B−])
R⊥([

B+, (B⊥)+
]) and D2 =

Ax

([A+, A−])
Ax

([B+, B−])
L(

([A+, (B(A)−, B−])

The naive solution is a Cut on B; however, when we prefer sober derivations, a solution
is given by

D1[D2] =

D2

([A+, (B(A)−, B−])
R⊥([

A+, (B(A)−, (B⊥)+
]) =

Ax

([A+, A−])
Ax

([B+, B−])
L(

([A+, (B(A)−, B−])
R⊥([

A+, (B(A)−, (B⊥)+
])

4.4. Contraction criterion 105

while another solution is given by

D2[D1] =

Ax

([A+, A−])
D1([

B+, (B⊥)+
])

L(([
A+, (B(A)−, (B⊥)+

]) =
Ax

([A+, A−])

Ax

([B+, B−])
R⊥([

B+, (B⊥)+
])

L(([
A+, (B(A)−, (B⊥)+

])
♦

4.4.2. Confluence on LG
′
2. Given an element P of LG2 with n par links (e0, e1, e2)

&,
we define a switching ω for P to be a choice, for each par link l, of one of the active ends
of l. The correction link graph ωP of P under the switching ω is obtained by replacing
each par link as follows, where the non-chosen end is disconnected. (So for the following
link l, ω(l) = Aρ.)

¯
¯

&

C

ν

A

ρ
B

σ

→ &

C

ν

A

ρ
B

σ

Let LG
′
2 denote the collection of those elements P of LG2 for which all the 2n correction

link graphs ωP have a tree as underlying graph.

Lemma 4.4.8. Let P1,P2 ∈ LG2 and suppose P1 → P2. Then P1 ∈ LG
′
2 if and only

if P2 ∈ LG
′
2. ♦

Proof: If the conversion step is [tens/neg](l), [cut](l1, l2, η) or [cut′](l, η1, η2),
the result is immediate, because a correction link graph of P1 is a tree if and only if the
corresponding correction link graph of P2 is a tree.

If the conversion step is [par](l1, l2), writing a switching for P1 as (ω; (l1 7→ ei)),
observe that the correction link graph (ω; (l1 7→ e1))P1 is a tree if and only if (ω; (l1 7→

106 4. Two-sided proof nets for Cyclic Linear Logic

e2))P1 is a tree if and only if the corresponding correction link graph ωP2 is a tree.

¯ ¯
¯

¯ R(→

&

B(A

−

A

+
B

−

If the conversion step is [par′](l, η), writing a switching for P1 as (ω; (l 7→ ei)), observe
that the correction link graph (ω; (l 7→ e1))P1 = (ω; (l 7→ e2))P1 is a tree if and only if
the corresponding correction link graph ωP2 is a tree.

¯ ¯

&

B(A

−

A

+
B

−

R(′→ ¯

////

In particular, the conversion steps are well defined on LG
′
2 (i.e. they do yield an

element of LG
′
2 when applied on an element of LG

′
2).

Since sequents (one-edge link graphs) belong to LG
′
2, we immediately obtain the next

result.

Corollary 4.4.9. If a proof structure P converts to a sequent Γ (one-edge link graph
Γ′), then P ∈ LG

′
2. ♦

So proof nets will only be found14 in LG
′
2. Now we can prove the confluence of this

conversion relation on LG
′
2.

14The other way around, a proof structure in LG
′
2 is not necessarily a proof net. However, if we add

([Γ, Bσ, Aρ])
Ex

([Γ, Aρ, Bσ])

4.4. Contraction criterion 107

Lemma 4.4.10. If P ∈ LG
′
2 converts in one step to P1 and P2, then both P1 and P2

convert in at most one step to a common P3 ∈ LG
′
2. ♦

P1

P

[conv1]

[conv2]

P3

P2

Proof: If [conv1] exactly equals [conv2], the result is clear by

P1

P

[conv1]

[conv2]

P3

P2

.

So assume [conv1] 6= [conv2].
If [conv1] is [tens/neg](l), [conv2] does not contain l. In all the subcases [conv1]

and [conv2] turn out to commute:

• [conv2] is [tens/neg](l′) (l′ 6= l a tensor link or negation link): o.k.;
• [conv2] is [par](l1, l2) (l1 a par link and l2 a context link): o.k.;
• [conv2] is [par′](l1, η) (l1 a par link): o.k.;
• [conv2] is [cut](l1, l2, η) (l1 6= l2 context links): o.k., since [tens/neg](l) does

not identify l1 and l2;
• [conv2] is [cut′](l1, η1, η2) (l1 a context link and η1 6= η2 edges): o.k., since

[tens/neg](l) does not require edges to be different, and neither identifies η1

and η2.

The case [conv1] = [par′](l, η) is treated similarly.
If [conv1] is [par](l1, l2), the following subcases remain (where l′1 6= l1 is a par link

and l′2 6= l2 is a context link):

• [conv2] is [par](l′1, l2): the diagram in Figure 4.2 of the form

P1

L⊗

P

R(

L⊗

P3

P2

R(

shows that the statement holds;
• [conv2] is [par](l1, l

′
2): impossible;

• [conv2] is [par](l′1, l
′
2): o.k., disjoint redexes;

(called Exchange) to the rules of NCLL2 we obtain MLL2, and the proof nets (where a proof net
is still defined as a proof structure that can be obtained as the proof structure of a derivation) of this
calculus are exactly the proof structures in LG

′
2. See Section 4.10.

108 4. Two-sided proof nets for Cyclic Linear Logic

&

C ⊗D

+

C

−
D

−

R(→

¯

&

B(A

−

A

+
B

−

L⊗→

&

C ⊗D

+

C

−
D

−

L⊗→

¯

¯

R(→

&

B(A

−

A

+
B

−

¯

Figure 4.2.

4.4. Contraction criterion 109

• [conv2] is [cut](l2, l
′
2, η):

¯

¯

&

B(A

−

A

+
B

−

in this case the statement holds as well by

P1

cut

P

R(

cut

P3

P2

R(

;

• [conv2] is [cut](l′2, l
′′
2 , η) (l′′2 a context link different from l2 and l′2): o.k., disjoint

redexes;

110 4. Two-sided proof nets for Cyclic Linear Logic

• [conv2] is [cut′](l2, η1, η2):

¯

&

B(A

−

A

+
B

−

in this case the statement holds as well by

P1

P

R(

cut′

P3

P2

R(′

;

• [conv2] is [cut′](l′2, η1, η2): o.k., since [par](l1, l2) does not require edges to be
different, and neither identifies η1 and η2.

If [conv1] is [cut](l1, l2, η), the following subcases remain (where l1, l2, l3, l4 are distinct
context links and ζ, ζ ′ 6= η distinct edges):

• [conv2] is [cut](l1, l2, ζ):

¯

¯

this case is impossible because of the requirement P ∈ LG
′
2;

4.4. Contraction criterion 111

• [conv2] is [cut](l2, l3, ζ):

¯

¯

¯

in this case the statement holds as well by

P1

cut

P

cut

cut

P3

P2

cut

;

• [conv2] is [cut](l3, l4, ζ): o.k., disjoint redexes;
• [conv2] is [cut′](l2, η, ζ): o.k., P1 = P2;
• [conv2] is [cut′](l3, ζ, ζ ′): o.k., since [cut](l1, l2, η) does not require edges to be

different, and neither identifies ζ and ζ ′.

Finally, if [conv1] is [cut′](l, η1, η2), the following subcases remain (where η1, η2, η3, η4

are distinct edges and l′ 6= l a context link):

• [conv2] is [cut′](l′, η1, η2): o.k., P1 = P2 (actually, this case is impossible because
of the requirement P ∈ LG

′
2);

• [conv2] is [cut′](l′, η2, η3): o.k., P1 = P2;
• [conv2] is [cut′](l′, η3, η4): o.k., disjoint redexes.

////

Observe how we avoid the case causing non-confluence (see page 101) by imposing
P ∈ LG

′
2.

By means of Lemma 4.4.10 and Lemma 4.4.3 we can sharpen Corollary 4.4.5 into:

112 4. Two-sided proof nets for Cyclic Linear Logic

Theorem 4.4.11. Let Γ be an NCLL2-sequent. Then the following are equivalent:

(i) Γ is derivable in NCLL2;
(ii) There is a proof structure P such that either all conversion sequences P ³ P ′ (where
P ′ is normal) satisfy P ′ = Γ, or they all satisfy that P ′ equals Γ’s corresponding
one-edge link graph Γ′.

♦
Theorem 4.4.12. Let P be a proof structure and P ³ P ′ be an arbitrary conversion

sequence to a normal form. Then P is a proof net if and only if P ′ is a sequent or a
one-edge link graph. ♦

4.4.3. Structurality. Suppose we are given a proof structure P which is a proof
net, i.e. the proof structure of some (for the moment unknown) derivation D with final
sequent Γ. As P ³ Γ (or P ³ Γ′, where Γ′ is Γ’s corresponding one-edge link graph)
we know P must have the same open ends as Γ. Hence the information that P is a
proof net with m > 0 open ends Aρ0

0 , . . . , A
ρm−1

m−1 , gives rise to (m− 1)! candidate sequents([
Aρ0

0 , A
ρi1
i1

, . . . , A
ρim−1

im−1

])
(where i = (k 7→ ik) ranges over the permutations of {1, . . .m−

1}), among which at least one is derivable. By confluence, we know that Γ is uniquely
determined, and we can find Γ and a derivation D by arbitrarily performing conversions
until we arrive at a normal form; this normal form then equals Γ (or Γ′), and the sequence
of conversions can be translated into a derivation (see Subsection 4.4.1). This means that,
although P a priori15 does not give any information about the structure (i.e. order) of its
open ends, this information is still contained in P. In this case we will say that P proves
Γ.

Remark 4.4.13. (Implicit structurality) A proof net implicitly determines a struc-
ture on its open ends (i.e. a sequent). ♦

The particular case 0 < m ≤ 2 is of a different kind. Now (m − 1)! = 1, which
means that a proof net P explicitly determines a derivable sequent ([Aρ0

0]) or ([Aρ0

0 , Aρ1

1]) =
([Aρ1

1 , Aρ0
0]).

Proof structures with more than two open ends, however, can also be given explicit
structurality by appropriately ‘closing off’ the open ends by means of m−1 (or just m−2)
par links:

Example 4.4.14. Suppose proof net P has open ends A−, B+ and C−. Then it
proves either ([A−, B+, C−]) or ([C−, B+, A−]), but we will only discover the actual cor-
responding provable sequent after applying conversions (implicit structurality). How-
ever, if we already know P actually proves ([C−, B+, A−]), then also ([C−, B+ &

A−]) =
([C−, (B

(

A)+]) (and hence also ([(C((B

(

A))+])) is provable, and attaching the cor-
responding par link(s) to P removes the original ambiguity. ♦

Recall that we say P is a proof net (respectively proof structure or link graph) of
Γ ` ∆ whenever it has Γ as multiset of hypotheses, and ∆ as multiset of conclusions.
Now, when both multisets are singletons, by the above discussion, a proof net of A ` B
really proves the sequent

(
A ` B

)
= ([A−, B+]).

15A planar graphical representation of the link graph P would give this information, but recall that
our link graphs are defined by a tuple (E ,L,L′, λ) and not by a geometric picture.

4.5. Cut elimination by means of proof nets 113

4.5. Cut elimination by means of proof nets

Recall that a cut formula is a formula which is the main formula of two dual links,
and that a cut reduction step is defined by deleting these links and the cut formula, while
pairwise letting collaps the active formulas: successively identifying them in case they
are different (as occurrence of the same formula), or deleting them if they are identical
(see Subsection 3.2.3).

Theorem 4.5.1. If P is a proof net proving Γ, and P Ã P ′ by a cut reduction step,
then P ′ is a proof net proving Γ as well. ♦

Proof: We are given that there is a conversion sequence P ³ Γ (Γ′). By
Lemma 4.4.3 (Termination) and Lemma 4.4.10 (Confluence) we know all maximal conver-
sion sequences P ³ Pnf satisfy Pnf = Γ (Γ′). Now suppose P Ã P ′ is the cut reduction
step eliminating a cut formula C of P. We will show that also P ′ ³ Γ (Γ′).

First suppose C = (A)⊥. Let us consider a conversion sequence of P with the following
initial conversions, which is justified by confluence.

P

⊥
(A)⊥

−

A

−

R⊥→L⊥→

⊥
(A)⊥

+

A

+

¯

cut′→ cut′→

¯

P ′

γ
³ Γ (Γ′)

Here the two applications of [cut′] are allowed since the edges are different as a result of
Corollary 4.4.9. Now the queue γ is a conversion sequence for P ′, which proves this case.

Now suppose C = B(A (the cases A ⊗ B, B

(

A and B

&

A are similar). Let l
and l1 be the corresponding par link respectively tensor link. Fix a conversion sequence
P ³ Γ (Γ′). At some point the par link l (appearing in P but absent in Γ (Γ′)) must
disappear, say at a conversion α := [par](l, l2) ([par′](l, η)), yielding a context link l′ in
either case. Of course, l remains untouched until α. Now let us suppose that l1 remains

114 4. Two-sided proof nets for Cyclic Linear Logic

untouched until α as well. Then our conversion sequence has the following form:

P

&

B(A

−

A

+
B

−

l

β
³

⊗
B(A

+

B

+
A

−

l1

¯ (l2)

(η)

&

B(A

−

A

+
B

−

l

α→

⊗
B(A

+

B

+
A

−

l1

¯ l′

γ
³ Γ (Γ′)

⊗
B(A

+

B

+
A

−

l1

By confluence, we can alter the queue γ into

¯ l′

L(→

⊗
B(A

+

B

+
A

−

l1

¯ l′

cut→

¯ l′1

¯ l′2
γ′

³ Γ (Γ′)

4.5. Cut elimination by means of proof nets 115

respectively

¯ l′

L(→

⊗
B(A

+

B

+
A

−

l1

¯ l′

cut→

¯ l′1

¯ l′2
cut′→

η′

γ′′

³ Γ (Γ′)

Executing the cut reduction step yields the proof structure P ′ to which we can apply β
followed by γ′ (γ′′):

P ′ β
³

¯ (l2)

(η) =



¯ l′2
γ′

³ Γ (Γ′)

η′

γ′′

³ Γ (Γ′)

Observe that l2 (η) plays the role of l′2 (η′) in γ′ (γ′′).
It remains to prove that it is possible to choose our conversion sequence P ³ Γ (Γ′)

such that l1 remains untouched until α = [par](l, l2) ([par′](l, η)).

Let P
δ³ Γ (Γ′) be an arbitrary conversion sequence:

P = Pm
δm→ Pm−1

δm−1→ . . .
δ2→ P1

δ1→ P0 = Γ (Γ′).

For each par link l of P with main end Cν and active ends Aρ and Bσ we will define a
sub-proof structure B(l) of P (called the block of l in P w.r.t. δ) and a subsequence δl

116 4. Two-sided proof nets for Cyclic Linear Logic

satisfying the following properties:

B(l) δl³
&

C

ν

A

ρ
B

σ

l

P

¯
Ca(l)

&

C

ν

A

ρ
B

σ

l

• B(l) does not contain the edge C. Consequently it does not contain l either;
• B(l) has Aρ and Bσ among its open ends.
• The conversion sequence δl acts completely within B(l), turning B(l) into a

link graph Ca(l) which together with l contains a redex for the conversion αl =
[par](l, l2) ([par′](l, η)).
• Our original conversion sequence may be replaced by

P
δl³ · αl→ ·

δ′l³ Γ (Γ′)

We will only sketch the idea; the formal definition and proof may be given simultaneously
by induction on the length of δ.

First of all, deleting all n par links l1, . . . , ln of P = Pm (which turns some connector
ends into open ends) yields n + 1 sub-proof structures, called the components of P.
This even holds in a more general sense for all intermediate link graphs Pi between P
and Γ (Γ′): deleting all n′ present par links yields n′ + 1 sub-link graphs, called the

components of P
δ³ Γ (Γ′) at stage i. Indeed, reasoning backwards from Γ (Γ′), we start

with one component (n′ = 0). After a number of conversions of the form [tens/neg],

4.5. Cut elimination by means of proof nets 117

[cut] or [cut′], a contraction Pi
αl1→ Pi−1 splits this sole component Pi−1 into two parts

and replaces one context link by a redex. The par link l1 of this redex now serves as
a boundary between the two new components Ca(l1) (containing Aρ and Bσ among its
open ends) and Cm(l1) (containing Cν among its open ends), while (at this stage) Ca(l1)
together with l contains a redex. All next conversions of the form [tens/neg], [cut] or
[cut′] take place completely within one of the two components, and the next contraction

Pj
αl2→ Pj−1 (j > i) takes place in exactly one of the two components as well. In this way

every contraction Pi
αl→ Pi−1 replaces exactly one of the n′ + 1 present components of δ

at stage i − 1 by two new components of δ at stage i (resulting in n′ ‘old’ components
and 2 new components Ca(l) and Cm(l)). This yields n′ + 1 components at a general
stage i (where we suppose that the intermediate link graph Pi has n′ par links), and
2n′+ 1 distinct components in the whole conversion sequence up to this stage (read from
right to left), taking into account that we should not distinguish between corresponding
components of Pi−1 and Pi.

Let l be a par link which (dis)appears in Pi
αl→ Pi−1. We define the block of l at stage

i w.r.t. δ to be the component Ca(l) of δ at stage i, and further on (at stages j > i) it
grows with the remaining conversions δi+1, δi+2, . . . in δ; it is clear that every conversion is
completely inside the block, or completely outside the block, which proves our properties
for B(l): the block of l at stage m w.r.t. δ.

This shows that we can reorder our original conversion sequence δ by

P
δl³ · αl→ ·

δ′l³ Γ (Γ′)

Observe that the edge C and hence also l1 is outside B(l), showing that l1 remains
untouched until αl. ////

Example 4.5.2. Suppose a proof net P contains 4 par links, then any conversion

sequence P
δ³ Γ (Γ′) contains 4 conversions α of type [par] or [par′]. Let a particular δ

be given. Reasoning backwards from Γ (Γ′) we find the components at each stage, e.g.

P12
δ12→ P11

δ11→ P10
δ10→ P9

δ9→ P8
δ8→ P7

δ7→ P6
δ6→ P5

δ5→ P4
δ4→ P3

δ3→ P2
δ2→ P1

δ1→ P0

3′′ 3′′ → 3′ 3′ 3′ 3′ 3′ → 3

α→ 1′ 1′ → 1
7′ → 7 7

α→ 4′ 4′ 4′ → 4 4
8 8 8

α→ 0′ → 0

5 5 5 5

α→ 2′′ → 2′ 2′ 2′ 2′ → 2 2

6 6 6 6

118 4. Two-sided proof nets for Cyclic Linear Logic

The proof net P = P12 has 5 components, viz. 3′′ , 7′ , 8 , 5 and 6 , which result

is independent of δ. Observe that P5 contains n′ = 2 par links. Hence at stage 5 there

are n′ + 1 = 3 components (3 , 4 and 2′), and there have been 2n′ + 1 = 5 so far

yet (0 , 1 , 2 , 3 and 4). Here we consider 0′ the same component as 0 ,

although as a sub link graph they differ for a conversion of the form [tens/neg], [cut]

or [cut′]; similar for 1′ and 2′ .

Let us concentrate on the par link l corresponding to the conversion α = δ5. Suppose

that Ca(l) is 3 . Then, reasoning backwards, we see B(l) equals 3′′ . Observe that 1′

consist of 4 , attached via one edge ξ to a modification of 3 , viz. α applied to the

sub-link graph consisting of the par link l attached to 3 , notation 3̂ . This edge ξ

originally belongs either to 7′ or to 8 ; let us suppose the former. Now we can alter

δ into

P12
δ11→ · δ6→ · δ5→ · δ12→ · δ10→ · δ9→ · δ8→ · δ7→ P4

δ4→ P3
δ3→ P2

δ2→ P1
δ1→ P0

3′′ → 3′ → 3 3̂ 3̂ 3̂ 3̂ 3̂ 3̂

α→
ξ ξ

ξ ξ ξ ξ 1′ → 1
7′ 7′ 7′ 7′ → 7

α→ 4′ 4′ 4′ → 4
8 8 8 8 8

α→ 0′ → 0

5 5 5 5 5 5

α→ 2′′ → 2′ 2′ → 2 2

6 6 6 6 6 6

If Ca(l) would have been 4 instead, B(l) would equal the union of 7′ , a par link and

8 . The new conversion sequence would now start with δ12, δ10, δ7 and δ5. ♦
This result re-establishes Theorem 4.2.4 (Cut elimination) for derivations by means

of Theorem 4.4.6: given a derivable sequent Γ, there is a proof net proving Γ (Corol-

lary 4.4.5). By Theorem 4.5.1 also the normal form P̂ of P under cut elimination proves

Γ, whence by Theorem 4.4.6 there is a sober derivation D of Γ with P(D) = P̂ . As P̂ is
Cut-free (has no cut formulas), by soberness also D is Cut-free (contains no Cut rules;
Proposition 4.3.5), alternatively proving Theorem 4.2.4 (Cut elimination).

Lemma 4.5.3. (a) An identity proof structures I(C) (see page 52) proves C ` C and
is hence a proof net.

4.6. Dualizable proof nets 119

(b) If P is a proof net proving Γ, and P ′ is obtained from P by the replacement of a
non-atomic axiomatic formula C by the identity proof structure I(C), then also P ′ is
a proof net proving Γ.

♦
Proof: (a) By induction on C. For atomic C the result is immediate. For C =

A ¤ (B) first convert I(A) (as well as I(B)) to a single edge, and finally the remaining
dual [L¤]- and [R¤]-link by means of [tens], [par] and [cut′] ([neg], [neg], [cut′] and
[cut′]).

(b) First convert I(C) into a singe edge according to part (a), yielding P, which by
assumption converts to Γ (Γ′). ////

We will henceforth talk about the identity proof net I(C).
Suppose Γ is derivable, then there is a proof net P (proving Γ) which we can hence sup-

pose to be cut-free (Theorem 4.5.1) as wel as η-expanded (Lemma 4.5.3). We have char-
acterized such proof structures in Subsection 3.2.4, whence the search space for our proof
net P is limited to the (finitely many) proof structures described in Proposition 3.2.9.
This observation proves the following main theorem concerning proof search by means of
proof nets.

Theorem 4.5.4. (a) Let a sequent Γ be given. Then Γ is derivable if and only if the
set

{P |P is an η-expanded cut-free proof structure with the same open ends as Γ}

contains a proof net proving Γ.
(b) Let a set of open ends be given, i.e. a multiset of hypotheses A−0 , . . . , A−m−1 and a

multiset of conclusions B+
0 , . . . , B+

n−1. Then some cyclic list consisting of these open
ends is derivable if and only if the set{
P |P is an η-expanded cut-free proof structure of A−0 , . . . , A−m−1 ` B+

0 , . . . , B+
n−1

}
contains a proof net: a proof structure converting to a sequent or a single edge.

♦
In part (b) we have abstracted part (a) over Γ. For many applications one is interested

in the existence of some derivable cyclic list Γ with given open ends. Instead of applying
part (a) for each of the candidate cyclic lists Γ — there are in general (n + m− 1)! such
— we can check the RHS of part (b); in case of succes, this procedure automatically gives
the witnessing sequent, showing the computational strength of our contraction criterion.

4.6. Dualizable proof nets

In Subsection 3.2.3 we introduced the dualization operation P 7→ P∗ on proof struc-
tures, defined by replacing each link by its dual and reversing the labeling of every edge.
In particular, if P has open ends given by the multiset Π, then P∗ has open ends given
by the multiset Π∗ := τΠ (where τ is the sign alternation map). So a proof structure P
of Γ ` ∆ is turned into a proof structure P∗ of ∆ ` Γ.

Observe that actually, in Example 3.2.8, both P and P∗ are NCLL2-proof nets.
However, it does not generally hold that a proof net yields another proof net under this
transformation. Let us call a proof net P dualizable if its dualization P∗ is a proof net
as well.

120 4. Two-sided proof nets for Cyclic Linear Logic

In this section we will show that the collection of dualizable proof nets is — roughly
speaking — equal to the collection of identity proof nets, modulo the ‘De Morgan laws’
and associativity.

Suppose we have a proof net P1 with open ends Π, and another proof net P2 with
open ends Π∗. Then some sequent Γ consisting of the elements of Π is derivable, whence
by Lemma 4.1.11 |Γ| + # &(Γ) = #⊗(Γ) + 2. Similarly, some sequent ∆ consisting of
the elements of Π∗ is derivable, whence |∆| + # &(∆) = #⊗(∆) + 2. Using the fact
that Π∗ = τΠ, the last line rewrites to |Γ| + #⊗(Γ) = # &(Γ) + 2. We conclude that
&(Γ) = #⊗(Γ) and that |Γ| = 2.

In particular, if P2 = P∗1 , the result holds, so every dualizable proof net has two
open ends, say Aρ and Bσ, thus proving the sequents ([Aρ, Bσ]) as well as ([A−ρ, B−σ]).
Moreover, there is a dualizable proof net proving ([A+, B+]) (and ([A−, B−])) if and only
if there is a dualizable proof net proving

([
A+, (B⊥)−

])
(and

([
A−, (B⊥)+

])
). Hence it is

no restriction to study only dualizable proof nets with exactly one hypothesis and one
conclusion.

Let us define the following relations a` and ad` on L2:

A a` B :⇐⇒ A ` B is derivable and B ` A is derivable

⇐⇒ there is a proof net P1 of A ` B

and a proof net P2 of B ` A

⇐⇒ there is a cut-free proof net P1 of A ` B

and a cut-free proof net P2 of B ` A

⇐⇒ there is a cut-free and η-expanded proof net P1 of A ` B

and a cut-free and η-expanded proof net P2 of B ` A

A ad` B :⇐⇒ there is a proof net P of A ` B such that

its dualization P∗ is a proof net of B ` A

(∗)⇐⇒ there is a cut-free proof net P of A ` B such that

its dualization P∗ is a cut-free proof net of B ` A

⇐⇒ there is a cut-free and η-expanded proof net P of A ` B such that

its dualization P∗ is a cut-free and η-expanded proof net of B ` A

Recall that we mean by an η-expanded proof structure a proof structure with only atomic
axiomatic formulas. The last equivalence in both definitions above is a consequence of
the fact that we can replace a non-atomic axiomatic formula C by the identity proof
net I(C) having only atomic axiomatic formulas and being invariant under dualization.
After this operation the proof structure remains a proof net proving the same sequent
as before (the dualization of which is also obtained by a replacement of C by I(C) and
hence is also a proof net).

The equivalence marked by (∗) is a consequence of the fact that dualizing a proof
structure commutes with a cut elimination step: suppose P is a dualizable proof net of
A ` B (i.e. P and P∗ are proof nets). Then its reduct P ′ is a proof net (by the soundness
of cut-elimination), the dualization (P ′)∗ of which is nothing else but the reduct (P∗)′
of P∗, and hence a proof net itself. This implies that P ′ is a dualizable proof net. By

4.6. Dualizable proof nets 121

induction we may conclude that the normal form (under cut elimination) P̂ is a dualizable
cut-free proof net of A ` B, the dualization of which is automatically cut-free as well.

We say A is (dualizable)-provably equivalent to B iff A a` B (A ad` B), and it is easy
to check that both relations are congruence relations on L2-formulas. In Example 4.6.4.3
we will see that ad` is strictly contained in a`.

In order to completely characterize the congruence relation ad`, we will make use of
L1, which can be considered as the De Morgan quotient of L2 (see Section 2.2). With the
help of the next lemmas we will establish the fact that ' (Section 2.3) and ad` coincide.

Lemma 4.6.1. Let A and B be two syntactic MLL-formulas.
1. If A ' B, then A and B are dualizable-provably equivalent.
2. A is dualizable-provably equivalent with its normal form νπ(A). ♦

Proof: Part 1. The relation ad` := {(A, B) |A ad` B} is an equivalence relation
satisfying (where the numbers refer to Definition 2.3.1):

• (0¤), by pasting the dual links L¤ and R¤ to the given dualizable proof net(s)
(¤ = ⊗,

(

,(,

&

or ⊥);
• (1), by the following dualizable proof net

(A⊗B)⊥

−

⊥
A⊥

−
A

−

⊥
B⊥

−
B

−

⊗
A⊗B

−

B

+
A

+

&

B⊥

&

A⊥

−

A⊥
+

B⊥
+

⊥
(A⊗B)⊥
+

A⊗B
+

B⊥

&

A⊥

+

alternatively denoted by

122 4. Two-sided proof nets for Cyclic Linear Logic

1 0

1 0

(A⊗ B)⊥

t
L⊥

Ad

d
Bd
d

B⊥

tR⊥
d A⊥

tR⊥

d2 1
0

2 1
0

A⊗ Bd
tR⊗

B⊥

&

A⊥

tR &

0 1

whose dualization is given by

0 1

A⊗ B

d
t

L⊗

B⊥

&

A⊥t
L

&

0
1 2

0
1 2

(A⊗ B)⊥

tR⊥

A

d

d
B

d
d B⊥t

L⊥

d
A⊥

t
L⊥

d
1 0

1 0

• (2); similarly;
• (3a); by the dual proof nets of Example 3.2.8;
• (3b); similarly;
• (4), by the dualizable proof net

1 0

A

d
A⊥

tR⊥
d (A⊥)⊥t

L⊥
1 0

• (5⊗), by the dualizable proof net

A⊗ (B ⊗ C)t
L⊗

0
1 2

B ⊗ Ct
L⊗

d
0

1 2

Ad

d

Bd
d

C

d

d
2 1

0

A⊗ B

tR⊗
d2 1

0

(A⊗B)⊗ C

tR⊗
• (5

&

); similarly.

As ' is the smallest such equivalence relation, we must have that ' ⊆ ad`, i.e. if A ' B
then A ad` B.

Part 2. We know that νπA ≡ A, implying νπA ' A, which yields νπA ad` A by part
1. ////

Lemma 4.6.2. Suppose A ad` B and let P be a cut-free and η-expanded dualizable
proof net of A ` B. Then each (atomic) axiomatic formula is a subformula of both A
and B.

4.6. Dualizable proof nets 123

As a consequence, A and B have the same multiset of atomic subformulas:

P (A) ∪N(A) = P (B) ∪N(B).

♦
Proof: By Proposition 3.2.9 we know that P is the union of TA and TB, followed by

an identification of the atomic formulas16. Now suppose that an atomic subformula α of
A is identified with another atomic subformula α of A. (I.e. α ∈ N(A) is identified with
α ∈ P (A).) Let A′ be the smallest subformula of A containing both occurrences of α. If
A′ is the main formula of a tensor link l, then there is a switching ω′ of TA (extendible
to a switching ω of P) yielding a path from the one occurrence of α to A′ as well as a
path from the other occurrence of α to A′. But this yields (after identification of the two
occurrences of α) a cycle in ωP since l is a tensor link, in contradiction to Corollary 4.4.9.
If l is a par link, then l∗ is a tensor link, so the same argument applies and yields a cycle
in ωP∗. Hence every atomic subformula α of A is identified with an atomic subformula α
of B, even better: every positive (negative) atomic subformula α of A is identified with
a positive (negative) atomic subformula α of B ////

Theorem 4.6.3. For all L2-formulas A and B the following holds:

A ' B if and only if A ad` B

♦
Proof: =⇒ This is Lemma 4.6.1.1.
⇐= We first prove this direction for L2,nf-formulas (the De Morgan normal forms):

L2,nf := F ::= A | (A)⊥ | F ⊗ F | F &F
This will be done by induction on the size of a cut-free and η-expanded dualizable proof
net of A ` B.

Suppose A ad` B where A and B are L2,nf-formulas. Let P be a cut-free and η-
expanded dualizable proof net of A ` B. Then we know by Proposition 3.2.9 that
P is the union of TA and TB containing only L⊗-, R⊗-, L

&

- and R

&

-links, or ⊥-links
applied to atoms, followed by an identification of the atomic formulas, which is pairwise
by Lemma 4.6.2. If (α)⊥ is a subformula of A, then α is an hypothesis of TA. Hence it is
a conclusion of TB, yielding that (α)⊥ is a subformula of B. Contracting the two ⊥-links
and replacing (α)⊥ by the new atom α⊥ yields a proof net which moreover is ⊥-free.

A

0 1

¶
µ

³
´TA

(α)⊥

tR⊥
α

d
d (α)⊥t

L⊥

¶
µ

³
´TB

1 0

B

=⇒

A¶
µ

³
´TA

α⊥¶
µ

³
´TB

B

Hence let P be a cut-free and η-expanded dualizable proof net of A ` B, where P is the
union of T A and TB containing only L⊗-, R⊗-, L

&

- and R

&

-links, followed by a pairwise

16Moreover, by Corollary 3.2.10 we know that the multisets P (A)∪N(B) (all conclusions of TA∪TB
except B) and P (B) ∪N(A) (all hypotheses of TA ∪ TB except A) coincide. However, this does not yet
yield P (A) = P (B) and N(B) = N(A), what we actually want to prove now as it implies P (A)∪N(A) =
P (B) ∪N(B).

124 4. Two-sided proof nets for Cyclic Linear Logic

identification of the (new) atomic formulas. Performing the contractions P ³ Γ in the
opposite direction provides us with a planar graphical representation of P.

We will call a maximal connected component of P consisting entirely of a positive
number of tensor (par) links a tensor (par) cluster. By the absence of ⊥-links, every link
belongs to exactly one cluster. Every internal formula of a cluster is neither axiomatic
nor cut: for if it was an axiomatic formula, then for some switching of the par version
of this cluster (in P or P∗) this formula would be disconnected; and it can neither be a
cut formula, since we assumed P to be cut-free17. We call a leaf of a cluster an active
(main) formula, if it is an active (main) formula of some link of the cluster. Each cluster
contains exactly one main formula, while by the absence of [L/R(]- and [L/R

(

]-links
(besides the absence of [L/R⊥]-links) we know that all active formulas are positive active
formulas. Let us be even more precise and show that a cluster C is a tree of links, all of
the same subtype L⊗, R⊗, L

&

or R

&

.

A1

d
A2d A3d A4

d
A5

dA2 ⊗A3

tR⊗
d

A1 ⊗ (A2 ⊗ A3)

tR⊗
d A4 ⊗ A5

tR⊗
d

(A1 ⊗ (A2 ⊗A3))⊗ (A4 ⊗ A5)

tR⊗
A1d A2d A3d A4d A5d

(A1 ⊗ (A2 ⊗A3))⊗ (A4 ⊗ A5)

tR⊗

We show this by induction on the number of links in C. Let C be a cluster, hence with at
least one link. Choose a formula C belonging to C with maximal length l(C). If C would
be an internal formula of C it would have role 1, whence it would be the main formula of
one link, and an active formula of some other link l′. But then l′ has as main formula a
formula of bigger length; contradiction. So C is a leaf of C, occurring in precisely one link
l of C by connectedness. It can still not be an active formula of l, whence C is the main
formula of l. Then the active formula A (B) of l is either a leaf of C, or main formula of
a link lA (lB) of C. Removing l yields two components CA (or possibly only A), and CB
(or possibly only B), which are disconnected because otherwise there would be a cycle in
a correction link graph of P or P∗. Now by induction hypothesis CA (if present) is a tree
of links, all of the same subtype, whence with a unique main formula, which must be A,
being the main formula of lA. Also, CB (if present) is a tree of similar links with main
formula B. But then C is a tree of similar links (with unique main formula C).

Knowing what the clusters look like, we turn back to our main proof. If there are no
clusters, we get A = α = B, whence A ' B. Now suppose there is at least one cluster.
Then there is a cluster with only atomic active formulas. For if not, then for every cluster
Ci we could choose a non-atomic active formula, which cannot be an axiomatic formula
in our η-expanded dualizable proof net, and hence is the main formula of another cluster
Ci+1, yielding an infinite descending chain of subformulas; contradiction.

We may assume there is a tensor cluster C with only atomic active formulas (because
there is a cluster with only atomic active formulas in P, which is a tensor or par cluster,
and hence a par or tensor cluster in P∗). The active formulas are — on the other hand

17Even if P would not be cut-free, an internal formula of a cluster is not a cut formula, since a cut
formula is always between two dual links, whence (in the ⊥-free case) between a tensor link and a par
link.

4.6. Dualizable proof nets 125

— also active formulas of par clusters Ci (according to the definition of a cluster the Ci
cannot be tensor clusters), and we want to show that at least one of these par clusters C0
has all its active formulas among those of C. Well, if this would not be the case, then for
each par cluster choosing one of its active formulas not among those of C can be extended
to a switching where C is disconnected (after disconnecting its main formula as well in
case B1 is a strict subformula of B; see picture below); contradiction.

t
L⊗

t
L⊗· · · Ci · · ·

A0

d
α0

d
d α1

d
d α2

d
d α3

d
d A1

d
C

d B1

tR⊗
dtR &

t t· · · Ci · · ·
A0

d
α0d α1d α2d α3d A1

d
C

d B1

tR⊗
t

So there is a par cluster C0 having all its active formulas among those of C:

t
L⊗

t
L⊗

t
L⊗C0

A0

d
α0

d
d α1

d
d α2

d
d α3

d
d A1

d
C

d B1

tR⊗
dtR &

Now repeating the same story in P∗ yields that the active formulas of C are among those
of C0. Hence C and C0 face each other, so — by the planarity of our representation —
their main formulas C and C0 are ⊗-only (

&

-only) L2-formulas with the same sequence
of atoms. This gives C ' C0 by Lemma 2.3.3.

Replacing C and C0 by a unique new atom α∞ results in a strictly smaller dualizable
proof net P ′, yielding A[α∞/C0] ' B[α∞/C] by induction hypothesis. Backsubstituting
C and C0 (for which C ' C0) we get A[α∞/C0][C0/α∞] ' B[α∞/C][C/α∞], i.e. A ' B.

Now let arbitrary A and B be given for which A ad` B. Then by Lemma 4.6.1.2
νπA ad` A ad` B ad` νπB, hence νπA ad` νπB. By the result established above we
obtain νπA ' νπB, whence also A ' νπA ' νπB ' B, i.e. A ' B.

126 4. Two-sided proof nets for Cyclic Linear Logic

////

We summarize the results of this section by:

A = B =⇒ A ≡ B =⇒ A ' B

Proposition 2.2.3 m m Theorem 4.6.3

πA = πB A ad` B =⇒ A a` B
Lemma 4.1.11

=⇒
#⊗(A)−# &(A)

=
#⊗(B)−# &(B)

Observe that all implications above are strict:

Example 4.6.4. 1. (α⊗ β)⊥ ≡ (β)⊥

&

(α)⊥, but (α⊗ β)⊥ 6= (β)⊥

&

(α)⊥.
2. α ⊗ (β ⊗ γ) ' (α ⊗ β) ⊗ γ but α ⊗ (β ⊗ γ) 6≡ (α ⊗ β) ⊗ γ since π(α ⊗ (β ⊗ γ)) =
α⊗ (β ⊗ γ) 6= (α⊗ β)⊗ γ = π((α⊗ β)⊗ γ).
3. α ⊗ (α(α) a` α but not by a dualizable proof net, since the formulas do not have
the same multiset of atoms (Lemma 4.6.2). Actually, this provable equivalence is due to
the following two derivable sequents:

β ⊗ (β(α) ` α

α ` α⊗ (β(β)

which become witnesses for α⊗ (α(α) a` α when taking β := α.
4. The first proof net in Example 4.6.6 (say, of A ` B) satisfies #⊗(A) − # &(A) =
#⊗(B)−# &(B), but B ` A is not provable. ♦

Lemma 4.6.5. Suppose A and B are L2-formulas with coinciding multisets of atomic
subformulas (i.e. P (A)∪N(A) = P (B)∪N(B)), in which moreover each occurring atom
has multiplicity one. Then A a` B implies A ad` B. ♦

Proof: Given A a` B, there is a cut-free and η-expanded proof net P1 of A ` B
and a cut-free and η-expanded proof net P2 of B ` A. We know that P1 is the union of
T A and TB followed by an identification of the atoms, while P2 has a similar description.
From the requirement in the lemma it follows that the mentioned identifications are
unique in both cases, and hence they are the same. But then P2 = P∗1 , which means that
A ad` B. ////

4.6. Dualizable proof nets 127

Example 4.6.6. Consider the proof net P :=

(α

&

(β ⊗ γ))⊗ (δ ⊗ ε)t
L⊗

d
α

&

(β ⊗ γ)t
L

&

d
β ⊗ γt

L⊗

d

δ ⊗ εt
L⊗

α

d

d

β

d

d

γ

d
d δ

d
d ε

d

dγ ⊗ δ

tR⊗
d

(γ ⊗ δ)⊗ ε

tR⊗
d

β ⊗ ((γ ⊗ δ)⊗ ε)

tR⊗
d

α

&

(β ⊗ ((γ ⊗ δ)⊗ ε))

tR &

The clusters of P may be represented as in the following diagram:

(α

&

(β ⊗ γ))⊗ δ ⊗ εt
L⊗

d
α

&

(β ⊗ γ)t
L

& d
β ⊗ γt

L⊗
α

d

d
β

d
d γ

d
d δ

d

d ε

d

d
β ⊗ γ ⊗ δ ⊗ ε

tR⊗
d

α

&

(β ⊗ γ ⊗ δ ⊗ ε)

tR &

This proof net cannot be dualizable, since the tensor cluster on β, γ, δ and ε does not
face exactly one par cluster, while we know from the proof of Theorem 4.6.3 that this
is a necessary condition for ⊗/

&

-only dualizable proof nets. Moreover, P is the unique
η-expanded cut-free proof net with these leaves. Hence

(α

&

(β ⊗ γ))⊗ (δ ⊗ ε) ` α

&

(β ⊗ ((γ ⊗ δ)⊗ ε))

is provable, but from Lemma 4.6.5 we now can deduce that

α

&

(β ⊗ ((γ ⊗ δ)⊗ ε)) ` (α

&

(β ⊗ γ))⊗ (δ ⊗ ε)

is not provable.
One easily checks that the next proof net is dualizable:

128 4. Two-sided proof nets for Cyclic Linear Logic

(β ⊗ γ)⊥

tR⊥
d β ⊗ γt

L⊗

d

(β ⊗ γ)⊥

(

(α)⊥

tR (

(α)⊥

t
L⊥

d
β

d

d
γd
d

γ((β(α)t
L(

β(αt
L(

d

α

d
d

By Theorem 4.6.3 this implies that (β ⊗ γ)⊥

(

(α)⊥ and γ ((β (α) must be
'-equivalent. We will show this by computing their normal forms.

The normal form of (β ⊗ γ)⊥

(

(α)⊥ is

νπ((β ⊗ γ)⊥

(

(α)⊥) = ν([π(β)⊗ π(γ)]⊥

(

[π(α)]⊥)

= ν([β ⊗ γ]⊥

(

[α]⊥)

= ν((γ⊥
&

β⊥)
(

α⊥)

= ν((γ⊥

&

β⊥)

&

[α⊥]⊥)

= ν((γ⊥

&

β⊥)

&

α)

= ((γ)⊥

&

(β)⊥)

&

α

while the normal form of γ((β(α) is

νπ(γ((β(α)) = ν(π(γ)((π(β)(π(α)))

= ν(γ⊥

&

(β⊥

&

α))

= (γ)⊥

&

((β)⊥

&

α)

and these two normal forms are '-equivalent by (5

&

). As we also know that formulas
are '-equivalent to their normal forms (actually by (0) up to (4)), we indeed find that
(β ⊗ γ)⊥

(

(α)⊥ and γ((β(α) are '-equivalent. ♦

4.7. One-sided nets

In this section we will use the theory of the previous sections to prove a contraction
criterion for one-sided NCLL.

A sequent of NCLL1 is an L1-link graph P containing exactly one cyclic link l =
([e0, . . . , em−1])¯ as context link, no connector links, and whose underlying graph is a tree,
i.e. acyclic and connected. Moreover, all labels are positively polarized. As every edge
η has exactly one extremity η̂ occurring in l, P may be represented by the cyclic list
([λη̌0, . . . , λη̌m−1]) of open ends. Observe that a one-edge link graph

X + + Y

is not a sequent; there must be one context link, like in

X + ¯ Y+

4.7. One-sided nets 129

By ` Z0, . . . , Zm−1 (where Z0, . . . , Zm−1 is a list) we will denote the sequent([
Z+

0 , . . . , Z+
m−1

])
.

The calculus NCLL1 is defined by the following (elementary) rules:

NCLL1

Ax([
X+, ([X]⊥)+

])
([Π, X+])

([
Σ, ([X]⊥)+

])
Cut

([Π, Σ])

([Π, X+]) ([Σ, Y +])
⊗

([Π, (X ⊗ Y)+, Σ])

([Π, Y +, X+]) &

([Π, (Y

&

X)+])

The map π+ : L
±
2 → L

±
1 defined according to Subsection 2.1.4 and Subsection 2.1.5

by

π+(A+) = (πA)+

π+(A−) =
(
π((A)⊥)

)+
= ([πA]⊥)+

extended to NCLL2-sequents yields NCLL1-sequents. One easily verifies that whenever

([Γ0]) . . . ([Γn−1])

([Γ])
(8)

is an instance of an elementary rule of NCLL2 different from a negation rule, then so is

π+ ([Γ0]) . . . π+ ([Γn−1])

π+ ([Γ])
(9)

w.r.t. NCLL1, while an instance of a negation rule translates into an instance of the

identity induced rule
([Π])

([Π])
. Hence a semi-derivation D (uniformly) translates into a

composition of elementary NCLL1-rules and identity semi-derivations, which is hence an
NCLL1-semi-derivation. As a consequence, if (8) is an induced rule of NCLL2, then
the same holds for (9) w.r.t. NCLL1. In particular, derivability of a particular NCLL2-
sequent Γ implies derivability of the NCLL1-sequent π+Γ.

The other way around, the function ψ± : L
±
1 → L

±
2 mapping X+ to ψX = (X•)X ∈ L

±
2

(and X− to τψX = (X•)−X ∈ L
±
2 ; see Subsection 2.1.4 and Subsection 2.1.5) extended

to NCLL1-sequents yields NCLL2-sequents, and whenever

([Π0]) . . . ([Πn−1])

([Π])
(10)

is an instance of an elementary rule of NCLL1, then so is

ψ± ([Π0]) . . . ψ± ([Πn−1])

ψ± ([Π])
(11)

130 4. Two-sided proof nets for Cyclic Linear Logic

w.r.t. NCLL2 (possibly after interchanging the premiss sequents in case of a Cut rule18)
which follows from the fact that

ψ(X ⊗ Y) = ψ(X)⊗ ψ(Y) and

ψ(Y

&

X) = ψ(Y)

&

ψ(X)

Observe that an instance of a tensor rule may translate into an instance of any of the
four tensor rules R⊗, L

(

, L(or L

&

of NCLL2 depending on the parity (see page 25)
of X and Y , which shows that a semi-derivation (e.g. the tensor rule) does not in general
translate into a semi-derivation. Nevertheless, concrete19 derivations do translate into
derivations, whence derivability of a particular NCLL1-sequent Π implies derivability of
the NCLL2-sequent ψ±Π.

Lemma 4.7.1. (a) For all NCLL2-sequents Γ the following holds:
Γ is NCLL2-derivable if and only if π+Γ is NCLL1-derivable.

(b) For all NCLL1-sequents Π the following holds:
Π is NCLL1-derivable if and only if ψ±Π is NCLL2-derivable.

♦
Proof: (a) The ‘only if’-part is the remark above. For the ‘if’-part: suppose

π+Γ is NCLL1-derivable. Then by the remark above, ψ±π+Γ = ψπΓ is NCLL2-
derivable. Let Aρ ∈ Γ. Define Bσ := ψ±π+Aρ = ψπAρ. We claim that µAρ ≡ µBσ,
whence µAρ ' µBσ, whence µAρ ad` µBσ by Lemma 4.6.1. This entails µAρ a` µBσ,
i.e. both ([(µBσ)+, (µAρ)−]) and ([(µAρ)+, (µBσ)−]) are derivable. Using reversibility
of the negation rules (in case ρ or σ is negative) we obtain derivability of ([Bσ, A−ρ])
and ([Aρ, B−σ]). Applying a Cut on the derivable sequent ψπΓ (containing Bσ) and
([Aρ, B−σ]), shows we can substitute Aρ for Bσ ∈ ψπΓ, the resulting sequent still being
derivable. Continuing we obtain derivability of Γ. The claim µAρ ≡ µBσ follows from
the fact that the images of both sides under π : L2 → L1 coincide (Proposition 2.2.3):
π(µBσ) = πµ(ψπAρ) = (πµψ)πAρ = πAρ = π(µAρ). Recall that

L1

ψ
χ

L
±
2 µ

π

L2

π

L1

is actually the identity L1 → L1 (see page 23).
(b) The ‘only if’-part is the remark above. For the ‘if’-part: suppose ψ±Π is NCLL2-

derivable. Then by the remark above, π+ψ±Π is NCLL1-derivable. Given X+ ∈ Π, then
π+ψ±X+ = π+ψX = (πψX)+ = X+, so in fact π+ψ±Π = Π is NCLL1-derivable, proving
this part. Observe that it is not true that π+ψ± is the identity on all of L

±
1 ; it maps X−

18In case
([Π, X+])

([
Σ, ([X]⊥)+

])
Cut

([Π,Σ])
translates into

([Γ, A−]) ([∆, A+])
Cut

([Γ,∆])
, for-

mally the result is not an elementary rule of NCLL2. However, still it is an induced rule of NCLL2.
19In a concrete derivation, for every axiom

Ax([
X+, ([X]⊥)+

]) the formulas X and [X]⊥ are

explicitly given as elements of L1 instead of being kept variable.

4.7. One-sided nets 131

to π+ψ±X− = π+τψX = (πτψX)+ Lemma 2.1.3(4)
= (πψ[X]⊥)+ = ([X]⊥)+, or, without using

Lemma 2.1.3(4), π+ψ±X− = π+τψX = (πτψX)+ = ([πψX]⊥)+ = ([X]⊥)+. However, Π
only contains positively polarized L1-formulas.

////

Lemma 4.7.1(b) completely answers the derivability question for NCLL1 in terms of
NCLL2-derivability, for which we have established a contraction criterion in Section 4.4.
We will now sketch a completely analogue contraction criterion for NCLL1.

First, an NCLL1-proof net is an L1-proof structure (see Subsection 3.2.1) that can
be obtained as the (one-sided) proof structure P1(D) of an NCLL1-derivation D (cf.
Definition 4.3.2), which is defined in the obvious way: Ax translates to an axiomatic
edge; for the tensor (par) rule, make X+ and Y + the active ends of a new tensor (par)
link, which yields a new open end (X ⊗ Y)+ ((Y

&

X)+); for Cut, identify the two
edges (not necessarily yielding a cut edge). Observe that P1(D) equals the π-image
(see Subsection 3.2.5) of the two-sided proof net P(ψ±D) of a corresponding two-sided
derivation ψ±D:

πP(ψ±D) = P1(D).

More general, given a two-sided derivation D2, then

πP(D2) = P1(π
+D2),

whence
πP(ψ±D) = P1(π

+ψ±D) = P1(D)

where the last equality is a result of the fact that π+ψ±D and D are equal up to the order
of the premiss sequents of some Cut rules.

We define a conversion relation on the collection LG1 of L1-link graphs with well-
labeled (see Definition 3.2.1) connector links, viz. tensor links (e0, e1, e2)⊗ (indicated by
⊗) and par links (e0, e1, e2) &(indicated by

&

), and with context links ([e0, . . . , em−1])¯

(indicated by ¯), whose open ends are positively polarized. Up to the labeling, we take
the conversion steps exactly the same as in Section 4.4. The translations ψ : PS1 →
PS2 : P 7→ ψP and π : PS2 → PS1 : P 7→ πP of Subsection 3.2.5 generalize to maps
LG1 → LG2 respectively LG2 → LG1 in a straightforward way, which also extend ψ±

and π+ on the respective collections of sequents.

PS1

ψ
PS2

π
PS1

LG1

ψ
LG2

π
LG1

CLists1

ψ±

CLists2
π+

CLists1

We establish the one-sided counterpart of Theorem 4.4.4.

Theorem 4.7.2. (a) Let D be an NCLL1-derivation. Then P1(D)³ xDy (or P(D)³
(xDy)′).

132 4. Two-sided proof nets for Cyclic Linear Logic

(b) Let P ³ Π (P ³ Π′) be a conversion sequence from an L1-proof structure to a
sequent or a corresponding one-edge link graph. Then there is a derivation D with
P = P1(D) and Π = xDy.

♦
Proof: (a) Directly, by induction on the derivation D.
(b) Given a conversion sequence

P = Pm
δm→ Pm−1

δm−1→ . . .
δ2→ P1

δ1→ P0 = Π (Π′)

on LG1, we embed it into LG2: for every step Pi → Pi−1 on LG1 there is a corresponding
step ψPi → ψPi−1 on LG2. This yields a conversion sequence ψP ³ ψΠ = ψ±Π
(ψP ³ ψΠ′) whence, by Theorem 4.4.4, there is a two-sided derivation D2 with ψP =
P(D2) and ψ±Π = xD2y. As a consequence, P = πψP = πP(D2) = P1(π

+D2) and
Π = π+ψ±Π = π+xD2y = xπ+D2y. So π+D2 is a one-sided derivation possessing the
desired properties. ////

A direct proof without using two-sided link graphs would have forced us anyhow to
generalize in one way or the other to one-sided proof structures with hypotheses. For
example, if the last conversion is a [tens]-step P ′ → Π, then P ′ only contains a single
tensor link ((

X ⊗ Y
)−

, Y +, X+

)
⊗

whence P consists of three ‘proof nets’ P0, P1 and P2 attached to one another in a tensor
link, each of which converts to one edge. For the proof structure P0 to be well-defined we

have to alter the open end
(
X ⊗ Y

)−
into

(
[X ⊗ Y]⊥

)+
=

(
[Y]⊥

&

[X]⊥
)+

and apply the
induction hypothesis to this proof net, which formally is not a sub net of P anymore.

4.8. The category of proof nets

Proof structures for multiplicative linear logic are usually defined as the smallest set
containing axiom-links20

X⊥ X and closed under disjoint union and under the lower
attachment of the links

X Y
X ⊗ Y

, X Y
X

&

Y
and X⊥ X

(cf. [Girard 87]). The proof nets then correspond to one-sided sequent calculus deriva-
tions. In order to make a category out of L1-formulas and proof nets, one takes as
morphisms X → Y precisely the proof nets proving

([
[X]⊥, Y

])
. The identity morphism

on Y is given by Y ⊥ Y , while composition of a proof net proving
([

[X]⊥, Y
])

20In our definition of L1-proof structure (see Subsection 3.2.1), we do not consider axiom-links nor
cut-links, but only axiomatic edges and cut edges:

Y

−
[Y]⊥

−
Y

+

[Y]⊥

+

(axiomatic edge) (cut edge)

4.8. The category of proof nets 133

and a proof net proving
([

[Y]⊥, Z
])

into a proof net proving
([

[X]⊥, Z
])

is given by the

attachment of the link Y ⊥ Y to their union. However, composing a proof net
P : X → Y with the identity morphism Y → Y yields¶ ³

µ ´P
X⊥ Y Y ⊥ Y

which differs from P. So some identification has to be made in order to achieve a category.
Moreover, observe that the hom-set Hom(X, Y) is exactly the same as Hom([Y]⊥, [X]⊥).
This means that we should somehow indicate whether a proof net P with conclusions
[X]⊥ and Y = [[Y]⊥]⊥ is a morphism X → Y or [Y]⊥ → [X]⊥.

We will now show how our two-sided proof nets provide us with an elegant way
to make a category out of formulas and proof nets. We take as collection of objects
the L2-formulas, and as morphisms A → B the NCLL2-proof nets of A ` B. The
identity morphism on B is just the single formula B (i.e. the one-edge link graph), while
composition is given by identifying the appropriate leaves:

• (identity) The identity arrow on B is defined to be the one-edge proof structure
with end labels B− and B+:

B

• (composition) Given P1 with open ends A− and η̂1 = B+ and P2 with open
ends η̌2 = B− and C+, the composition P2 ◦ P1 is defined to be the union of
both, in which the edges η1 and η2 are identified:

A¶ ³
µ ´P1

B B¶ ³
µ ´P2

C

A¶ ³
µ ´P1

B¶ ³
µ ´P2

C

Let us verify the category axioms. Suppose we are given A
P1→ B

P2→ C
P3→ D.

• (unit axiom) idB ◦ P1 = P1 and P2 ◦ idB = P2.

A¶ ³
µ ´P1 B

B

A¶ ³
µ ´P1

B

A

=
¶ ³
µ ´P1

B

B

B
¶ ³
µ ´P2

C

B¶ ³
µ ´P2

C

B

=
¶ ³
µ ´P2

C

134 4. Two-sided proof nets for Cyclic Linear Logic

• (associativity axiom) (P3 ◦ P2) ◦ P1 = P3 ◦ (P2 ◦ P1).

B C¶ ³
µ ´P2

¶ ³
µ ´P3

C D

B¶ ³
µ ´P2

A C¶ ³
µ ´P1

¶ ³
µ ´P3

B D

A¶ ³
µ ´P1

B¶ ³
µ ´P2 =

C¶ ³
µ ´P3

D

A B¶ ³
µ ´P1

¶ ³
µ ´P2

B C

A¶ ³
µ ´P1

B C¶ ³
µ ´P2

¶ ³
µ ´P3

C D

A¶ ³
µ ´P1

B¶ ³
µ ´P2

C¶ ³
µ ´P3

D

The function (−)⊥ : L2 → L2 can be extended to a contravariant map on morphisms,

mapping an arrow A
P→ B into an arrow (B)⊥

(P)⊥→ (A)⊥ (by means of attaching a L⊥-
and R⊥-link to P). However, this map is not functorial, as P2 ◦ P1 does not translate
into (P1)

⊥ ◦ (P2)
⊥.

A¶ ³
µ ´P1

B B¶ ³
µ ´P2

C

◦

A¶ ³
µ ´P1

B¶ ³
µ ´P2

C

(−)⊥7→

A

d
(A)⊥

tR⊥
¶ ³
µ ´P1

(−)⊥7→ B 6=¶ ³
µ ´P2

(C)⊥t
L⊥

Cd

A

d
(A)⊥

tR⊥
¶ ³
µ ´P1

B

d
(B)⊥

tR⊥
(B)⊥t

L⊥

Bd¶ ³
µ ´P2

(C)⊥t
L⊥

Cd
◦

A

d
(A)⊥

tR⊥
¶ ³
µ ´P1

B

d
(B)⊥

tR⊥
(B)⊥t

L⊥

Bd¶ ³
µ ´P2

(C)⊥t
L⊥

Cd
Also, the identity on A does not translate into the identity on (A)⊥, but into

4.8. The category of proof nets 135

(A)⊥

tR⊥
A

d
Ad (A)⊥t

L⊥
Similar remarks can be made for the binary functions ⊗,

&

,(and

(

: L2×L2 → L2.
Observe that the only isomorphisms21 are the identity arrows; indeed the number of

links in P2 ◦ P1 is the sum of the number of links in P2 and P1, which can only be zero
if both P1 and P2 are identity arrows. So the following proof net does not give us an
associativity isomorphism, which would be needed in order to provide our category with
a monoidal structure.

A⊗ (B ⊗ C)t
L⊗

0
1 2

B ⊗ Ct
L⊗

d
0

1 2

Ad

d

Bd
d

C

d

d
2 1

0

A⊗B

tR⊗
d2 1

0

(A⊗B)⊗ C

tR⊗
All these problems can be solved at once by going over to η-expanded cut-free proof

nets. We define the category NCLL as follows. The objects are the L2-formulas, and the
morphisms A→ B are the η-expanded cut-free NCLL2-proof nets of A ` B. The identity
morphism on B is the identity proof net I(B) (see Subsection 3.2.3), while composition
is given by identifying the appropriate leaves and applying cut elimination:

• (identity) The identity arrow on B is defined to be the identity proof net with
end labels B− and B+:

B¶ ³
µ ´TB

I(B) = · · ·¶ ³
µ ´TB

B

• (composition) Given P1 with open ends A− and η̂1 = B+ and P2 with open
ends η̌2 = B− and C+, the composition P2 ◦ P1 is defined to be the (unique)
normal form of the union of both, in which the edges η1 and η2 are identified:

A¶ ³
µ ´P1

B B¶ ³
µ ´P2

C

21An isomorphism is an arrow A
P→ B for which there is a left and right inverse B P

−1

→ A.

136 4. Two-sided proof nets for Cyclic Linear Logic

normal form of


A¶ ³
µ ´P1

B¶ ³
µ ´P2

C


By the theory of Subsection 3.2.4 (for arbitrary η-expanded cut-free proof structures),

we observe that the thus defined composition coincides with the composition on the
corresponding axiom linkings.

Example 4.8.1. Let P1, P2 and I = I(α⊗ (α(α)) be the following proof nets.

α⊗ (α(α)t
L⊗

α

d
αd α(αt

L(

d

α

d
αd

® ©
­ ªd

αd α(α

tR(
d

α⊗ (α(α)

tR⊗

α⊗ (α(α)t
L⊗

αd
® ©

­ ªd
α(αt

L(

d

α

d

d
αdα
d

α(α

tR(
d

α⊗ (α(α)

tR⊗
Evidently P1 ◦ I = P1 and I ◦ P2 = P2. Observe that P1 ◦ P2 must be I(α) = α; the

other composition is

α⊗ (α(α)t
L⊗

α

d
αd α(αt

L(

d
αd

® ©
­ ªd

αdα
d

α(α

tR(
d

α⊗ (α(α)

tR⊗
♦

Lemma 4.8.2. With these definitions of identity and composition, NCLL constitutes
a category. ♦

Proof: This follows from the confluence of cut elimination. Alternatively, observe
that ‘making connections between wires’ (in the setting of axiom linkings) satisfies the
unit axiom as well as associativity. ////

Theorem 4.8.3. A proof net P is dualizable if and only if P is invertible in the
category NCLL. ♦

Proof: =⇒ Suppose P is dualizable. By Lemma 4.6.2 we know that P (A) = P (B)
and N(A) = N(B). Hence Proposition 3.2.13 applies, showing that P ◦ P∗ and P∗ ◦ P
are the identities.

4.9. Intuitionistic fragment 137

⇐= Assume P of A ` B has an inverse P ′, then the corresponding axiom linking
cannot have ‘wires’ of the form pn (since P ′ ◦ P = iA has not) or np (since P ◦ P ′ = iB
has not). Hence all ‘wires’ of P and P ′ are of the form pp and nn. Now a compound
‘wire’ like ppp

′
p
′ is the identity, finishing the proof that P and P∗ are dual to each other.

////

The ‘adjunctions’ in Lemma 4.1.10

A⊗ (−) aaa A((−) (for all formulas A)

(−)⊗A aaa (−)

(

A (for all formulas A)

are easily shown to be real adjunctions in the categorical sense.
A⊗B′ ` A⊗ B ` C ` C ′

B′ ` B ` A(C ` A(C ′

The bijective map is defined as follows: given a proof net P proving A ⊗ B ` C, we
define its image ΨP as the normal form of

Ad
® ©

­ ªd

Bd
A⊗ B

tR⊗
¶ ³
µ ´P

Cd
A(C

tR(
The other way around, given a proof net P proving B ` A(C, we define its image ΦP
as the normal form of

A⊗ Bt
L⊗

B

d
A

d
A

d
¶ ³
µ ´P
A(Ct

L(

C

d
These maps Ψ and Φ are indeed inverses of each other, and moreover

Ψ
(
P2 ◦ P ◦ (A⊗P1)

)
= (A(P2) ◦Ψ(P) ◦ P1

4.9. Intuitionistic fragment

In this section we will study the intuitionistic fragment of NCLL2, which by definition
is the sequent calculus whose rules are the same as those of NCLL2, except that we will
take only the identity rules AxA and CutA where A ∈ L2,i, and the logical rules L¤
and R¤ for connectives ¤ ∈ {⊗,(,

(} (see Section 4.2). Derivations turn out to be
of a special form, which shows that this fragment is the same as Lambek calculus L
([Lambek 58]). After having seen the theory of proof nets for L (cf. [Roorda 91]), we
will establish the analogue of Theorem 4.6.3 for this calculus.

138 4. Two-sided proof nets for Cyclic Linear Logic

We also refer to Remark 6.3.12, where L is approached ‘from below’: as a variant of
multimodal Lambek Calculus.

4.9.1. Lambek calculus. By Theorem 4.2.2 we know that for any sequent ([Γ]) in
L2,i, ([Γ]) is derivable in NCLL2 if and only if it is derivable in the intuitionistic fragment of
NCLL2, where the only-if part is a consequence of the subformula property for NCLL2.
Now the resulting derivable sequents of this fragment are easily shown to satisfy the
additional property of having only one conclusion: indeed, if each of the 0,1,2 premiss
sequents of a rule (different from L⊥, R⊥, L

&

, R

&

) has exactly one conclusion, so has the
conclusion sequent. Derivations hence only contain such one-conclusion sequents, which
observation leads to the so-called Lambek calculus L.

Definition 4.9.1. An L-sequent P is an NCLL2-sequent satisfying:

• P is actually an L2,i-link graph;
• P has exactly one conclusion C+.

♦

As L-sequents are separable, we can denote a sequent
([

C+
0 , C−1 , . . . , C−m

])
by

Cm, . . . , C1 ` C0.

Cm

−
C1

−

¯

C0

+

As rules for L we take those instances of the inference rules of NCLL2 in which the
premiss sequents and the conclusion sequent are L-sequents. We have just seen that
NCLL2 is a conservative extension of L: if an L-sequent ([Γ]) (considered as an NCLL2-
sequent) is derivable in NCLL2, then it is derivable in the intuitionistic fragment of
NCLL2, whence in L already.

4.9. Intuitionistic fragment 139

L

Ax

([A+, A−])

([Γ−, A+])
([

∆−1 , C+, ∆−2 , A−
])

Cut([
Γ−, ∆−1 , C+, ∆−2

])
([

Γ−1 , C+, Γ−2 , B−, A−
])

L⊗([
Γ−1 , C+, Γ−2 , (A⊗ B)−

]) ([Γ−, A+]) ([∆−, B+])
R⊗

([Γ−, (A⊗ B)+, ∆−])

([Γ−, A+])
([

∆−1 , C+, ∆−2 , B−
])

L
(([

Γ−, (B

(

A)−, ∆−1 , C+, ∆−2
]) ([Γ−, B+, A−])

R
(

([Γ−, (B

(

A)+])

([
Γ−1 , C+, Γ−2 , A−

])
([∆−, B+])

L(([
Γ−1 , C+, Γ−2 , (B(A)−, ∆−

]) ([Γ−, B−, A+])
R(

([Γ−, (B(A)+])

In the alternative notation, denoting the sequent
([

C+
0 , C−1 , . . . , C−m

])
by

Cm, . . . , C1 ` C0, L is defined by the following rules.

L

Ax

A ` A

Γ ` A ∆1, A, ∆2 ` C
Cut

∆1, Γ, ∆2 ` C

Γ1, A, B, Γ2 ` C
L⊗

Γ1, A⊗ B, Γ2 ` C

Γ ` A ∆ ` B R⊗
Γ, ∆ ` A⊗ B

Γ ` A ∆1, B, ∆2 ` C
L
(

∆1, B

(

A, Γ, ∆2 ` C

Γ, A ` B
R

(

Γ ` B

(

A

Γ1, A, Γ2 ` C ∆ ` B
L(

Γ1, ∆, B(A, Γ2 ` C

B, Γ ` A
R(

Γ ` B(A

140 4. Two-sided proof nets for Cyclic Linear Logic

4.9.2. Proof nets and contraction criterion. Analogue to Definition 4.3.2, we
define an L-proof net to be an L2-proof structure that can be obtained as the (two-
sided) proof structure P(D) of an L-derivation D (the latter considered as an NCLL2-
derivation). Obviously, an L-proof net is actually an L2,i-proof structure (see Defini-
tion 3.2.6).

Example 4.9.2. Some examples of L-proof nets are given by

AdA
® ©

­ ªd

A(Bt
L(

B

d
Bd B(Ct

L(

C

d
Cd

A(C

tR(

(A(B)⊗ Ct
L⊗

AdA
® ©

­ ªd

A(Bt
L(

d

B

d
d C

d

d
B ⊗ C

tR⊗
d

A((B ⊗ C)

tR(
♦

The conversion steps of Section 4.4 are well-defined on the restriction to the intu-
itionistic labeled elements of LG2. The next two lemmas are a direct consequence of
Theorem 4.4.4(b).

Lemma 4.9.3. Let P ³ Γ (P ³ Γ′) be a conversion sequence from an L2,i-proof
structure to an NCLL2-sequent or a corresponding one-edge link graph. Then there is
an L-derivation D with P = P(D) and Γ = xDy, while Γ is an L-sequent. ♦

Proof: If P ³ Γ (P ³ Γ′) is a conversion sequence from an L2,i-proof structure
to an NCLL2-sequent or a corresponding one-edge link graph, then by Theorem 4.4.4(b)
there is an NCLL2-derivation D with P = P(D) and Γ = xDy. Now all formulas
occurring in D are contained in P which is an L2,i-proof structure, whence D belongs to
the intuitionistic fragment of NCLL2, and hence to L. Of course, Γ = xDy is actually
an L-sequent. ////

Lemma 4.9.4. Let P ³ Γ (P ³ Γ′) be a conversion sequence from an L2-proof
structure to an L-sequent or a corresponding one-edge link graph. Then there is an L-
derivation D with Γ = xDy. ♦

Proof: If P ³ Γ (P ³ Γ′) is a conversion sequence from an L2-proof structure to
an L-sequent or a corresponding one-edge link graph, then by Theorem 4.4.4(b) there is

4.9. Intuitionistic fragment 141

an NCLL2-derivation D′ with P = P(D′) and Γ = xD′y. Now, by conservativity, Γ is
also derivable in L, say by D. (Observe it need not hold that P = P(D).) ////

As a corollary we find the intuitionistic counterpart of Theorem 4.4.4:

Theorem 4.9.5. (a) Let D be an L-derivation. Then P(D) ³ xDy (or P(D) ³
(xDy)′).

(b) Let P ³ Γ (P ³ Γ′) be a conversion sequence from an L2,i-proof structure to an
L-sequent or a corresponding one-edge link graph. Then there is an L-derivation D
with P = P(D) and Γ = xDy.

♦

4.9.3. Dualizable L-proof nets. Let us define the following relations a`i and ad`i

on L2,i:

A a`i B :⇐⇒ A ` B is L-derivable and B ` A is L-derivable

⇐⇒ there is a cut-free and η-expanded L-proof net P1 of A ` B

and a cut-free and η-expanded L-proof net P2 of B ` A

A ad`i B :⇐⇒ there is an L-proof net P of A ` B such that

its dualization P∗ is an L-proof net of B ` A

⇐⇒ there is a cut-free and η-expanded L-proof net P of A ` B such that

its dualization P∗ is an L-proof net of B ` A

As cut-free and η-expanded NCLL2-proof nets with L2,i-labeled open ends are auto-
matically L-proof nets, we see that a`i and ad`i are just the restrictions of a` and ad`
(defined in Section 4.6). Also, by Proposition 2.3.8, 'i is just the restriction of ' to L2,i.
Hence Theorem 4.6.3 instantaneously leads to the following theorem, of which we will
also give a direct proof using Lemma 2.3.10. This direct proof alternatively proves the
complicated Proposition 2.3.8.

Theorem 4.9.6. For all L2,i-formulas A and B the following holds:

A 'i B if and only if A ad`i B

♦

A 'i B
Theorem 4.9.6

Proposition 2.3.8

A ad`i B

A ' B

special case of

Theorem 4.6.3
A ad` B

Proof: The proof will be independent of Proposition 2.3.8.
=⇒ The relation ad`i := {(A, B) ∈ L2,i × L2,i |A ad`i B} is an equivalence relation

satisfying (where the numbers refer to Definition 2.3.6):

• (0¤), by pasting the dual links L¤ and R¤ to the given dualizable proof nets
(¤ = ⊗,

(

or ();
• (5⊗), by the dualizable proof net

142 4. Two-sided proof nets for Cyclic Linear Logic

A⊗ (B ⊗ C)t
L⊗

0
1 2

B ⊗ Ct
L⊗

d
0

1 2

Ad

d

Bd
d

C

d

d
2 1

0

A⊗ B

tR⊗
d2 1

0

(A⊗B)⊗ C

tR⊗
• (5(), by the dualizable proof net

B ⊗At
L⊗

B ⊗A

® ©

­ ªd

B

d

d
A

d
d A((B(C)t

L(
d

B(Ct
L(

C

d
d

(B ⊗ A)(C

tR(
• (5

(

); similarly;
• (5((

), by the dualizable proof net

Ad
® ©

­ ªd

A((B

(

C)t
L(
d

B

(

Ct
L
(

Cd
® ©

­ ªd
B

d
d

A(B

tR(
d

(A(B)

(

C

tR (

As 'i is the smallest such equivalence relation, we must have that 'i ⊆ ad`i, i.e. if
A 'i B then A ad`i B.
⇐= This proof is similar to that of Theorem 4.6.3, though somewhat more compli-

cated as we do not restrict to L2,nf. Let P be a cut-free and η-expanded dualizable proof
net of A ` B. Then we know (Proposition 3.2.9) that P is the union of TA and TB

containing only ⊗-,

(

- and(-links, followed by an identification of the atomic formulas,
which is pairwise by Lemma 4.6.2. The tensor clusters are now of the form:

4.9. Intuitionistic fragment 143

A1

d
A2d A3d A4

d
A5

dA2 ⊗ A3

tR⊗
d

A1 ⊗ (A2 ⊗A3)

tR⊗
d A4 ⊗ A5

tR⊗
d

(A1 ⊗ (A2 ⊗ A3))⊗ (A4 ⊗ A5)

tR⊗

((((A2 ⊗A3)⊗ A4)(((A1(A0)

(

A′1))

(

A′2)

(

(A′4 ⊗A′3)

t
L
(

A′4d A′3d A′2

d

A′1

d

A1

d

A2d A3d A4

d
A′4 ⊗ A′3

tR⊗
d

A2 ⊗ A3

tR⊗
d (((A2 ⊗ A3)⊗A4)(((A1(A0)

(

A′1))

(

A′2t
L
(

d

(A2 ⊗ A3)⊗ A4

tR⊗
d ((A2 ⊗ A3)⊗ A4)(((A1(A0)

(

A′1)t
L(

d

(A1(A0)

(

A′1t
L
(

d

A1(A0t
L(

d

A0

d

which we can abbreviate by

A1d A2d A3d A4d A5d
(A1 ⊗ (A2 ⊗A3))⊗ (A4 ⊗ A5)

tR⊗

respectively

((((A2 ⊗A3)⊗A4)(((A1(A0)

(

A′1))

(

A′2)

(

(A′4 ⊗ A′3)

t
L(

(

A1d A2d A3d A4d A′4d A′3d A′2d A′1d
A0

d

144 4. Two-sided proof nets for Cyclic Linear Logic

or

⊗
A

+

A4

+

A3
+

A2+ A1

+
A0

−
A′1

+

A′2 +

A′3
+A′4

+

The par clusters are given by their dualizations.
If there are no clusters, we get A = α = B. Otherwise, there is a cluster with only

atomic active formulas, which moreover we may suppose to be a tensor cluster. This
cluster hence is a generalized R⊗-link or a generalized L((

-link. It faces exactly one
par cluster (which is hence a generalized L⊗-link respectively a generalized R((

-link),
and the result follows by induction by means of Lemma 2.3.3 (the proof of which only
refers to (0⊗) and (5⊗) for the ⊗-case) respectively Lemma 2.3.10. E.g., let A be given
by

((((A2 ⊗ A3)⊗A4)(((A1(A0)

(

A′1))

(

A′2)

(

(A′4 ⊗ A′3)

= (A′4 ⊗A′3)
−→ A′2

−→ ((A2 ⊗A3)⊗ A4)
+→ A′1

−→ A1
+→ A0

(where the second expression is supposed to be rightmost bracketed) corresponding to the
generalized L((

-link above, where all the Ai and A′i are atoms now. For Lemma 2.3.10
we have to consider the sequence of atoms of the two sequences

A1, ((A2 ⊗ A3)⊗ A4) and (A′4 ⊗A′3), A′2, A′1

which are exactly the geometrically obtained orders of the premisses in the generalized link
before and after the main formula. By the planarity of our representation, a generalized
R((

-link facing our tensor link has as main formula a formula B having the same
respective sequences of atoms, whence Lemma 2.3.10 indeed applies, giving A 'i B:

A

t
L(

(

A1d A2d A3d A4d A′4d A′3d A′2d A′1d
A0

d
A0d

A1

d
A2

d
A3

d
A4

d
A′4

d
A′3

d
A′2

d
A′1

d

B

tR(
(

4.10. Adding Exchange 145

are connected as follows:

⊗
A

+

A4

+

A3
+

A2+ A1

+
A0

−

A′1

+

A′2 +

A′3
+A′4

+

&
B

−

A4

−

A3−
A2

− A1

−
A0

+

A′1

−

A′2
−

A′3 −A′4

−

////

4.10. Adding Exchange

If we add Exchange

([Γ, Bσ, Aρ])
Ex

([Γ, Aρ, Bσ])

to the rules of NCLL2 we obtain MLL2. The proof nets (where a proof net is still defined
as a proof structure that can be obtained as the proof structure of a derivation) of this
calculus exactly are the proof structures in LG

′
2 (see Subsection 4.4.2): proof structures

for which all correction link graphs ωP (ω a switching for P) have a tree as underlying
graph. This is the switching criterion of [DR 89]. Another criterion is the contraction
criterion given by Danos in [Danos 90]: proof nets are those proof structures that can be
contracted into one point, under a suitable contraction relation. Our contraction criterion
for MLL2 is essentially the same. Yet an alternative criterion can be obtained by using
tools from algebraic topology: by generalizing the ordinary definition of homology for
graphs, proof nets turn out to be characterized among proof structures by their homology
(Métayer’s homological criterion, [Métayer 94]). The elegance of this criterion is the fact
that it enables us to give completely algebraical proofs of proof theoretical phenomena
of MLL: several characteristics of our proof structures (e.g. initial pars, splitting pars,
etc.), can now be characterized by algebraic means. (See also [Puite 96] and [PS 97].)

Usually the rule of Exchange will be added as an implicit rule. Let us introduce
the corresponding well-known coarser notion of sequent. We will still use link graphs for
this purpose.

146 4. Two-sided proof nets for Cyclic Linear Logic

A sequent of MLL2 is an L2-link graph P containing exactly one set link l =
{e0, . . . , em−1}~ as context link, no connector links, and whose underlying graph is a tree,
i.e. acyclic and connected. Because of the last requirement every edge η has exactly one
extremity η̂ occurring in l, whence P may be represented by the multiset {λη̌0, . . . , λη̌m−1}
of open ends. Observe that a one-edge link graph

A ρ σ B

is not a sequent; there must be one context link, like in

A ρ ~ Bσ

Example 4.10.1. The following are examples of MLL2-sequents with 0, 1, 2 respec-
tively 4 open ends:

~

{ }

~

A(A

+

{(A(A)+}

B ⊗ (B(A)

−

~

A

+

{(B ⊗ (B(A))−, A+}

B
−

C
+

~

A
+

C

&

(B(A)
−

{B−, A+, (C

&

(B(A))−, C+}

♦
By Cm−1, . . . , Ci ` C0, . . . , Ci−1 (where both sides are multisets) we will denote

the sequent {C+
0 , . . . , C+

i−1, C
−
i , . . . , C−m−1}. In contrast to the sequents for NCLL2, all

sequents can be represented in this way.
The calculus MLL2 is defined by the following (elementary) rules:

MLL2

Ax

{A+, A−}

{Γ, A+} {∆, A−}
Cut

{Γ, ∆}

{Γ, Aρ}
⊥

{Γ, ((A)⊥)−ρ}

{Γ, Aρ} {∆, Bσ}
⊗

{Γ, Aρ ⊗Bσ, ∆}
{Γ, Bσ, Aρ} &

{Γ, Bσ &

Aρ}

Recall that the latter ⊗ and

&

are the maps L
±
2 × L

±
2 → L

±
2 defined on page 22.

4.10. Adding Exchange 147

In order to define proof nets, we postulate Lemma 4.2.5 for MLL2. This means
that the inference rules have to be extended by the information as to which formulas
correspond to each other.

The contraction criterion for MLL2 is now easily obtained from the theory in Sec-
tion 4.4.

We think link graphs (with context links all of the type ‘set link’) admit a definition
of homology similar to the original definition of Métayer, although some difficulties have
to be overcome. (E.g., one single edge may belong to two ‘pairs’.) It is, however, an open
question whether we can reasonably refine this definition to link graphs with context
links of the type ‘cyclic link’. If yes, this could lead to a homological criterion for the
non-commutative calculus NCLL2.

CHAPTER 5

A contraction criterion for CNL

In this chapter we will investigate Classical Non-associative Lambek calculus (CNL),
the calculus which remains after removing commutativity as well as associativity from
MLL. Our notion of sequent must be subtle enough to admit this structural fine treat-
ment. Moreover, we will define it in such a way that the calculus NL of the next chap-
ter arises as the intuitionistic fragment. The one-sided non-associative linear logic of
[dGL 00] will be obtained by projection on L1.

5.1. Cyclic trees

Given m ≥ 1 distinct elements e0, e1, . . . , em−1, a cyclic list ([e0, . . . , em−1]) can be
represented by m lists (ek, ek+1, . . . , ek−1) (where 0 ≤ k < m). Each representative
(ek, ek+1, . . . , ek−1) is determined by its first element ek, and distinct representatives can
be obtained from each other by cyclic permutation (or rotation), which is nothing else
than commutativity on the outermost level:

(Γ, ∆)↔ (∆, Γ)

Example 5.1.1. The cyclic list ([e0, . . . , em−1])

em−1 ek+1

e0 ¯ ek =

e1 ek−1

ek−1 e1

ek ¯ e0

ek+1 em−1

has m representatives, among which

¯
and

e0 e1 . . . ek−1 ek ek+1 . . . em−1

(e0, . . . , em−1)

¯

ek ek+1 . . . em−1 e0 e1 . . . ek−1

(ek, ek+1 . . . , ek−1) ♦
We will introduce cyclic trees similarly as a quotient of the collection of rooted binary

trees1 instead of lists. Let e0, e1, . . . , em−1 be m ≥ 2 distinct elements. On the collection of

1A rooted binary tree can be denoted by a binary parenthesization, e.g.

A¯ ((B ¯D)¯ C) or A((BD)C).

This will be called a rooted binary tree on the list (A,B,D,C), or a rooted binary tree with leaves
A,B,C,D (in some order).

149

150 5. A contraction criterion for CNL

all rooted binary trees with leaves e0, e1, . . . , em−1 (in some order), let ↔ be the smallest
equivalence relation satisfying

(Γ¯∆)¯Π↔ Γ¯ (∆¯Π) (Ass)

Γ¯∆↔ ∆¯ Γ (Comm)

Now we define2 cyclic trees on e0, e1, . . . , em−1 to be the equivalence classes of ↔. We
stress the fact that↔ is not defined as the smallest congruence relation w.r.t. ¯ satisfying
(Ass) and (Comm), which would have trivialized it.

We define a CNL2-sequent to be an L2-link graph P = (E ,L, ∅, λ) containing only
cyclic links ([e0, e1, e2])¯ of valence 3 as context links, no connector links, and whose
underlying graph is acyclic and connected. The underlying graph of a sequent has m+ |L|
vertices, while there are |E| edges. By acyclicity and connectedness

m + |L| = |E|+ 1

As every link has valence 3, counting the total number of ends (edge extremities) yields

2 |E| = m + 3 |L|

We conclude that

|L| = m− 2

|E| = 2m− 3

Lemma 5.1.2. A CNL2-sequent one-to-one corresponds to a cyclic tree of polarized
L2-formulas. ♦

Proof: Given a cyclic tree on m ≥ 2 polarized formulas, let Γ¯∆ be a representing
rooted binary tree (where m ≥ 2 guarantees there is an outermost ¯). Replacing the
outermost ¯ and the corresponding root by one single edge η actually yields a sequent.
Observe that the end η̂ completely determines the original rooted binary tree Γ¯∆.

root

¯
left right

7→

Γ ∆

η̂

Γ ∆

The resulting link graph is invariant under ↔-equivalence:

η̂

=
Γ ∆

η̌

∆ Γ

2The representatives of one cyclic tree hence are exactly those rooted binary trees which can be
obtained from a particular representative by a form of associativity and commutativity. This seems
paradoxical, since Lemma 5.1.2 shows that a cyclic tree is just a sequent for CNL: the calculus which
remains after removing commutativity as well as associativity from MLL. However, the paradox evap-
orates when one realizes that only a very restrictive form of associativity and commutativity is divided
out, viz. on the outermost level only.

5.1. Cyclic trees 151

¯
η̂

ξ̂

=

Γ ∆ Π

¯ξ̂
η̂

Γ ∆ Π

Hence we have established a well-defined map from cyclic trees to sequents, which is
clearly surjective. It remains to prove that only ↔-equivalent rooted binary trees yield
the same sequent. Given two rooted binary trees Γ1 and Γ2 with the same image P
under the above map, then each of them determines an end ei of P. Walking3 around
P in anticlockwise direction from e1 to e2 corresponds to a chain of equivalences (Ass)
(in case the present end η̂ is a context end) and (Comm) (in case η̂ is an open end)
connecting Γ1 and Γ2. (In this way, (Comm) is only applied with Γ a trivial rooted
binary tree η̂ = Aρ. As a matter of fact, we can possibly cut short our thus obtained
walk by instances of (Comm) with complex Γ.) ////

The most simple sequent contains only one edge, and consequently has two open ends.
Depending on the polarization of the labels, it will be denoted by ` A, B or A ` B or
A, B ` .

Observe that sequents themselves do not have an outermost ¯; indeed, by the defini-
tion of a link graph, every open end is labeled by a polarized formula, whence a formal
root is absent. Instead, every directed edge (or equivalently, every end) can be considered
as the root of a representing rooted binary tree.

Example 5.1.3. Let P be the following sequent:

B

−
(B

&

A)(B

+

A + ¯ ¯
η̌

η̂

C ⊗A+

¯

C

&

(B(A)

−

Then the two representatives corresponding to the ends η̂ and η̌ are given by

3Let us suppose that ends ‘keep right’:

• η
η̂

η̌
•

In this way ends correspond to directed edges.

152 5. A contraction criterion for CNL

¯

η̂

¯

¯ ¯

B
−

A
+

C

&

(B(A)
−

C ⊗A
+

(B

&

A)(B
+

(
(B− ¯A+)¯ (C

&

(B(A))−
)
¯

(
(C ⊗A)+ ¯ ((B

&

A)(B)+
)

and

¯

η̌

¯

¯ ¯

C ⊗ A
+

(B

&

A)(B

+
B

−
A

+
C

&

(B(A)

−

(
(C ⊗ A)+ ¯ ((B

&

A)(B)+
)
¯

(
(B− ¯ A+)¯ (C

&

(B(A))−
)

As a representative is already determined by indicating the corresponding end e of P, a
distinguished end e makes it superfluous to depict the outermost ¯ of a representative.

♦

Example 5.1.4. Let us enumerate all those rooted binary trees Γi which are ↔-
equivalent with a given one Γ0. We do this by ‘counterclockwisely walking around’ the
corresponding sequent P.

5.1. Cyclic trees 153

Γ0 ¯
(e0)

¯ (Ass)
↔

¯

A+ B+ C+ D+

((A+B+)C+)D+

Γ1 ¯

(e1)

(Ass)
↔

¯ ¯

A+ B+ C+ D+

(A+B+)(C+D+)

Γ2 ¯

(e2)

¯ (Comm)
↔

¯

A+ B+ C+ D+

A+(B+(C+D+))

Γ3 ¯
(e3)

¯ (Ass)
↔

¯

B+ C+ D+ A+

(B+(C+D+))A+

Γ4 ¯

(e4)

¯ (Comm)
↔

¯

B+ C+ D+ A+

B+((C+D+)A+)

Γ5 ¯
(e5)

¯ (Ass)
↔

¯

C+ D+ A+ B+

((C+D+)A+)B+

Γ6 ¯

(e6)

(Ass)
↔

¯ ¯

C+ D+ A+ B+

(C+D+)(A+B+)

Γ7 ¯

(e7)

¯ (Comm)
↔

¯

C+ D+ A+ B+

C+(D+(A+B+))

Γ8 ¯
(e8)

¯ (Ass)
↔

¯

D+ A+ B+ C+

(D+(A+B+))C+

Γ9 ¯

(e9)

¯ (Comm)
↔ Γ0

¯

D+ A+ B+ C+

D+((A+B+)C+)

Together these ten rooted binary trees constitute the equivalence class (i.e. cyclic tree)
corresponding to the sequent P, given by

A+ D+

¯
e5

e4

e3

e2

e1

e6
¯ e8

e7

e0
e9

B+ C+

We know there are 5 rooted binary trees on a fixed list (A+, B+, C+, D+); three of them
are enumerated above (Γ0, Γ1 and Γ2); the remaining two (viz. (A+(B+C+))D+ and
A+((B+C+)D+)) will be found in the equivalence class of

A+ D+

¯e5

e4

e3
e2

e1

e6

¯
e8

e7

e0

e9
B+ C+

There are no other sequents with the same cyclic order ([A+, B+, C+, D+]) of open ends.
♦

Example 5.1.5. In this example we will investigate the combinatorics behind cyclic
trees.

154 5. A contraction criterion for CNL

Let Cn be the number of binary parenthesizations of a fixed list of n + 1 elements,
e.g. for n = 3:

((x0x1)x2)x3 (x0(x1x2))x3 x0((x1x2)x3) x0(x1(x2x3)) (x0x1)(x2x3)

Equivalently, the Cn count the number of abstract rooted binary trees with n + 1 leaves.
Now C0 = 1, while every rooted binary tree with n + 1 ≥ 2 leaves is of the form Γ ¯ ∆
where Γ and ∆ have length k + 1 from 1 up to n respectively length n + 1 − (k + 1),
whence

Cn =

n−1∑
k=0

Ck Cn−k−1 (n ≥ 1)

We will alternatively prove the well-known fact that Cn equals the nth Catalan number :

Cn =
1

n + 1

(
2n

n

)
Observe that the right-hand-side satisfies the recursive definition

1

n + 1

(
2n

n

)∣∣∣∣
n=0

= 1

1
n+1

(
2n
n

)∣∣
n=m+1

1
n+1

(
2n
n

)∣∣
n=m

=
(m + 1)

(m + 2)

(2m + 2)(2m + 1)

(m + 1)(m + 1)
=

4m + 2

m + 2
(m ≥ 0)

A sequent (cyclic tree of polarized L2-formulas) P on m ≥ 2 distinct4 elements has
2m− 3 edges and hence can be represented by 4m− 6 distinct rooted binary trees, each
one corresponding with one of the 4m−6 ends (edge extremities) of P. Now there are m!
ways to put the formulas in a list, and for every list there are Cm−1 rooted binary trees
on it. This yields a total number of m!Cm−1 rooted binary trees, and each contingent of
4m− 6 elements represents one and the same cyclic tree, yielding

m! Cm−1

4m− 6

different cyclic trees.
The m ≥ 2 open ends of a sequent P can be given a canonical cyclic order θP :=

([e0, . . . , em−1]) by walking counterclockwisely around the tree. The other way around,
given a cyclic list Γ := ([e0, . . . , em−1]) of distinct elements, there are Cm−2 cyclic trees
P satisfying θP = Γ. Indeed, declaring one open end as the root, we have to choose a
rooted binary tree structure on the list of remaining m − 1 open ends. Now there are
m!
m

= (m− 1)! cyclic lists, each of which corresponds to Cm−2 cyclic trees, giving

m!

m
Cm−2

cyclic trees. We conclude that

C(m−2)+1 = Cm−1 =
4m− 6

m
Cm−2 =

4(m− 2) + 2

(m− 2) + 2
Cm−2 (m− 2 ≥ 0)

4If some elements are equal, we have to correct for multiple occurrences. E.g. taking C = A and D =
B in Example 5.1.4 causes a rotational order 2 symmetry on the sequent, and the 4m−6 representatives
pairwisely coincide.

5.1. Cyclic trees 155

which — together with C0 = 1 — is in accordance with the above recursive definition of
1

n+1

(
2n
n

)
, proving Cn = 1

n+1

(
2n
n

)
.

In the next diagram we have indicated the different equivalence relations on the set
of m!Cm−1 rooted binary trees. Every arrow represents the canonical projection from
the set of representatives to the set of equivalence classes, which have the indicated size.
Regarding all collections as quotients on the set of m!Cm−1 trees, every arrow represents
taking a quotient corresponding to the smallest equivalence relation satisfying the indi-
cated clause in addition to the original clauses the domain already satisfies. The actual
clauses are given by the following instances and expansions of instances of associativity
and commutativity:

(Γ¯∆)¯Π↔ Γ¯ (∆¯Π) (Ass)

Ξ[(Γ¯∆)¯Π]↔ Ξ[Γ¯ (∆¯Π)] (Ass)

Γ¯∆↔ ∆¯ Γ (Comm)

Ξ[Γ¯∆]↔ Ξ[∆¯ Γ] (Comm)

m! Cm−1

Trees

Ass & Comm4m−6

Ass

Cm−1

Ass

2,...,m−1

Comm

2

m! Cm−2

. . .

Ass

Cm−2

Comm

m

1
2
m! Cm−1

. . .

Ass

2m−3

Comm

2m−2

m!

Lists

Comm

m!

Comm

m

(m−1)! Cm−2

CTrees

Ass

Cm−2
θ

Comm

2m−2

1
2m−1 m! Cm−1

Mobiles

Ass

2m−3

(m−1)!

CLists

Comm

(m−1)!
θ

1
2m−2 (m−1)! Cm−2

Molecules

Ass

(2m−5)(2m−7)···1

1

MSets

The quotient CTrees of Trees and the quotient CLists of Lists are indicated by an
-arrow. Observe that the outermost square differs from the down most square in

only one value of m.

156 5. A contraction criterion for CNL

m! Cm−1

Trees

Ass

Cm−1

Comm

2m−1

m!

Lists

Comm

m!

1
2m−1 m! Cm−1

Mobiles

Ass

(2m−3)(2m−5)···1
1

MSets

and

(m−1)! Cm−2

CTrees

Ass

Cm−2
θ

Comm

2m−2

(m−1)!

CLists

Comm

(m−1)!
θ

1
2m−2 (m−1)! Cm−2

Molecules

Ass

(2m−5)(2m−7)···1
1

MSets

A molecule of polarized L2-formulas one-to-one corresponds to the commutative ver-
sion of a CNL2-sequent: an L2-link graph P = (E ,L, ∅, λ) containing only set links
{e0, e1, e2}~ of valence 3 as context links, no connector links, and whose underlying graph
is acyclic and connected. ‘Suspending’ it by fixing one of its 2m − 3 edges yields a
representing so-called mobile5. The number of mobiles is

m! Cm−1

2m−1
= 1

2m−1 m! 1
m

(2m−2)!
(m−1)!(m−1)!

=
(2m− 2)!

2m−1(m− 1)!
= (2m− 3)(2m− 5) · · ·5 · 3 · 1

The operation ¯ defined on a collection of equivalence classes of trees by

[Γ]¯ [∆] := [Γ¯∆]

is only well-defined when this is the collection of trees, of lists, of mobiles, or of multisets.
Indeed, ↔ has to be a congruence w.r.t. ¯ now:

Γ↔ Γ′ & ∆↔ ∆′ =⇒ Γ¯∆↔ Γ′ ¯∆′

For lists this operation is associative (but not commutative) and denoted by (Γ, ∆), while
for mobiles this operation is commutative (but not associative).

We finish this example with some concrete numbers.

5A mobile, as found pending at the ceiling of many nurseries, is usually made of thread and straws.
Every straw is free to turn around in the horizontal plane. These are the 3 distinct mobiles with m = 3
leaves, each one drawn in a certain position:

• • •
• •• A BB C A CB C A

→ •

D

We can generate the mobiles with 4 leaves by inserting a next straw. In every depicted 3-mobile, any
of the 5 vertical threads may be replaced by this new straw, yielding 15 4-mobiles. This explains the
formula (2m− 3)(2m− 5) · · · 5 · 3 · 1.

5.2. Sequent calculus 157

m 0 1 2 3 4 5 6 7 8 9

Cm 1 1 2 5 14 42 132 429 1430 4862

trees m! Cm−1 - 1 2 12 120 1680 30240 665280 17297280 518918400

cyclic trees (m− 1)! Cm−2 - - 1 2 12 120 1680 30240 665280 17297280

mobiles
m! Cm−1

2m−1 - 1 1 3 15 105 945 10395 135135 2027025

lists m! 1 1 2 6 24 120 720 5040 40320 362880

cyclic lists (m− 1)! - 1 1 2 6 24 120 720 5040 40320 ♦

5.2. Sequent calculus

Let us define the sequent calculus to consist of the following rules.

Ax

A + − A

Γ A+ A − ∆

Cut

Γ ∆

Γ A+

L⊥

Γ A⊥−

Γ A−
R⊥

Γ A⊥+

Γ

B − ¯ A−
L⊗

Γ

A⊗B

−

Γ A+ B + ∆

R⊗

Γ ¯ ∆

A⊗B

+

158 5. A contraction criterion for CNL

Γ A+ B − ∆

L
(

Γ ¯ ∆

B
(
A

−

Γ

B + ¯ A−
R

(

Γ

B
(
A

+

Γ A− B + ∆

L(

Γ ¯ ∆

B(A

−

Γ

B − ¯ A+

R(

Γ

B(A

+

Γ A− B − ∆

L

&

Γ ¯ ∆

B

&

A

−

Γ

B + ¯ A+

R

&

Γ

B

&

A

+

They may be compressed by

Ax

A + − A

5.2. Sequent calculus 159

Γ A+ A − ∆

Cut

Γ ∆

Γ Aρ

⊥

Γ A⊥−ρ

Γ Aρ B σ ∆

⊗

Γ ¯ ∆

Aρ ⊗ Bσ

Γ

B σ ¯ Aρ

&

Γ

Bσ

&

Aρ

We divide the rules in four parts:

• the identity rules Ax and Cut;
• the negation rules L⊥ and R⊥;
• the tensor rules R⊗, L

(

, L(, L

&

;
• the par rules L⊗, R

(

, R(, R

&

.

Observe that a par rule may only be applied to a so called outermost context link, i.e. a
link with at least two ends connected to open ends. In the derivations we will indicate
par rules by dashed horizontal lines.

Example 5.2.1. One easily checks that the sequent in Example 5.1.3 is derivable in
this calculus.

160 5. A contraction criterion for CNL

Ax Ax

A + − A B − + B

L

&

A + ¯ B+

Ax

C − + C
B

&

A

−

R⊗

C − ¯ ¯ B+

Ax Ax

A + − A B + − B

L(

C ⊗ A
+

B

&

A

−

R(

A + ¯ B− C − ¯ (B

&

A)(B+

B(A

−

B

−
(B

&

A)(B

+

C ⊗ A
+

L

&

A + ¯ ¯ C ⊗A+

¯

C

&

(B(A)

−

The following derivations also are examples for this calculus:

Ax Ax

A + − A B + − B

L(

A + ¯ B−

B(A

−

L⊗

B ⊗ (B(A) − + A

5.2. Sequent calculus 161

Ax Ax

A + − A B + − B

L(

A + ¯ B−

B(A

−

R
(

B − + A
(
(B(A)

Ax Ax

A + − A B + − B

L(

A + ¯ B−

B(A

−

R(

B(A − + B(A

♦
Lemma 5.2.2. The negation rules and the par rules are reversible. ♦
Proof: The proof is by means of their respective counterparts and Cut. Let us

prove the R(case.

Ax Ax

A + − A B + − B

L(

Γ A + ¯ B−

B(A

+

B(A

−

Cut

Γ

B − ¯ A+
////

As an immediate consequence of the previous lemma we have

Lemma 5.2.3. This calculus satisfies the following adjunctions:

A⊗ (−) aaa A((−) (for all formulas A)

(−)⊗ A aaa (−)

(

A (for all formulas A)

i.e.
A⊗ B ` C m

B ` A(C

B ⊗A ` C m
B ` C

(

A

162 5. A contraction criterion for CNL

where we used D ` E to denote the sequent D − + E . ♦
Let us mention the unit and co-unit of the first adjunction. Taking A ⊗ B for C we

find the unit is given by B ` A((A⊗B), and taking A(C for B yields the co-unit
A⊗ (A(C) ` C.

In contrast to associative calculi, in a certain sense the tensor rules are reversible as
well: suppose we know that a derivation ends with a tensor rule having main formula Cν ,
then the two premiss sequents are uniquely determined. Compare this phenomenon to
associative calculi, in which it is not a priori clear how to distribute the context formulas
over the premiss sequents when executing a proof search algorithm. (In case the context
contains n formulas, for NCLL there are n+1 choices, and for MLL there are in general
2n choices.) In spite of this sort of reversibility, the tensor rules are not reversible in the
usual sense, as is shown in the next example.

Example 5.2.4. Consider the derivable sequent Π, given by

A⊗B + ¯ C−

(B(A⊥)⊗ C

+

If we are given that
(
(B(A⊥)⊗C

)+
is most recently introduced, the premiss sequents

must be

A⊗B + + B(A⊥ and C−+C

The two reversals of R⊗

Γ ¯ ∆

A⊗B

+

R⊗−1
1

Γ A+

and

Γ ¯ ∆

A⊗B

+

R⊗−1
2

B + ∆

are not in general admissible rules. As a counter example, derivability of our sequent Π
would then imply e.g. derivability of

C − + A and (B(A⊥)⊗ C++B

quod non. We conclude that R⊗ is not invertible, and as a consequence not reversible.
♦

5.3. Contraction criterion

This section will mainly follow Section 4.3 and Section 4.4. We will leave out the
proofs, which are completely similar.

5.3. Contraction criterion 163

5.3.1. Proof nets. To a CNL2-derivation D we assign an L2-proof structure P(D)
in the obvious way. It has open ends in one-to-one correspondence to the open ends of the
final sequent xDy of D, and corresponding open ends are labeled by the same polarized
formula.

Definition 5.3.1. A CNL2-proof net is an L2-proof structure that can be obtained
as the proof structure of a CNL2-derivation. ♦

Example 5.3.2. Consider the first derivation of Example 5.2.1. Its proof net is given
by Figure 5.1. ♦

This notion of proof net just determines a subset of the already encountered proof
nets for NCLL2.

Lemma 5.3.3. Let θ : CTrees → CLists be the forgetful map as introduced in Exam-
ple 5.1.5.

(a) If D is a CNL2-derivation, then θD is an NCLL2-derivation.
(b) If Γ is a derivable CNL2-sequent, then θΓ is a derivable NCLL2-sequent.
(c) Every CNL2-proof net is an NCLL2-proof net.

♦
Proof: (a) Applying θ to the 0, 1 or 2 premiss sequent(s) and the conclusion

sequent of a CNL2-inference yields an NCLL2-inference, whence the result follows by
induction on D.

(b) Directly, by part (a).
(c) Suppose P is an CNL2-proof net, say P = P(D) where D is a CNL2-derivation.

Now θD is an NCLL2-derivation by part (a), while P(θD) still equals P, the latter hence
being an NCLL2-proof net. ////

Example 5.3.4. Examples of an NCLL2-proof net which will turn out not to be a
CNL2-proof net are given by

AdA
® ©
­ ªd 1

2 0

A(A

tR(

B ⊗ At
L⊗

B ⊗ A

® ©

­ ªd

B

d

d
A

d
d A((B(C)t

L(
d

B(Ct
L(

C

d
d

(B ⊗A)(C

tR(
♦

We define the notions logical cut, substitution of D2 into D1, sober derivation, Aρ-
clique, A-clique, and A-clique in axiomatic, flow, or cut form similar as in Subsection 4.2.3
and Section 4.3.

Proposition 5.3.5. Let P = P(D) be the proof net of a derivation D. Every link
l of P of subtype X¤ corresponds to an X¤-rule of D. For every formula A of P, the
A-clique (in D) is in

164 5. A contraction criterion for CNL

(B

&

A)(B

+

&

(B

&

A)(B

−

B

+
B

&

A

−

⊗
B

&

A

+
B

−

A

−B

−

A + ⊗
B(A

+

B

+

A− ⊗
C ⊗ A
−

A

+

C

+

⊗
C

&

(B(A)

+

C

−
B(A

−
C ⊗ A

+

C

&

(B(A)

−

Figure 5.1.

5.3. Contraction criterion 165

• axiomatic form if A is an axiomatic formula,
• flow form if A is neither axiomatic nor cut,
• cut form if A is a cut formula.

As a consequence, every formula A of P corresponds to n AxA rules and m CutA rules
of D, and the following holds:

n−m =


1 if A is an axiomatic formula,

0 if A is neither axiomatic nor cut,

−1 if A is a cut formula.

In particular, if D is sober, there is a bijective correspondence between the axiomatic (cut)
formulas of P and the Ax (Cut) rules of D. ♦

Theorem 5.3.6. Let D and D′ be derivations of the same sequent ([Γ]). Then their
respective proof nets P and P ′ are equal if and only if there exists a sequence of derivations
D = D0,D1, . . . ,Dn−1 = D′ such that Di and Di+1 differ only for a permutation of
two consecutive inferences, or Di is obtained from Di+1 (or the other way around) by a
substitution (i.e. elimination of a non-logical Cut). ♦

Let LG
3
2 denote the collection of L2-link graphs with well-labeled (see Figure 3.1)

connector links, viz. tensor links (e0, e1, e2)⊗ (indicated by ⊗), par links (e0, e1, e2) &

(indicated by

&

), and negation links (e0, e1)⊥ (indicated by ⊥), and with context links

([e0, e1, e2])¯ (indicated by ¯) of valence 3. Observe that both L2-proof structures and

CNL2-sequents belong to LG
3
2. On LG

3
2 we will define the following conversion relation.

One easily checks that these conversion steps are well defined (i.e. they do yield an element
of LG

3
2) and preserve the open ends.

Definition 5.3.7. • [tens](l) Every tensor link l converts into a context link:

⊗
B(A

+
B

+

A

−

L(→ ¯

and similar for R⊗, L

(

and L

&

.
• [neg](l, η1, η2) Every negation link l connected to two edges η1 and η2 6= η1 con-

verts into a single edge:

⊥
(A)⊥

+
A

+

L⊥→

and similar for R⊥.

166 5. A contraction criterion for CNL

• [par](l1, l2, η1, η2) Given a par link l1, the active ends of which are connected to
two consecutive ends of a single context link l2 in the right order, then l1 and l2
together convert into a single edge if η1 6= η2:

¯

η2

R(→

&
B(A

−

A

+
B

−

η1

and similar for L⊗, R

(

and R

&

.
♦

Example 5.3.8. The proof net of Example 5.3.2 converts to the sequent of Exam-
ple 5.1.3 in four [tens]-steps and one R(-step.

The proof structures of Example 5.3.4 do not convert to a sequent. ♦
It is easy to see that this reduction relation is terminating; in each conversion step P1 =

(E1,L1,L′1, λ1)→ P2 = (E2,L2,L′2, λ2) the non-negative integer φ(P) := |E|+ |L|+ 2 |L′|
decreases by at least one (recall that L consists of the context links, while L′ contains
the connector links):

Lemma 5.3.9. The conversion steps increase φ by ∆φ, given by:

• [tens] (∆ |E| , ∆ |L| , ∆ |L′|) = (0, +1,−1), so ∆φ = −1.
• [neg] (∆ |E| , ∆ |L| , ∆ |L′|) = (−1, 0,−1), so ∆φ = −3.
• [par] (∆ |E| , ∆ |L| , ∆ |L′|) = (−3,−1,−1), so ∆φ = −6.

♦
Let (LG

3
2)
′ denote the collection of those elements P of LG

3
2 for which all the 2n

correction link graphs ωP have a tree as underlying graph (see Subsection 4.4.2), i.e.
(LG

3
2)
′ = LG

3
2 ∩ LG

′
2.

Lemma 5.3.10. Let P1,P2 ∈ LG
3
2 and suppose P1 → P2. Then P1 ∈ (LG

3
2)
′ if and

only if P2 ∈ (LG
3
2)
′. ♦

In particular, the conversion steps are well defined on (LG
3
2)
′ (i.e. they do yield an

element of (LG
3
2)
′ when applied on an element of (LG

3
2)
′).

Since CNL2-sequents belong to (LG
3
2)
′, we immediately obtain the next result.

5.3. Contraction criterion 167

Corollary 5.3.11. If an L2-proof structure P converts to a CNL2-sequent Γ, then
P ∈ (LG

3
2)
′. ♦

The conversion relation is confluent on (LG
3
2)
′.

Lemma 5.3.12. If P ∈ (LG
3
2)
′ converts in one step to P1 and P2, then both P1 and

P2 convert in at most one step to a common P3 ∈ (LG
3
2)
′. ♦

P1

P

[conv1]

[conv2]

P3

P2

5.3.2. Completeness.

Theorem 5.3.13. (a) Let D be a CNL2-derivation. Then P(D)³ xDy.
(b) Let P ³ Γ be a conversion sequence from an L2-proof structure to a CNL2-sequent.

Then there is a CNL2-derivation D with P = P(D) and Γ = xDy.
♦

Observe that by part (a) CNL2-proof nets convert to CNL2-sequents. Hence by
Corollary 5.3.11 they will only be found in (LG

3
2)
′.

Corollary 5.3.14. Let Γ be a CNL2-sequent. Then the following are equivalent:

(i) Γ is derivable in CNL2;
(ii) There is a proof structure P and a conversion sequence P ³ Γ.

♦
Theorem 5.3.15. (a) Let D be a CNL2-derivation. Then P(D)³ xDy.

(b) Let P ³ Γ be a conversion sequence from an L2-proof structure to a CNL2-sequent.
Then there is a sober CNL2-derivation D with P = P(D) and Γ = xDy.

♦
By means of Lemma 5.3.12 and Lemma 5.3.9 we can sharpen Corollary 5.3.14 into:

Theorem 5.3.16. Let Γ be a CNL2-sequent. Then the following are equivalent:

(i) Γ is derivable in CNL2;
(ii) There is a proof structure P such that all conversion sequences P ³ P ′ (where P ′

is normal) satisfy P ′ = Γ.

♦
Theorem 5.3.17. Let P be a proof structure and P ³ P ′ be an arbitrary conversion

sequence to a normal form. Then P is a CNL2-proof net if and only if P ′ is a CNL2-
sequent. ♦

168 5. A contraction criterion for CNL

5.4. Adding structural rules

An n-ary structural rule

... ei ...

P

〈P,P ′, π〉

... eπi ...

P ′

is defined by a pair of cyclic n-trees P,P ′ with open ends in bijective correspondence
π : ei 7→ eπi. Declaring one open end of P (P ′) as the root enables us to enumerate
the sequence of open ends of P (P ′), starting with the root. Hence the structural rule
may be represented by means of a pair of rooted trees Ξ, Ξ′ on n − 1 elements, and a
rearrangement of the coinciding n open ends π ∈ Sn, the symmetric group of degree n,
where ‘e0’ is the root of Ξ and ‘eπ0’ is the root of Ξ′. Different defining tuples 〈Ξ, Ξ′, π〉 and〈
Ξ̃, Ξ̃′, π̃

〉
represent the same structural rule precisely if Ξ and Ξ̃ (Ξ′ and Ξ̃′) differ only

for the choice of the root, while π̃ compensates π for this difference: π̃(i) = π(i+n l)−n k.

Γ1 ... Γn−1

Γ0

Ξ

〈Ξ, Ξ′, π〉

Γπ1 ... Γπn−1

Γπ0

Ξ′

Γk+1 ... Γk+n−1

Γk

Ξ̃

Γπl+1
... Γπl+n−1

Γπl

Ξ̃′

eΓ1 ... eΓn−1

eΓ0

Ξ̃

DeΞ, eΞ′, eπE

eΓ
eπ1

... eΓ
eπn−1

eΓ
eπ0

Ξ̃′

5.4. Adding structural rules 169

Example 5.4.1. The following are examples of structural rules.

Γ0

¯

Γ1 Γ2

Comm

Γ0

¯

Γ2 Γ1

Γ0 Γ3

¯ ¯

Γ1 Γ2

Ass

Γ0 Γ3

¯

¯
Γ1 Γ2

Γ1 Γ0

¯ ¯

Γ2 Γ3

Ass
′

Γ1 Γ0

¯

¯
Γ2 Γ3

Observe that Ass and Ass
′ coincide. Representatives of Ass = Ass

′ with π0 = 0 are
given by

Γ0

¯
¯

Γ1 Γ2 Γ3

〈x(xx), (xx)x, id〉

Γ0

¯
¯

Γ1 Γ2 Γ3

Γ0

¯
¯

Γ1 Γ2 Γ3

〈(xx)x, x(xx), id〉

Γ0

¯
¯

Γ1 Γ2 Γ3

170 5. A contraction criterion for CNL

depending6 on the choice of the root of P, while another representative (obtained by
taking Γ0 respectively Γ1 as roots of P and P ′) is given by

Γ0

¯
¯

Γ1 Γ2 Γ3

〈x(xx), x(xx), i 7→ i + 1〉

Γ1

¯
¯

Γ2 Γ3 Γ0

♦
Let R be a fixed set of structural rules. We call CNL2,R the calculus obtained by

adding these structural rules to CNL2, in which sequents still are CNL2-sequents. To
a CNL2,R-derivation D we assign an L2-proof structure PR(D) (called a CNL2,R-proof
net) by neglecting the structural rules occurring in D.

Proof nets in the calculus without structural rules (CNL2-proof nets or, more general,
NCLL2-proof nets) satisfy the following property: they may be graphically represented
by a planar graph, which induces an order on the open ends that coincides with the cyclic
list of open ends of the sequent the proof net proves. This is easily shown by induction
on D, or from the contraction criterion Theorem 5.3.13 (Theorem 4.4.4) when we realize
that the conversion steps, read from right to left, preserve planarity and the cyclic order
of the open ends of the link graphs.

For CNL2,R-proof nets, on the contrary, a final structural rule occurring in

D =
D1

Γ1 〈Ξ, Ξ′, π〉
Γ

has no effect on PR(D) (i.e. the latter equals PR(D1)), although the cyclic list of open ends
of Γ may differ from that of Γ1. Nevertheless, we can formulate a contraction criterion
for CNL2,R. We extend the conversion relation on LG

3
2 (Definition 5.3.7) by

• [struct](P) If 〈P,P ′, π〉 is a structural rule in R, a sub link graph P converts
into P ′, while the open ends of P are correctly permuted:

... ηi ...

P 〈P,P ′, π〉→
... ηπi ...

P ′

6Indeed, the choice of root (Γ0) for P fixes the root (Γπ0) of P ′ when π0 = 0.

5.4. Adding structural rules 171

and denote the steps of this new relation by →R. This relation →R is not in general
terminating anymore, neither is it confluent on (LG

3
2)
′. However, Lemma 5.3.10, Corol-

lary 5.3.11, Theorem 5.3.13, Corollary 5.3.14, Theorem 5.3.15 still hold for this extended
conversion relation:

Lemma 5.4.2. Let P1,P2 ∈ LG
3
2 and suppose P1 →R P2. Then P1 ∈ (LG

3
2)
′ if and

only if P2 ∈ (LG
3
2)
′. ♦

In particular, the →R-conversion steps are well defined on (LG
3
2)
′ (i.e. they do yield

an element of (LG
3
2)
′ when applied on an element of (LG

3
2)
′).

Since CNL2-sequents belong to (LG
3
2)
′, we immediately obtain the next result.

Corollary 5.4.3. If an L2-proof structure P →R-converts to a CNL2-sequent Γ,
then P ∈ (LG

3
2)
′. ♦

Theorem 5.4.4. (a) Let D be a CNL2,R-derivation. Then PR(D)³R xDy.
(b) Let P ³R Γ be a conversion sequence from an L2-proof structure to a CNL2-sequent.

Then there is a CNL2,R-derivation D with P = PR(D) and Γ = xDy.
♦

Proof: (a) If the last rule is a structural rule

D =
D1

Γ1 〈Ξ, Ξ′, π〉
Γ

we know by induction hypothesis that PR(D1)³R Γ1, whence

PR(D) = PR(D1)³R Γ1
struct→ R Γ

The other cases are the same as those of Theorem 5.3.13, which are proved similar to
Theorem 4.4.4.

(b) If the last conversion is a [struct]-step Γ1 →R Γ, also Γ1 is a sequent, whence
by induction hypothesis there is a CNL2,R-derivation D1 of Γ1 with P = PR(D1). Now
extend D1 with the appropriate structural rule. The other cases are the same as those of
Theorem 5.3.13, which are proved similar to Theorem 4.4.4. ////

Observe that by part (a), CNL2,R-proof nets →R-convert to CNL2-sequents. Hence
by Corollary 5.4.3 they will only be found in (LG

3
2)
′.

Corollary 5.4.5. Let Γ be a CNL2-sequent. Then the following are equivalent:

(i) Γ is derivable in CNL2,R;
(ii) There is a proof structure P and a conversion sequence P ³R Γ.

♦
Theorem 5.4.6. (a) Let D be a CNL2,R-derivation. Then PR(D)³R xDy.

(b) Let P ³R Γ be a conversion sequence from an L2-proof structure to a CNL2-sequent.
Then there is a sober CNL2,R-derivation D with P = PR(D) and Γ = xDy.

♦
If we take R to consist of Ass only, we actually obtain the variant NCLL2,2 of

NCLL2, in which the sequents are required to contain at least two formulas.

Theorem 5.4.7. Let R = {Ass} and let Γ be a CNL2-sequent. Then Γ is CNL2,R-
derivable if and only if θΓ is NCLL2,2-derivable. ♦

172 5. A contraction criterion for CNL

Proof: The ‘only if’-part is easy: a CNL2,R-derivation becomes an NCLL2,2-
derivation under θ; here Ass translates into the identity induced rule.

For the ‘if’-part, observe that every NCLL2,2-sequent ∆ can be written as θΓ1 for
some CNL2-sequent Γ1, while θΓ1 = θΓ2 implies that Γ2 can be obtained from Γ1 by
several applications of Ass. The proof of this fact is similar to the proof of Lemma 2.3.3,
applied to representing trees of Γ1 and Γ2. Now consider the final rule of a derivation D
of θΓ in NCLL2,2.

D =
D0

θΓ0 . . .

Dn−1

θΓn−1

θΓ

By induction hypothesis there are CNL2,R-derivations of Γ0 up to Γn−1, and — possibly
after some Ass-modifications in case of a par rule — we can apply the corresponding rule
of CNL2. Modifying the result Γ′ finally yields Γ.

D̃ =

D̃0

Γ0
Ass

Γ′0 . . .

D̃n−1

Γn−1
Ass

Γ′n−1

Γ′
Ass

Γ

////

5.5. Cut elimination

We will formulate the non-associative counterparts of the results in Section 4.5 for
CNL2,R at once; the results for CNL2 follow by taking R = ∅.

Theorem 5.5.1. If P is a CNL2,R-proof net proving the CNL2-sequent Γ, and P Ã
P ′ by a cut reduction step, then P ′ is a proof net proving Γ as well. ♦

Proof: The proof will resemble that of Theorem 4.5.1. In the first part (C = (A)⊥),
observe that it is no restriction to assume that our conversion sequence P ³R Γ starts
with all occurring [neg]-steps. In the last part (C = B(A etc.), let l and l1 be the
corresponding par link respectively tensor link. Fix a conversion sequence P ³R Γ. The
par link l disappears at a conversion α := [par](l, l2), yielding an edge. We claim that it is
no restriction to assume that l1 remains untouched until α. Indeed, reasoning backwards
from Γ, after a number of conversions of the form [tens], [neg] or [struct], a contraction
([par]-step) splits the sole component into two parts, replacing one edge by a redex. The
par link of this redex now serves as a boundary between the two new components; all
next conversions of the form [tens], [neg] or [struct] take place completely within one
of the two components, and the same holds for the next contraction. This shows that
we can reorder our original conversion sequence as desired, in which l1 (and l) remains

5.5. Cut elimination 173

untouched until α. So our conversion sequence has the following form:

P

&

B(A

−

A

+
B

−

l

β
³R

⊗
B(A

+

B

+
A

−

l1

¯ l2

&

B(A

−

A

+
B

−

l

α→

⊗
B(A

+

B

+
A

−

l1

L(→

⊗
B(A

+

B

+
A

−

l1

γ
³RΓ

¯ l′1

We have used the fact that it is no restriction either to assume that the next conversion
step after α is L(. Executing the cut reduction step yields the proof structure P ′ to
which we can apply β followed by γ:

P ′ β
³R

¯ l2

=

¯ l′1

γ
³RΓ

Observe that l2 plays the role of l′1 in γ. ////

This in turn enables us to prove the next theorem.

174 5. A contraction criterion for CNL

Theorem 5.5.2. (a) Let a CNL2-sequent Γ be given. Then Γ is CNL2,R-derivable
if and only if the set

{P |P is an η-expanded cut-free proof structure with the same open ends as Γ}

contains a proof structure →R-converting to Γ.
(b) Let a cyclic list ∆ of open ends be given (i.e. an NCLL2-sequent). Then some cyclic

tree with the same cyclic list of open ends as ∆ is CNL2,R-derivable if and only if
the set

{P | P is an η-expanded cut-free proof structure with the same open ends as ∆}

contains a proof structure →R-converting to a sequent with the same cyclic list of
open ends as ∆.

(c) Let a set of open ends be given, i.e. a multiset of hypotheses A−0 , . . . , A−m−1 and a
multiset of conclusions B+

0 , . . . , B+
n−1. Then some cyclic tree consisting of these open

ends is CNL2,R-derivable if and only if the set{
P |P is an η-expanded cut-free proof structure of A−0 , . . . , A−m−1 ` B+

0 , . . . , B+
n−1

}
contains a CNL2,R-proof net: a proof structure →R-converting to a sequent.

♦

5.6. Dualizable proof nets

Let us define the following relations
CNL

a` and
CNL

ad` on L2,:

A
CNL

a` B :⇐⇒ A ` B is CNL2-derivable and B ` A is CNL2-derivable

⇐⇒ there is a cut-free and η-expanded CNL2-proof net P1 of A ` B

and a cut-free and η-expanded CNL2-proof net P2 of B ` A

A
CNL

ad` B :⇐⇒ there is a CNL2-proof net P of A ` B such that

its dualization P∗ is a CNL2-proof net of B ` A

⇐⇒ there is a cut-free and η-expanded CNL2-proof net P of A ` B such that

its dualization P∗ is a CNL2-proof net of B ` A

Theorem 5.6.1. For all L2-formulas A and B the following holds:

A ≡ B if and only if A
CNL

ad` B

♦

Proof: =⇒ Similar to Lemma 4.6.1.1. The relation
CNL

ad` :=

{
(A, B) |A

CNL

ad` B

}
is an equivalence relation satisfying (where the numbers refer to Definition 2.2.1):

• (0¤), by pasting the dual links L¤ and R¤ to the given dualizable proof net(s)
(¤ = ⊗,

(

,(,

&

or ⊥);
• (1), by the following dualizable proof net

5.6. Dualizable proof nets 175

1 0

1 0

(A⊗ B)⊥

t
L⊥

Ad

d
Bd
d

B⊥

tR⊥
d A⊥

tR⊥

d2 1
0

2 1
0

A⊗ Bd
tR⊗

B⊥

&

A⊥

tR &

0 1

• (2); similarly;
• (3a); by the dual proof nets of Example 3.2.8;
• (3b); similarly;
• (4), by the dualizable proof net

1 0

A

d
A⊥

tR⊥
d (A⊥)⊥t

L⊥
1 0

As ≡ is the smallest such equivalence relation, we must have that ≡ ⊆
CNL

ad`, i.e. if A ≡ B

then A
CNL

ad` B.
⇐= The proof resembles that of Theorem 4.6.3. We first show this direction for

L2,nf-formulas (the De Morgan normal forms):

L2,nf := F ::= A | (A)⊥ | F ⊗ F | F &F

Actually, we will prove something stronger: for all A, B ∈ L2,nf, if A
CNL

ad` B, then A = B.
This will be done by induction on the size of a cut-free and η-expanded dualizable CNL2-
proof net of A ` B.

Suppose A
CNL

ad` B, in which A and B are L2,nf-formulas. By Lemma 5.3.3 we know
also A ad` B. Let P be a cut-free and η-expanded dualizable proof net of A ` B.
Then we know by Proposition 3.2.9 that P is the union of TA and TB containing only
L⊗-, R⊗-, L

&

- and R

&

-links, or ⊥-links applied to atoms, followed by an identification
of the atomic formulas, which is pairwise by Lemma 4.6.2 (since A ad` B). If (α)⊥ is a
subformula of A, then α is an hypothesis of TA. Hence it is a conclusion of TB, yielding
that (α)⊥ is a subformula of B. Contracting the two ⊥-links and replacing (α)⊥ by the
new atom α⊥ yields a proof net which moreover is ⊥-free. Hence, let P be a cut-free
and η-expanded CNL-dualizable proof net of A ` B, where P is the union of TA and
TB containing only L⊗-, R⊗-, L

&

- and R

&

-links, followed by a pairwise identification of
the (new) atomic formulas. Performing the contractions P ³ Γ in the opposite direction
provides us with a planar graphical representation of P.

The clusters are exactly the same as in the proof of Theorem 4.6.3. If there are no
clusters, we get A = α = B. Otherwise there is a cluster C with only atomic active
formulas, which we moreover may suppose to be a tensor cluster. It faces exactly one par
cluster C0, and (which is characteristic for CNL2) P can only convert to a sequent when
C and C0 are dual to each other. So their main formulas C and C0 are coinciding ⊗-only
(

&

-only) L2-formulas: C = C0.

176 5. A contraction criterion for CNL

Replacing C and C0 by a unique new atom α∞ results in a strictly smaller dualizable
proof net P ′, yielding A[α∞/C0] = B[α∞/C] by induction hypothesis. Backsubstituting
C and C0 (for which C = C0) we get A[α∞/C0][C0/α∞] = B[α∞/C][C/α∞], i.e. A = B.

Now let arbitrary A and B be given for which A
CNL

ad` B. Then by the =⇒ -part

(knowing νπA ≡ A) νπA
CNL

ad` A
CNL

ad` B
CNL

ad` νπB, hence νπA
CNL

ad` νπB. By the result
established above we obtain νπA = νπB, whence also A ≡ νπA = νπB ≡ B, i.e. A ≡ B.

////

5.7. One-sided nets

In this section we will use the theory of previous sections to prove a contraction
criterion for one-sided CNL.

A sequent of CNL1 is an L1-link graph P containing only cyclic links ([e0, e1, e2])¯ of
valence 3 as context links, no connector links, and whose underlying graph is acyclic and
connected. Moreover, all labels are positively polarized.

The calculus CNL1 is defined by the following (elementary) rules:

Ax

X + + [X]⊥

Π X+ [X]⊥ + Σ

Cut

Π Σ

Π X+ Y + Σ

⊗

Π ¯ Σ

X ⊗ Y

+

Π

Y + ¯ X+

&

Π

Y

&

X

+

The map π+ : L
±
2 → L

±
1 , defined according to Subsection 2.1.4 and Subsection 2.1.5

by

π+(A+) = (πA)+

π+(A−) =
(
π((A)⊥)

)+
= ([πA]⊥)+,

extended to CNL2-sequents, yields CNL1-sequents.

5.7. One-sided nets 177

The other way around, the function ψ± : L
±
1 → L

±
2 mapping X+ to ψX = (X•)X ∈ L

±
2

(and X− to τψX = (X•)−X ∈ L
±
2 ; see Subsection 2.1.4 and Subsection 2.1.5), extended

to CNL1-sequents, yields CNL2-sequents.

Lemma 5.7.1. (a) For all CNL2-sequents Γ the following holds:
Γ is CNL2-derivable if and only if π+Γ is CNL1-derivable.

(b) For all CNL1-sequents Π the following holds:
Π is CNL1-derivable if and only if ψ±Π is CNL2-derivable.

♦
Proof: Similar to Lemma 4.7.1(b).
(a) For the ‘if’-part, observe that for Aρ ∈ Γ and Bσ := ψ±π+Aρ = ψπAρ it holds

that µAρ ≡ µBσ, from which it follows that µAρ
CNL

ad` µBσ by Theorem 5.6.1, entailing

µAρ
CNL

a` µBσ. Hence both

B σ −ρ A and A ρ −σ B

are derivable.
(b) Similar to that of Lemma 4.7.1. ////

Lemma 5.7.1(b) completely answers the derivability question for CNL1 in terms of
CNL2-derivability, for which we have established a contraction criterion in Section 5.3.
We will now sketch a completely analogue contraction criterion for CNL1.

First, a CNL1-proof net is an L1-proof structure (see Subsection 3.2.1) that can be
obtained as the (one-sided) proof structure P1(D) of a CNL1-derivation D (cf. Defini-
tion 4.3.2). Observe that P1(D) equals the π-image (see Subsection 3.2.5) of the two-sided
proof net P(ψ±D) of a corresponding two-sided derivation ψ±D:

πP(ψ±D) = P1(D).

More general, given a two-sided derivation D2, then

πP(D2) = P1(π
+D2),

whence

πP(ψ±D) = P1(π
+ψ±D) = P1(D)

where the last equality is a result of the fact that π+ψ±D and D are equal up to the order
of the premiss sequents of some Cut rules.

We define a conversion relation on the collection LG
3
1 of L1-link graphs with well-

labeled (see Definition 3.2.1) connector links, viz. tensor links (e0, e1, e2)⊗ (indicated by
⊗) and par links (e0, e1, e2) &(indicated by

&

), and with context links ([e0, e1, e2])¯ (in-

dicated by ¯) of valence 3, whose open ends are positively polarized. Up to the labeling,
we define the conversion steps in exactly the same way as in Section 5.3. The translations
ψ : PS1 → PS2 : P 7→ ψP and π : PS2 → PS1 : P 7→ πP of Subsection 3.2.5
generalize to maps LG

3
1 → LG

3
2 respectively LG

3
2 → LG

3
1 in a straightforward way, which

178 5. A contraction criterion for CNL

also extend ψ± and π+ on the respective collections of CNL-sequents.

PS1

ψ
PS2

π
PS1

LG
3
1

ψ
LG

3
2

π
LG

3
1

CTrees1

ψ±

CTrees2
π+

CTrees1

We establish the one-sided counterpart of Theorem 5.3.13.

Theorem 5.7.2. (a) Let D be a CNL1-derivation. Then P1(D)³ xDy.
(b) Let P ³ Π be a conversion sequence from an L1-proof structure to a CNL1-sequent.

Then there is a CNL1-derivation D with P = P1(D) and Π = xDy.
♦

Proof: (a) Directly, by induction on the derivation D.
(b) Similar to that of Theorem 4.7.2(b): given a conversion sequence

P = Pm
δm→ Pm−1

δm−1→ . . .
δ2→ P1

δ1→ P0 = Π

on LG
3
1, we embed it into LG

3
2. ////

5.8. Intuitionistic fragment

In this section we will study the intuitionistic fragment of CNL2, which by definition
is the sequent calculus whose rules are the same as those of CNL2, except that we will
take only the identity rules AxA and CutA where A ∈ L2,i, and the logical rules L¤ and
R¤ for connectives ¤ ∈ {⊗,(,

(} (see Section 4.2). Derivations turn out to be of a
special form, and we call this fragment Non-associative Lambek calculus NL. After having
seen the theory of proof nets for NL, we will establish the analogue of Theorem 5.6.1 for
this calculus. Chapter 6 is the continuation of this section, where we generalize in three
directions:

• we extend the connectives with unary tensor and par connectives 3 and 2;
• we allow connectives of different modes: 3j and 2j ; ⊗i, (i and

(

i, where j
and i vary over given fixed finite sets of modes J respectively I;
• we allow structural rules.

This calculus, because of its special properties, admits its own description of link graphs,
conversion steps, etcetera. In the sequel we will establish the connections between the
respective notions.

5.8.1. Non-associative Lambek calculus. For any CNL2-sequent Γ with labeling
in L2,i, Γ is derivable in CNL2 if and only if it is derivable in the intuitionistic fragment of
CNL2, where the ‘only if’-part is a consequence of the subformula property for CNL2.
Now the resulting derivable sequents of this fragment are easily shown to satisfy the
additional property of having only one conclusion: indeed, if each of the 0, 1 or 2 premiss
sequents of a rule (different from L⊥, R⊥, L

&

, R

&

) has exactly one conclusion, so has the

5.8. Intuitionistic fragment 179

conclusion sequent. Derivations hence only contain such one-conclusion sequents, which
observation leads to the so-called Non-associative Lambek calculus L.

Definition 5.8.1. An NL-sequent P is a CNL2-sequent satisfying:

• P is actually an L2,i-link graph;
• P has exactly one conclusion C+.

♦
Given an NL-sequent, let η̌ be the unique open end C+. It determines a representa-

tive7 C+ ¯ Γ− where Γ is a rooted binary tree of L2,i-formulas, which we also denote by
Γ ` C.

Example 5.8.2. Let P be the following NL-sequent (A, B ∈ L2,i):

A + ¯ B−
=

B(A

−

B

−
B(A

−

¯

A

+

The representative determined by the open end A+ is

¯

¯

A

+
B(A

−
B

−

i.e. A+ ¯
(
(B(A)− ¯ B−

)
, i.e. B ¯ (B(A) ` A. ♦

As rules for NL we take those instances of the inference rules of CNL2 where the
premiss sequents and the conclusion sequent are NL-sequents. We have just seen that
CNL2 is a conservative extension of NL: if an NL-sequent Γ (considered as a CNL2-
sequent) is derivable in CNL2, then it is derivable in the intuitionistic fragment of CNL2,
whence in NL already.

Ax

A + − A

7Recall that Γ− equals Γ, formula-wise provided with a negative sign and in reversed order (see
Subsection 2.1.4).

180 5. A contraction criterion for CNL

Γ− ∆−A

+

C

+

A

−

Cut

∆−C

+

Γ−

Γ−C

+

¯

B
−

A
−

L⊗

Γ−C

+

A⊗B
−

Γ− ∆−A

+

B

+

R⊗

¯

A⊗B
+

∆− Γ−

Γ− ∆−A

+

C

+

B

−

L
(

∆−
C

+

¯

Γ−
B

(
A

−

¯

B
+

Γ−
A
−

R
(

Γ−B
(
A

+

5.8. Intuitionistic fragment 181

Γ− ∆−C

+

B

+

A

−

L(

Γ−
C

+

¯

∆−
B(A

−

¯

A
+

Γ−
B

−

R(

Γ−B(A

+

We also state the rules formulated in the alternative notation.

NL

Ax

A ` A

Γ ` A ∆[A] ` C
Cut

∆[Γ] ` C

Γ[A¯ B] ` C
L⊗

Γ[A⊗ B] ` C

Γ ` A ∆ ` B R⊗
Γ¯∆ ` A⊗ B

Γ ` A ∆[B] ` C
L
(

∆[(B

(

A)¯ Γ] ` C

Γ¯ A ` B
R

(

Γ ` B

(

A

Γ[A] ` C ∆ ` B
L(

Γ[∆¯ (B(A)] ` C

B ¯ Γ ` A
R(

Γ ` B(A

5.8.2. Proof nets and contraction criterion. We define an NL-proof net to be
an L2-proof structure that can be obtained as the (two-sided) proof structure P(D) of
an NL-derivation D (the latter considered as a CNL2-derivation). It is obvious that an
NL-proof net actually is an L2,i-proof structure (see Definition 3.2.6).

The conversion steps of Section 5.3 are well-defined on the restriction to the intu-
itionistic labeled elements of LG

3
2. The next two lemmas are a direct consequence of

Theorem 5.3.13(b).

Lemma 5.8.3. Let P ³ Γ be a conversion sequence from an L2,i-proof structure to a
CNL2-sequent. Then there is an NL-derivation D with P = P(D) and Γ = xDy, while
Γ is an NL-sequent. ♦

182 5. A contraction criterion for CNL

Proof: If P ³ Γ is a conversion sequence from an L2,i-proof structure to a CNL2-
sequent, then by Theorem 5.3.13(b) there is a CNL2-derivation D with P = P(D) and
Γ = xDy. Now all formulas occurring in D are contained in P which is an L2,i-proof
structure, whence D belongs to the intuitionistic fragment of CNL2, and hence to NL.
Of course, Γ = xDy is actually an NL-sequent. ////

Lemma 5.8.4. Let P ³ Γ be a conversion sequence from an L2-proof structure to an
NL-sequent. Then there is an NL-derivation D with Γ = xDy. ♦

Proof: If P ³ Γ is a conversion sequence from an L2-proof structure to an NL-
sequent, then by Theorem 5.3.13(b) there is a CNL2-derivation D′ with P = P(D′) and
Γ = xD′y. Now, by conservativity, Γ is also derivable in NL, say by D. (Observe it need
not hold that P = P(D).) ////

As a corollary, we find the intuitionistic counterpart of Theorem 5.3.13:

Theorem 5.8.5. (a) Let D be an NL-derivation. Then P(D)³ xDy.
(b) Let P ³ Γ be a conversion sequence from an L2,i-proof structure to an NL-sequent.

Then there is an NL-derivation D with P = P(D) and Γ = xDy.
♦

5.8.3. Dualizable NL-proof nets. Let us define the following relations
NL

a` and
NL

ad` on L2,i:

A
NL

a` B :⇐⇒ A ` B is NL-derivable and B ` A is NL-derivable

⇐⇒ there is a cut-free and η-expanded NL-proof net P1 of A ` B

and a cut-free and η-expanded NL-proof net P2 of B ` A

A
NL

ad` B :⇐⇒ there is an NL-proof net P of A ` B such that

its dualization P∗ is an NL-proof net of B ` A

⇐⇒ there is a cut-free and η-expanded NL-proof net P of A ` B such that

its dualization P∗ is an NL-proof net of B ` A

As cut-free and η-expanded CNL2-proof nets with L2,i-labeled open ends are auto-

matically NL-proof nets, we see that
NL

a` and
NL

ad` are just the restrictions of
CNL

a` and
CNL

ad`
(defined in Section 5.6). Also, by Proposition 2.2.6, the restriction of ≡ to L2,i is equality
(=). Hence Theorem 5.6.1 instantaneously leads to the following theorem, of which we
will also give a direct proof, the latter alternatively proving Proposition 2.2.6.

Theorem 5.8.6. For all L2,i-formulas A and B the following holds:

A = B if and only if A
NL

ad` B

♦

5.8. Intuitionistic fragment 183

A = B
Theorem 5.8.6

Proposition 2.2.6

A
NL

ad` B

A ≡ B

special case of

Theorem 5.6.1

A
CNL

ad` B

Proof: The proof will be independent of Proposition 2.2.6.

=⇒ The relation
NL

ad` :=

{
(A, B) ∈ L2,i × L2,i |A

NL

ad` B

}
is an equivalence relation,

and therefore reflexive.
⇐= Similar to the proof of Theorem 4.9.6: let P be a cut-free and η-expanded

dualizable NL-proof net of A ` B. Then we know by Proposition 3.2.9 that P is the
union of TA and TB containing only ⊗-,

(
- and (-links, followed by an identification

of the atomic formulas, which is pairwise by Lemma 4.6.2 (since A ad` B). Performing
the contraction P ³ Γ in the opposite direction provides us with a planar graphical
representation of P.

The clusters are exactly the same as in the proof of Theorem 4.9.6. If there are no
clusters, we get A = α = B. Otherwise there is a cluster C with only atomic active
formulas, which moreover we may suppose to be a tensor cluster. Hence this cluster is
a generalized R⊗-link or a generalized L((

-link. It faces exactly one par cluster C0
(which hence is a generalized L⊗-link respectively a generalized R((

-link), and C and
C0 must be dual to each other. So their main formulas C and C0 coincide. The result
follows by induction. ////

5.8.4. Adding structural rules. Since NL-sequents have a distinguished conclu-
sion, a fixed n-ary structural rule in general has n distinguishable appearances, depending
on the open end which points towards the conclusion. I.e. every application of the struc-
tural rule in an NL-derivation uniquely determines a representative of this structural
rule: if, say, Γ0 of the upper sequent contains the unique conclusion, so does Γ0 of the
lower sequent, and we can declare each of the open ends of P and P ′ corresponding to
Γ0 as the root (π0 = 0).

We can refine the calculus by adding these representatives separately and indepen-
dently to the calculus. In this way, we can add left associativity without adding right
associativity.

184 5. A contraction criterion for CNL

Example 5.8.7. In Example 5.4.1 we have given two representatives of Ass with
π0 = 0. They yield the following distinct structural rules with which we can extend NL.

Γ−0
C

+

¯
¯

Γ−1 Γ−2 Γ−3

〈x(xx), (xx)x, id〉

Γ−0
C

+

¯
¯

Γ−1 Γ−2 Γ−3

Γ−0
C

+

¯
¯

Γ−1 Γ−2 Γ−3

〈(xx)x, x(xx), id〉

Γ−0
C

+

¯
¯

Γ−1 Γ−2 Γ−3

In our alternative notation they read
Γ0[(Γ3 ¯ Γ2)¯ Γ1] ` C

〈x(xx), (xx)x, id〉
Γ0[Γ3 ¯ (Γ2 ¯ Γ1)] ` C

Γ0[Γ3 ¯ (Γ2 ¯ Γ1)] ` C
〈(xx)x, x(xx), id〉

Γ0[(Γ3 ¯ Γ2)¯ Γ1] ` C
which we will call RAss and LAss respectively. ♦

It is no restriction to perform the [tens]-steps before the [par]- and [struct]-steps.
This is actually what happens in Chapter 6, where in Theorem 6.3.7 the condition states

that the underlying hypothesis structure P̂ of a proof structure P converts to a so-called
hypothesis tree, i.e. a sequent. As all tensor links R⊗, L

(

and L(have two premisses
and one conclusion, it does no harm to depict the context links of intermediate link graphs
in a conversion P ³ P ′ (P an L2,i-proof structure) by

¦d ¦d
¦
t .

CHAPTER 6

Proof nets for the Multimodal Lambek Calculus

Since the introduction of proof nets as an elegant proof theory for the multiplicative
fragment of linear logic in [Girard 87], a number of attempts have been made to adapt
this proof theory to a variety of Lambek Calculi, as shown by work from e.g. [Roorda 91],
[Morrill 96] and [Moortgat 97].

In this chapter we will present a new way to look at proof nets for the multimodal
Lambek Calculus. We will show how we can uniformly handle both the unary and the
binary connectives and how we have a natural correctness criterion for the base logic
NL3 together with a set R of structural rules subject to a linearity condition.

First, we introduce proof structures in a way similar to Chapter 3. Then we will look
at slightly more abstract graphs, which we will call hypothesis structures, and on which
we will formulate a correctness criterion in the form of graph conversions. Proof nets will
be those proof structures of which the hypothesis structure converts to a tree.

As our main result we will prove our proof net calculus is sound and complete with
respect to the sequent calculus. In the following sections we will sketch a proof of cut
elimination and show applications of our calculus to automated deduction.

The formalism we present here is related to a number of other proposals, notably to
Danos’ graph contractions [Danos 90], of which our contractions are a special case. As
a result acyclicity and connectedness are a consequence of our correctness criterion.

Our approach is also related to the labeled proof nets of [Moortgat 97]. Our hypoth-
esis structures correspond closely to the labels Moortgat assigns to proof nets. Advantages
of our formalism are that we have a very direct correspondence between proof structures
and their hypothesis structures, and that we can handle cyclic or disconnected proof
structures unproblematically, whereas to acyclic and connected proof structures only can
be assigned a meaningful label.

An open question concerns some natural notion of equality on conversion sequences.
As defined now, a number of uninteresting permutations are possible in conversion se-
quences, which is somewhat against the spirit of proof nets as ‘sequent proofs modulo
permutations of inferences’.

This chapter consists of joint work with Richard Moot.

6.1. Structure Trees

Starting from a set of atoms {p1, p2, . . .}, the formulas of the multimodal Lambek
Calculus with 3 (NL3) are built up with the unary connectives 3j and 2j and with
the binary connectives1 ⊗i,(i and

(

i, where j and i vary over given fixed finite sets of
modes J respectively I.

Structure trees are built up from formulas with unary constructors 〈− 〉j and binary
constructors − ¯i −, where again j and i vary over the modes. Derivable objects are

1The linguistic notation reads •i, \i and /i for the respective binary connectives.
185

186 6. Proof nets for the Multimodal Lambek Calculus

sequents Γ ` C in which the antecedent part is a structure tree and in which the succedent
part is a formula.

Given sets J and I of unary respectively binary modes, we define the set of structure
trees with holes over a set S as follows:

treeS ::= S ∪ { [] }
| 〈 treeS 〉J

| treeS ¯I treeS

The length λ(Ξ) and the number of holes κ(Ξ) of such a tree Ξ is defined by

λ(A) := 1 (A ∈ S) κ(A) := 0 (A ∈ S)

λ([]) := 1 κ([]) := 1

λ(〈Ξ1 〉j) := λ(Ξ1) κ(〈Ξ1 〉j) := κ(Ξ1)

λ(Ξ1 ¯i Ξ2) := λ(Ξ1) + λ(Ξ2) κ(Ξ1 ¯i Ξ2) := κ(Ξ1) + κ(Ξ2)

Let treeλ,κ
S be the subset of treeS consisting of trees with length λ and number of holes

κ. Observe that S ⊂ tree1,0
S .

For every Ξ ∈ treeλ,κ
S there is a multiset ||Ξ|| of λ − κ elements of S which equals Ξ

modulo structural information and holes. Moreover, we define 〈〈Ξ〉〉 to be the order in
which the elements of ||Ξ|| occur in Ξ.

||A|| := {A} (A ∈ S) 〈〈A〉〉 := A (A ∈ S)

||[]|| := ∅ 〈〈[]〉〉 := ∅∣∣∣∣〈Ξ1 〉j
∣∣∣∣ := ||Ξ1||

〈〈
〈Ξ1 〉j

〉〉
:= 〈〈Ξ1〉〉

||Ξ1 ¯i Ξ2|| := ||Ξ1|| ∪ ||Ξ2|| 〈〈Ξ1 ¯i Ξ2〉〉 := 〈〈Ξ1〉〉 , 〈〈Ξ2〉〉
Example 6.1.1.

〈A1 ¯1 〈A2 〉1 〉1 ¯2 (A1 ¯1 []) ∈ tree4,1
S∣∣∣∣〈A1 ¯1 〈A2 〉1 〉1 ¯2 (A1 ¯1 [])

∣∣∣∣ = {A1, A1, A2}
〈 [] 〉1 ¯1

(
〈 [] 〉1 ¯1 (〈 [] 〉1 ¯2 [])

)
∈ tree4,4

S∣∣{Ξ ∈ tree7,7
S

∣∣ Ξ is 〈 〉j-free
}∣∣ = 132 |I|6

♦
The dual Ξ∗ of a tree Ξ is defined by

(A)∗ := A (A ∈ S)

([])∗ := []

(〈Ξ1 〉j)∗ := 〈Ξ∗1 〉j

(Ξ1 ¯i Ξ2)
∗ := Ξ∗2 ¯i Ξ∗1

which is actually Ξ, in reversed order.
There is a substitution operation

treeλ,κ
S × treel1,k1

S × . . .× treelκ,kκ
S → tree

λ−κ+
Pκ
j=1 lj ,

Pκ
j=1 kj

S(
Ξ, Θ1, . . . , Θκ

)
7→ Ξ[Θ1, . . . , Θκ]

6.1. Structure Trees 187

which can be defined by induction on Ξ:

• if Ξ ∈ S, then λ = 1; κ = 0, and we define the image of Ξ to be Ξ itself;
• if Ξ = [], then λ = 1; κ = 1, and we define the image of (Ξ, Θ1) to be Ξ[Θ1] :=

Θ1;
• if Ξ = 〈Ξ1 〉j, then λ = λ1 and κ = κ1. By induction hypothesis we know

that Ξ1[Θ1, . . . , Θκ1] is defined and belongs to tree
λ1−κ1+

Pκ1
j=1 lj ,

Pκ1
j=1 kj

S . Now we
define the image of

(
Ξ, Θ1, . . . , Θκ

)
to be

Ξ[Θ1, . . . , Θκ] := 〈Ξ1[Θ1, . . . , Θκ1] 〉j

which belongs to

tree
λ−κ+

Pκ
j=1 lj ,

Pκ
j=1 kj

S ,

as desired.
• if Ξ = Ξ1 ¯i Ξ2, then λ = λ1 + λ2 and κ = κ1 + κ2. By induction hypothesis

we know that Ξ1[Θ1, . . . , Θκ1] is defined and belongs to tree
λ1−κ1+

Pκ1
j=1 lj ,

Pκ1
j=1 kj

S

while Ξ2[Θκ1+1, . . . , Θκ1+κ2] is defined and belongs to tree
λ2−κ2+

Pκ1+κ2
j=κ1+1 lj ,

Pκ1+κ2
j=κ1+1 kj

S .
Now we define the image of

(
Ξ, Θ1, . . . , Θκ

)
to be

Ξ[Θ1, . . . , Θκ] := Ξ1[Θ1, . . . , Θκ1] ¯i Ξ2[Θκ1+1, . . . , Θκ1+κ2]

which belongs to

tree
λ1−κ1+

Pκ1
j=1 lj+λ2−κ2+

Pκ1+κ2
j=κ1+1 lj ,

Pκ1
j=1 kj+

Pκ1+κ2
j=κ1+1 kj

S = tree
λ−κ+

Pκ
j=1 lj ,

Pκ
j=1 kj

S ,

as desired.

Example 6.1.2. • Restricting our attention to the case where λ = κ (formal
trees), this map is

treeλ,λ × treel1,l1 × . . .× treelλ,lλ → tree
Pλ
j=1 lj ,

Pλ
j=1 lj

where we have deleted the subscript S, since these sets do not depend on it.
• Restricting our attention to substitution of elements of S, this map is

treeλ,κ
S × Sκ → treeλ,0

S

• Restricting our attention to the case where κ = 0 (S-trees), the substitution

map is the identity treeλ,0
S → treeλ,0

S (proof by induction); there is nothing to
substitute.

♦
Lemma 6.1.3. Given

(
Ξ, Θ1, . . . , Θκ

)
∈ treeλ,κ

S × treel1,k1

S × . . .× treelκ,kκ
S , the following

holds:

||Ξ[Θ1, . . . , Θκ]|| = ||Ξ|| ∪
κ⋃

j=1

||Θj||
♦

Proof: By induction on Ξ. ////

We study sequents in which the antecedent part is a structure tree of formulas rather
than a sequence or a multiset of formulas.

seq :=
{

Γ ` C |n ≥ 1; Γ ∈ treen,0
form; C ∈ form

}

188 6. Proof nets for the Multimodal Lambek Calculus

Atoms will be denoted by p, q, . . .; modes by i, j, . . .; formulas by A, B, C, . . .; and
form-trees by Γ, ∆, Observe that all sequents have non-empty antecedent part, since
there are no empty trees.

Convention. Writing down a sequent like ∆[Γ1, Γ2] ` C implies that ∆ ∈ treen,2
form;

Γ1 ∈ treen1,0
form and Γ2 ∈ treen2,0

form, yielding ∆[Γ1, Γ2] ∈ treen−2+n1+n2,0
form

There is a map treen,0
form → form, which replaces all 〈 〉j- and ¯i -occurrences by 3j-

and ⊗i-occurrences. The image of Γ under this map will be denoted by Γ⊗.(
A

)⊗
:= A (A ∈ form)(

〈Ξ1 〉j
)⊗

:= 3jΞ
⊗
1(

Ξ1 ¯i Ξ2

)⊗
:= Ξ⊗1 ⊗i Ξ⊗2

6.2. The calculus

An n-ary structural rule

∆[Ξ∗[Γ1, . . . , Γn]] ` C
〈Ξ, Ξ′, π〉

∆[(Ξ′)∗[Γπ1, . . . , Γπn]] ` C

is defined by a pair of formal trees2 Ξ, Ξ′ of length n and a rearrangement of the vari-
ables π ∈ Sn, the symmetric group of degree n. Observe that every subtree Γk occurs
exactly once in both the upper and lower sequent of the inference, whence any non-linear
structural rule like

∆[Γ1 ¯i Γ1] ` C
Contractioni

∆[Γ1] ` C

∆[Γ1] ` C
LWeakeningi

∆[Γ2 ¯i Γ1] ` C
∆[Γ1] ` C

RWeakeningi

∆[Γ1 ¯i Γ2] ` C

does not conform to this definition. Neither does the following rule, though it is linear:

2By Ξ∗ we mean Ξ in reversed order; hence in CNL2-notation the rule reads

C+ ¯
(
∆[Ξ∗[Γ1, . . . ,Γn]]

)−
〈Ξ, Ξ′, π〉

C+ ¯
(
∆[(Ξ′)∗[Γπ1 , . . . ,Γπn]]

)−
i.e. (cf. Subsection 5.8.4)

C+ ¯∆−[Ξ[Γ−n , . . . ,Γ
−
1]]

〈Ξ, Ξ′, π〉
C+ ¯∆−[Ξ′[Γ−πn , . . . ,Γ

−
π1

]]

which is an instance (viz. with ∆i equal to Γ−n+1−i and with ∆0 equal to ∆−, up to the choice of the
root [] respectively C+) of the (n+ 1)-ary structural CNL2-rule (see Section 5.4):

∆1 ... ∆n

∆0

Ξ

〈Ξ, Ξ′, eπ〉

∆
eπ1 ... ∆

eπn

∆0

Ξ′

... C+ ...

[]

∆0 =

... [] ...

C+

∆−

6.2. The calculus 189

Identity rules

Ax

A ` A

Γ ` A ∆[A] ` C
Cut

∆[Γ] ` C

Logical rules for the ⊗-like connectives

Γ[〈A 〉j] ` C
L3j

Γ[3jA] ` C

Γ ` A R3j

〈Γ 〉j ` 3jA

Γ[A ¯i B] ` C
L⊗i

Γ[A⊗i B] ` C

Γ ` A ∆ ` B R⊗i
Γ ¯i ∆ ` A⊗i B

Logical rules for the

&

-like connectives

∆[B] ` C
L2j

∆[〈2jB 〉j] ` C

〈Γ 〉j ` B
R2j

Γ ` 2jB

Γ ` A ∆[B] ` C
L(i

∆[Γ ¯i A(i B] ` C

A ¯i Γ ` B
R(i

Γ ` A(i B

Γ ` A ∆[B] ` C
L
(
i

∆[B

(

i A ¯i Γ] ` C

Γ ¯i A ` B
R

(
i

Γ ` B

(

i A

Structural rules (for all 〈Ξ, Ξ′, π〉 ∈ R)

∆[Ξ∗[Γ1, . . . , Γn]] ` C
〈Ξ, Ξ′, π〉

∆[(Ξ′)∗[Γπ1 , . . . , Γπn]] ` C

Figure 6.1. The sequent calculus NL3R.

∆[Γ1] ¯i Γ2 ` C

∆[Γ2] ¯i Γ1 ` C

However, it may be admissible, depending on R.

190 6. Proof nets for the Multimodal Lambek Calculus

Given a set R of structural rules, we define the sequent calculus NL3R by the infer-
ence rules of Figure 6.1. From each n-ary structural rule

∆[Ξ∗[Γ1, . . . , Γn]] ` C
〈Ξ, Ξ′, π〉

∆[(Ξ′)∗[Γπ1, . . . , Γπn]] ` C

we can derive — for every n-tuple of formulas A1, . . . , An — the sequent (Ξ′)∗[Aπ1, . . . , Aπn]⊗ `
Ξ∗[A1, . . . , An]⊗, where by Γ⊗ we mean the formula obtained from Γ by replacing all
〈 〉j- and ¯i -occurrences by 3j- and ⊗i-occurrences respectively. This means that the
axiom rule

(Ξ′)∗[Aπ1, . . . , Aπn]⊗ ` Ξ∗[A1, . . . , An]⊗

is admissible. In fact, adding the structural rule to the calculus is equivalent to adding
(all instances of) the corresponding axiom rule to the calculus.

Let Rmax be the following set of structural rules, where j, i and i′ vary over the modes:

∆[Γ1] ` C
[LTrivj]

∆[〈Γ1 〉j] ` C

∆[〈Γ1 〉j] ` C
[RTrivj]

∆[Γ1] ` C

∆[Γ1 ¯i

(
Γ2 ¯i Γ3

)
] ` C

[LAssi]

∆[
(
Γ1 ¯i Γ2

)
¯i Γ3] ` C

∆[
(
Γ1 ¯i Γ2

)
¯i Γ3] ` C

[RAssi]

∆[Γ1 ¯i

(
Γ2 ¯i Γ3

)
] ` C

∆[Γ1 ¯i Γ2] ` C
[Comi]

∆[Γ2 ¯i Γ1] ` C

∆[Γ1 ¯i Γ2] ` C
[Eqi,i′]

∆[Γ1 ¯i′ Γ2] ` C
Lemma 6.2.1. Any possible structural rule is admissible in NL3Rmax. ♦
Let d−e be the following translation from NL3-formulas to L2,i-formulas, deleting

the unary connectives and the mode indices and identifying both implications:

dpke := pk dA⊗i Be := dAe ⊗ dBe
d3jAe := dAe dA(i Be := dAe(dBe
d2jAe := dAe dB (

i Ae := dAe(dBe
For any structure tree Γ, let ||Γ|| be the multiset of elements in Γ. We write d||Γ||e for
the multiset {dAe |A ∈ ||Γ||}. Let iMLL>0 stand for the calculus iMLL restricted to the
requirement that the antecedent multiset of all sequents in a derivation be non-empty.

Corollary 6.2.2. The following maps between collections of sequents:

SEQ
(
NL3

)
= SEQ

(
NL3R

)
= SEQ

(
NL3Rmax

) d||−||e→ SEQ
(
iMLL>0

)
= SEQ

(
iMLL

)
restrict to the collections of derivable sequents:

DSEQ
(
NL3

)
↪→ DSEQ

(
NL3R

)
↪→ DSEQ

(
NL3Rmax

) d||−||e
³ DSEQ

(
iMLL>0

)
↪→ DSEQ

(
iMLL

)
Moreover, DSEQ

(
iMLL>0

)
is the image of DSEQ

(
NL3Rmax

)
under the map d||−||e. ♦

From the previous corollary we conclude that adding structural rules to NL3 will
never move us outside MLL, whence Contractioni or L/RWeakeningi are never
admissible.

Lemma 6.2.3. The left rules for the ⊗-like connectives (L3j, L⊗i) and the right rules
for the

&

-like connectives (R2j, R(i, R

(

i) are reversible. ♦
This is proved by means of their respective counterparts and Cut. The reversibility

of L3j and L⊗i means that the role of 〈 〉j and ¯i in the antecedent structure trees
actually coincides with that of 3j respectively ⊗i. However, this does not mean we can

6.2. The calculus 191

forget about the constructors, since the occurrence of a formula A as a leaf of a structure
tree Γ[A] guarantees A occurs positively (and not negatively) in the formula Γ[A]⊗, which
is needed in order to have meaningful inference rules.

As an immediate consequence of the previous lemma we have

Lemma 6.2.4. This calculus satisfies the following adjunctions:

A⊗i (−) aaa A(i (−) (for all formulas A)

(−)⊗i A aaa (−)

(

i A (for all formulas A)

3j(−) aaa 2j(−)

i.e.

A⊗i B ` C m
B ` A(i C

B ⊗i A ` C m
B ` C

(

i A

3jB ` C
m

B ` 2jC
♦

We divide the logical rules in two parts:

• the tensor rules are the right rules for the ⊗-like connectives and the left rules
for the

&

-like connectives (R3j, R⊗i, L2j , L(i, L

(

i);
• the par rules are the left rules for the ⊗-like connectives and the right rules for

the

&

-like connectives (L3j, L⊗i, R2j , R(i, R

(

i).

In the derivations we will indicate par rules by dashed horizontal lines. Lemma 6.2.3 now
can be reformulated as: all par rules are reversible.

In the sequel we will introduce square bracketed abbreviations like [Q] for structural
rules.

Example 6.2.5. Let R consist of

∆[Γ1 ¯0

(
Γ2 ¯0 Γ3

)
] ` C

[LAss0]

∆[
(
Γ1 ¯0 Γ2

)
¯0 Γ3] ` C

Then we can derive:

A ` A
B ` B C ` C
B ¯0 C ` B ⊗0 C

A ¯0

(
B ¯0 C

)
` A⊗0 (B ⊗0 C)

[LAss0](
A ¯0 B

)
¯0 C ` A⊗0 (B ⊗0 C)

L⊗0

(A⊗0 B) ¯0 C ` A⊗0 (B ⊗0 C)
L⊗0

(A⊗0 B)⊗0 C ` A⊗0 (B ⊗0 C)

C ` C
A ` A B ` B
A ¯0 A(0 B ` B

A ¯0

(
(A(0 B)

(

0 C ¯0 C
)
` B

[LAss0](
A ¯0 (A(0 B)

(

0 C
)
¯0 C ` B

R
(
0

A ¯0 (A(0 B)

(

0 C ` B

(

0 C
R(0

(A(0 B)

(

0 C ` A(0 (B

(

0 C)

192 6. Proof nets for the Multimodal Lambek Calculus

B ` B
A ` A C ` C
A ¯0 A(0 C ` C

A ¯0

(
B ¯0 B(0 (A(0 C)

)
` C

[LAss0](
A ¯0 B

)
¯0 B(0 (A(0 C) ` C

L⊗0

(A⊗0 B) ¯0 B(0 (A(0 C) ` C
R(0

B(0 (A(0 C) ` (A⊗0 B)(0 C
♦

Example 6.2.6. (Illustration: wh-extraction in English) To give an indication
of how we can use the calculus described in the previous section to give an account of
linguistic phenomena, we will look at what is often called wh-extraction.

We will, for the purpose of the current discussion, look at only two wh words, ‘which’
and ‘whom’. Both are noun modifiers which select a sentence from which a noun phrase
is missing, the difference being that with ‘whom’ the missing noun phrase cannot occur
in subject position, as indicated by the following examples. The * in sentence 4 denotes
this sentence is ungrammatical.

(1) agent which [[]np read National Enquirer]s
(2) agent which [Mulder liked []np]s
(3) agent which [Skinner considered []np dangerous]s

(4) *agent whom [[]np read National Enquirer]s
(5) agent whom [Mulder liked []np]s
(6) agent whom [Skinner considered []np dangerous]s

To account for this different behaviour, we give a very simple grammar fragment with
one binary mode 0 and two unary modes 0 and 1. An extracted np is marked as 3020np
if subject extraction is allowed and as 3121np if it isn’t. The fact that 3j2jA ` A is a
theorem of the base logic for all j and A allows these constituents to function as an np.
What is crucial is that the L2j rule, read from premiss to conclusion, introduces unary
brackets, which makes the following structural rules available for 〈− 〉0.

∆[Γ1 ¯0

(
Γ2 ¯0 〈Γ3 〉0

)
] ` C

[Ass0,0]

∆[
(
Γ1 ¯0 Γ2

)
¯0 〈Γ3 〉0] ` C

∆[
(
Γ1 ¯0 〈Γ2 〉0

)
¯0 Γ3] ` C

[MxCom0,0]

∆[
(
Γ1 ¯0 Γ3

)
¯0 〈Γ2 〉0] ` C

∆[〈Γ1 〉0 ¯0 Γ2] ` C
[Com0,0]

∆[Γ2 ¯0 〈Γ1 〉0] ` C

The [Ass0,0] and [MxCom0,0] rules allow us to move out an embedded 〈Γ 〉0 constituent,
whereas [Com0,0] moves a 〈Γ 〉0 constituent from a left branch to a right branch after which
any of the two other structural rules can apply.

Formulas marked with 31, however, can only move from a right branch of a structure
to another right branch. As a subject would appear on a left branch, this prevents subject
extraction as desired.

6.3. Proof structures 193

∆[Γ1 ¯0

(
Γ2 ¯0 〈Γ3 〉1

)
] ` C

[Ass0,1]

∆[
(
Γ1 ¯0 Γ2

)
¯0 〈Γ3 〉1] ` C

∆[
(
Γ1 ¯0 〈Γ2 〉1

)
¯0 Γ3] ` C

[MxCom0,1]

∆[
(
Γ1 ¯0 Γ3

)
¯0 〈Γ2 〉1] ` C

The lexicon, with which we can derive all well-formed example sentences given above,
is the following:

lex(agent) = n

lex(dangerous) = n

(

0 n

lex(Mulder) = np

lex(Skully) = np

lex(Skinner) = np

lex(National Enquirer) =np

lex(liked) = (np(0 s)
(

0 np

lex(read) = (np(0 s)

(

0 np

lex(considered) = ((np(0 s)

(

0 (n

(

0 n))

(

0 np

lex(which) = (n(0 n)

(

0 (s

(

0 3020np)

lex(whom) = (n(0 n)

(

0 (s

(

0 3121np)

We can, for example, derive sentence 2 as follows.

Ax

np ` np

Ax

np ` np
Ax

s ` s
L(0

np ¯0 np(0 s ` s
L
(
0

np ¯0

�
(np(0 s)

(
0 np ¯0 np

�
` s

L20

np ¯0

�
(np(0 s)

(
0 np ¯0 〈20np 〉0

�
` s

[Ass0,0]�
np ¯0 (np(0 s)

(
0 np

�
¯0 〈20np 〉0 ` s

L30�
np ¯0 (np(0 s)

(
0 np

�
¯0 3020np ` s

R
(
0

np ¯0 (np(0 s)
(
0 np ` s

(
0 3020np

Ax

n ` n
Ax

n ` n
L(0

n ¯0 n(0 n ` n
L
(
0

n ¯0

�
(n(0 n)

(
0 (s

(
0 3020np) ¯0

�
np ¯0 (np(0 s)

(
0 np

��
` n ♦

6.3. Proof structures

Given a set S, we generally define a link L in S to be an ordered pair 〈P, C〉τ of
sequences of elements of S (called the premisses and conclusions of L) labeled by a
certain type τ . It will be represented by a horizontal bar, also labeled by τ , together with
the elements of P above it and the elements of C below it:

p1d · · · pnd1 n
1 mτ

c1

d
· · · cm

d

194 6. Proof nets for the Multimodal Lambek Calculus

Let S be a multiset of formulas, i.e. a set of formula occurrences. We will restrict
to links L where one of the formulas (called the main formula or the output formula of
L) is obtained as a connective applied to the other formulas (called the active formulas
or the input formulas of L). Depending on whether the main formula is a premiss or a
conclusion, and moreover on which connective is applied, we distinguish 6 |I|+4 |J | types
(where I and J are the sets of modes):

Definition 6.3.1. A proof structure 〈S,L〉 consists of a finite set S of formulas
together with a set L of links in S of the following forms:

3jAt
L3j

A

d Ad
3jA

tR3j

A⊗i Bt
L⊗i1 2

A

d
B

d Ad Bd1 2

A⊗i B

tR⊗i
2jBt
L2j

B

d Bd
2jB

tR2j

Ad A(i Bt
L(i

1 2

B

d Bd
1 2

A

d
A(i B

tR(i

B

(

i At
L
(
i

Ad1 2

B

d Bd
1 2

B

(

i A

tR (
i

A

d
such that the following holds:

• every formula of S is at most once a conclusion of a link;
• every formula of S is at most once a premiss of a link.

♦
Here we have ordered the premisses/conclusions of the links in the picture from left

to right. However, in general this is not always possible. E.g. in

A⊗0 Bt
L⊗0

1 2

A

d
Ad B

d
Bd2 1

B ⊗0 A

tR⊗0

the R⊗0 link has first premiss B and second premiss A. Observe that the following two
proof structures are different as the first conclusion of the L⊗0 link is the first respectively
second premiss of the R⊗0 link:

6.3. Proof structures 195

A⊗0 At
L⊗0

1 2

A

d
Ad A

d
Ad1 2

A⊗0 A

tR⊗0

A⊗0 At
L⊗0

1 2

A

d
Ad A

d
Ad2 1

A⊗0 A

tR⊗0

The formulas which are not the conclusion of a link are the hypotheses Hk of S =
〈S,L〉, while those that are not the premiss of a link are the conclusions Ql of S. This is
also expressed by saying that S is a proof structure from {H1, H2, . . .} to {Q1, Q2, . . .}.

We divide the links in two parts:

• the tensor links are the right links for the ⊗-like connectives and the left links
for the

&

-like connectives (R3j, R⊗i, L2j , L(i, L

(

i);
• the par links are the left links for the ⊗-like connectives and the right links for

the

&

-like connectives (L3j, L⊗i, R2j , R(i, R

(

i).

We graphically indicate tensor vs. par links by solid vs. dashed horizontal lines.
Note that there are no links corresponding to the identity rules. Instead we will have

axiomatic and cut formulas. An axiomatic formula is a formula which is not the main
formula of any link, whereas a cut formula is a formula which is the main formula of two
links.

Example 6.3.2. A proof structure corresponding to the sequent derivation on page 193
is shown below.

nd n(0 nt
L(0

1 2

n

d
(n(0 n)

(

0 (s

(

0 3020np)t
L
(
0

s

(

0 3020npd1 2d
sd

1 2
tR (

0

3020npt
L30

® ©

­ ªd

20np

d
t

L20

np

d
(np(0 s)

(

0 npt
L
(
0

npd1 2

np(0 s

d
npd t

L(0

1 2

s

d

♦
Definition 6.3.3. A correction structure 〈N,L〉 consists of a finite set N of nodes

together with a set L of links in N of the following forms:

196 6. Proof nets for the Multimodal Lambek Calculus

¦d
¦
t〈 〉j ¦d ¦d1 2

¦
t̄i

¦t
L3j¦
d ¦t

L⊗i1 2

¦
d

¦
d ¦d

¦
tR2j

¦d
1 2

¦
d

¦
tR(i

¦d
1 2

¦
tR (
i

¦
d

such that the following holds:

• every node of S is at most once a conclusion of a link;
• every node of S is at most once a premiss of a link.

♦

Definition 6.3.4. An hypothesis structure 〈N,L, λ〉 consists of a correction structure
〈N,L〉 and a labeling λ of its nodes: to every node there are assigned a (perhaps empty)
upper label and a lower label

upper label
¦

lower label

each one consisting of at most one formula. This labeling is such that exactly each hy-
pothesis node h has a non-empty upper label {Hh}, and exactly each conclusion node q
has a non-empty lower label {Qq}, and we say that 〈N,L, λ〉 is an hypothesis structure
from {H1, H2, . . .} to {Q1, Q2, . . .}. ♦

Next we will define conversion steps on hypothesis structures. One easily checks that
these conversion steps preserve the labels: if H = 〈N,L, λ〉 is an hypothesis structure
from {H1, H2, . . .} to {Q1, Q2, . . .}, then so is H′ which is obtained from H by applying
a conversion step. There are two kinds of conversion steps: contractions and structural
conversions. Every conversion step works on a number of links, constituting the so called
redex, which is a correction structure itself. Below, all nodes of each depicted redex are
distinct. Hence the redex of a contraction has one hypothesis node and one conclusion
node, while the redex of an n-ary structural conversion has n hypothesis nodes and one
conclusion node.

By a contraction we mean the replacement of one of the following pairs of links by
a single node, which will be labeled as indicated (H and Q are labels, so each of them
consists of zero or one formulas). The contraction will be named after the par link (L3j,
L⊗i, R2j , R(i, R

(

i).
H
¦t

L3j¦
d
d

¦
Q

t〈 〉j L3j→
H
¦
Q

6.3. Proof structures 197

H
¦t

L⊗i1 2

¦
d
d ¦
d
d1 2

¦
Q

t̄i L⊗i→
H
¦
Q

H
¦d

¦
t〈 〉j
d

¦
Q

tR2j

R2j→
H
¦
Q

¦d
® ©

­ ªd

H
¦d1 2

¦d
t̄i

1 2

¦
Q

tR(i

R(i→
H
¦
Q

H
¦d ¦d
® ©

­ ªd
1 2

¦
t̄i
d

1 2

¦
Q

tR (
i

R
(
i→

H
¦
Q

By a structural conversion we mean the following: for an n-ary structural rule

∆[Ξ∗[Γ1, . . . , Γn]] ` C
〈Ξ, Ξ′, π〉

∆[(Ξ′)∗[Γπ1, . . . , Γπn]] ` C

both formal trees Ξ∗ and (Ξ′)∗ may be represented by a correction structure with n
hypotheses and one conclusion. Ordering the premisses of all our R¯i links in the
picture from left to right yields an order on the hypotheses of both correction structures.
Now, if Ξ∗ is part of H — the hypothesis nodes being x1, . . . , xn (in this order) — the
structural conversion consists of replacing Ξ∗ by (Ξ′)∗ and permuting the nodes to get
them in the order xπ1 , . . . , xπn . The conversion is denoted by

Ξ∗[x1, . . . , xn]→ (Ξ′)∗[xπ1, . . . , xπn].

Example 6.3.5. Let us consider the structural rule [Q]:

∆[Γ1 ¯a (Γ2 ¯b Γ3)] ` C
[Q]

∆[(Γ3 ¯d 〈Γ1 〉e) ¯c Γ2] ` C

198 6. Proof nets for the Multimodal Lambek Calculus

where a, b, c, d are binary modes and e is a unary mode. The corresponding structural
conversion

x1 ¯a (x2 ¯b x3)→ (x3 ¯d 〈 x1 〉e) ¯c x2

consists in the replacement of

x1

d
x2d x3d1 2

¦
t̄b
d1 2

¦
t̄a

by

x3

d
x1d x2

d
¦
t〈 〉e
d1 2

¦
t̄d
d1 2

¦
t̄c

=

x1d x2

d

x3

d¦
t〈 〉e
d2 1

¦
t̄d
d1 2

¦
t̄c

♦

Observe that a structural conversion is a local operation; it does not influence the
other links of L, nor the other nodes of N . The last example shows how to see this in
our graphical representation: we need not permute the hypothesis nodes, if we represent
(Ξ′)∗ in the appropriate way.

Example 6.3.6. The structural rules for our English fragment correspond to the
following structural conversions, where j ranges over {0, 1}.

x1d ¦d1 2

¦
t̄0

x2d ¦d1 2

¦
t̄0

x3d
¦
t〈 〉j

[Ass0,j]→
¦d ¦d1 2

¦
t̄0

x1d x2d1 2

¦
t̄0 x3d

¦
t〈 〉j

6.3. Proof structures 199

x1d ¦d1 2

¦
t̄0
¦d x3d1 2

¦
t̄0

x2d
¦
t〈 〉j

[MxCom0,j]→
¦d ¦d1 2

¦
t̄0

x1d x3d1 2

¦
t̄0 x2d

¦
t〈 〉j

¦d x2d1 2

¦
t̄0

x1d
¦
t〈 〉0

[Com0,0]→ x2d ¦d1 2

¦
t̄0

x1d
¦
t〈 〉0

♦

To any proof structure S from {H1, H2, . . .} to {Q1, Q2, . . .} we assign an hypothesis

structure Ŝ from {H1, H2, . . .} to {Q1, Q2, . . .} by a replacement of the link types R3j

and L2j by the new link type 〈 〉j, and by a replacement of the link types R⊗i, L(i and

L

(

i by the new link type ¯i . The formulas A become the nodes (A) of Ŝ, and the label
H (resp. Q) of a node

(A)
H
¦
Q

is chosen {A} precisely if A is an hypothesis (resp. a conclusion), and empty otherwise.

Ŝ is called the underlying hypothesis structure of S.

Ad
3jA

tR3j

2jBt
L2j

B

d


7→

¦d
¦
t〈 〉j =



(A)d
(3jA)

t〈 〉j
(2jB)d

(B)

t〈 〉j

200 6. Proof nets for the Multimodal Lambek Calculus

Ad Bd1 2

A⊗i B

tR⊗i
Ad A(i Bt

L(i

1 2

B

d
B

(

i At
L
(
i

Ad1 2

B

d



7→
¦d ¦d1 2

¦
t̄i =



(A)d (B)d1 2

(A⊗i B)

t̄i
(A)d (A(i B)d1 2

(B)

t̄i
(B

(

i A)d (A)d1 2

(B)

t̄i
For any structure tree Γ and formula C, let ||Γ|| be the multiset of elements in Γ; let

〈〈Γ〉〉 be the sequence of elements in Γ obtained by left to right traversal of the tree; let
ΓC be the obvious hypothesis structure from ||Γ|| to {C} with conclusion node (lower)
labeled by C. Any hypothesis structure of this form will be called an hypothesis tree. Let
³R be the transitive, reflexive closure of→R, by which we mean the contractions as well
as the structural conversions belonging to R.

In the next sections we will prove our main theorem:

Theorem 6.3.7.

Γ ` C is derivable in NL3R if and only if there is a proof structure S (from ||Γ|| to {C})
such that Ŝ ³R ΓC. ♦

Note that any proof structure S such that Ŝ ³R ΓC is automatically from ||Γ|| to
{C}.

Definition 6.3.8. Let S be a proof structure.

(1) (S, ρ) is a R-conversion sequence of Γ ` C iff Ŝ
ρ
³R ΓC;

(2) S is a R-proof net of Γ ` C iff Ŝ ³R ΓC, i.e. iff Ŝ
ρ
³R ΓC for some ρ;

(3) Let Σ be a multiset of formulas. We say S is an R-proof net from Σ to {C}
iff Ŝ ³R ΓC for some Γ such that ||Γ|| = Σ, or equivalently: iff S is a proof
structure from Σ to {C} on which all contractions can be applied (together with
the necessary structural conversions) such that we end with an hypothesis tree.

♦
With this definition Theorem 6.3.7 can be reformulated as:

There is an NL3R derivation of Γ ` C if and only if there is a R-proof net of Γ ` C.
For many applications one is interested in derivability of Γ ` C for some structure

tree Γ subject to certain constraints. Instead of checking the RHS condition for each Γ,
we get the witnessing Γ as a result of the conversion steps, as stated in the following
corollary. This fact shows the computational strength of our condition (see Section 6.7).

Corollary 6.3.9. (Abstraction of Γ)

(1) Let us call a sequence Σ of formulas a C-sequence if, for some Γ such that
〈〈Γ〉〉 = Σ, the sequent Γ ` C is derivable. Then Σ is a C-sequence iff there
is a proof structure from ||Σ|| to {C}, on which all contractions can be applied
(together with the necessary structural conversions) such that we end with an
hypothesis tree in which the order of the hypotheses equals Σ.

6.3. Proof structures 201

(2) Let us call a multiset Σ of formulas a C-multiset if, for some Γ such that ||Γ|| = Σ,
the sequent Γ ` C is derivable. Then Σ is a C-multiset iff there is a proof
structure from Σ to {C}, on which all contractions can be applied (together with
the necessary structural conversions) such that we end with an hypothesis tree,
i.e. iff there is a proof net from Σ to {C}.

♦

Example 6.3.10. The following proof structure

A⊗0 Bt
L⊗0

® ©

­ ªd

1 2

A

d
A

d
B

d
Bd B(0 (A(0 C)t

L(0

1 2

A(0 C

d
t

L(0

1 2

C

d
Cd

1 2

(A⊗0 B)(0 C

tR(0

has as hypothesis structure

(A⊗0 B)t
L⊗0

® ©

­ ªd

1 2

(A)

d

d
(B)

d
d (B(0 (A(0 C))d1 2

(A(0 C)

t̄0
d1 2

(C)

t̄0
d

1 2

((A⊗0 B)(0 C)

tR(0

202 6. Proof nets for the Multimodal Lambek Calculus

which converts (under R = {[LAss0]}) as follows:

¦t
L⊗0

® ©

­ ªd

1 2

¦
d

d
¦
d
d

B(0 (A(0 C)
¦d1 2

¦
t̄0
d1 2

¦
t̄0
d

1 2

¦
(A⊗0 B)(0 C

tR(0

[LAss0]→

¦t
L⊗0

® ©

­ ªd

1 2

¦
d
d ¦
d
d

B(0 (A(0 C)
¦

d
1 2

¦
t̄0
d1 2

¦
t̄0
d

1 2

¦
(A⊗0 B)(0 C

tR(0

L⊗0→

® ©

­ ªd
¦d

B(0 (A(0 C)
¦d1 2

¦
t̄0
d

1 2

¦
(A⊗0 B)(0 C

tR(0

R(0→
B(0 (A(0 C)

¦
(A⊗0 B)(0 C

♦

Example 6.3.11. The hypothesis structure corresponding to the proof structure of
Example 6.3.2 is the following:

6.3. Proof structures 203

n
¦d ¦d1 2

¦
n

t̄0

(n(0 n)
(
0 (s

(
0 3020np)

¦d ¦d1 2t̄0
¦d

1 2
tR (

0

¦t
L30

® ©

­ ªd

¦
d
d

¦
t〈 〉0

(np(0 s)
(
0 np

¦d ¦d1 2

¦
t̄0

np
¦d d1 2

¦
t̄0

We can convert this hypothesis structure to an hypothesis tree using the following conver-
sions. From the initial hypothesis structure we have two choices: we can apply either the
L30 contraction or the [Ass0,0] conversion. The L30 contraction gives us the following
hypothesis structure:

n
¦d ¦d1 2

¦
n

t̄0

(n(0 n)
(
0 (s

(
0 3020np)

¦d ¦d1 2t̄0
¦d

1 2
tR (

0

(np(0 s)
(
0 np

¦d ¦d
® ©

­ ªd

1 2

¦
t̄0

np
¦d d1 2

¦
t̄0

At this stage, none of the conversions apply and we still have to remove the R

(

0 link
to get an hypothesis tree. This does not mean our proof structure is not a proof net,
however, as we can try the other possibility:

204 6. Proof nets for the Multimodal Lambek Calculus

n
¦d ¦d1 2

¦
n

t̄0

(n(0 n)
(
0 (s

(
0 3020np)

¦d ¦d1 2t̄0
¦d

1 2
tR (

0

¦t
L30

® ©

­ ªd

¦
d
d

¦
t〈 〉0

np
¦d

(np(0 s)
(
0 np
¦d1 2

¦
t̄0
¦d d1 2

¦
t̄0

after which we apply the L30 contraction.

n
¦d ¦d1 2

¦
n

t̄0

(n(0 n)
(
0 (s

(
0 3020np)

¦d ¦d1 2t̄0
¦d

1 2
tR (

0

np
¦d

(np(0 s)
(
0 np

¦d1 2

¦
t̄0
¦d ¦d
® ©

­ ªd
1 2

¦
t̄0

Finally, we can apply the R

(

0 contraction to obtain the following hypothesis tree:

(n(0 n)
(
0 (s

(
0 3020np)
¦d ¦d1 2

¦
t̄0

n
¦d d1 2

¦
n

t̄0

np
¦d

(np(0 s)
(
0 np

¦d1 2t̄0

♦

6.4. Soundness 205

Remark 6.3.12. Lambek Calculus (L) as introduced in [Lambek 58] is defined in
Section 4.9. It is related to the following special case of NL3R:

• zero unary modes (J = ∅), implying no unary connectives;
• only one binary mode;
• the structural rules3 [LAss] and [RAss], mimicking the fact that each sequent has

a list instead of a structure tree as antecedent part;
• no other structural rules.

In fact, this calculus is equivalent to L>0: L restricted to the requirement that the
antecedent list of all sequents in a derivation be non-empty. In this way Theorem 6.3.7
provides us with a correctness criterium for L>0. ♦

6.4. Soundness

Theorem 6.4.1. (=⇒ part of Theorem 6.3.7)
If Γ ` C is derivable in NL3R, then there is a proof structure S (from ||Γ|| to {C}) such

that Ŝ ³R ΓC . ♦
Proof: We apply induction on the derivation of Γ ` C. By ‘applying a conversion

step to a proof structure’ we will mean ‘applying a conversion step to its underlying
hypothesis structure’.

The identity rules
For an axiom

Ax

A ` A
take the trivial proof structure consisting of one formula A and no links. Its hypothesis

structure
A
¦
A

converts into AA in zero steps.

For a Cut inference
Γ ` A ∆[A] ` C

Cut

∆[Γ] ` C

by induction hypothesis we know that there are proof structures S1 from ||Γ|| to {A} such

that Ŝ1 ³R ΓA:

||Γ||

µ ´
¶ ³
S1 ³R
A

||Γ||
¦ ¦ ¦

µ ´
¶ ³

Γ
¦
A

and S2 from ||∆|| ∪ {A} to {C} such that Ŝ2 ³R ∆[A]C :

||∆|| A¶
µ

³
´S2 ³R

C

||∆||
¦ ¦ ¦

A
¦¶

µ
³
´∆[A]

¦
C

Pasting S1 and S2 in A yields a proof structure from ||Γ|| ∪ ||∆|| to {C} which converts
into ΓA pasted to ∆[A]C , i.e. it converts into ∆[Γ]C , as desired:

3See page 190 for the definition of the mentioned structural rules.

206 6. Proof nets for the Multimodal Lambek Calculus

||Γ||

µ ´
¶ ³
S1

||∆|| A ³R¶
µ

³
´S2

C

||Γ||
¦ ¦ ¦

µ ´
¶ ³

Γ||∆||
¦ ¦ ¦ ¦¶
µ

³
´∆[]

¦
C

The tensor rules
For a R⊗i rule

Γ ` A ∆ ` B R⊗i
Γ ¯i ∆ ` A⊗i B

,

assuming the appropriate induction hypothesis, we find:

||Γ|| ||∆||

µ ´
¶ ³
S1 µ ´
¶ ³
S2

Ad Bd ³R
1 2

A⊗i B

tR⊗i

||Γ||
¦ ¦ ¦

||∆||
¦ ¦ ¦

µ ´
¶ ³

Γ µ ´
¶ ³

∆
¦d ¦d1 2

¦
A⊗i B

t̄i
The unary version

Γ ` A R3j

〈Γ 〉j ` 3jA

is proved similarly.
For a L

(

i rule

Γ ` A ∆[B] ` C
L
(
i

∆[B

(

i A ¯i Γ] ` C
,

assuming the appropriate induction hypothesis, we find:

||Γ||

µ ´
¶ ³
S2

B

(

i At
L
(
i

Ad1 2 ³R

||∆|| B

d
¶
µ

³
´S1

C

||Γ||
¦ ¦ ¦

µ ´
¶ ³

Γ
B

(
i A
¦d ¦d1 2

||∆||
¦ ¦ ¦ ¦

t̄i
¶
µ

³
´∆[]

¦
C

The L(i case is the symmetric counterpart, while the unary version

∆[B] ` C
L2j

∆[〈2jB 〉j] ` C

is proved analogously by deleting S2 in the diagram above.
The par rules
For a L⊗i rule

6.4. Soundness 207

Γ[A ¯i B] ` C
L⊗i

Γ[A⊗i B] ` C

we know by induction hypothesis that

||Γ|| A B'

&

$

%
S1 ³R

C

A
¦d

B
¦d1 2

||Γ||
¦ ¦ ¦ ¦
t̄i

¶
µ

³
´Γ[]

¦
C

whence

A⊗i Bt
L⊗i1 2

||Γ|| A

d
B

d
'

&

$

%
S1 ³R

C

A⊗i B
¦t

L⊗i1 2

¦d
d

¦d
d

1 2
||Γ||
¦ ¦ ¦ ¦
t̄i

L⊗i→R¶
µ

³
´Γ[]

¦
C

||Γ||
¦ ¦ ¦

A⊗i B
¦¶

µ
³
´Γ[]

¦
C

The unary version

Γ[〈A 〉j] ` C
L3j

Γ[3jA] ` C

is proved analogously, by an extension of the original conversion sequence by a L3j

contraction.
For a R

(

i rule

Γ ¯i A ` B
R

(
i

Γ ` B

(

i A

we know by induction hypothesis that

||Γ|| A'

&

$

%
S1 ³R

B

||Γ||
¦ ¦ ¦

A
¦

d
µ ´
¶ ³

Γ
¦d1 2

¦
B

t̄i
whence

208 6. Proof nets for the Multimodal Lambek Calculus

||Γ|| A

® ©

­ ªd

'

&

$

%
S1 ³R

Bd
1 2

B

(

i A

tR (
i

||Γ||
¦ ¦ ¦

® ©

­ ªd

¦

d
µ ´
¶ ³

Γ
¦d R

(
i→ R

1 2

¦
t̄i
d

1 2

¦
B

(
i A

tR (
i

||Γ||
¦ ¦ ¦

µ ´
¶ ³

Γ
¦

B
(
i A

The R(i case is the symmetric counterpart, while the unary version

〈Γ 〉j ` B
R2j

Γ ` 2jB

is proved analogously, by an extension of the original conversion sequence by a R2j

contraction.
The structural rules
For a structural rule

∆[Ξ∗[Γ1, . . . , Γn]] ` C
〈Ξ, Ξ′, π〉

∆[(Ξ′)∗[Γπ1, . . . , Γπn]] ` C

belonging to R, assuming that Ŝ1 ³R ∆[Ξ∗[Γ1, . . . , Γn]]C , we can start with the same
proof structure S1 and extend this conversion sequence by

||Γ1||
¦ ¦ ¦ · · ·

||Γn||
¦ ¦ ¦

µ ´
¶ ³

Γ1 · · ·µ ´
¶ ³

Γn

¦ ¦ ¦ ¦ ¦¶
µ

³
´Ξ∗[−, . . . ,−]

〈Ξ, Ξ′, π〉→ R||∆||
¦ ¦ ¦ ¦¶
µ

³
´∆[]

¦
C

||Γπ1 ||
¦ ¦ ¦ · · ·

||Γπn ||
¦ ¦ ¦

µ ´
¶ ³

Γπ1 · · ·µ ´
¶ ³

Γπn

¦ ¦ ¦ ¦ ¦¶
µ

³
´(Ξ′)∗[−, . . . ,−]||∆||

¦ ¦ ¦ ¦¶
µ

³
´∆[]

¦
C ////

Given a derivation D, the construction in this proof yields exactly one proof struc-
ture and at least one conversion sequence. Actually it yields a non-empty collection of
conversion sequences in the following way.

Observe that for every structural rule and for every par rule we have to extend an
inductively obtained conversion sequence by the corresponding conversion, whereas no
other inference rule induces a new conversion. Hence for every conversion sequence there
is a bijective correspondence between the set of structural rules and par rules on the one
hand, and the set of conversion steps on the other hand.

A priori there is no unique order of executing these conversions. For a binary tensor
rule (R⊗i, L(i, L

(

i) as well as for a Cut inference, the conversion steps in the compo-
nents S1 and S2 may be executed in a parallel way; i.e. independently of each other. Now
we define the collection of conversion sequences of D by all possible ways of interleaving

6.5. Sequentialisation 209

a conversion sequence of D1 and a conversion sequence of D2. This yields

|D| :=
(

k + l

k

)
|D1| |D2|

conversion sequences, where k is the number of structural rules and par rules in D1, l
is the number of structural rules and par rules in D2, and |−| counts the number of
conversion sequences in the inductively defined collection.

Example 6.4.2. 1. Let D be the following derivation:

C ` C
A ` A B ` B L(1

A ¯1 A(1 B ` B
L
(
0

A ¯1

(
(A(1 B)

(

0 C ¯0 C
)
` B

F ` F
D ` D E ` E R⊗1

D ¯1 E ` D ⊗1 E
L(1

D ¯1

(
F ¯1 F (1 E

)
` D ⊗1 E

R⊗0(
A ¯1

(
(A(1 B)

(

0 C ¯0 C
))
¯0

(
D ¯1

(
F ¯1 F (1 E

))
` B ⊗0 (D ⊗1 E)

The proof structure of this derivation reads:

A

d
(A(1 B)

(

0 Ct
L
(
0

Cd D

d
Fd F (1 Et

L(1

1 2 1 2

A(1 B

d
t

L(1

E

d
d1 2 1 2

B

d
d D ⊗1 E

tR⊗1

d1 2

B ⊗0 (D ⊗1 E)

tR⊗0

and we find only one conversion sequence: the empty one.
2. The last derivation in Example 6.2.5 has the proof structure shown in Exam-

ple 6.3.10. The conversion sequence given there again is the only one our procedure
yields. ♦

6.5. Sequentialisation

Lemma 6.5.1. If S is a non-trivial proof structure such that the underlying hypothesis
structure Ŝ is actually an hypothesis tree ΓC (for some structure tree Γ and formula C),
then at least one of the leaves (conclusion and hypotheses) of S is the main formula of
its link. ♦

Proof: As S is not trivial (i.e. a singleton), it is clear that every leaf is connected
to exactly one link, so the formulation of the lemma is well-defined.

To prove: if every hypothesis is an active formula of its link, then the conclusion is
the main formula of its link. We proceed by induction on Γ.

The trivial case Γ =
A
¦ cannot occur.

In case Γ = Γ1 ¯i Γ2, assume every hypothesis is an active formula of its link. We
write L for the final ¯i link, connecting Γ1 and Γ2. If Γ1 is trivial, the assumption entails
that the corresponding formula in S is an active formula of L. If Γ1 is non-trivial, by
induction hypothesis we know that its conclusion is the main formula of the link above,
whence of the form 3jA or A ⊗i B. This implies that it is not the main formula of L,
which would be 2jB, A(i B or B

(

i A. Hence it is an active formula of L. The same

210 6. Proof nets for the Multimodal Lambek Calculus

holds for the second premiss of L. As both premisses are active, the conclusion of L must
be main, as desired.

The case Γ = 〈Γ1 〉j is proved analogously. ////

Alternatively, we can obtain this result as a corollary of the following lemma.

Lemma 6.5.2. If S is a proof structure such that the underlying hypothesis structure

Ŝ is actually an hypothesis tree, then λ = α, where λ denotes the number of hypotheses
of S, and α the number of axiomatic formulas of S. ♦

Proof: By induction on Γ.

If Γ =
A
¦ , then S is singleton A, which has one hypothesis (λ = 1) and contains one

axiomatic formula (α = 1).
In case Γ = Γ1 ¯i Γ2 we have λ = λ1 + λ2. In order to calculate α we differentiate on

the following subcases:

• S = S1 R⊗i S2: In this case α = α1 + α2 + 0;
• S = S1 L(i S2: Now α = α1 + (α2 − 1) + 1, since the second premiss of the

final ¯i link L becomes non-axiomatic, whereas the conclusion of L is a new
axiomatic formula;
• S = S1 L

(

i S2: Similarly we find α = (α1 − 1) + α2 + 1.

Hence in all subcases α = α1 + α2. Using the induction hypothesis we find

λ = λ1 + λ2 = α1 + α2 = α

In case Γ = 〈Γ1 〉j we have λ = λ1, while α = α1 +0 (in the subcase that S = R3jS1)
or α = (α1− 1) + 1 (in the subcase that S = L2jS1). So by induction hypothesis λ = α.

////

Now suppose S is as in Lemma 6.5.1. Besides the hypotheses there is one other leaf:
the conclusion. This yields

the number of leaves = the number of axiomatic formulas + 1.

Since a leaf is active exactly if it is an axiomatic formula of S, subtracting the number
of active leaves on both sides of this equation gives:

the number of main leaves = the number of internal axiomatic formulas + 1.

This implies that there is at least one main leaf, which gives an alternative proof of
Lemma 6.5.1.

Example 6.5.3. The proof structure in Example 6.4.2.1 has λ = 6 hypotheses and
α = 6 axiomatic formulas. Neglecting the axiomatic leaves, we count 3 main leaves and
2 internal axiomatic formulas. ♦

Theorem 6.5.4. (⇐= part of Theorem 6.3.7)

If there is a proof structure S (from ||Γ|| to {C}) such that Ŝ ³R ΓC, then Γ ` C is
derivable in NL3R. ♦

Proof: We apply induction on the length l of the conversion sequence Ŝ ³R ΓC .

In case l = 0 we have Ŝ = ΓC . We proceed by induction on the size of Γ.

If Γ =
A
¦ , then A equals C, since they originate from the same formula constituting

the whole proof structure S. Now A ` A is derivable by Ax.

6.5. Sequentialisation 211

If Γ is not trivial, by Lemma 6.5.1 we know S has at least one main leaf D. In case D
is the main formula of a L

(

i link, D is of the form B

(

i A and must be the first premiss
of this link. Now S and Γ are of the form

||Γ2||

µ ´
¶ ³
S2

B

(

i At
L
(
i

Ad1 2 (−)̂7→

||Γ1|| B

d
¶
µ

³
´S1

C

||Γ2||
¦ ¦ ¦

µ ´
¶ ³

Γ2B
(
i A
¦d ¦d1 2

||Γ1||
¦ ¦ ¦ ¦

t̄i
¶
µ

³
´Γ1[]

¦
C

By induction hypothesis there are derivations D2 of Γ2 ` A and D1 of Γ1[B] ` C, which
may be combined to

D2

Γ2 ` A

D1

Γ1[B] ` C
L
(
i

Γ1[B

(

i A ¯i Γ2] ` C

which is a derivation of Γ ` C.
The remaining subcases in which D is the main formula of a R3j, R⊗i, L2j or L(i

link are proved similarly.
Now assume l > 0.
If the last conversion step is a structural conversion

Ξ∗[x1, . . . , xn]→ (Ξ′)∗[xπ1, . . . , xπn].

our conversion sequence is

||Γ1||
¦ ¦ ¦ · · ·

||Γn||
¦ ¦ ¦

µ ´
¶ ³

Γ1 · · ·µ ´
¶ ³

Γn

¦ ¦ ¦ ¦ ¦
S ³R
¶
µ

³
´Ξ∗[−, . . . ,−]

〈Ξ, Ξ′, π〉→ R||∆||
¦ ¦ ¦ ¦¶
µ

³
´∆[]

¦
C

||Γπ1 ||
¦ ¦ ¦ · · ·

||Γπn ||
¦ ¦ ¦

µ ´
¶ ³

Γπ1 · · ·µ ´
¶ ³

Γπn

¦ ¦ ¦ ¦ ¦¶
µ

³
´(Ξ′)∗[−, . . . ,−]||∆||

¦ ¦ ¦ ¦¶
µ

³
´∆[]

¦
C

By induction hypothesis we know there is a derivation D1 of ∆[Ξ∗[Γ1, . . . , Γn]] ` C,
yielding

D1

∆[Ξ∗[Γ1, . . . , Γn]] ` C
〈Ξ, Ξ′, π〉

∆[(Ξ′)∗[Γπ1, . . . , Γπn]] ` C

which is a derivation of Γ ` C.
If the last conversion step is a L⊗i contraction, we can split Γ in the node by which

the pair of links is replaced. This yields two trees Γ1 and Γ2[], satisfying Γ = Γ2[Γ1].

212 6. Proof nets for the Multimodal Lambek Calculus

||Γ1||

µ ´
¶ ³
S1

A⊗i Bt
L⊗i1 2L

||Γ2|| A

d
B

d
'

&

$

%
S2 ³R

C

||Γ1||
¦ ¦ ¦

µ ´
¶ ³

Γ1

¦t
L⊗i1 2L
¦d
d

¦d
d

1 2
||Γ2||
¦ ¦ ¦ ¦
t̄i

L⊗i→R¶
µ

³
´Γ2[]

¦
C

||Γ1||
¦ ¦ ¦

µ ´
¶ ³

Γ1||Γ2||
¦ ¦ ¦ ¦¶
µ

³
´Γ2[]

¦
C

Reading this sequence from right to left, the L⊗i link (L) serves as a boundary: any
structural rule is applied strictly over L or beneath L. Obviously also each point that
is blown up is over or beneath L, whence our proof structure S splits as indicated.
We can partition the conversion sequence into two conversion sequences for each of the
substructures:

||Γ1||

µ ´
¶ ³
S1 ³R

A⊗i B

||Γ1||
¦ ¦ ¦

µ ´
¶ ³

Γ1

¦
A⊗i B

and

||Γ2|| A B'

&

$

%
S2 ³R

C

A
¦d

B
¦d1 2

||Γ2||
¦ ¦ ¦ ¦
t̄i

¶
µ

³
´Γ2[]

¦
C

Now the total length of both sequences is l−1, whence each sequence is of length at most
l− 1, and applying the induction hypothesis we find derivations D1 of Γ1 ` A⊗i B and
D2 of Γ2[A ¯i B] ` C. These may be combined into

D1

Γ1 ` A⊗i B

D2

Γ2[A ¯i B] ` C
L⊗i

Γ2[A⊗i B] ` C
Cut

Γ2[Γ1] ` C

which is a derivation of Γ ` C, as desired.
The other four contractions are treated similarly. ////

For fixed S and ρ : Ŝ ³R ΓC , the construction given by this proof may yield several
derivations of Γ ` C. This non-uniqueness lies in the possibility of several main leaves
in case l = 0 and Γ is non-trivial.

However, any such derivation D satisfies the property that there is a bijective corre-
spondence between the links of S and the logical rules of D. Observe that each par link

6.5. Sequentialisation 213

of S also corresponds to a contraction in ρ. The remaining conversions, i.e. the structural
conversions, correspond to structural rules of D. What about the identity rules of D?

We claim that is it possible to adapt the proof of Theorem 6.5.4 in such a way that
all found derivations D of Γ ` C satisfy the following, in addition to the above property:

• there is a bijective correspondence between axiomatic formulas and Ax rules,
such that

A

corresponds with an Ax rule on A;
• there is a bijective correspondence between cut formulas and Cut rules, such

that

A

tR
t
L

corresponds with a Cut rule on A.

For this purpose we first state the following lemma.

Lemma 6.5.5. (Substitution) Let D1 be a derivation of Γ1 ` C1 and D2 be a deriva-
tion of Γ2[C1] ` C2.
1. If C1 ` C1 is an axiom of D1, the succedent formula of which coincides with the succe-
dent formula of Γ1 ` C1, then we can substitute D2 into D1 in order to get a derivation
D1[D2] of Γ2[Γ1] ` C2.

C1 ` C1C1C1 . . .

D1
. . .

... . .
.

Γ1 ` C1C1C1

D2

Γ2[C1] ` C2..
Γ2[Γ1] ` C2

becomes

D2

Γ2[Γ2[Γ2[C1]]] ` C2C2C2 . . .

D1
. . .

... . .
.

Γ2[Γ2[Γ2[Γ1]]] ` C2C2C2

2. If C1 ` C1 is an axiom of D2, the antecedent formula of which coincides with the
occurrence in Γ2[C1] ` C2, then we can substitute D1 into D2 in order to get a derivation
D2[D1] of Γ2[Γ1] ` C2.

D1

Γ1 ` C1

. . . C1C1C1 ` C1

. . .
... . .

.

D2

Γ2[C1C1C1] ` C2......................................
Γ2[Γ1] ` C2

becomes

. . .

D1

Γ1Γ1Γ1 ` C1

. . .
... . .

.

D2

Γ2[Γ1Γ1Γ1] ` C2

♦
Proof: In general, every leaf of a tree determines a path to the root. In particular

every axiom rule of a derivation determines a path of sequents from that axiom to the
conclusion of the derivation. Let Γ ` ∆ and Γ′ ` ∆′ be two successive sequents in a
certain path β, i.e. Γ′ ` ∆′ is the conclusion of an inference rule with Γ ` ∆ among
its hypotheses. For a binary inference rule r we say that β passes r via the left (right)
hypothesis if Γ ` ∆ is the first (second) hypothesis of r.

1. As the occurrence C1C1C1 is preserved in the path β in D1 between C1 ` C1C1C1 and
Γ1 ` C1C1C1, the possible inference rules that β passes are Cut (via the right hypothesis),

214 6. Proof nets for the Multimodal Lambek Calculus

the left logical rules (if binary, then via the right hypothesis), or a structural rule. Each
of these rules have the property that if(

Γ0 ` C0

)
Γ1 ` C1C1C1

Γ3 ` C1C1C1

is an instance, then so is (
Γ0 ` C0

)
Γ2[Γ2[Γ2[Γ1]]] ` C2C2C2

Γ2[Γ2[Γ2[Γ3]]] ` C2C2C2

2. As the occurrence C1C1C1 is preserved in the path β in D2 between C1C1C1 ` C1 and
Γ2[C1C1C1] ` C2, it will never be an active formula in any inference rule β passes. Hence, if(

Γ0 ` C0

)
Γ2[C1C1C1] ` C2

Γ3[C1C1C1] ` C3

is an instance of a rule, then so is(
Γ0 ` C0

)
Γ2[Γ1Γ1Γ1] ` C2

Γ3[Γ1Γ1Γ1] ` C3 ////

Now extend the proof of Theorem 6.5.4 by simultaneously showing that every ax-
iomatic formula corresponds to an Ax rule, and moreover that every axiomatic conclusion
corresponds to an axiom as in Lemma 6.5.5.1 and every axiomatic hypothesis corresponds
to an axiom as in Lemma 6.5.5.2. We adapt the proof in the case that l > 0 and the
last conversion step is a contraction: If the main formula of L (say: D) is a cut formula
of S we proceed as described earlier. However, if D is not a cut formula, then D is an
axiomatic leaf of one of the two substructures. Hence we can apply the par rule followed
by the appropriate substitution.

6.6. Cut elimination

Recall that a cut formula is a formula which is the main formula of two dual links.
A cut reduction step is defined by deleting these links and the cut formula, while pair-
wisely identifying the active formulas in case they are different (as occurrence of the same
formula), or deleting them if they are identical.

µ ´
Bd

1 2

µ ´ µ ´µ ´
A

d
Ad A(i B

tR(i

t
L(i

Ã A B¶ ³
1 2

¶ ³¶ ³
B

d
¶ ³

Let D be a cut formula and L the corresponding par link. We will show that, if (S, ρ)
is a conversion sequence of Γ ` C, then so is (S ′, ρ′), where S Ã S ′, and ρ′ consists of
the same set of conversion steps as ρ, with the exception of the contraction α of L, in a
sense to be made precise shortly.

Theorem 6.6.1. If S is a proof net of Γ ` C, and S Ã S ′ by a cut reduction step,
then S ′ is a proof net of Γ ` C as well. ♦

6.6. Cut elimination 215

Example 6.6.2. 1. In order to get an idea of the proof, let us consider the following
conversion sequence in which we assume L1 remains untouched during β.

¦d ¦d1 2
L1

¦
t̄i
t

L⊗i1 2

'

&

$

%

L
¦
d

¦
d β

³

¦d ¦d1 2
L1

¦
t̄i
t

L⊗i1 2

'

&

$

%

L
¦
d
d ¦
d
d1 2

L2

¦
t̄i

α→

¦d ¦d1 2
L1

¦
t̄i

'

&

$

%

γ
³ ΓC

Executing a cut reduction step yields a proof structure to which we can apply the
same conversion steps as before and in the same order, except the contraction α:

¦ ¦

'

&

$

%
β
³

¦d ¦d1 2

'

&

$

%
L2

¦
t̄i =

¦d ¦d1 2

'

&

$

%
L2

¦
t̄i γ

³ ΓC

Observe that L2 plays the role of L1 in γ.
2. If L1 does not remain untouched, we cannot in general transform an arbitrary

conversion sequence Ŝ
β
³ H1

α→ H into Ŝ ′
β′

³ H. This is shown by the following proof
structure in the calculus NL3{[Q]}, where [Q] may be read off from the conversion step
below.

Bd
® ©

­ ª
d

B(0 Bt
L(0

1 2

Ad
® ©

­ ªd
B

d
d1 2

A⊗1 B

tR⊗1

t
L⊗1

1 2

This proof structure may be converted as follows:

216 6. Proof nets for the Multimodal Lambek Calculus

x2d
B(0 B
¦d1 2

x1d ¦
t̄0
d1 2

¦
t̄1
t

L⊗1
1 2

x1

d
x2

d
[Q]→

x1d x2d
B(0 B
¦d1 2

¦
t̄1
d ¦d
t〈 〉1

1 2

¦
t̄2
t

L⊗1
1 2

x1

d
x2

d
α→

B(0 B
¦d

x0d ¦d
t〈 〉1

1 2

x0

t̄2

but after cut elimination we obtain

x2d
B(0 B
¦d1 2

x2

t̄0 ,

and no conversion step applies anymore, whence we cannot arrive at the same hypothesis
structure as before. ♦

Let (S, ρ) be a conversion sequence of Γ ` C:

Ŝ
ρ
³R ΓC

For each par link L with main formula D and active formula(s) A (and B) we will define a
substructure SL of S (called the block of L in S w.r.t. ρ) and a subsequence ρL satisfying
the following properties:

S
Dt
L⊗i1 2 L

||Γ|| A

d

'

&

$

%

B

d
'

&

$

%
SL ³R

C

S
¦t

L⊗i1 2 L
¦d
d

'

&

$

%

¦d
d

1 2

¦ ¦ ¦ ¦
t̄i

¶
µ

³
´Γ[]

¦

• SL does not contain D. Consequently it does not contain L either.
• SL has A (and B) among its leaves.
• The conversion sequence ρL acts completely within SL, and this restriction to SL

yields a nice hypothesis tree with respect to L. By this we mean that attaching
L enables its contraction α.
• Our original conversion sequence may be replaced by

Ŝ
ρL³R H α→ H′

ρ′L³R ΓC .

We will only sketch the idea; the formal definition and proof may be given simultaneously
by induction on the length l of ρ.

6.7. Automated deduction 217

First of all, deleting all p par links (but not their nodes) yield p + 1 hypothesis trees,
called the components of S. This even holds for all intermediate hypothesis structures

between Ŝ and ΓC : Reasoning backwards from the hypothesis tree, we start with one
component (p = 0). After a number of structural conversions, a contraction H α→ Γ′

splits this component Γ′ into two parts and replaces one node by a redex. The par link
L of this redex now serves as a boundary between the two new components Γ1 (attached
to A (and B)) and Γ2 (attached to D), while (at this moment) Γ1 is a nice hypothesis
tree w.r.t. L. All next structural conversions completely take place within one of the two
components, and the next contraction takes place in exactly one of the two components
as well. In this way every par link replaces one component by two new components,
yielding p + 1 components in each hypothesis structure, and 2p + 1 distinct components
in the whole conversion sequence so far (read from right to left).

The block of a par link L is Γ1 at stage H, and further on it grows with the remain-
ing conversions in ρ; it is clear that every conversion is completely inside the block, or
completely outside the block, which proves our properties.

This shows that we can reorder our original conversion sequence ρ by ρ1 in which
L1 remains untouched until α (cf. Example 6.6.2.1). Executing a cut reduction step
yields a proof structure to which ρ1 applies until α, and further on after α. (We refer to
Example 4.5.2 for further details.)

6.7. Automated deduction

One of the attractive aspects of our formalism is that it lends itself well to automated
proof search. First of all, in the previous section we saw that we could eliminate cut
formulas from proof nets, making it unnecessary to consider cut formulas in our proof
search. Secondly, we can restrict ourselves to proof nets where all our axiomatic formulas
are atomic, as indicated by the following lemma:

Lemma 6.7.1. Given a proof structure S we can construct a proof structure S ′ with
the same hypotheses and conclusions where all axiomatic formulas are atomic and where

Ŝ ′ ³R Ŝ, for an arbitrary set of structural conversions R. We will call such a proof
structure η-expanded. ♦

Proof: By induction on the total complexity of the axiomatic formulas.
If there are no complex axiomatic formulas in the proof structure, we take S ′ = S

and an empty conversion sequence.
If we have a proof structure S0 where the axiomatic formulas have n + 1 total con-

nectives, we can expand a complex axiomatic A ⊗i B formula in the following way (the
other connectives are treated similarly):

A⊗i B ;

A⊗i Bt
L⊗i1 2

A

d
B

d
Ad Bd1 2

A⊗i B

tR⊗i
The resulting proof structure S1 will have two new axiomatic formulas, and the total

number of connectives of axiomatic formulas will be n.
By induction hypothesis we know that Ŝ ′1 ³R Ŝ1, so we can suffix a L⊗i conversion

producing Ŝ ′1 ³R Ŝ1
L⊗i→ Ŝ0. As we use only contractions, the theorem holds regardless

218 6. Proof nets for the Multimodal Lambek Calculus

of the structural rules. ////

As an immediate consequence of cut elimination and Lemma 6.7.1 we get the following
corollary:

Corollary 6.7.2. For every R-proof net P of Γ ` C there exists a R-proof net P ′,
also of Γ ` C, which is cut-free and η-expanded. ♦

So we can, without loss of generality, restrict ourselves to proof structures where all
complex formulas are neither axiomatic nor cut formulas. A simple algorithm for the
enumeration of cut-free, η-expanded proof nets is the following.

Input − sequence w1, . . . , wn of words

− lexicon l, which assigns formulas to words

− goal formula Q

− set R of structural rules

Output set of cut-free, η-expanded proof nets from {l(w1), . . . , l(wn)} to {Q}
Usually we want to restrict this set of proof nets to those satisfying some additional

constraints, like the one that left to right traversal of the hypothesis tree yields the
formulas in the order indicated by the input sequence.

(1) For each of the words wi in the input sequence, select one of the formulas assigned
to this word from the lexicon.

(2) Decompose the formulas according to the links of Definition 6.3.1 until we reach
the atomic subformulas. The disjoint union of these proof structures is a proof
structure itself, though it will have several hypotheses in addition to those from
the lexicon and several conclusions in addition to the goal formula.

(3) Identify each atomic premiss with an atomic conclusion to produce a proof struc-
ture from {l(w1), . . . , l(wn)} to {Q}.

(4) Convert the hypothesis structure corresponding to this proof structure to an
hypothesis tree using only the structural conversions of R and the contractions.

(5) Check if this hypothesis tree satisfies our constraints.

We assume computation is nondeterministic, i.e. the steps of our algorithm can pro-
duce a number of solutions: the lexicon can produce different formulas for each word, and
there can be many different ways of identifying the atomic formulas and many hypothesis
trees to which we can convert our hypothesis structure. When one step in our algorithm
fails to produce a solution, we backtrack to a previous step and try the next solution at
this step until we have found all solutions.

As the connecting of step 3 and the conversions of step 4 are computationally expen-
sive, it is desirable to do some static tests on the set of proof structures we get from the
lexical formulas after step 2 of the algorithm, to make sure we at least have a chance of
ultimately converting to a hypothesis tree. The following are two quick tests to reject
proof structures which can never satisfy our correctness criterion.

First, by our definition of hypotheses and conclusions of proof structures, all atomic
formulas, different from the lexical formulas or the conclusion Q, must be both a premiss
and a conclusion of some link in a proof structure from {l(w1), . . . , l(wn)} to {Q}. So by
counting we can determine whether each of these atomic formulas occurs as many times
as a conclusion as it occurs as a premiss.

6.7. Automated deduction 219

Secondly, the following lemma gives us a condition on the number of binary links
occurring in a proof net.

Lemma 6.7.3. Suppose we have a proof structure S with h hypotheses, t binary tensor
links, p binary par links and a single conclusion. Then the following holds if S is a proof
net:

t + 1 = p + h

♦
Proof: Reasoning backwards from the hypothesis tree to the initial hypothesis

structure we see that it holds for the hypothesis tree (with p = 0), that the structural
conversions and the unary contractions preserve t, p and h, and that the contractions for
the binary links increase t and p simultaneously. ////

Example 6.7.4. The proof structure we would get after lexical lookup and formula
decomposition of ‘agent whom Mulder liked’ is the following:

sd
(n(0 n)

(
0 (s

(
0 3121np)t

L
(
0

whom

s
(

0 3121np

tR (
0

d 3121np

d
t

L31

nd n(0 n

d
t

L(0

21np

d
t

L21

n

d
np

d

Mulder

np

agent

n

liked

(np(0 s)

(

0 npt
L
(
0

npd
goal

n npd
d

np(0 st
L(0

s

d
We have marked the lexical hypotheses (resp. the conclusion) with an arrow leaving

the formula from above (resp. below). This just is a reminder they should not be used as
the conclusion (resp. premiss) of a link.

Now we count the atomic premisses and conclusions which are available. We have two
formulas n as premisses and two as conclusions, we have one formula s as a premiss and
one as a conclusion and we have two formulas np as premisses and two as conclusions.
So it should at least be possible to find a way to identify these, and produce a proof
structure from {n, (n(0 n)

(

0 (s

(

0 np), np, (np(0 s)

(

0 np} to {n}.
Next we count 4 lexical hypotheses, 4 binary tensor links, and 1 binary par link,

satisfying our equation t + 1 = p + h, and proceed to the identification phase.
The proof structure for ‘*agent whom Mulder liked Skully’ would fail both tests. There

would be one more np occurrence as a conclusion, and there would be one hypothesis too
many. ♦

For the identification of the atomic formulas we will generally have a number of
possible choices. Given a proof structure in which an atomic formula A occurs k times

220 6. Proof nets for the Multimodal Lambek Calculus

as a premiss (and k times as a conclusion, according to our count check), there will be k!
ways of performing these identifications. In the proof structure above we count 1 formula
s, 2 formulas np, and 2 formulas n, giving us a total of 1!× 2!× 2! = 4 proof structures
that we have to consider. For larger examples, this will quickly lead to an unacceptably
long computation time. However, we will see that a smart algorithm can in many cases
perform better than the worst case complexity might suggest, by exploiting the different
kinds of information present in the proof structure.

Example 6.7.5. As a first step we identify the premiss s with the conclusion, resulting
in the following proof structure:

Mulder

np

agent

n

liked

(np(0 s)

(

0 npt
L
(
0

npd
goal

n npd
d

np(0 st
L(0

s

d
d

(n(0 n)

(

0 (s

(

0 3121np)t
L
(
0

whom

s

(

0 3121np

tR (
0

d 3121np

d
t

L31

nd n(0 n

d
t

L(0

21np

d
t

L21

n

d
np

d
Next, we decide to identify the np formulas. Here we have two choices: either the

lexical np formula is a premiss of the L(0 link, or it is a premiss of the L

(

0 link. We
choose first to explore the second possibility, and get the following proof structure:

3121npt
L31

® ©

­ ªd

agent

n 21np

d
t

L21

liked

(np(0 s)

(

0 npt
L
(
0

Mulder

npd
goal

n np

d
npd

d
np(0 st

L(0

s

d
d

(n(0 n)

(

0 (s

(

0 3121np)t
L
(
0

whom

s

(

0 3121np

tR (
0

d
nd n(0 n

d
t

L(0

n

d
Now, when we look at the hypothesis structure of this proof structure, we see that

no structural conversions apply to it and that the only contraction we can apply is the

6.7. Automated deduction 221

one for L31, after which we will be unable to contract the R

(

0 link or apply any
structural conversion. Furthermore, this will apply to any hypothesis structure we get
after identifying more formulas of the proof structure, because the R

(

0 link remains
splitting in the sense of our sequentialization theorem, regardless of which additional
formulas we identify in this proof structure.

Observe also that if we would have used ‘which’ instead of ‘whom’ for this example,
we could have applied the [Com0,0] conversion at this point and continued to produce a
proof net of ‘agent which liked Mulder’.

We return to the other way of identifying the np formulas, resulting in the following
proof structure:

3121npt
L31

® ©

­ ªd

21np

d
t

L21

agent

n

liked

(np(0 s)

(

0 npt
L
(
0

np

d
d

goal

n

Mulder

npd
d

np(0 st
L(0

s

d
d

(n(0 n)

(

0 (s

(

0 3121np)t
L
(
0

whom

s

(

0 3121np

tR (
0

d
nd n(0 n

d
t

L(0

n

d

Reasoning as before, we see that at this point we can contract the R

(

0 link after both
the [Ass0,1] structural conversion and the L31 contraction, so continuing is warranted.

For the n formulas we again have two choices: we either identify the n hypothesis with
the conclusion of the proof structure or with the conclusion of the L(0 link. Selecting
the first option will give us the following proof structure:

222 6. Proof nets for the Multimodal Lambek Calculus

3121npt
L31

® ©

­ ªd

21np

d
t

L21

liked

(np(0 s)

(

0 npt
L
(
0

np

d
dagent

goal

n Mulder

npd
d

np(0 st
L(0

s

d
d

(n(0 n)

(

0 (s

(

0 3121np)t
L
(
0

whom

s

(

0 3121np

tR (
0

d
nd
® ©
­ ªd

n(0 n

d
t

L(0

Now we can immediately see we will be unable to contract the hypothesis structure
of this proof structure to a tree, as none of our conversions allow us to connect the two
separate components of the hypothesis structure and therefore we can never convert to a
tree.

Fortunately, the final proof structure of this sequent

6.7. Automated deduction 223

3121npt
L31

® ©

­ ªd

21np

d
t

L21

liked

(np(0 s)

(

0 npt
L
(
0

np

d
dMulder

npd
d

np(0 st
L(0

s

d
d

(n(0 n)

(

0 (s

(

0 3121np)t
L
(
0

whom

s

(

0 3121np

tR (
0

d
agent

nd n(0 n

d

t
L(0

goal

n

d

can be converted to an hypothesis tree (almost) as shown in Example 6.3.11. We can also
see that this hypothesis tree has all formulas in the desired order.

This completes the enumeration of all possible cut-free, η-expanded proof nets from
{n, (n(0 n)

(

0 (s

(

0 3121np), np, (np(0 s)

(

0 np} to {n} for the given fragment. ♦

APPENDIX A

Systems

In this appendix we review the calculi that are central to this thesis.

A.1. MLL

One-sided Multiplicative Linear Logic (MLL1) is concerned with finite multisets of
formulas, e.g.

Γ = {X, Y ⊥ ⊗ Y ⊥, (X(Y)⊥, X}.
It is easy to see that Γ is not derivable when X and Y are two distinct atoms. Indeed,
any derivable sequent (multiset) contains every atom an even number of times (since the
positive occurrences are equinumerous to the negative ones). If X = Y this multiset
is derivable, however. Let us mention the derivation rules and show the derivation of
Γ = {X, X⊥ ⊗X⊥, (X(X)⊥, X}.

MLL1

Ax

` X, X⊥

` Γ, X ` ∆, X⊥
Cut

` Γ, ∆

` Γ, X ` ∆, Y
R⊗

` Γ, ∆, X ⊗ Y

` Γ, X, Y
R

&

` Γ, X

&

Y

Now a derivation of Γ is given by

Ax

` X, X⊥

Ax

` X, X⊥
Ax

` X, X⊥
R⊗

` X, X⊥ ⊗X⊥, X
R⊗

` X, X, X⊥ ⊗X⊥, X⊥ ⊗X

which equals Γ since the order does not matter, and since (X(X)⊥ = (X⊥

&

X)⊥ =
X⊥ ⊗X.

The two-sided version (MLL2) is obtained by allowing “negative” occurrences of
formulas, so that we can distinguish hypotheses and conclusions in a sequent. A sequent
corresponding to the one-sided sequent Γ above, is given by

A

&

A, A(A ` A, A

but also by

` A, A⊥ ⊗ A⊥, (A(A)⊥, A
225

226 A. Systems

where (−)⊥ and −(− should be seen as primitive connectives, and A is a formula in
the two-sided language corresponding to X.

Finally, in the intuitionistic calculus (IMLL) we restrict to two-sided sequents with
only one conclusion Γ ` C. The derivability question becomes rather: can we infer C
from the open assumptions in Γ (using each assumption exactly once, as usual in linear
logic)?

A.2. NCLL

In Non-commutative Cyclic Linear Logic (NCLL) sequents are cyclic lists rather than
multisets. The one-sided sequent calculus is given by the rules

NCLL1

Ax

`
([

X, X⊥
])

` ([Γ, X]) `
([

∆, X⊥
])

Cut

` ([Γ, ∆])

` ([Γ, X]) ` ([∆, Y])
R⊗

` ([Γ, X ⊗ Y, ∆])

` ([Γ, X, Y])
R

&

` ([Γ, X

&

Y])

When we allow positive and negative occurrences of formulas, our sequents become
cyclic lists of polarized formulas. It would be a severe restriction to require that all
hypotheses be next to each other. Indeed, we will see natural examples violating this
requirement. Hence we cannot represent a general sequent by Γ ` ∆ (Γ and ∆ lists),
because it only represents a sequent of the form ([Γ−, ∆+]). However, in the intuitionistic
version all hypotheses are next to each other, as there is only one conclusion. So now
our sequents ([C+, Γ−]) can be represented as Γ ` C (Γ− being Γ in reversed order and
formula-wise provided with a negative sign), and we obtain Lambek calculus (L). As the
order of the formulas counts, the derivability question asks if C is derivable from the
open assumptions Γ, in that order. This question becomes of linguistic interest if we ask
whether we can make a sentence out of some words. Of course, the answer depends on
the order of the words. Lambek calculus is given by the following rules.

A.3. CNL 227

L

Ax

A ` A

Γ ` A ∆1, A, ∆2 ` C
Cut

∆1, Γ, ∆2 ` C

Γ1, A, B, Γ2 ` C
L⊗

Γ1, A⊗ B, Γ2 ` C

Γ ` A ∆ ` B R⊗
Γ, ∆ ` A⊗ B

Γ ` A ∆1, B, ∆2 ` C
L(

∆1, Γ, A(B, ∆2 ` C

A, Γ ` B
R(

Γ ` A(B

Γ ` A ∆1, B, ∆2 ` C
L
(

∆1, B
(

A, Γ, ∆2 ` C

Γ, A ` B
R

(

Γ ` B
(

A

A.3. CNL

We now want to take one further step: i.e. to abolish associativity. For the Lambek
calculus the system we obtain is, not very surprisingly, known as Non-associative Lambek
calculus (NL), and the sequents are rooted trees, the leaves representing the hypotheses
and the root standing for the unique conclusion. Mimicking the tree structure in the
antecedent part, our sequents are of the form Γ ` C where Γ is a tree (constructed by
means of a binary tree constructor ¯), and the rules are

NL

Ax

A ` A

Γ ` A ∆[A] ` C
Cut

∆[Γ] ` C

Γ[A¯ B] ` C
L⊗

Γ[A⊗ B] ` C

Γ ` A ∆ ` B R⊗
Γ¯∆ ` A⊗ B

Γ ` A ∆[B] ` C
L(

∆[Γ¯ A(B] ` C

A¯ Γ ` B
R(

Γ ` A(B

Γ ` A ∆[B] ` C
L
(

∆[B

(

A¯ Γ] ` C

Γ¯A ` B
R

(

Γ ` B

(

A

228 A. Systems

One of our aims is to obtain this calculus as the intuitionistic fragment of a calculus
which we will call Classical Non-associative Lambek calculus (CNL). In the one-sided
version, if our sequents would be rooted trees, we immediately encounter the problem
which rule for R⊗ we should choose.

` Γ¯X ` Y ¯∆

`
(
Γ¯X ⊗ Y

)
¯∆

` Γ¯X ` Y ¯∆

` Γ¯
(
X ⊗ Y ¯∆

)
So we should take a quotient on trees which make both inferred sequents equivalent. The
solution is: cyclic trees. Paradoxically, on the outermost level they do satisfy commuta-
tivity as well as associativity. E.g., there are only two different cyclic trees on a 4-element
cyclic list ([W+, X+, Y +, Z+]), viz.

X+ W+

¯ ¯

Y + Z+

X+ W+

¯

¯

Y + Z+

where we have used geometrical means to specify the two equivalence classes.
This calculus CNL (and consequently NL) turns out to provide us with a basis for

several extensions.
First of all, it is possible to introduce unary connectives 3 (related to ⊗) and 2

(related to

&

) as well, which play the role of modalities; this calculus is called the base
logic (see [Moortgat 97]). Their structural counterpart is a unary tree constructor, viz.
〈− 〉. For NL, the additional rules are

additional rules for the base logic NL3

Γ[〈A 〉] ` C
L3

Γ[3A] ` C

Γ ` A R3

〈Γ 〉 ` 3A

∆[B] ` C
L2

∆[〈2B 〉] ` C

〈Γ 〉 ` B
R2

Γ ` 2B

Secondly, we can define different modes of connectives, e.g. two tensors ⊗0, ⊗1, im-
plying two corresponding pars

&

0,

&

1 and two corresponding tree constructors ¯0, ¯1.
The fine structure of our sequents prevents the two to become equivalent. So, a priori,
there is no relation between them, except that they play a symmetric role and hence are
indistinguishable.

However, we can add structural rules to the calculus, which may depend on the
different modes. Adding rules enables us to consider a connective as “structurally strong”
as we desire. So CNL, being of only little computational power, has the attractive quality
of being easily extendible to the calculus of our interest, by “plugging in” modes and
appropriate structural rules. For NL, given a set R of defining tuples 〈Ξ, Ξ′, π〉 where Ξ
and Ξ′ are trees and π a permutation, the additional rules are

A.3. CNL 229

additional rules for NLR

∆[Ξ[Γ1, . . . , Γn]] ` C
〈Ξ, Ξ′, π〉

∆[Ξ′[Γπ1, . . . , Γπn]] ` C

Example A.3.1. Let us consider two modes, and denote the connectives by

structural node conjunction disjunction

mode 0 ¯ ¯ (next) ∇ (sequential)

mode 1 ~ ⊗ (times)

&

(par)

We postulate the following rules:

• mode 0 is associative;
• mode 1 is associative and commutative;
• ¯ → ~

We can represent the sequents of the thus obtained calculus by graphs with two types
of links, viz. ¯ (defining a cyclic list of ends) and ~ (defining a multiset of ends). As
soon as we replace a ¯ by ~, we introduce chaos (i.e. forget the order), and the link
cannot interact with ∇ anymore, in a sense to be made precise in Section 6.3. It is an
open question how this calculus relates to the Abrusci-Ruet calculus of order varieties
([AR 98]), but at least there are many correspondences. ♦

Among the sets of sequents of the different calculi we have the following maps:

L1 L2 L2,i

MLL MLL1

ν,ψ

MLL2

π

IMLL
κ

NCLL NCLL1

ν,ψ

θ

NCLL2

π

θ

L
κ

θ

CNL CNL1

ν,ψ

θ

CNL2

π

θ

NL
κ

θ

where the vertical maps are structure forgetting maps turning a cyclic tree into its un-
derlying cyclic list, and turning a cyclic list into its underlying multiset. The horizontal
maps are the continuations of the corresponding maps on formulas. The projection π
actually computes the “De Morgan quotient” (treating A− as A⊥), while ν and ψ are
two canonical injections, ν mapping α⊥ to (α)⊥ and commuting with α, ⊗ and

&

(and
preserving the positive sign of X), and ψ assigning to X the unique (−)⊥-free two-sided
formula that — rightly polarized — equals X under π. We easily verify that θ commutes
with all horizontal maps, and moreover we will see that πν = id and πψ = id.

230 A. Systems

MLL1 MLL2 IMLL

Z+
0 Z+

5

~

Z+
1 Z+

2 Z+
3 Z+

4

C+
0 C−5

~

C−1 C−2 C+
3 C+

4

C−5 C−4 C−3 C−2 C−1

~

C+
0

` {Z0, Z1, Z2, Z3, Z4, Z5} {C1, C2, C5} ` {C0, C3, C4} {C1, C2, C3, C4, C5} ` C0

where the antecedent part is a multiset

NCLL1 NCLL2 L

Z+
0 Z+

5

¯

Z+
1 Z+

2 Z+
3 Z+

4

C+
0 C−5

¯

C−1 C−2 C+
3 C+

4

C−5 C−4 C−3 C−2 C−1

¯

C+
0

` ([Z0, Z1, Z2, Z3, Z4, Z5])
�h

C+
0 , C−1 , C−2 , C+

3 , C+
4 , C−5

i�
C5, C4, C3, C2, C1 ` C0

and 5 other representations and 5 other representations where the antecedent part is a list

CNL1 CNL2 NL

Z+
0

¯ Z+
5

¯

¯ ¯

Z+
1 Z+

2 Z+
3 Z+

4

C+
0

¯ C−5

¯

¯ ¯

C−1 C−2 C+
3 C+

4

C−5 C−4 C−3 C−2 C−1

¯ ¯

¯

¯

C+
0

`
�
Z0 ¯ (Z1 ¯ Z2)

�
¯
�
Z3 ¯ (Z4 ¯ Z5)

� �
C+

0 ¯ (C−1 ¯ C−2)
�
¯
�
C+

3 ¯ (C+
4 ¯ C−5)

� �
(C5 ¯ C4)¯ C3

�
¯ (C2 ¯ C1) ` C0

and 17 other representations and 17 other representations where the antecedent part is a tree

Figure A.1. The sequents of the different multiplicative calculi.

Bibliography

[Abrusci 95] Abrusci, V.M. Non-commutative proof-nets. In Girard, J.-Y., Lafont, Y.,
and Regnier, L. (eds.) Advances in Linear Logic, pp. 271–296. Cambridge
University Press. London Mathematical Society Lecture Note Series 222,
1995.

[AR 98] Abrusci, V.M., Ruet, P. Non-commutative logic I: the multiplicative frag-
ment. Annals of Pure and Applied Logic (to appear), 1998.

[Barr 79] Barr, M. ?-Autonomous Categories. Springer Verlag, Lecture Notes in
Mathematics, vol. 752, 1979.

[BvdW 95] Bellin, G. and van de Wiele, J. Subnets of proof nets in MLL�. In
Girard, J.-Y., Lafont, Y., and Regnier, L. (eds.) Advances in Linear Logic,
pp. 249–270. Cambridge University Press. London Mathematical Society
Lecture Note Series 222, 1995.

[Danos 90] Danos, V. La Logique Linéaire appliquée à l’étude de divers processus de
normalisation (principalement du λ-calcul). Thèse de Doctorat, Univer-
sité de Paris VII, 1990.

[DR 89] Danos, V. and Regnier, L. The structure of multiplicatives. Archive for
Mathematical Logic, 28, pp. 181–203, 1989.

[Fleury 96] Fleury, A. Logique linéaire: la règle d’échange. PhD thesis, University of
Paris VII, 1996.

[Gabbay 96] Gabbay, D. Labeled Deductive Systems. Clarendon Press, Oxford, 1996.

[Gentzen 35] Gentzen, G. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39, pp. 176–210, pp. 405–431, 1935.

[Girard 87] Girard, J.-Y. Linear logic. Theoretical Computer Science, 50, pp. 1–102,
1987.

[Girard 87a] Girard, J.-Y. Multiplicatives. Rendiconti del Seminario Matematico
dell’Università e Policlinico di Torino, special issue on Logic and Com-
puter Science, pp. 11–33, 1987.

[Girard 89] Girard, J.-Y. Geometry of Interaction I: interpretation of system F . In
Ferro et al. (eds.) Proceedings Logic Colloquium ’88, pp. 221–260. North
Holland, 1989.

231

232 Bibliography

[Girard 95] Girard, J.-Y. Linear Logic: its syntax and semantics. In Girard, J.-Y.,
Lafont, Y., and Regnier, L. (eds.) Advances in Linear Logic, pp. 1–42.
Cambridge University Press. London Mathematical Society Lecture Note
Series 222, 1995.

[Girard 98] Girard, J.-Y. On the meaning of logical rules II: multiplicatives and addi-
tives. Manuscript, 1998.

[GLT 90] Girard, J.-Y., Lafont, Y. and Taylor, P. Proofs and types. Volume 7 of
Cambridge tracts in theoretical computer science. Cambridge University
Press, 1990.

[dGL 00] de Groote, Ph. and Lamarche, F. Classical non-associative Lambek cal-
culus. In Buszkowski, W., and Moortgat, M. (eds.), issue dedicated to
Joachim Lambek, Studia Logica. To appear.

[Lafont 95] Lafont, Y. From Proof-Nets to Interaction Nets. In Girard, J.-Y., La-
font, Y., and Regnier, L. (eds.) Advances in Linear Logic, pp. 225–247.
Cambridge University Press. London Mathematical Society Lecture Note
Series 222, 1995.

[Lambek 58] Lambek, J. The Mathematics of Sentence Structure. American Mathe-
matical Monthly, 65, pp. 154–170, 1958.

[Lambek 95] Lambek, J. Bilinear logic in algebra and linguistics. In Girard, J.-Y., La-
font, Y., and Regnier, L. (eds.) Advances in Linear Logic, pp. 43–59.
Cambridge University Press. London Mathematical Society Lecture Note
Series 222, 1995.

[Métayer 94] Métayer, F. Homology of proof nets. Archive for Mathematical Logic, 33,
pp. 169–188, 1994.

[Métayer 94b] Métayer, F. Une étude homologique des réseaux. PhD thesis, University
of Paris VII, 1994.

[Moortgat 97] Moortgat, M. Categorial Type Logics. Chapter 2 of Benthem, J. van, and
ter Meulen, A. (eds.) Handbook of Logic and Language. Elsevier, 1997.

[MP 00] Moot, R. and Puite, Q. Proof Nets for the Multimodal Lambek Calculus.
In Buszkowski, W., and Moortgat, M. (eds.), issue dedicated to Joachim
Lambek, Studia Logica. To appear.

[Morrill 96] Morrill, G. Memoisation of Categorial Proof Nets: Parallelism in Catego-
rial Processing. Report de Recerca LSI-96-24-R, Departament de Llen-
guatges i Sistemes Informàtics, Universitat Politècnica de Catalunya,
1996.

[Ono 98] Ono, H. Proof-Theoretic Methods in Nonclassical Logic — an Introduc-
tion. In Takahashi, M., Okada, M., and Dezani-Ciancaglini, M. (eds.) The-
ories of Types and Proofs, pp. 207–254. Mathematical Society of Japan
Memoirs 2, 1998.

Bibliography 233

[Pentus 93] Pentus, M. The conjoinability relation in Lambek calculus and linear logic.
ILLC Prepublication Series ML-93-03, Institute for Logic, Language and
Computation, University of Amsterdam, 1993.

[Prawitz 65] Prawitz, D. Natural deduction. Almquist and Wiskell, Stockholm, 1965.

[Puite 96] Puite, Q. Correctness criteria based on a homology of proof structures in
multiplicative linear logic. Master’s thesis, Utrecht University, 1996.

[Puite 98] Puite, Q. Proof Nets with Explicit Negation for Multiplicative Linear
Logic. Preprint 1079, Department of Mathematics, Utrecht University,
1998.

[PS 97] Puite, Q. and Schellinx, H. On the Jordan-Hölder Decomposition of Proof
Nets. Archive for Mathematical Logic, 37, pp. 59–65, 1997.

[Retoré 93] Retoré, C. Réseaux et Séquents Ordonnés. PhD thesis, University of Paris
VII, 1993.

[Roorda 91] Roorda, D. Resource Logics: Proof-theoretical Investigations. PhD Thesis,
University of Amsterdam, 1991.

[Schellinx 94] Schellinx, H. The Noble Art of Linear Decorating. ILLC Dissertation Se-
ries, 1994-1. Institute for Logic, Language and Computation, University
of Amsterdam, 1994.

[Schellinx 00] Schellinx, H. Linear Logic. In Gabbay, D. (ed.) Handbook of Philosophical
Logic, Second Edition, Volume E3, Chapter 4. To appear.

[Troelstra 92] Troelstra, A.S. Lectures on Linear Logic. CSLI Lecture Notes 29, Center
for the Study of Language and Information, Stanford University, Califor-
nia, 1992.

[TvD 88] Troelstra, A.S. and Dalen, D. van Constructivism in Mathematics. Studies
in Logic and the Foundations of Mathematics, North-Holland Publ. Co.,
Amsterdam, volume 1, 1988.

[TS 96] Troelstra, A.S. and Schwichtenberg, H. Basic Proof Theory. Volume 43 of
Cambridge tracts in theoretical computer science. Cambridge University
Press, 1996.

[Yetter 90] Yetter, D.N. Quantales and (non-commutative) linear logic. Journal of
Symbolic Logic, 55, pp. 41–64, 1990.

Samenvatting

Lineaire logica is eind jaren tachtig ontsproten aan de observatie dat bepaalde logische
connectieven beschouwd kunnen worden als de samenstelling van andere, meer primitieve,
connectieven [Girard 87]. Dit heeft interessante gevolgen. Een “klassiek” connectief als
∧ (‘en’) blijkt te bestaan in (minstens) twee gedaanten: de zogenaamde additieve (∧a)
en de multiplicatieve (∧m) versie. Uit A ∧a B kunnen we zowel A als B concluderen,
maar niet beide. Uit A∧m B kunnen we ook zowel A als B concluderen, maar niet slechts
een van beide. Lineaire logica heet wel resource sensitive omdat de multipliciteit van een
formule (het aantal malen dat de formule voorkomt) van belang is en een “logische status”
krijgt. ‘A’ staat voor één exemplaar van A en gedraagt zich net als A∧a A. Daarentegen
staat A∧mA voor twee exemplaren van A. Er is ook een manier om een willekeurig aantal
exemplaren aan te duiden: !A. Deze zogenaamde exponent, ‘!’, vormt de brug met de
klassieke logica. Als voorbeeld van de bovengenoemde decompositie beschouwen we de
ontbinding van de klassieke implicatie:

X → Y = (!X)(Y

Het is inderdaad intüıtief duidelijk dat Y uit X volgt precies dan als Y een, in principe
willekeurig, aantal exemplaren van X benut: bijvoorbeeld in geval van de klassiek geldige
formule A → (A ∧ A) benut A ∧ A twee exemplaren van A; in A → (B → B) maakt
B → B helemaal geen gebruik van A. In dit proefschrift beschouwen we alleen varianten
van het multiplicatieve fragment van lineaire logica.

De afleidbare objecten zijn sequenten van formules van de vorm

H1, H2, . . . ` C1, C2, . . . ,

waarin een bepaalde formule meerdere keren mag voorkomen. Zo een sequent staat
intüıtief voor de enkele formule (H1 ∧H2 ∧ . . .)→ (C1 ∨ C2 ∨ . . .).

[Girard 87] introduceerde eveneens het elegante begrip bewijsnet. Een bewijsnet
staat voor een collectie van afleidingen, die enkel op “niet-essentiële” onderdelen ver-
schillen en daarom in zekere zin “gelijk” zijn. Zo kan men tijdens het maken van een
sequenten-afleiding voor de keuze komen te staan welke van een aantal mogelijke vol-
gende stappen als eerste uit te voeren. In het corresponderende bewijsnet worden dan
beide mogelijkheden parallel uitgevoerd. Als voorbeeld beschouwen we de volgende twee
afleidingen, die slechts verschillen in de volgorde waarin de afleidingsregels L→ en L∨ zijn
toegepast.

235

236 Samenvatting

A ` A B ` B L∨
A ∨ B ` A, B C ` C

L→
A ∨ B, B → C ` A, C

R∨
A ∨B, B → C ` A ∨ C

A ` A
B ` B C ` C L→

B, B → C ` C
L∨

A ∨B, B → C ` A, C
R∨

A ∨ B, B → C ` A ∨ C

Hun respectievelijke bewijsnetten zijn inderdaad aan elkaar gelijk, en wel

A ∨ Bt
L∨

A

d
A

d
B

d
Bd B → Ct

L→
C

d
Cd

A ∨ C

tR∨

Laat nu een sequent S gegeven zijn, die we willen onderzoeken op afleidbaarheid.
Aan S kunnen we simpelweg alle mogelijke kandidaat-bewijsnetten toekennen, en deze
checken op correctheid. Zo een kandidaat-bewijsnet, bewijsstructuur genaamd, is in feite
een soort graaf, die alleen afhangt van S, en van bepaalde verbindingen tussen de atom-
aire subformules. Een criterium dat vaststelt of een bewijsstructuur daadwerkelijk een
bewijsnet is, heet een correctheidscriterium. Er zijn verschillende van dergelijke criteria
bekend voor multiplicatieve lineaire logica, die in aard varïeren van graaftheoretisch en
geometrisch tot algebräısch. In dit proefschrift definiëren we een contractie-criterium: een
bewijsstructuur is een bewijsnet dan en slechts dan als hij contraheert naar een bepaalde
normaalvorm. De bedoelde contractie-relatie is gedefinieerd op de ruimte van zogenaamde
linkgrafen, een begrip dat algemeen genoeg is om zowel bewijsstructuren als sequenten te
omvatten.

Ons criterium geldt voor diverse structurele verfijningen van multiplicatieve lineaire
logica. Voor een structurele verfijning is, naast het aantal malen dat een formule voorkomt,
ook de onderlinge samenhang tussen de formules van belang. Dat wil zeggen, we maken
onderscheid tussen ` A, B, Γ en ` B, A, Γ (wat leidt tot systemen als in [Lambek 58,
Yetter 90, Roorda 91, Retoré 93, Lambek 95, Abrusci 95, AR 98]). Het speci-
fieke systeem Niet-commutatieve Cyclische Lineaire Logica (NCLL) dat correspondeert
met [Yetter 90] is onderwerp van Hoofdstuk 4. Wanneer we zelfs ` . . . , (A, B), C, . . . en
` . . . , A, (B, C), . . . onderscheiden, verkrijgen we het systeem Klassieke Niet-associatieve
Lambekcalculus (CNL) van Hoofdstuk 5 dat correspondeert met [dGL 00]. Het gecon-
troleerd herinvoeren van dergelijke structurele regels (cf. [Morrill 96, Moortgat 97])
is het onderwerp van Hoofdstuk 6. De aldus verkregen grote varïeteit aan substructurele
systemen maakt het mogelijk de toegestane structurele regels vrij te kiezen afhankelijk
van de beoogde toepassing. Automatische zinsontleding is een voorbeeld van zo een
toepassing in de linguistiek.

Samenvatting 237

In dit proefschrift voeren we de notie van een tweezijdig bewijsnet in: een bewijs-
net mag open hypothesen hebben, en een link mag van een algemenere vorm zijn dan
normaliter het geval is. Dit geeft onder andere aanleiding tot linken (zoals de hierboven
toegepaste link L→) voor nieuwe connectieven, die — eenzijdig — alleen gedefinieerd zijn
als operaties in de formuletaal. De zo verkregen theorie is in vele opzichten geschikter
dan de eenzijdige theorie, bijvoorbeeld met betrekking tot dualiseerbaarheid, subnetten,
de contractie-relatie, en de beperking tot intüıtionistische fragmenten. Onze tweezijdige
benadering maakt bovendien duidelijk hoe en waarom bewijsnetten voor lineaire logica
zijn wat natuurlijke deductie voor intüıtionistische logica is.

Het bewijs van de correctheid van snede-eliminatie ten opzichte van ons contractie-
criterium vergt een grondige analyse van de afhankelijkheid van de opeenvolgende
contractie-stappen in een gegeven conversie-rij. We menen dat dit bewijs kan dienen als
een sleutel tot verdere resultaten inzake het parallel uitvoeren van de conversie-stappen.

Dankwoord/Acknowledgements

De afgelopen jaren hebben voor mij grotendeels in het teken gestaan van het onderzoek
dat ten grondslag ligt aan dit proefschrift. Daarbij hebben verschillende mensen een rol
gespeeld, waarvan ik een aantal op deze plaats met name wil noemen.

Allereerst wil ik Harold Schellinx bedanken voor de manier waarop hij mij de afgelopen
jaren begeleid heeft: je kundigheid en gedrevenheid hebben altijd enthousiasmerend op
mij gewerkt. Jij wees me weer op de grote lijnen als ik me teveel op de details richtte. En
wanneer ik twijfelde over de ingeslagen weg van mijn onderzoek, wist jij mij altijd weer
te stimuleren. Het laatste jaar was je niet meer in Utrecht, maar desondanks was je nog
steeds bereid mij tot het einde toe te begeleiden. Voor dit alles ben ik je zeer dankbaar.

Ieke Moerdijk wil ik bedanken dat hij mijn promotor was: zeker de laatste maanden,
met het vorderen van het manuscript, was het fijn om met jou de zaken door te spreken.

Voor de prettige werksfeer en samenwerking wil ik mijn collega’s op het instituut
bedanken, in het bijzonder Christian van Enckevort, met wie ik meer dan drie jaar kamer
508 deelde, en mijn huidige kamergenoot Jordan Rizov. Christian bedank ik ook voor
zijn hulp op computergebied, en Martijn van Manen voor zijn inspanningen die het mij
mogelijk maakten LATEX met dusdanige parameters te draaien, dat het niet bij het eerste
diagram van mijn proefschrift vastliep.

Vanaf november 1998 zijn Richard Moot en ik geregeld gaan samenwerken. Ik denk
met plezier terug aan onze ontmoetingen in de binnenstad en op de Uithof, en aan ons
gezamenlijk bezoek aan Nancy eind oktober 1999. I also want to thank François Métayer,
with whom I had some very nice conversations in the beginning of my research period. In
April 1999 I visited Marco Pedicini, and I enjoyed to work with him. During this stay in
Rome I also had some nice discussions with Stefano Guerrini and Gianfranco Mascari.
I thank Christian Retoré for the interesting meetings we had, and François Lamarche
and Philippe de Groote for our meetings in Nancy, and for the fact they pointed out to
me their non-associative setting, that finally led me to the originally missing theory of
Chapter 5.

I also am grateful to the members of my reading committee: François Lamarche,
Gianfranco Mascari, Michael Moortgat, Christian Retoré, and Albert Visser.

Voor de nodige ontspanning en gezelligheid bedank ik iedereen die ik ken via de
muziek, het volleybal of de kroeg. Mijn huisgenoten Laurens, Mir(iam) en M(iriam):

239

240 Dankwoord/Acknowledgements

bedankt voor de gezellige sfeer in huis en voor jullie meeleven. Mijn vrienden, met name
Bernard-Jan, Claartje, Henk, Marije, Wouter: fijn dat jullie er voor mij waren.

Van mijn familie heb ik altijd veel steun ervaren bij de dingen die ik doe, en dat is
zeer waardevol voor mij. Pa & Ina, Ma & Elisabeth, Ren, Jac, Bas: hiervoor ben ik jullie
heel dankbaar. Ma bedank ik ook voor het doorlezen van het manuscript op het Engels;
Bas voor het fijne contact tussen ons en je betrokkenheid; Jac voor het feit dat je er altijd
voor mij bent, en voor je bereidheid om paranimf te worden, en de daadkrachtige wijze
waarop jij hieraan invulling geeft.

Last but not least bedank ik André: voor je steun en voor onze fijne relatie, waarin
we er alweer bijna vijf jaar voor elkaar zijn. Bedankt dat je me de ruimte hebt gegeven en
dat je me altijd hebt gestimuleerd. Ook voor jouw inspanningen en meeleven als paranimf
ben ik je zeer dankbaar.

Curriculum vitae Quintijn Puite

Ik ben op 28 september 1971 geboren te Bennekom, gemeente Ede. Ik groeide op in
Wageningen en haalde in 1990 het VWO-diploma aan de Rijksscholengemeenschap “Het
Wagenings Lyceum” te Wageningen. Ik nam deel aan de 31st International Mathemati-
cal Olympiad in Beijing (China) in juli 1990, alwaar ik een eervolle vermelding behaalde.
In september van hetzelfde jaar ging ik studeren aan de Universiteit Utrecht, en in juni
1991 haalde ik mijn propedeuse Wiskunde (cum laude) en Natuurkunde (cum laude). In
augustus 1996 studeerde ik af in de Wiskunde (cum laude) bij Dr. H.A.J.M. Schellinx,
met de scriptie “Correctness Criteria based on a Homology of Proof Structures in Mul-
tiplicative Linear Logic”. Tijdens mijn studie gaf ik als studentassistent werkcolleges.
Daarnaast was ik lid van het Utrechts Studenten Koor en Orkest (USKO).

In september 1996 werd ik aangesteld als assistent in opleiding (AIO) bij het Mathe-
matisch Instituut van de faculteit Wiskunde en Informatica van de Universiteit Utrecht
voor onderzoek in het aandachtsveld “The Geometry of Logic”, onder begeleiding van
Dr. H.A.J.M. Schellinx en met Prof.dr. I. Moerdijk als promotor. Dat onderzoek heeft
geresulteerd in dit proefschrift. In het kader van mijn onderzoek bezocht ik diverse con-
ferenties en instituten, onder andere in l’Aquila, Frascati en Rome (Italië); Edinburgh
(Schotland, V.K.); Nancy en Rennes (Frankrijk). Bovendien was ik, als co-chair van
de ESSLLI’99 Student Session Programme Committee, verantwoordelijk voor de review-
procedure van de inzendingen op het gebied van de logica. In november 1999 nam ik deel
aan de Nederlandse Studiegroep Wiskunde met de Industrie (tevens de 36th European
Study Group with Industry). Hier werkte ik in groepsverband aan een probleem van
KPN Research over efficiënt gebruik van geheugenruimte in WWW-caches.

Daarnaast heb ik gedurende mijn promotietijd met plezier en enthousiasme werkcol-
leges gegeven, begeleidde ik een groepje studenten bij hun ‘Kaleidoscoop-werkstuk’ en
een student tijdens de voorbereiding van zijn ‘kleine scriptie’. Tevens heb ik genoten
van het meedoen aan muziekprojecten van diverse ensembles, waaronder Consort “de
kleine Johannes”, het Nederlands Studenten Kamerkoor (NSK) en PA’dam (Projectkoor
Amsterdam).

241

List of preprints and publications

• Puite, Q. Correctness criteria based on a homology of proof structures in multi-
plicative linear logic. Master’s thesis, Utrecht University, 1996.

• Puite, Q. An algebraical proof of the Contraction Criterion for proof nets. In
Engelfriet, J. and Spaan, T. (eds.) Proceedings of the OzsL Conference on Logic
and its Applications Accolade{96, pp. 93–106. Dutch Graduate School in Logic,
Department of Mathematics and Computer Science, University of Amsterdam,
1997.

• Puite, Q. and Schellinx, H. On the Jordan-Hölder Decomposition of Proof Nets.
Archive for Mathematical Logic, 37, pp. 59–65, 1997.

• Puite, Q. Proof Nets with Explicit Negation for Multiplicative Linear Logic.
Preprint 1079, Department of Mathematics, Utrecht University, 1998.

• Puite, Q. and Moot, R. Proof Nets for the Multimodal Lambek Calculus. Preprint
1096, Department of Mathematics, Utrecht University, 1999.

• Moot, R. and Puite, Q. Proof Nets for Multimodal Categorial Grammars. In
Kruijff, G.-J.M. and Oehrle, R.T. (eds.) Proceedings of Formal Grammar 1999,
pp. 103–114. ESSLLI’99, Utrecht, 1999.

• Grootjans, W.J., Hochstenbach, M., Hurink, J., Kern, W., Luczak, M., Puite,
Q., Resing, J.A.C. and Spieksma, F.C.R. Cache as ca$h can. In Molenaar, J.
ed. Proceedings of the 36th European Study Group with Industry, pp. 41–53.
Eindhoven University of Technology Report 00-WSK-01, 2000.

• Mei, R. van der, Hochstenbach, M. and Puite, Q. Het World-Wide Web en Web
Caching (working titel). Natuur en Techniek. To appear.

• Moot, R. and Puite, Q. Proof Nets for the Multimodal Lambek Calculus. In
Buszkowski, W., and Moortgat, M. (eds.), issue dedicated to Joachim Lambek,
Studia Logica. To appear.

243

Notation

⊗,

&

the connectives of L1; the connectives of L2

(,

(

, [−]⊥ the operations of L1

(,

(

, (−)⊥ the additional connectives of L2

¤ a connective or an operation

F \G; F
+→ G F (G

G / F ; F
−→ G G

(
F

{F} the singleton multiset consisting of F

([F]) the singleton list consisting of F

F the singleton tree consisting of F

〈|F |〉 the singleton multiset (list) (tree) consisting of F

Γ, ∆ the multiset union of the multisets Γ and ∆

Γ, ∆ the list concatenation of the lists Γ and ∆

Γ¯∆ the binary tree with subtrees Γ and ∆

Γ ¦∆ the multiset union (list concatenation) (binary tree) of Γ and ∆

≡ the De Morgan equivalence on L2

' the equivalence on L2 generated by De Morgan equivalence

and associativity

'i the equivalence on L2,i generated by De Morgan equivalence

and associativity

245

246 Notation

#⊗(−), # &(−) the number of ⊗-symbols (

&

-symbols) (see Subsection 2.1.6)

[[−]] the list of positive occurrences of atoms (see Subsection 2.1.6)

〈[−]〉 the multiset of positive occurrences of atoms (see Subsection 2.1.6)

\(−) the “number of negations” (see Subsection 2.1.6)

αi the atoms of L1; the atoms of L2

α⊥i the formal negation of an αi: an additional atomic formula of L1

α, β, γ, . . . an atom of L1; an atom of L2

ζ, η an edge of a link graph

η̂, η̌ the two ends of an edge η

θ a link type, e.g. ⊗,

&

, ⊥, ¯, ~
ι the inclusion L L± : F 7→ F+

κ the inclusion L2,i L2

λ a labeling λ : Ẽ L± (of a link graph)

µ the map L
±
2 → L2 :

A+ 7→ A

A− 7→ (A)⊥

ν the injection L1
ν

L2

ξ± : L
± → K

± the extension of a map ξ : L→ K
± : F 7→ (F •)F

ξ+, ξ− : L
± → K

± the extensions of a map ξ : L
± → K : F σ 7→ ξ(F σ)

π the surjection L2
π

L1

π the surjection L
±
2

π
L1

ρ, σ a sign (i.e. + or −)

τ the sign alternation map τ : L
± → L

± :

F+ 7→ F−

F− 7→ F+

φ the (decreasing) measure φ(P) := |E|+ |L|+ 2 |L′|

χ the injection L1
ψ

L
±
2

µ
L2

ψ the injection L1
ψ

L
±
2

ω a switching for a link graph

Notation 247

Γ, ∆, Π a finite multiset (list) (tree) of formulas

Γ+ Γ, formula-wise provided with a positive sign

Γ− Γ, formula-wise provided with a negative sign

and in reversed order

Γ ` ∆ the multiset (list) (tree) ∆+ ¦ Γ−

Λ the unit of the free group 〈A〉

A the set of atoms {α1, α2, α3, . . .}
B(l) the block of l in P w.r.t. δ

C a cluster

D a derivation

E a set of edges (of a link graph)

G a collection of link graphs (see Section 4.4)

I(A) the identity proof structure of A ` A

K, L a language

L1 the one-sided classical language

L2 the two-sided classical language

L2,i the intuitionistic language

L
±

L
+ ∪ L

−

L a set of context links (of a link graph)

L′ a set of connector links (of a link graph)

P a link graph

Sn the symmetric group of degree n

c(A) the complexity of a formula A

e an end of a link graph

l a link of a link graph

l(A) the length of a formula A

i, j, m, n a natural number

248 Notation

A, B, C, D, . . . an L2-formula

Cn the nth Catalan number
1

n + 1

(
2n

n

)
; the number of

rooted binary trees with n + 1 leaves

F, G, H, . . . a formula of a language

N(A) the negative atomic subformulas of a formula A

P (A) the positive atomic subformulas of a formula A

TA the upper construction tree of a formula A

TA the lower construction tree of a formula A

X, Y, Z, W, . . . an L1-formula

X• the formula component of ψ(X) = (X•)X ∈ L
±
2

X the sign component of ψ(X) = (X•)X ∈ L
±
2

