955 research outputs found

    A hierarchically blocked Jacobi SVD algorithm for single and multiple graphics processing units

    Full text link
    We present a hierarchically blocked one-sided Jacobi algorithm for the singular value decomposition (SVD), targeting both single and multiple graphics processing units (GPUs). The blocking structure reflects the levels of GPU's memory hierarchy. The algorithm may outperform MAGMA's dgesvd, while retaining high relative accuracy. To this end, we developed a family of parallel pivot strategies on GPU's shared address space, but applicable also to inter-GPU communication. Unlike common hybrid approaches, our algorithm in a single GPU setting needs a CPU for the controlling purposes only, while utilizing GPU's resources to the fullest extent permitted by the hardware. When required by the problem size, the algorithm, in principle, scales to an arbitrary number of GPU nodes. The scalability is demonstrated by more than twofold speedup for sufficiently large matrices on a Tesla S2050 system with four GPUs vs. a single Fermi card.Comment: Accepted for publication in SIAM Journal on Scientific Computin

    A GPU-based hyperbolic SVD algorithm

    Get PDF
    A one-sided Jacobi hyperbolic singular value decomposition (HSVD) algorithm, using a massively parallel graphics processing unit (GPU), is developed. The algorithm also serves as the final stage of solving a symmetric indefinite eigenvalue problem. Numerical testing demonstrates the gains in speed and accuracy over sequential and MPI-parallelized variants of similar Jacobi-type HSVD algorithms. Finally, possibilities of hybrid CPU--GPU parallelism are discussed.Comment: Accepted for publication in BIT Numerical Mathematic

    Novel Modifications of Parallel Jacobi Algorithms

    Get PDF
    We describe two main classes of one-sided trigonometric and hyperbolic Jacobi-type algorithms for computing eigenvalues and eigenvectors of Hermitian matrices. These types of algorithms exhibit significant advantages over many other eigenvalue algorithms. If the matrices permit, both types of algorithms compute the eigenvalues and eigenvectors with high relative accuracy. We present novel parallelization techniques for both trigonometric and hyperbolic classes of algorithms, as well as some new ideas on how pivoting in each cycle of the algorithm can improve the speed of the parallel one-sided algorithms. These parallelization approaches are applicable to both distributed-memory and shared-memory machines. The numerical testing performed indicates that the hyperbolic algorithms may be superior to the trigonometric ones, although, in theory, the latter seem more natural.Comment: Accepted for publication in Numerical Algorithm

    Three-Level Parallel J-Jacobi Algorithms for Hermitian Matrices

    Get PDF
    The paper describes several efficient parallel implementations of the one-sided hyperbolic Jacobi-type algorithm for computing eigenvalues and eigenvectors of Hermitian matrices. By appropriate blocking of the algorithms an almost ideal load balancing between all available processors/cores is obtained. A similar blocking technique can be used to exploit local cache memory of each processor to further speed up the process. Due to diversity of modern computer architectures, each of the algorithms described here may be the method of choice for a particular hardware and a given matrix size. All proposed block algorithms compute the eigenvalues with relative accuracy similar to the original non-blocked Jacobi algorithm.Comment: Submitted for publicatio

    Approximate matrix and tensor diagonalization by unitary transformations: convergence of Jacobi-type algorithms

    Full text link
    We propose a gradient-based Jacobi algorithm for a class of maximization problems on the unitary group, with a focus on approximate diagonalization of complex matrices and tensors by unitary transformations. We provide weak convergence results, and prove local linear convergence of this algorithm.The convergence results also apply to the case of real-valued tensors

    A parallel algorithm for the eigenvalues and eigenvectors for a general complex matrix

    Get PDF
    A new parallel Jacobi-like algorithm is developed for computing the eigenvalues of a general complex matrix. Most parallel methods for this parallel typically display only linear convergence. Sequential norm-reducing algorithms also exit and they display quadratic convergence in most cases. The new algorithm is a parallel form of the norm-reducing algorithm due to Eberlein. It is proven that the asymptotic convergence rate of this algorithm is quadratic. Numerical experiments are presented which demonstrate the quadratic convergence of the algorithm and certain situations where the convergence is slow are also identified. The algorithm promises to be very competitive on a variety of parallel architectures

    Convergence of the Eberlein diagonalization method under the generalized serial pivot strategies

    Full text link
    The Eberlein method is a Jacobi-type process for solving the eigenvalue problem of an arbitrary matrix. In each iteration two transformations are applied on the underlying matrix, a plane rotation and a non-unitary elementary transformation. The paper studies the method under the broad class of generalized serial pivot strategies. We prove the global convergence of the Eberlein method under the generalized serial pivot strategies with permutations and present several numerical examples.Comment: 16 pages, 3 figure
    corecore