10,846 research outputs found

    Reducing the loss of information through annealing text distortion

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Granados, A. ;Cebrian, M. ; Camacho, D. ; de Borja Rodriguez, F. "Reducing the Loss of Information through Annealing Text Distortion". IEEE Transactions on Knowledge and Data Engineering, vol. 23, no. 7 pp. 1090 - 1102, July 2011Compression distances have been widely used in knowledge discovery and data mining. They are parameter-free, widely applicable, and very effective in several domains. However, little has been done to interpret their results or to explain their behavior. In this paper, we take a step toward understanding compression distances by performing an experimental evaluation of the impact of several kinds of information distortion on compression-based text clustering. We show how progressively removing words in such a way that the complexity of a document is slowly reduced helps the compression-based text clustering and improves its accuracy. In fact, we show how the nondistorted text clustering can be improved by means of annealing text distortion. The experimental results shown in this paper are consistent using different data sets, and different compression algorithms belonging to the most important compression families: Lempel-Ziv, Statistical and Block-Sorting.This work was supported by the Spanish Ministry of Education and Science under TIN2010-19872 and TIN2010-19607 projects

    Speeding-up qq-gram mining on grammar-based compressed texts

    Full text link
    We present an efficient algorithm for calculating qq-gram frequencies on strings represented in compressed form, namely, as a straight line program (SLP). Given an SLP T\mathcal{T} of size nn that represents string TT, the algorithm computes the occurrence frequencies of all qq-grams in TT, by reducing the problem to the weighted qq-gram frequencies problem on a trie-like structure of size m=Tdup(q,T)m = |T|-\mathit{dup}(q,\mathcal{T}), where dup(q,T)\mathit{dup}(q,\mathcal{T}) is a quantity that represents the amount of redundancy that the SLP captures with respect to qq-grams. The reduced problem can be solved in linear time. Since m=O(qn)m = O(qn), the running time of our algorithm is O(min{Tdup(q,T),qn})O(\min\{|T|-\mathit{dup}(q,\mathcal{T}),qn\}), improving our previous O(qn)O(qn) algorithm when q=Ω(T/n)q = \Omega(|T|/n)

    Classifying sequences by the optimized dissimilarity space embedding approach: a case study on the solubility analysis of the E. coli proteome

    Full text link
    We evaluate a version of the recently-proposed classification system named Optimized Dissimilarity Space Embedding (ODSE) that operates in the input space of sequences of generic objects. The ODSE system has been originally presented as a classification system for patterns represented as labeled graphs. However, since ODSE is founded on the dissimilarity space representation of the input data, the classifier can be easily adapted to any input domain where it is possible to define a meaningful dissimilarity measure. Here we demonstrate the effectiveness of the ODSE classifier for sequences by considering an application dealing with the recognition of the solubility degree of the Escherichia coli proteome. Solubility, or analogously aggregation propensity, is an important property of protein molecules, which is intimately related to the mechanisms underlying the chemico-physical process of folding. Each protein of our dataset is initially associated with a solubility degree and it is represented as a sequence of symbols, denoting the 20 amino acid residues. The herein obtained computational results, which we stress that have been achieved with no context-dependent tuning of the ODSE system, confirm the validity and generality of the ODSE-based approach for structured data classification.Comment: 10 pages, 49 reference

    Tight and simple Web graph compression

    Full text link
    Analysing Web graphs has applications in determining page ranks, fighting Web spam, detecting communities and mirror sites, and more. This study is however hampered by the necessity of storing a major part of huge graphs in the external memory, which prevents efficient random access to edge (hyperlink) lists. A number of algorithms involving compression techniques have thus been presented, to represent Web graphs succinctly but also providing random access. Those techniques are usually based on differential encodings of the adjacency lists, finding repeating nodes or node regions in the successive lists, more general grammar-based transformations or 2-dimensional representations of the binary matrix of the graph. In this paper we present two Web graph compression algorithms. The first can be seen as engineering of the Boldi and Vigna (2004) method. We extend the notion of similarity between link lists, and use a more compact encoding of residuals. The algorithm works on blocks of varying size (in the number of input lines) and sacrifices access time for better compression ratio, achieving more succinct graph representation than other algorithms reported in the literature. The second algorithm works on blocks of the same size, in the number of input lines, and its key mechanism is merging the block into a single ordered list. This method achieves much more attractive space-time tradeoffs.Comment: 15 page

    The Minimum Description Length Principle for Pattern Mining: A Survey

    Full text link
    This is about the Minimum Description Length (MDL) principle applied to pattern mining. The length of this description is kept to the minimum. Mining patterns is a core task in data analysis and, beyond issues of efficient enumeration, the selection of patterns constitutes a major challenge. The MDL principle, a model selection method grounded in information theory, has been applied to pattern mining with the aim to obtain compact high-quality sets of patterns. After giving an outline of relevant concepts from information theory and coding, as well as of work on the theory behind the MDL and similar principles, we review MDL-based methods for mining various types of data and patterns. Finally, we open a discussion on some issues regarding these methods, and highlight currently active related data analysis problems
    corecore