4,968 research outputs found

    The emergence of specialization in heterogeneous artificial agent populations

    Get PDF
    In this dissertation, I present the Weight-Allocated Social Pressure System (WASPS). WASPS is a computational framework that when applied, can allow for the increase in agent specialization within a multi-agent population. Research has shown that specialization can lead to an overall increase in the productivity levels within a population [55]. WASPS aims to provide a mix of features from existing frameworks such as the genetic threshold and social inhibition models. It also subsumes these models, and allows hybrids of them to be created. It provides individual level behaviour as found in the genetic threshold model. As in some variations of the genetic threshold model [49], WASPS also allows for individual level learning. As found in the social inhibition models, WASPS allows for social influence, or population level learning. Unlike some models, WASPS allows agents to self-organize based on available tasks. In addition, it makes allowances for agents to allocate a resource among multiple tasks during a work period, wherein most models allow the selection of only one task. WASPS allows the assumption that agents are heterogeneous in their task performance aptitudes. It thus aims to create skill-based agent specialization within the population. This will allow more skilled agents to allocate more resources to tasks for which they have comparative advantages over their competition. Because WASPS is self-organizing, it can handle the addition and removal of agents from social networks, as well as changes in the connections between agents. WASPS does not limit the definition of many or its parameters, which allows it to deal with changing definitions for those parameters. For example, WASPS can easily adjust to deal with changing definitions of agent skill and influence. In fact, the individual level learning can be implemented in such a way that an agent can self-optimize even when it has no competitors to influence it

    Precis of neuroconstructivism: how the brain constructs cognition

    Get PDF
    Neuroconstructivism: How the Brain Constructs Cognition proposes a unifying framework for the study of cognitive development that brings together (1) constructivism (which views development as the progressive elaboration of increasingly complex structures), (2) cognitive neuroscience (which aims to understand the neural mechanisms underlying behavior), and (3) computational modeling (which proposes formal and explicit specifications of information processing). The guiding principle of our approach is context dependence, within and (in contrast to Marr [1982]) between levels of organization. We propose that three mechanisms guide the emergence of representations: competition, cooperation, and chronotopy; which themselves allow for two central processes: proactivity and progressive specialization. We suggest that the main outcome of development is partial representations, distributed across distinct functional circuits. This framework is derived by examining development at the level of single neurons, brain systems, and whole organisms. We use the terms encellment, embrainment, and embodiment to describe the higher-level contextual influences that act at each of these levels of organization. To illustrate these mechanisms in operation we provide case studies in early visual perception, infant habituation, phonological development, and object representations in infancy. Three further case studies are concerned with interactions between levels of explanation: social development, atypical development and within that, developmental dyslexia. We conclude that cognitive development arises from a dynamic, contextual change in embodied neural structures leading to partial representations across multiple brain regions and timescales, in response to proactively specified physical and social environment

    Extended Inclusive Fitness Theory bridges Economics and Biology through a common understanding of Social Synergy

    Full text link
    Inclusive Fitness Theory (IFT) was proposed half a century ago by W.D. Hamilton to explain the emergence and maintenance of cooperation between individuals that allows the existence of society. Contemporary evolutionary ecology identified several factors that increase inclusive fitness, in addition to kin-selection, such as assortation or homophily, and social synergies triggered by cooperation. Here we propose an Extend Inclusive Fitness Theory (EIFT) that includes in the fitness calculation all direct and indirect benefits an agent obtains by its own actions, and through interactions with kin and with genetically unrelated individuals. This formulation focuses on the sustainable cost/benefit threshold ratio of cooperation and on the probability of agents sharing mutually compatible memes or genes. This broader description of the nature of social dynamics allows to compare the evolution of cooperation among kin and non-kin, intra- and inter-specific cooperation, co-evolution, the emergence of symbioses, of social synergies, and the emergence of division of labor. EIFT promotes interdisciplinary cross fertilization of ideas by allowing to describe the role for division of labor in the emergence of social synergies, providing an integrated framework for the study of both, biological evolution of social behavior and economic market dynamics.Comment: Bioeconomics, Synergy, Complexit

    Model of division of labor in artificial society with continuous demand and in industrial cluster with positive social influence

    Get PDF
    Two models of division of labor or specialization, in two different systems are proposed in the thesis. The domain of the first one is the artificial society where as the second is concerned with the industrial cluster. There are several models for the emergence of increase in division of labor in agent societies. Two such models are the Genetic Threshold Model (GTM) and the Social Inhibition Model (SIM). Combining these two concepts, we propose a hybrid model for the emergence of division of labor as a function of demand varying continuously over a suitably chosen smooth curve. In the second model, we introduce a new concept of positive social response in modeling adaptive behavior of industry cluster and a new formulation for work load of an organization for a single task at a time in the cluster

    Modeling the Evolution of Agent Capabilities and Specialization

    Get PDF
    A social system is a patterned network of interrelationships that exist between individuals, institutions, and groups forming a coherent whole. Understanding the varying system outcomes for different decision-making processes selected under varying environment constraints in advance will aid in the realization the of best decision towards an effective outcome. One of the ways to increase system productivity is ‘Agent Specialization’. Also, the agents (individuals) who operate as generalists are most vulnerable to being replaced. Therefore, there is a need to focus on agent specialization to enhance the ability of an agent along with the evolution of an agent. Multi-Agent Based Simulation, a subfield of distributed AI, provides a technique to naturally describe a social system. To help improve decision-making intricacies of the agents to evolve and specialize, there is an increasing need to formulate an enhanced model of MABS. This thesis proposes a novel framework that exploits the benefits of social networks providing a decision support system for agent (individual) specialization by integrating the concept of ‘Positive Social Influence’ exerted by experts in the system. Consequently, the proposed framework assists the growth of agents by enabling the evolution of agent capabilities with the identification of suitable producer-agents using an evolutionary component (cultural algorithms). Enabling agent specialization and assisting the ability of the agents through capability evolution is anticipated to increase the productivity of the system. Evaluation of results shows the successful evolution of agent capabilities with the identification of suitable producer-agents in an optimized aspect (reduced operational cost and reduced distance cost) in comparison with exhaustive search, random search, and genetic algorithms and the improved degree of specialization of agents (increased dol values with a minimum of 3% increase to a maximum of 16.7% increase in comparison with standard genetic threshold model for varying agents and task number) in a given dynamic environment
    corecore