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1 Introduction:

The QR algotithm [L1] is the standard method for computing the eigenvalues of a
general dense matrix on a traditional sequential computer. With the advent of par-
allel computers, a variety of parallel eigenvalue algorithms bave been proposed. For
hermitian matrices, there have been two different approaches. In the first approach,
the matrix is reduced to tridiagonal form as in the QR algorithm. The eigenvalues
of the tridiagonal matrix are found using either the divide and conquer method 4],
or multisection [14]. The other approach has beea'to recognize the inhereat paral-
_ lelismin the Jacobi method [13,10], which was the standard algorithm for the problem
_.before the discovery of the QR algorithm. Many paralle! Jacobi methods for hermi-
. Hian matrices have been proposed and implemented [2,1,23] and convergence of these
" methods has been proved [8,16,24]. _

For general, non-hermitian matrices, ‘ectensions of the divide and conquer or mul-
tisection algorithms are not known. Many attempts have been made to extend the
Jacobi method to the general case [22,6,5,25,3] and some of these are suited for par-
alle! implementation [22,6,25]. However, these parallel algorithms do not possess the
quadratic convergence propecty typical of the Jacobi method for hermitian matrices.
There have also been attempts at parallelizing the QR algorithm itself [26] and work
along these lines may prove to be fruitful. '

In this paper we develop a parallel J. acobi-like algorithm for gezeral complex ma-
trices based on a method first introduced by Ebexlein [5] and prove that the algorithm
convergss quadratically.

The rest of the paper is organized as follows. In §2 we discuss Jacobi-like methods
in general. In §3 the new paralle! algorithm is described in detail In §4 a proof of ulti-
mate quadratic convergence for the algorithm is presented. Finally in §5 experimental
results are preseated and analyzed. T

2 Jacobi-Like Methods:

A Jacobi-like method for reducing a matrix to condensed form performs a sequence
of similacity transformations '

Appr = MJIAM, k=0,1,2.... (1)

where Ag = A is the given n x n matrix and each of the M,k =0,1,... is identical
to the unit matzix except in the positions (pk, ar), (g, Px)s (P, pr) and (g, qx)-
The potexntial for parallel implementation axses as follows. If we have a pair
transformations
MM M M @)

and the indices P,k Pk, Gk, are distinct, the matrices M, and M, commmte.
Therefore the transformations can be applied in any order with the same efect. In
particular, they can be applied in parallel, first to the columns (from the dght), and
then to the rows (from the left). For cestain choices of the sequence of pairs (py, qx)
as many as /2 transformations can be applied in parallel (2,16].

At each iteration, the transformation M, is chosen to anninilate cectain elements
of the matrix As. The annihilations proceed in ‘sweeps’, where one sweep consists of
a sequence of pairs (Pk, k) in which every off-diagonal pair {(p,4), 1 < p < ¢ < n}
occurs exactly once. .
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When A is hermitian, it is possible to choose the transformation M; to be a
unitary plane rotation that annihilates the (pi,qx) and (gi,pr) elements of A [8).
The sequence Ay always converges to a diagonal matrix (in practice), and under
certain conditions convergence can be proved [8,16,24].

If the matrix A is non-hermitian (and in general non-normal), two classes of
Jacobi-like methods have been proposed. In the first type of algorithm, M, is re-
stricted to be a unitary plane rotation and is chosen to annihilate the (qk, px) element
of Ai [6,25,3]. For most matrices Ao, the sequence A; is observed to converge to an
upper triangular matrix (Schur form). Such methods will be referred to as Schur type
methods. Some of these are amenable to parallel implementation [6,25).

The other class of algorithms diagonalize a diagonalizable matrix using both uni-
tary and non-unitary transformations [5,21]. M, is chosen to minimize the magnitude
of the (pk,q:) and (gi,ps) elements of A as well as reduce |[A]], the Euclidean (or
Frobenius) norm of A. (||A|* = T;; |e:;|*.) To explain why the norm of A is reduced,
we recall the following result.

Lemma 2.1 For any square matrix A,

inf ||M~ AM||” = ; A7 (3)

where M is non-singular and ); are the eigenvalues of A.

Proof: The proof is due to Mirsky [17]. Let QTAQ = A+ T be the Schur decom-
position of A. (Here A is a diagonal matrix containing the eigenvalues of A on the
diagonal, and T is a strictly upper triangular matrix.) Let D = diag(l,e,€?,...,e"1)
where 0 < e< 1

IDTIQTAQDI? = |IA|® + 3 Jti; 226D
. o
< AP+ €TI0
Since € can be an arbitrarily small positive number, it follows that the right hand
side of (3) is less than the left hand side. The opposite inequality also follows by the
Schur decomposition of M~1AM, so (3) is proved. a

This result can be used to show that reducing norm of A brings it closer to a
normal matrix, which can be diagonalized by unitary transformations alone. This -
is also equivalent to reducing the size of elements of the matrix ¢ = AA4* — A*A,
the departure from normality [19]. This type of algorithm will be referred to as a
norm-reducing method.

These two classes of methods differ in two important respects. First, the conver-
gence behavior is markedly different. The norm-reducing methods display ultimate
quadratic convergence for most matrices, and a proof of quadratic convergence can be
obtained assuming the matrix is diagonalizable [20]. The Schur methods exhibit only
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linear convergence in general [6], and no proofs of global convergence or asymptotic
convergence rates are known for general matrices.

On the other hand, computing the transformation My in the Schur methods re-
quires knowledge of only the (px,qx), (gi,px), (Px,px) and (qx,qx) elements of A,
whereas for the norm-reducing methods the entire p;’th and gx’th row and column of
A are required. Besides being more expensive, this has a more serious consequence
in that it destroys parallelism. Although the transformations M, can still be applied
in parallel as described earlier, the effect is different from applying them sequen-
tially, since the application of one transformation affects elements used to compute
another. As a result, it is no longer possible to show that ||A|| is always reduced by
the transformation [5], and the quadratic convergence proof [20] no longer applies.

Sameh [22] developed a parallel version of the norm reducing algorithm for real
matrices [7]. Sameh showed how to compute n/2 transformations that could be
applied in parallel to a real matrix A and would always result in a reduction of ||A]].
Sameh also proved that the algorithm converged to a normal matrix. So for real
matrices, we could use Sameh’s algorithm to reduce the matrix to a normal matrix
and then diagonalize the resulting matrix by the Jacobi method for normal matrices
[9] (which uses complex arithmetic, but converges quadratically). However, we do
not know of any investigation of the rate of convergence of Sameh’s algorithm to a
normal matrix.

In this paper we develop a parallel algorithm for general complex matrices but
take a different approach from that of Sameh, combining the norm-reducing and
Schur methods. We compute the transformations M as in the original norm-reducing
methods [5,21], except for the following differences:

1. Instead of minimizing the magnitude of the (px, gx) and (gi, i) elements of A,
we merely annihilate the (gx, px) element as in the Schur methods.

2. We stop when we have reached triangular form, as opposed to diagonal form.
3. We compute and perform transformations in parallel.

We will show that parallelism can be achieved without sacrificing the property of
quadratic convergence. Further, because we only seek triangular form, the method
does not try to diagonalize some obviously defective matrices unlike the original
norm-reducing methods (e.g. a matrix in Jordan canonical form).

3 Description of the Algorithm

For each similarity transformation M, in (1), there is a pair (px,qx), Px < gx, that
identifies the submatrix where M differs from the identity.



The corresponding elements of A, will be called pivot elements and the pair (px, gx)
will be called the pivot of the transformation. In what follows we will omit the
subscript k when it is clear that only one pivot (px, gx) = (p, g) is involved.

Each transformation M is one of the following three types of transformations.

Unitary Transformation:

The unitary transformation U ={u;;} with pivot (p, ¢) has the following structure
in the positions where it differs from the identity.

Upp Upg |\ _ [ cosz —efsinz
Ugp Uy /] \ e Ysinz  cosz '
where z and @ are real.
The following choice of z and 6§ ensures that the (g,p) element of A’ = UTAU is
zero [6]. Let

dpq = (aqq - app),

dmaz = dpg £ \/d2, + 4aya,, ' (4)

where the sign is chosen to achieve the largest absolute value. Then the parameters
z and 8 are given by _
2¢¥a,,

) (3)

tanz =
' dma:

where 6 is chosen to make the value of tan z real.
In practice we need to bound the angle z to avoid migration of large elements
from the upper triangle of the matrix to the lower part. We impose the bound

|tanz| < 1.

(i.e., if |tanz| > 1, we set it to 1.) Not using such a bound causes slowing of
convergence in the earlier sweeps. This is similar to the bound used by Eberlein [6].
Shear Transformation:
The shear transformation S ={s,;} with pivot (p,q) has the following structure
in the positions where it differs from the identity.

Spp Spg \ _ coshy  —tesinhy (6)
Sep Sqg / \ te~sinhy  coshy ’
where y and « are real.

Let A’ = S~1AS. The parameters y and « are chosen to zero the first order terms
in 8]|A’|[*/3y and 9||A’||>/8a. It can be shown that with this choice, ||A’|] < ||A]|
[5].

Let

Gpo = 3 {laps* + lagsl* + lajol” + lajol*}, ! (7)

J#r.9



dpg = (agq — Gpp), | (8)

€pg = Ciaaqp + e_iaapq’ (9)
Cog = D _(@pja;; — a3,a5), (10)
j=1

Note that ¢, is just the (p,q) element of C = AA* — A*A. Then the parameters a
and y are given by
a = arg(cp) — 7/2, (11)

—|cpal
BB = Sl F 1) F G .

The effect of this transformation is also to reduce the size of the (p, q) element of
C, the departure from normality [5]. Clearly, if ¢, is zero, the above transformation
reduces to the identity. However, [|A|| may still be non-normal with C having large
diagonal eléments. The following diagonal transformation reduces the size of the
diagonal elements of C [21,18].

Diagonal Transformation:

The diagonal transformation D with pivot j is the identity matrix except for the
jth diagonal element, which is ¢;. Let

1/2
9; = (Zl%‘l’) :

I#5

1/2
hj = (E |a,-,|’) ,

I

Then choosing

minimizes the value of . ,
%+@¢
It can be shown [18] that
|ID;* AD;I* = |AII? — (g5 = k;)*. (13)

Note that this transformation does not affect the diagonal elements of A, and therefore
reduces the norm of the off-diagonal part of A, in addition to reducing [|A}].
In practice we do not wish the matrices D to become too ill-conditioned, so we
impose the restrictions .
1/r<tj<T (14)
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where 7 is a constant. ‘

Rotation: A rotation transformation R with pivot (p,q) is the composition of a
shear and a unitary transformation, SU, each with the same pivot (p, g). The unitary
transformation U is computed using the elements of the matrix A = S™'AS.

Commuting Sequence: A sequence of pairs (px,qx) €{(p,q), 1 <p < ¢ < n}
such that p;, q1,P2,92- . Pm, gm are distinct integers is called a commuting sequence
of pairs. The methods described in [16,24] allow.us to construct many commuting
sequences where m is either n/2 or (n — 1)/2.

Rotation-set: A rotation set is the composite transformation T

T= R1R2R3...Rm, (15)

where Ry is a rotation with pivot (px, gx), and the sequence {(px, gx)} is a commuting
sequence.

Parallel Rotation Set: In order to apply a rotation set T by computing T-!AT
correctly according to the formulas (4) - (12), we would have to compute and apply -
each of the transformations R; in sequence, since the application of one transforma-
tion affects the elements needed to compute the next. Instead, we will compute each
of the transformations R, using the original matrix A. Since the pairs (px, gi) consist
of distinct integers, the resulting transformations Ry can all be computed and applied
in parallel. We will call the resulting composite transformation T a parallel rotation
set with pivot sequence (px, gx).

T=RR.. Rn (16)

Parallel Ordering: Let O be a sequence (pk,qx) of N = n(n — 1)/2 pairs such
that O is a concatenation of s commuting sequences. Further let each pair (p,q),
1 € p < ¢ £ n occur exactly once in the sequence O. Then O is called a parallel
ordering.

Two examples of parallel orderings are shown in Fig.1. The matrices in the figure
represent parallel orderings by indicating the commuting sequence to which each pair
(p,q) belongs. The commuting sequences are numbered in the order they appear in
the parallel ordering. These two orderings were introduced by Brent and Luk [2] and
Luk and Park [16) respectively. Many other parallel orderings have been introduced
as well [24,15]. The modulus ordering will figure in the quadratic convergence proof,
so we define it now. :

Modulus Ordering: A parallel ordering is called a modulus orderings if the pair
(p, q) is in the I(p, ¢)th rotation set of the ordering, where

I(p,q) =1+ (p+ q— 3) mod n. ' (17)

Sweep: One sweep of a paralle! ordering O is a transformation composed of s
parallel rotation sets and n diagonal transformations. Each parallel rotation set has as
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z 1 5 4 2 3 z 1 2 3 4 5
z 3 2 5 4 z 3 4 5 6
z 1 4 2 z 5 6 1
z 3 5 r 1 2

z 1 z 3

T z

Brent Luk Ordering Modulus Ordering

- Figure 1: Parallel orderings

its pivot sequence one of the commuting sequences that comprise the parallel ordering
O. The value of s will be either n or n — 1 depending on the parallel ordering used.
For example, in the Brent-Luk ordering s = n — 1, whereas in the Modulus ordering
s =n. A sweep SW is defined as

SW = TlDITQDQ e Tﬂ_lD,‘_an (18)
for the case s =n — 1 and
SW = TllegDz cen T-nDn

if s = n. Each diagonal transformation D, above has the pivot j,, where {j,} is a
permutation of {1...n}.

So at the end of a sweep, every pair (¢,7) has been covered by a unitary and
shear transformation, and every row and column has been covered by a diagonal
transformation.

Parallel Norm Reducing Jacobi Method: We continue to perform sweeps
until the following convergence criterion is met. Let

Ar=Li+ H. + R;

where L, is strictly lower triangular, Hy is diagonal and Rj is strictly upper triangular.
We stop when '

lLill < (n?/2)e. (19)

(e is the value of machine prec:s:on a.nd ‘the norm used is the Euchdean norm.) This is
only one of many possible convergence tests that can be used. The ultimate quadratic
convergence of the algorithm allows for considerable freedom in this choice.
Parallel Implementation: The parallel norm reducing Jacobi algorithm can be
implemented on a square grid of n?/4 processors as follows. Each processor holds
four matrix elements. The n/2 diagonal processors are responsxble for computmg the
rotation parameters (elements of R;). The computation of the ¢,,’s and G,,’s is done
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with each off-diagonal processor computing the required terms and sending them to
the appropriate diagonal processor. The rotations are broadcast from the diagonal
processors to the appropriate off-diagonal processors after which all the processors
apply the rotations to the elements of the matrix. This constitutes one rotation set
with the elements a,,,,, k = 1...n/2 being the off-diagonal elements residing in the
diagonal processors. Next the processor in the (1,1) position performs the appropriate
diagonal transformations. Finally all the processors exchange data using the scheme
given by Brent and Luk [2], and the above process is repeated n — 1 times. It can
easily be verified that this implements a sweep as defined in (18). (Other parallel
orderings [16,24] may be implemented by using an appropriate data exchange step.)

At the end of each sweep, the convergence test is carried out. The computation
of ||L|| can also be done in parallel. It is clear that one sweep of the algorithm
takes O(nlogn) time when implemented as described above (since accumulating the
row and column information for each rotation set can be done in O(logn) time) In
§5 it will be noted that O(logn) sweeps are required for random matrices, giving a
complexity of O(nlog?n) for the parallel algorithm.

Eigenvectors: The transformations M, are accumulated in a matrix P. In
§5 it will be noted that the final matrix A, we obtain on convergence is always
diagonal. This allows us to read off the eigenvectors from the columns of the matrix
P. Accumulating the transformations can also be done in parallel along with the
iteration.

4 Theorems on Quadratic Convergence:

4.1 Quadratic Convergence for Diagonalizable Matrices:

We now show that the parallel norm reducing Jacobi method converges quadratically
in the later stages of the iteration. Note that this does not say anything about global
convergence, but only describes the rate of convergence if the algorithm does converge.
First we introduce the notation. Let A be the diagonalizable matrix we are working
with and A a diagonal matrix containing the elgenva.lues of A on the diagonal. If Z
is the transformation that dxagonahz&s A,

A=Z"1AZ. (20)_
We divide A into a diagonal part D and an off-diagonal part E.

A=D+E.
Let ); be the eigenvalues of A, let § be the minimum separation between distinct
eigenvalues of A, .
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By the Bauer-Fike theorem [11], for each };, there is an element ay) of D, such
that

|A; — awe| < |[E]]. (22)
If Ais close to a diagonal matrix so that
6
1Bl < 5,

then it follows from (22) that each diagonal element a,, of A is close to exactly one
eigenvalue A(ag,) of A,

lage — Mage)| < [|E].

We will say that g, is affiliated to the eigenvalue A(ag,).

o 1Al

Theorem 1: Let the diagonalizable matrix A = A; have distinct eigenvalues. Let
(20) hold. Let Ay be the matrix obtained after applying one sweep of the parallel
norm reducing Jacobi algorithm to A,, using any parallel ordering. Let E; and Ey
be the off-diagonal parts of A; and Ay respectively.

Suppose A; has already been sufficiently diagonalized, so that

3-26
&
”E1” —_— 3672'"2’ (24)

Then,
”EN” < I{I(Aa 6) n, T)”Elll2

where K; is independent of ||E;|| and 7 is the bound (14) on the size of the diagonal
transformations.

Theorem 2: Let A = A, be a diagonalizable matrix. Let (20) hold. Let Ay be
the matrix obtained after applying two sweeps of rotation sets to 4, using a modulus
ordering (17). Let E; and Ey be defined as in Theorem 1. Suppose A, has already
been sufficiently diagonalized, so that

' 5 2n 6
< | — —_
IEWll < (23) i (25)

Also let A; be permuted so that diagonal elements affiliated to equal eigenvalues
occupy adjacent positions. Then

NENIT < IC([A]l, 8,7, TIEA.

where K is independent of |[E,||, and 7 is the bound (14) on the size of the diagonal
transformations.
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Notice that in Theorem 2, when we allow multiple eigenvalues, we assume a par-
ticular parallel ordering while Theorem 1 holds for any parallel ordering. Further, in
Theorem 1 we can bound the error after one sweep whereas in Theorem 2 we bound
the error after two sweeps. The assumption that diagonal elements affiliated to equal
eigenvalues are in adjacent positions can be ensured by an appropriate permutation
of the matrix during the iteration.

Outline of proof: The structure of the proof is similar to proofs of quadratic
convergence of other Jacobi methods [20,9]. the argument is more involved here
because we have to consider the effect of performing transformations in parallel. The
outline of the proof is as follows.

1. It is shown that some of the angles z and y in (5), (12) are small if

IE|l = € < 6/8. (26)

2. It is shown that (26) can be maintained throughout the sweep if || Eo|| is small
enough.

3. It is shown that after each unitary transformation, the a,, element is almost
annihilated in addition to the a,, element which is exactly annihilated.

4. Bounds for the entire sweep are computed using the above results.

Notation: Throughout the proof, E will refer to the off diagonal part of the
matrix A, E, to the off-diagonal part of 4,, etc..

4.2 Preliminary Lemmas:

We begin by stating some known results on the structure of an almost diagonal matrix
and the effect of a similarity transformation on the norm of a matrix.

If A has been permuted so that diagonal elements affiliated to equal eigenvalues
occupy adjacent positions on the diagonal, we can partition A as follows.

Ay A ... Aim

A= Az/x An ... Amm

(27)
Aml Am2 e Amm
Each Aj; has its diagonal element affiliated to equal eigenvalues.
Lemma 4.2.1: If A is partitioned as in (27) and

)
< -
BN <3,
then for y=1...m, ) :
1||E ’
1Bl <1145 - 35111 < 2 U2

11



Proof: Refer to Wilkinson [30]. O
Lemma 4.2.2:
HAI? = lIAl® < 4411 E]P.

Proof: Refer to Ruhe [20]. o

Lemma 4.2.3 Let A’ = S71AS where S is a shear transformation defined by (6),
(11) and (12). Let the quantities Gpq, dpy, €pg and cpg be defined by (7)-(10). Let K,
be defined by

Kpg = cpg — (dpeagy, — dpgpy). (28)
Then
Al 2 ] .
éﬂé}/—”— = 2sinh2yGp, + 4 cosh 2yIm(Kp.e™"")
+ 2sinhdy(|dy,|? + [€pe]?) — 4 cosh dyIm(d; £,,), (29)
1 a”fv“2 —ia : - -2
smhdy  Oa —2Re(Ke™"*) + 4sinh 2yIm(a;, ap,e™ )
+ 2cosh2yRe(d; ape™ — d a.,e™). (30)
e allale 1 opalr
A -
Pa = {2 dy sinh2y OJda } ) (31)
Proof: Refer to Eberlein [5] for (31) and Ruhe [20] for (29) and (30). O
4.3 Bounds on angles r and y:
By the definition (12) it can easily be shown that
|tanhy| < 1/2. (32)

The bounds cosh’y < 4/3 and sinh? y < 1/3 follow. Refer to [5] for details.

The following Lemma may easily be shown using the method in [8].

Lemma 4.3.0: If [|E]| < £ then no rotation set can cause a diagonal element to
change the eigenvalue it is affiliated to in partition (27).

Proof: Refer to Forsythe and Henrici [8] and Ruhe [20)]. ]

Therefore we can classify the pivot elements into two sets, depending on whether
or not the corresponding diagonal elements are affiliated to equal eigenvalues. Refer
to the partition (27) of A. We define the subset J of the parallel ordering O as follows.

T = {(2:9) M apyp) # Mo} - - @)

12



Lemma 4.3.1: Suppose ||E|| < §/8. Let the pivot (p,¢q) € J. Then the angles z
and y computed by (5) and (12) satisfy,

£ || 32 |E|P
[sinhy| £ 1.01—, coshy < {1+ 53 52~ < 1.01,
and
'3 8

Proof: Consider d,, defined by (8). Since r € J,

3
Idpql 2 l’\pp - ’\qql - Iaw - ’\Ppl - laqq - ’\qu 26— 2”E” 2 26-

From the definition of z, (5)
2a4p

t =
l an zl dma:

Since dmaz, given by (4) satisfies |dmar| > |dpgl, and |ay,| < ||E]],

811E1l
3 6 °
The bounds on y are proved by Ruhe [20] as follows. From the definition (12) of y,

|sinz| < [tanz| < =

| [€pgdpg| + 1K pq|
[tanhy| = [ < =R 7, 34
= S + o) ¥ e = 20 e
where we have used the following relation from [5],
— lepg| = Im(d; £,,) — Im(K,pe™"). (35)
It can be easily shown using (9) that |¢,,| < V2||E||. By (28) and (10) we get
[Kpel = | Z Gpjg; — Gjpaiq]
i#ra
1
S 5 2 ol + lagil + lassl” + lajol” (36)
I#rg

From this we get |K,,| < [|E]|?/2.
Therefore (34) becomes

[LENl
< —.
3 18 =8

2J' )lEl

< — | =za
|tanhy| < ( 5

The remaining inequalities follow from cosh y =(1—tanh? y)~% and | sinh y|~=| cosh y tanh yl-

O
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4.4 Effect of one parallel rotation set:

Consider the parallel rotation set defined in §2 (16).
T = R]Rz o Rm = S1U152U2 v SmUm.

(We have dropped the ™ notation.) Since the pivots (p,, g-) for the rotation set form
a commuting sequence,

T=Slsg...SmU1U2...Um. (37)

Notation: A = A is the matrix to which the rotation set is being applied.
Forr=1...m,

A =8571...5[T45,... 5, = {ag;-)} (38)
A
Further,””
A=UZ' .. U783 .. 57 A0S ... Slh .. . U = {&{TY (39)

We will use the definitions (7)-(10) and (28) for the quantities ¢y, Gpq, etc. The
use of the superscript (r) or ~ will denote that the quantity is computed using the
elements of A, or A respectively. We will need the norm

n

Allz = >_ laxl-
kj=1
Note that for any matrix A, ||A]| < ||Allz £ r]|All.
Note that dl(,'r)q' = d,(&r since the pivots (p,, ¢,) form a commuting sequence. Sim-

ilarly f,(,’r'zr = {g’?h. We will drop the superscripts for these quantities, so d,,,, = dg:)qr

etc. for all r.

In previous Lemmas we have assumed that €, < §/8. However, €, may increase
during a sweep. We need to bound the growth of ¢, during the parallel rotation set
so that we can then find conditions at beginning of the sweep that will ensure that
||E|| < /8 holds throughout the sweep. To do this we will use the || ||z norm defined
above and bound the growth of ||E,||z.

Lemma 4.4.1: If ||Ey||g < 6/8 then ,
1Enllz < 4611Zll  (40)
If A has distinct eigenvalues we get the slightly sharper bound

[1Emllz < 2.8]| Eol]- (41)
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Proof: We first estimate the elements of E,, that are not p1vot elements in the
rotation set. We define ¥, for allr = 0.

T, = 3" |al?| k# j and (k,) # (pr, q;) for any r.
k3
Let
= S;‘l e SI—IAO' (42)

So,
= A'SpSg S

Consider the element af‘,) It is affected by only one of the shears S, in (42). The
effect takes the form

a;; = cosh y,a,d) + 51(:,) *ier sinh y,.

al° ) is some other non-pivot element of A,. If

where @;
|coshy,| < ¢ and |sinhy,|<s forall r,
laksl < elag)| + slaf3).
If ¥’ is defined analogous to ¥,,

V= Z la};| < E(cla,:;’l +slal?),

where the sum taken over all non pivot pairs. But ¥ ]ax;| = & la(o)l, therefore
V' < (c+ 5)T.
By a similar analysis, ¥, < (c+ s)¥'. So,
Um < (c+ 5)*To. (43)

We now have to consider the pivot elements af,";) and a("‘) Consider one pivot
element with (p,q) = (pr,¢.). It is affected by only one shea.r, S = §,. By direct
calculation

o) = ol + (g inh 2+ )

and .
a‘(,;‘) = agg) + e""’{—% sinh 2yd,, + sinh? y¢,,}.

Therefore

lafe) + 1al] < 1afQ] + (0] + | sinh 2y||dy| + 2| sinh? y||¢].

15



We substitute the value
—IC(O)I
2(Idpgl? + 16pel?) + G2

for tanh y from (12). (The angle y is computed using the elements of Ao, hence the
use of the (0) superscript here.) Also, we write ¢!? in terms of K{%) and use (34). So,

nhy =

KO

Ia(M)l + Ia("‘)l < ]a(o)l + |a(°)' + cosh2 {prql + ld I

}+2NMPM&A

Now we use the bounds ¢ and s for | coshy| and |sinhy|. Also we use [¢,,] < [al0] +
|a{9)| which follows from (9), and |d,,| > 36/4.

NalP ]+ el < (1 + ¢ + 25%)(1aD] + [oD]) + 4c2” (O)I (44)
Define &, as the sum of the magnitudes of the off-diagonal pivot elements,
O =3l 1+ laT) |
By summing all the equations (44) for (p,q) = (p,, ¢-), r=1...m, we get
B < (14 %+ 2570 42 T 2 |k |. (45)

Using (36) we can show that
DK, | < Bl < [l Eoll}-

Using this, the assumption ||Eo||z < §/8 and adding (43) and (45) we get
HEmlle < (14 ¢ + 25* + /6 + 2¢s)|| Eollz-

Inserting the bounds from (32) we get (40). If A has distinct eigenvalues we can use
the bounds from Lemma 4.3.1 to get (41). o
Let €, denote the value of ||E|| at the beginning of the sweep. Let € be the
maximum value of ||E|] throughout a sweep of N rotation sets.
Lemma 4.4.2 If ¢5 < §/8 then,

£ < n(4.5)Veo.
If A has distinct eigenvalues we get the smaller bound

e < n(2.8)Veo
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Proof: The diagonal similarity transformation cannot increase the value of || E||
by (13). Further, the unitary transformations cannot increase ||E|| either (this can
easily be shown using (5) and the fact that the transformations U, are unitary). The
results then follow from Lemma 4.4.1.. 0.

Now we have bounded the growth of £,. We will use this in §4.5 and §4.6 to show
that ¢ < 6/8 holds throughout the sweep For the moment we will continue to assume
it does.

The next step in the proof is the crucial step in establishing quadratic conver-
gence. The unitary transformations are chosen so as to annihilate the pivot elements
@q,p.. We need to show that in addition to this, the pivot elements &,,,, are almost
annihilated.

Lemma 4.4.3: Let € < §/8. If the pivot pair (p,,g,) € J, where J is defined by
(33),

2
I&PrQr l S 3672%-

where 7 and A are defined by (23) and (20).
Proof: Consider one pivot pair (p,,¢,) = (p,q). From (28) we can write
. K
tpg = LCE_d'_ﬂl (46)
because the unitary transformation U,,, is chosen to ensure that a,, = 0. We already
have the estimates | K,,| < ?/2 and dpe > 36/4 (since € < §/8). We need to estimate
Cpq-
First consider c{™. We can estimate this from Lemma 4.2.3. Using (29) and the
relation A,4; = S71A, S,

a”Ar+l” : T r)giar
—Ty,_ = 2sinh 2y,G’$,q) + 4 cosh 2y, 1 m(K;,q)c )

+ 2sinb 4y, (|dpq|? + [€pe]?) — 4 cosh dyrIm(dy £pq).

Rewrite this as

Bl Ay aal? , | _
” ay+l” = 4(smh yr(2(|dm|2 + prql'f) + G’(:)) — cosh yrlm(d,,,,f,,.,))

+ 2(sinh 4y, — 4sinhy, )(|dp|” + |€po]*) + 4(cosh 4y, — cosh y, ) Im(d;, &)
+ 2sinh 2yrG,(,;) + 4 cosh 2y, Im(IK ,(,;)e"'"") — 4sinh y,Gfg)

The first term is of first order in y,. We estimate it as follows.

4(sinh'yr(2(ldpql2+lqulz)+G,(,3))'—‘co'shy,.1m(d;qfw)) = 4coshy,(—|c - Im(d )
= 4coshy,]m(_.]{£2) e~"0)

17



where we have used the value of tanh y, from (12) and (35), noting that y, is computed
using the elements of Aq. The point to note is that this choice of y, makes the above
term O(e?). We can now use the bounds |K[7)| < €2/2, G() < €? for all r, as well as
the a.ng]e bounds from Lemma 4.3.1. We a,lso use the relatlon 2 < 2”A0“2 Finally
we arrive at the estimate

A Arn|f?

2
P < 27l (47)
Using (30),

1 OllAnlP?

(") ~far 1 . —2iex
sinh 2y, Oa, —2Re(K 7 ) + 4sinh 2yIm(a; a,,e™ %)

+ 2cosh2yRe(d, ame""' — 5 age ).

Here all the terms are O(¢? 2 except the last one. But recall how angle a, is chosen
(11). With this choice Re(c{Qe~"") is zero. Using (28),

Re(c,(,‘:)e""") = —Re(d; ay e~ —d; aqpe*“') + Re(K(O)c""") = 0.

This gives us a second order estimate for the last term as well. Using the bounds on
the angles etc. we arrive at

1 a”Ar-H”

— < 2
snh 2y, Oa, | < 8]l 4o|I" 5 (48)
From Lemma 4.2.3,
| (r)l < ll 6|[A,+1]|2I | 1 3”Ar+1”2|_
dy. sinh2y Jda,

Using (47) and (48),
2
. €
1691 < 220] Aol 55
Recall that the pivots (p,, g.) form a commuting sequence. Therefore we can move

any shear S, to the mth position to get a bound on c](,’r';)r. Such a permutation does
not affect the matrix A,,. Therefore

2
ledm) | < 22|A0||2§ forallr=1.

Now we have to consider the effect of the unitary transformations. The only one we
need to consider is Un,. To see why, consider C, = 4, A? — A’ A4,, and C= AA' A*A.

C=Us.. . 03U;ChlhUs... Un,

18



since UyU, = I. Let (p,q9) = (Pm,qm). Since the pivots (p,,q,) form a commuting
sequence, the only unitary transformation transformation affecting cg,") is U,.. Now
note that U,, does not affect the norm of the block :

( Srp Cpq ) )
Cp Coq
By definition (10) we have the bound |¢;;| < €? for all . So we can obtain the
following estimate for &, '
2
. €
& < 23| 40|’

Again, since we can have any of the pivots (pr, g-) in position m by a permutation
that leaves A invariant, the above bound is true for all pivots (pr, gr)-

Using (46),

|| + lf{pq|

l& r r, S 3
Prg Id;ql
4 1 2
< = 2 ool AN
> 35(23”AOH + 2”A0” )52
2 €
< 32| Aol o

Now we use Lemma 4.2.2,

. 32
lanvacd < SCIAIR + 47€%)e?

2

< 367’%— (49)

where we have used v > 1 and € < §/8. o
4.5 Proof of Theorem 1:
Consider a sweep as defined in (18)

SW = TID'lTQDz . T"D,,. (50)

Here we have assumed that the parallel ordering consists of n commuting se-
quences. The discussion is similar if only n — 1 commuting sequences are involved in
a sweep, and the bounds derived here apply for that case as well.

From condition (24) and Lemma 4.4.2 the maximum value ¢ that l|E]| can take
during the sweep is

e < n(2.8)"

=2n
s o
3692n2 — 8
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Now suppose (k,j) € P for any I < v 4+ 1. The pair (k,7) cannot be a pivot
pair for the current rotation set (v), so it is either in some P, for I < v or is not. If
(k,7) ¢ P, for any | < v, we use (61) to get the first term of the maximum in (57).
Alternatively, if (k,7) € P, for some | < v we get the second term of the maximum in
(57). The factor 7 in (57) must be included because of the diagonal transformation,
which can increase the size of an element by this factor. A similar argument leads to
(59) if (k,5) € P, for some l < v + 1.

Similarly, for iteration (52), we get (60). For (58) the first two terms in the
maximum are obtained as above. We need to consider the additional possibility that
(k,j) € P.y1. But the pivot elements after the rotation set are bounded by (49), from
Lemma 4.4.3, which leads to the third term in (58). o

The following Lemma is similar to one proved by Hansen (12], while discussing
the quadratic convergence of the Jacobi method for symmetric matrices.

Lemma 4.5.2: A solution (1, ©,) to the recurrence

D41 = co max {(c; + &), 1% + 20, },
0,.;.1 = Cp ImMmax {(C] + cg)O,,,ch)y + CQQV} y

6, =0,
where ¢; > 0 for all 7, is given by
D= a+e) 0 forv=1,2... (62)
O, =cgH{a+c) 1= 1}Q, forv=1,2,... (63)

Proof: The proof is by induction. The case v = 1 is easily verified. Assuming
the propositions (62) and (63) are true for v — 1,

Q1 = Qegmax {(c + )",
aler + )" + co(er + ¢5) "t - le-l)}
= )¢5 max {(c, +c2), (a1 + €)= ci‘“c,}
= {hgla +e)”.

and

Q1 = ¢§max {(c; + ¢3) {(Cl + )V - c;’"} ,

a {(C1 +c) 7t - Cf—l} + ca(cr + Cz)"_l} y

) cj max {(c1 +6) —cf e +e), (a+e) =)
e {(a +c2)" -} | .
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Now consider the recurrences (57)-(60). We could reduce them to two recurrences
if we didn’t have the third term in (58). Then if Q; = ||E,||, the quantities Q,,_,
and ©3,-; are upper bounds for w, and 8, with cg =7, ¢; = 1.06 and c; = 4e/6. To
take care of the third term in (58) all we have to ensure is that

2
g e +¢) 71y > 361'72-66— forall v > 1.

Since £}, is monotonically increasing with these values of ¢; (r 2 1), we only need to
ensure this for v = 2. We can use ¢ = n2.8" by Lemma 4.4.2. We get the condition

3-2n§

”Eln < 3672712

which is guaranteed by (24).
Now consider 6, the maximum non pivot element at the end of the sweep.

45 n-1
6, <Oyp_y = 721 [(1.06 + 7) - 1.06"‘“] Q
12n23"
< 2n
where we have used € < §/8. Substituting the value Q; = ||E,|| and using € < §/8 as
well as € = n(2.8)"||E,|| from from Lemma 4.4.2 we obtain

918

12n3
)
So the non-pivot elements at the end of the sweep are bounded by the above. The

remaining n off-diagonal pivot elements from the last rotation set are bounded by
(49) so adding the bounds on these elements and the bound above, we get

1E: ]2

0201 < (37)*

”EN” S I{I(Av Y 6a T)”E1”2’

where

| 48y%n3(3r)™
= 2120 .

K 5

4.6 Proof of Theorem 2:

If A bas multiple eigenvalues we can no longer always use the angle bounds from
Lemma 4.3.1, since the pivot pairs need not belong to the set J (33). In Theorem
2 we assume that the parallel ordering used is the modulus ordering (17y. We will
assume that n, the order of the matrix, is even. The proof for odd n is similar.
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z 1 2 3 4 5 z 7 8 9
z 3 4 5 6 z 9 .
z 1 6 1 T 7
z 1,2 z 7 8
z 3 9
T - z

First n rotation sets Next n-3 rotation sets

Figure 2:

Consider 2n — 3 rotation sets using a modulus ordering
I'D\T;D, ... T, 1D,y D, ... T3n_3Do_3. (64)

Note that we consider 2n — 3 rotation sets even though one sweep of the modulus
ordering involves only n rotation sets. We are including some of the rotation sets of
the next sweep. Fig.2 illustrates the rotation sets we consider for the case n = 6.

From (25) and Lemma 4.4.2, ¢, the maximum value of ||E|| during the application
of two sweeps of rotation sets to A, (2n rotation sets) is

w5\ 5§ 6
£ S n(4j6)2 (-2—3-) S_n = g

Notation: A, is the matrix before applying the two sweeps of rotation sets. For
v=12,...,

A, =DI'T'A,, (63)
A, =ATD,, (66)
Ay+l = Au.

We define an ‘antidiagonal’ x, as

xv = {(k, )|k +j =v}.

Let P, be the pivot sequence used by the vth rotation set. ordering. Then it is easily
shown that (refer to Fig.2)

P, = Xv42 U Xngv42 if v <,

P,_, = Xv+2 U Xv—n+2 if v>n.
We partition E,, the off diagonal part of A, as follows.

E,,=B,,+R,,+F,,,
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Figure 3: Case 1

B, = {8{}, R, = {r}, . = {f$}-
where
b(v) { a(';-) k+i<v+2

otherwise

k
0
) af,‘,') k+j=v+2
ki 0 otherwise
(
k

f(u) { a';-) k+j>v+2
0 otherwise
E, and E, are similarly partitioned.
We will prove by induction on v that there exists M, independent of ||E,|| such
that
IBulls < M.||E4|P*. (67)

For v = 1, || By||g = 0 so the proposition is true. We assume it is true for v.

Case 1: v < n. The partition of E, into B,, R, and F, is shown in Fig.3. First
consider the pivots in Xn4u42. It is easy to see that these pivots cannot affect the
elements of B,, since they couple elements of F, among themselves. Now consider
the pivots in x,.

Consider the transformation (65)., Consider an element by; of B,. It is coupled
with another element a;; by a shear and a unitary transformation. Let the pivot pair
of the transformation be (p,q)- Let z and y be the angles involved in the unitary and
shear transformations respectively.

1. ag; = b&* €B,.

Let b; be the va.lue of the element after the shear and unitary transformations,

byl < (lcosal|coshy] + |sinall sinhyDlb] +
(] sin z|| coshy| + | cos ]| sinh y[)

e ’ (68)

24



Using the angle bounds from (32) we get
|83, < V3(Jbe; + [bg;D)-
After the diagonal transformation we get
[be;] < TV3(1bs;] + Ibg;)- (69)

2. a3 = f;_; € F,. and (p,q) & J.
It is evident that in this case k,k > p and j,7 < ¢. Since the matrix has been
permuted so that diagonal elements affiliated to equal eigenvalues occupy adjacent
positions on the diagonal, it has the structure (27). Therefore b;; lies in one of the
diagonal blocks Ejy; in the partition (27), and by Lemma 4.2.1

13| < %62- (70)

3. aks = f;; € F,,. and (p, Q) € J.
We can use the angle bounds from Lemma 4.3.1 and (68) to show that

' de
|bi;| < 1.06bi;| + Tlfial-

Further, since |fi;| <,

L, 4¢?
bx;] < 1.06]b;] + -5
After the diagonal transformation
5 4¢?
l6k;] < 7{1.06[b;| + —}. (71)

Adding (69), (70) and (71) for all b;; we get a bound for ||B, ||z,

B,llg < 7 {4.6”3,,”2 + n’e’(izi;i)} )

An identical argument can be used to show a bound for iteration (66),

180l < v {asliBls + e EED)

< 7 {22||Bu”x + 3n%2 4 ; 6)} .
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Figure 4: Case 2

Now we consider B, ;1. This includes elements of R, as well as those of B,. But
using Lemma 4.4.3 and accounting for the diagonal transformation,

€2
‘F‘,J‘ < 36721'2'3.-

Adding the bound for R, that we get from this to the bound on B,,

1Bysille < 72 {22||Bu||n + Qez} , (72)
where 5 )
Q= (wng—) + 36n%> . (73)

Case 2: v > n. Refer to Fig.4. First consider the pivots in x,_n42. These only
can couple elements of B, with other elements of B,. Using the angle bounds from
(32) it is easily seen that this can only increase the size of || B, ||z by a factor of 12.

The analysis for the pivots in x4, is identical as that for the case v < n. Taking
into account the factor of 12 that can arise due to the pivots in x,_n42 We get

|Boalls < 1272 {22]|B, I + Q¢*} .
Solving this recurrence, .
[|1B.llg < (2647%)1272Q¢>.

After 2n — 3 rotation sets, B, = E,. We have considered 2n — 3 rotation sets in
the sweep. We have to consider 3 more to complete two sweeps. In these 3 rotation

sets, || E||z can grow by a factor of only (4.6)3, by Lemma 4.4.1. Therefore, using the
fact that ||E|| < ||E||z and the value £ = n(4.6)""|| 4],

ENII < I2(A, 6,n)|| E4lT7,
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.

Figure 5: Results for Random matrices.

where
K, = (4.6)3(377%)"12n%7%Q.

5 Numerical Results:

We present results of experiments with the parallel norm reducing algorithm (PNRJ)
for a variety of test matrices. For the convergence test (19) we use ¢ = 10~!%, and
the value 7 = 10® is used in (14) to bound the diagonal transformations. In Fig.5
results are presented for random real matrices. The number of sweeps required for
convergence (according to the criterion (19)) is shown as a function of log,n, where n
is the order of the matrix. The results for random complex matrices were similar. The
dotted line is a reference line of slope 2.8. So we can empirically state that algorithm
PNRJ requires 2.8log,n sweeps to converge, for random matrices.

In Fig.5 we compare the order of convergence of algorithm PNRJ with a Schur
type Jacobi method, in which the non-unitary transformations are omit{ed (PSU).
The latter is very similar to the method proposed by Eberlein [6]. We consider results

27



-og 1LY

- lo i A i e Y 1 .
-5

-log LY
Figure 6: Order of Convergence (30 x 30 Random Matrix)

for a 30 x 30 random matrix. We plot the logarithm (base 2) of the norm of the lower
triangle of the matrix before each sweep (||L||) against the value after each sweep
(IIL']]). The slope of the plot indicates the order of convergence. Two reference
lines of slopes one and two are also shown (dotted lines). Notice that the order of

convergence is two for the norm reducing method but only one for the purely unitary
method.

The convergence behavior of Jacobi-like methods generally deteriorates as the
matrix A becomes increasingly non-normal. We generated increasingly non-normal
matrices using the method of Stewart [25]. These matrices have the form

A=U(D+aF)UT (74)

where U is unitary, D = diag(1,2,...,n) and F is a random strictly upper triangular
matrix. The parameter a controls the non-normality of the matrix A.

In Table 1 we present results for 24 x 24 Stewart matrices with different values
of a. The degradation in the convergence rates is present for both PSU and PNRJ,
but PNRJ degrades more slowly. In fact for « = 8 PSU did not converge. We
observed ultimate quadratic convergence for PNRJ in all cases, though the onset of
this behavior is delayed as « increases.
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# sweeps
a | PNRJ | PSU
1 8 17
2 9 28
4 12 36
8 17 oo

Table 1: Performance for 24 x 24 Stewart matrices.

# sweeps
n { PNRJ [ PSU
8 12 20
12 23 47

Table 2: Performance for Frank matrices.

Frank matrices B, = {b,,} are defined by

— mln("»]) iszi—l
bpg = { 0 otherwise (75)

The smaller eigenvalues of these matrices are known to be very ill-conditioned. Results
for Frank matrices are shown in Table 2.

In Table 3 we report the accuracy of the computed eigenvalues and eigenvectors.
Results are shown for all of the matrices considered above. ‘Max Error’ is the maxi-
mum error in the computed eigenvalues (with the eigenvalues computed by EISPACK
taken as the true values). P is the matrix of normalized eigenvectors computed by
PNRJ, V is the matrix of normalized eigenvectors computed by EISPACK, and A is
the diagonal matrix of eigenvalues computed by PNRJ.

We first note that the computed normalized eigenvector matrix P has condition
comparable to the eigenvector matrix V obtained from EISPACK. Also, the residual
[|AP — PA||; is small, mdnca.tmg that the computed eigenvalue-eigenvector pair is a
good approximation. The error in the computed eigenvalues degrades with increasing
non-normality of the matrices, as is to be expected. For the extremely ill-conditioned
Frank matrix of order 12, the ill-conditioned eigenvalues differ from those computed
by EISPACK by a large amount. However, it was noticed that the well-conditioned
eigenvalues were computed with low error. v

Although the unitary transformations (5) were chosen to annihilate only the ele-
ments a,, in the lower triangle of the matrix, the final matrix was in fact very close to
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A Max Error | ||AP — PA||; | cond(P) | cond(V)
30 x 30
Random Matrix | 3.55e-14 4.18e-14 6.46e+00 | 6.86e+4-00
24 x 24
Stewart Matrices
a=1 "1 1.10e-13 1.09e-13 8.81e+00 | 1.00e+01
a=2 1.49e-13 2.00e-13 4.80e+01 | 5.64e+401
a=4 1.03e-12 1.72e-11 1.13e+03 | 1.20e+03
a=3_§ 1.56e-10 2.13e-13 5.41e+05 | 5.28e+05
Frank Matrices
n=2_8 6.06e-11 1.07e-12 7.89e+03 | 8.41e+03
i n=12 1.64e-06 9.80e-14 1.48e+08 | 1.49e+408

Table 3: Accuracy of Computed Eigenvalues and Eigenvectors.
. )
i el
diagonal in all the cases we tneﬂ?is is to be expected for diagonalizable matrices
since the norm-reducing transfof tions move the matrix toward a normal matrix.
However, even for nearly, defeo{ive matrices, the algonthm actually diagonalizes a
nearby diagonalizable matrix, so 'the final matrix is still diagonal, except that the
computed eigenvalues have larger errors. Therefore, in this algorithm the eigenvec-
tors can be read off from the columns of the matrix obtained by accumulating the
transformation matrices 7,. This is of course not so for the Schur type methods.

6 Discussion and Conclusions:

We are unable to prove global convergence of algorithm PNRJ. The difficulty comes
from the fact that we cannot prove that the parallel algorithm always causes a decrease
in |[A]], as well as from the cyclic choice of the pivots. The global convergence proof
for Eberlein’s norm reducing method [5] as well as that for Sameh’s parallel algorithm
for real non-symmetric matrices relies on the provable norm reduction property as
well as an optimal choice of pivots. ,

Optimal pivoting strategies (which require searching the elements of the commu-
tator C at each iteration) are difficult to implement efficiently and may not be worth
doing merely to obtain the global convergence proof, when cyclic strategies perform
just as well in practice.

Regarding the reduction in ||A||, although we are unable to prove it in general for
algorithm PNRJ, we observed that in all the experiments described in the previous
section, the norm ||A|| never increased after a rotation set and invariably decreased
(except during the last few sweeps, when the matrix was already norma.l) Therefore
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we conclude that the question of global convergence of algorithm PNRJ is still open.

Various implementation issues remain to be investigated in order to improve the
algorithm further. In particular, the broadcasting of information is an undesirable fea-
ture because communication of this sort is costly in all parallel computers. However, if
we consider the proof of quadratic convergence we notice that the global information
does not play a significant role. Therefore we could consider not computing global
information during the later iterations which would reduce the cost of computation
as well as communication in the later stages of the iteration. Experiments along these
lines are currently in progress. Another issue that needs to be considered is a block
version of the algorithm similar to block Jacobi methods for the hermitian eigenvalue
problem [1,24].

In spite of using non unitary transformations, PNRJ computes eigenvalues and
eigenvectors with accuracy comparable to that of EISPACK. This feature is inherited
from the norm reducing methods on which PNRJ is based [5,21]. To explain the
stability of these methods, we can argue that the iterates A; are moving closer to
a normal matrix and therefore their eigenproblem is becoming successively better
conditioned. Further, as long as only small norm similarity transformations are used,
the final matrix will be exactly similar to a matrix that is close to the original matrix
[29]. However, a formal error analysis proving the stability of norm-reducing methods
does not appear to have been carried out, and is an area open for further investigation.

To compare algorithm PNRJ with the QR algorithm let us consider operation
counts. The single shift hessenberg QR algorithm for general complex matrices (11]
computes the Schur decomposition in approximately 26n3 complex floating point op-
erations. Here we have used the empirical observation that usually about 3 iterations
are required to decouple one eigenvalue. On the other hand, on a sequential machine,
PNRJ requires about 9n? operations for one sweep. So for random matrices, PNRJ
is slower than the QR algorithm by a factor of about log, n. However on a parallel
computer the situation is not so clear since efficient parallel implementations of the
QR algorithm (like O(n log? n) time using O(n?) processors) are not known. This is
an area of ongoing research.

As described in the previous section, algorithm PNRJ slows down as we move to
matrices that are increasingly non normal. Although the QR algorithm also displays
this degradation, the effect of non normality is much less pronounced. Understanding
the effect of non normality on algorithm PNRJ in more detail is also an important
topic for research. e v 7

Finally, a version of the algorithm that uses only real arithmetic for real matrices
is desirable. Real Jacobi-like methods that converge quadratically for certain classes
of matrices have been investigated by Veselic [27,28]. Sameh’s algorithm [22] is a
parallel algorithm for real matrices. Work is in progress to develop a quadratically
convergent parallel algorithm for real matrices.

To summarize, we have introduced algorithm PNRJ, a parallel Jacobi like algo-
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rithm that diagonalizes a diagonalizable matrix. It has been proved that the algorithm
converges quadratically for any parallel ordering of the pivots if the matrix has dis-
tinct eigenvalues. In the presence of multiple eigenvalues quadratic convergence can
be shown if a particular parallel ordering, the modulus ordering, is used to choose the
pivots.-

Experimental results confirm the ultimate quadratic convergence of the algorithm,
though the onset of quadratic convergence is delayed with increasing non-normality
of the matrices. For nearly defective matrices the well conditioned eigenvalues are
computed accurately, though the convergence is also delayed in this case. For random
matrices the algorithm exhibits an improved rate of convergence compared to some
other parallel Jacobi methods for the unsymmetric eigenvalue problem.

Algorithm PNRJ can be implemented using n?/4 processors and performs one
‘sweep’ in O(nlogn) time. For random matrices, it is empirically observed that
O(log n) sweeps are necessary for convergence.
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