12 research outputs found

    Advancements in Research Mathematics through AI: A Framework for Conjecturing

    Full text link
    This paper introduces a general framework for computer-based conjecture generation, particularly those conjectures that mathematicians might deem substantial and elegant. We describe our approach and demonstrate its effectiveness by providing examples of its application in producing publishable research and unexpected mathematical insights. We anticipate that our discussion of computer-assisted mathematical conjecturing will catalyze further research into this area and encourage the development of more advanced techniques than the ones presented herein

    Bounds for the Zero Forcing Number of Graphs with Large Girth

    Get PDF
    The zero-forcing number, Z(G) is an upper bound for the maximum nullity of all symmetric matrices with a sparsity pattern described by the graph. A simple lower bound is δ ≤ Z(G) where δ is the minimum degree. An improvement of this bound is provided in the case that G has girth of at least 5. In particular, it is shown that 2δ − 2 ≤ Z(G) for graphs with girth of at least 5; this can be further improved when G has a small cut set. Lastly, a conjecture is made regarding a lower bound for Z(G) as a function of the girth, g, and δ; this conjecture is proved in a few cases and numerical evidence is provided

    Greedy Algorithms for Online Survivable Network Design

    Get PDF
    In an instance of the network design problem, we are given a graph G=(V,E), an edge-cost function c:E -> R^{>= 0}, and a connectivity criterion. The goal is to find a minimum-cost subgraph H of G that meets the connectivity requirements. An important family of this class is the survivable network design problem (SNDP): given non-negative integers r_{u v} for each pair u,v in V, the solution subgraph H should contain r_{u v} edge-disjoint paths for each pair u and v. While this problem is known to admit good approximation algorithms in the offline case, the problem is much harder in the online setting. Gupta, Krishnaswamy, and Ravi [Gupta et al., 2012] (STOC\u2709) are the first to consider the online survivable network design problem. They demonstrate an algorithm with competitive ratio of O(k log^3 n), where k=max_{u,v} r_{u v}. Note that the competitive ratio of the algorithm by Gupta et al. grows linearly in k. Since then, an important open problem in the online community [Naor et al., 2011; Gupta et al., 2012] is whether the linear dependence on k can be reduced to a logarithmic dependency. Consider an online greedy algorithm that connects every demand by adding a minimum cost set of edges to H. Surprisingly, we show that this greedy algorithm significantly improves the competitive ratio when a congestion of 2 is allowed on the edges or when the model is stochastic. While our algorithm is fairly simple, our analysis requires a deep understanding of k-connected graphs. In particular, we prove that the greedy algorithm is O(log^2 n log k)-competitive if one satisfies every demand between u and v by r_{uv}/2 edge-disjoint paths. The spirit of our result is similar to the work of Chuzhoy and Li [Chuzhoy and Li, 2012] (FOCS\u2712), in which the authors give a polylogarithmic approximation algorithm for edge-disjoint paths with congestion 2. Moreover, we study the greedy algorithm in the online stochastic setting. We consider the i.i.d. model, where each online demand is drawn from a single probability distribution, the unknown i.i.d. model, where every demand is drawn from a single but unknown probability distribution, and the prophet model in which online demands are drawn from (possibly) different probability distributions. Through a different analysis, we prove that a similar greedy algorithm is constant competitive for the i.i.d. and the prophet models. Also, the greedy algorithm is O(log n)-competitive for the unknown i.i.d. model, which is almost tight due to the lower bound of [Garg et al., 2008] for single connectivity

    Degree-3 Treewidth Sparsifiers

    Full text link
    We study treewidth sparsifiers. Informally, given a graph GG of treewidth kk, a treewidth sparsifier HH is a minor of GG, whose treewidth is close to kk, ∣V(H)∣|V(H)| is small, and the maximum vertex degree in HH is bounded. Treewidth sparsifiers of degree 33 are of particular interest, as routing on node-disjoint paths, and computing minors seems easier in sub-cubic graphs than in general graphs. In this paper we describe an algorithm that, given a graph GG of treewidth kk, computes a topological minor HH of GG such that (i) the treewidth of HH is Ω(k/polylog(k))\Omega(k/\text{polylog}(k)); (ii) ∣V(H)∣=O(k4)|V(H)| = O(k^4); and (iii) the maximum vertex degree in HH is 33. The running time of the algorithm is polynomial in ∣V(G)∣|V(G)| and kk. Our result is in contrast to the known fact that unless NP⊆coNP/polyNP \subseteq coNP/{\sf poly}, treewidth does not admit polynomial-size kernels. One of our key technical tools, which is of independent interest, is a construction of a small minor that preserves node-disjoint routability between two pairs of vertex subsets. This is closely related to the open question of computing small good-quality vertex-cut sparsifiers that are also minors of the original graph.Comment: Extended abstract to appear in Proceedings of ACM-SIAM SODA 201
    corecore