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Abstract 

 

A social system is a patterned network of interrelationships that exist between individuals, 

institutions, and groups forming a coherent whole. Understanding the varying system outcomes 

for different decision-making processes selected under varying environment constraints in 

advance will aid in the realization the of best decision towards an effective outcome. One of 

the ways to increase system productivity is ‘Agent Specialization’. Also, the agents 

(individuals) who operate as generalists are most vulnerable to being replaced. Therefore, there 

is a need to focus on agent specialization to enhance the ability of an agent along with the 

evolution of an agent.  Multi-Agent Based Simulation, a subfield of distributed AI, provides a 

technique to naturally describe a social system. To help improve decision-making intricacies 

of the agents to evolve and specialize, there is an increasing need to formulate an enhanced 

model of MABS. This thesis proposes a novel framework that exploits the benefits of social 

networks providing a decision support system for agent (individual) specialization by 

integrating the concept of ‘Positive Social Influence’ exerted by experts in the system. 

Consequently, the proposed framework assists the growth of agents by enabling the evolution 

of agent capabilities with the identification of suitable producer-agents using an evolutionary 

component (cultural algorithms). Enabling agent specialization and assisting the ability of the 

agents through capability evolution is anticipated to increase the productivity of the system. 

Evaluation of results shows the successful evolution of agent capabilities with the identification 

of suitable producer-agents in an optimized aspect (reduced operational cost and reduced 

distance cost) in comparison with exhaustive search, random search, and genetic algorithms 

and the improved degree of specialization of agents (increased dol values with a minimum of 

3% increase to a maximum of 16.7% increase in comparison with standard genetic threshold 

model for varying agents and task number) in a given dynamic environment.  
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Chapter 1: Introduction 

 

A social system is a patterned network of interrelationships that exist between individuals, 

institutions, and groups forming a coherent whole [30]. Examples of social systems include 

societies, family groups, cities, and corporations. Gaining insight into the operations of the system, 

understanding the dynamic behavior of the system in response to the existing conditional 

parameters and predicting the outcomes of such social systems will help in formulating the 

systems prominently. The AI (Artificial Intelligence) tools and technological resources like DSS 

(Decision Support Systems) and MABS (Multi-Agent Based Simulation) provide a framework to 

mimic and infer the outcomes of the social systems, in turn aiding the effective formulation of 

prominent systems. 

MABS is a powerful simulation modeling technique that has distinguished itself over the past two 

decades in naturally simulating the system by providing an understanding of intricacies involved 

in the evolution of systems, modeling the communication between the actors in the system, 

enhancing learning abilities of the actors in the system, etc.  

This thesis directs the work in the direction of more advanced work done using MABS as a tool 

to involve the SN (Social Networks) and CA (Cultural Algorithm) components to formulate a 

social system and to infer inductive and near-optimal outcomes of the given social system as 

precisely as possible by considering various varying parameters (constraints / existing conditions) 

in a dynamic environment. Analyzing the outcomes of the mimicked social system subjected to 

varying constraints helps in determining the most feasible decision-making process that would 

improve the overall efficiency/productivity of the system. Therefore, the proposed MABS model 

assists the entities of a social system in electing a feasible decision-making process, in turn, 

resulting in the efficacious system.  
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As discussed, a social system is a complex structure consisting of numerous actors, interacting 

with each other in different ways in a given environment. The evolution of individuals (growth of 

individuals over time) in a social system, the evolution of a social system on whole, and the social 

interactions in such systems are to be observed in order to understand and analyze the outcomes 

of the given system. Imitation and decision-making in such a complex system is a tough task as it 

involves a complicated analytic process. Multi-Agent Based Simulation (MABS), provides a 

technology to naturally simulate the evolution of social systems. Multi-Agent Systems is 

composed of an environment that includes numerous agents with decision-making heuristics, 

learning, and interacting abilities. MABS helps in simulating various types of scenarios and assist 

the process of decision-making [4] [5]. Inclusive of the evolution of individuals under the aid of 

decision-making abilities of MABS, ‘Task Characterization’ (Task Selection) plays an important 

part in conceptual modeling and analysis of multi-agent based models. The agents with no control 

of their tasks can irrationally select or pursue unrealistic tasks. Therefore, task selection is one of 

the most important aspects of successful agent development [9] [10] [11] [12]. With numerous 

methodologies for task selection,[3] [13] [14] [15] shows the importance of selecting 

realistic/feasible tasks. 

 

1.1 Introduction to Multi-Agent Based Simulation (MABS) 

Definition- Multi-Agent Based Simulation (MABS): Multi-Agent Based Simulation is a subfield 

of distributed AI, referring to the simulation technique that infers the behavior of a complex system 

from the actions and interactions of the individuals in the system. Understanding individual 

behavior and multiple interactions amongst the individuals in the given system, MABS can 

flexibly capture the emergent phenomena of the system.  
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MABS system is modeled as a collection of autonomous decision-making entities called agents. 

Each agent executes various roles with relevance to the system (Example: Producer, 

Consumer/Seller). At the basic level, the MABS model is comprised of agents and the 

relationships between them.   

MABS systems are capable of naturally describing the social systems and generate observable 

emergent behavior at the population level [6] [7]. Besides, they help to explore the system in a 

controlled environment aiding experts to observe the behavior of the system with ease [8]. MABS 

mimics the social systems and the task set comprising of all the tasks available in the system, 

subjective to the dynamic environment is gathered. A complex task in the system can be divided 

into smaller tasks and each of them will be assigned to an intelligent agent comprising MABS, for 

the system to be implemented and explored in detail [8]. The intelligent agents [16] composing 

the system has a particular responsibility and have a particular role such as a producer or a 

consumer in a given environment. Also, an intelligent agent is defined as a problem-solving entity 

that works autonomously in an environment to achieve its task. That is, multiple interacting 

intelligent agents in Multi-agent systems can solve problems that are difficult for an individual 

agent to solve. 

MABS applications have transitioned from the modeling of simpler societies to complex human 

societies. 

 

1.2 Introduction to Social Networks (SN) 

Definition- Social Networks: Social Network is defined as a network of social actors (such as 

friends, individuals, colleagues, and acquaintances) connected by interpersonal relationships. 

Social Networks are the best way to model interactions amongst individual entities in a social 

system [41]. With small-world networks best mimicking the real-world networks, the inclusion of 
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SN component in MABS helps in enhancing the model by capturing the digital connectivity of the 

social system, in turn aiding the evolution of the system. 

 

1.3 Introduction to Agent Specialization 

Definition- Agent Specialization: Specialization, concerning context, means perfecting 

(specializing) one task rather than generalizing in multiple tasks towards the productive output. 

Agent Specialization in simple terms, allows the agents to focus on one task rather than focusing 

on many which in turn enables the agents to become more adept at a specialized task, increasing 

efficiency and productivity on an individual (agent) and population level (system/corporation). 

Specialization is one way in which agents can increase their productivity [20] by co-operating 

with other individuals. One such way of increasing productivity can be achieved by the division 

of labor technique.  The study of specialization is important in several fields like Archaeology, 

Biology, etc. Archaeologists study specialization to understand the changes in societies. In 

biology, specialization helps to understand the behavior of biological creatures such as wasps and 

ants [13] [14] which shows specialization based on tasks. Many of these fields use computer 

simulations to study the effect of specialization on productivity. Specializing in a subset of tasks 

available within a system allows agents to more efficiently fulfill system demands. In dynamic 

environments, considering each task having unlimited resource supply and limited demand, 

‘Threshold Reinforcement’ is the more suitable approach to Specialization [21]. Another research 

[22] considering dynamic environments, shows the emergence of specialization by accounting the 

stimuli of global task demands. In [22], the parameter of environment, global demand, is 

considered rather considering the parameters of interactions amongst the fellow agents in the 

system.  
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[3] explores the idea of positive social influence leading to agent specialization. Every agent 

possesses a genetic threshold for available tasks. When the thresholds for multiple tasks has been 

surpassed, agents will consider the choices of their neighbors in choosing which task to perform. 

Standard ‘Genetic Threshold Model’ selects the available tasks randomly, whereas ‘Positive 

Social Influence Model’ [3] selects the tasks influenced by the neighbor agents. [3] shows the 

improved levels of specialization under social influence. 

 

1.4 Introduction to Cultural Algorithms (CA) 

Definition- Cultural Algorithms: Cultural Algorithms (CA) are computational models of cultural 

evolution [46] [47] and comprises of population and belief space connected via a communication 

protocol. In brief, CA is described as a class of optimization algorithms and is inspired by 

‘Evolution’. Evolution in nature is optimizing just about everything over billions of years to 

maintain order by reinforcing the ‘survival of fittest’ conception. With this background, computer 

scientists developed optimization tools known as evolutionary algorithms. One such evolutionary 

algorithm is CA. The two main components of CA include population space and belief space. 

Population Space is comprised of chromosomes that are filled with genes, meaning, the candidate 

solutions to the given problem are gathered/generated in population space. Belief Space is used as 

a knowledge repository to maintain the best candidate solutions of the population. The initial 

population has chromosomes/candidate solutions, a pair of chromosomes from the population is 

selected and is termed as parents. The parent chromosomes mate and create new chromosomes 

termed as children/offsprings through crossover events (mix and matches the genes from parent 

chromosomes) and mutation (altering one or more gene value of the chromosomes). This leads to 

genetic variations and small-scale adaptations. If the adaptions create individuals (offsprings) 

better suited for the environment (survival of the fittest), then such individuals are added to the 
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population space. Individuals that are poorly suited to the environment are discarded. That is, the 

fitness of the offsprings created is calculated using a fitness function, that takes the candidate 

solutions/offsprings/individuals of the problem as input and assigns a fitness score to each 

individual by determining how fit the created solution is. The best solutions are added to the 

population (selection) and the poor solutions are discarded. The hand-picked best solutions are 

updated to belief space. Now, for the next generation, parents from the population and the 

influence of belief space are considered for the creation of offsprings. The same process is repeated 

over generations. Over a large number of generations, certain genetic adaptations become fixed in 

the population. In this way, the algorithm optimizes a population best suited for the given problem.   

In papers [64][65] the evolutionary learning process in the context of optimization is discussed. 

The authors of [66] show the amalgamation of learning algorithms in multi agent-based modeling. 

The paper shows the importance of evolutionary algorithms in decision support systems, mainly 

in dynamic environments.  

 

In this thesis, a social system is mimicked using MABS. The MABS framework comprises of a 

dynamic environment with varying constraints and multiple agents interacting with one another. 

Modeling the communication between the social agents in a complex system is realized with the 

help of social networks [23] [24]. The individuals of the complex social system are represented 

using intelligent agents. An intelligent agent can be defined as a problem-solving entity that is 

working autonomously in the environment to achieve its destined goal. The agents in the system 

are classified into two roles: Producer-Agents and Consumer-Agents and are mapped using a 

social network that defines the relationship between the social agents (individuals) in a population.  

Producer-Agents are the agents in the network that exerts influence and provides services to the 

Consumer-Agents. The term experts, influencers and Producer-Agents might be used 
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interchangeably in this work. Whereas, Consumer-Agents are the agents in the network that are 

influenced by experts/Producer-Agents and consume the services from Producer-Agents to 

evolve/grow. To begin with, the Consumer-Agent needs to select a task from Task-set which 

comprises of all tasks within the system/environment. Task selection using the ‘Positive Social 

Influence’ factor will result in the creation of specialized agents. The positive social influence in 

selecting a particular task in exerted by the experts who are directly connected to the Consumer-

Agents. Spending relatively more resources/time on performing the selected task rather than 

spending an equal amount of resources/time on all tasks results in the emergence of specialized 

agents. Once the task is selected, the Consumer-Agents in the network must have a required set of 

capabilities to achieve its selected task. 

With capabilities referring to the agent’s task-directed subset of requirements, at initialization, 

every Consumer-Agent has minimal capabilities. Every so often, Consumer-Agents do not possess 

all the required capabilities to achieve their tasks. Therefore, the Consumer-Agents has to rely on 

the services/capabilities offered by Producer-Agents in the network, to acquire the required set of 

capabilities. As the inclusion of the cultural evolutionary component in MABS results in a 

powerful tool for modeling [25] [26] [27] [28], a Cultural Algorithm component is infused in the 

framework to aid the identification of best/suitable Producer-Agents in the network. Though there 

exist proposed models of MABS on modeling the evolution of agent capabilities [1] [2] [29] and 

models to formulate the emergence of agent specialization [3] [18] [19], with plenty of room to 

advance, there is a need for an enhanced model to synthesize the growth of ‘Agent Capabilities’ 

and improve the degree of ‘Agent Specialization’. In turn, assisting the agents, where the agents 

are aided not only to grow but also to grow into specialized agents in a dynamic environment.  

Conclusively, in this thesis, a novel MABS model is proposed in which the main social actors of 

the system including Producer-Agents and Consumer-Agents are mapped using a ‘Social 

Network’ in order to realize the agent interactions. And the Consumer-Agents selects the desired 
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task by considering the ‘Positive Social Influence’ factor exerted by experts in an environment 

resulting in ‘Agent Specialization’. Correspondingly, a CA (Cultural Algorithm) component is 

included to aid the identification of the suitable Producer-Agents with respect to the capability 

needs of Consumer-Agents. The resulting model synthesizes the intellection of ‘Capability 

Evolution’ and ‘Agent Specialization’ thus assisting the agents to evolve and specialize in the 

given dynamic environment. 

 

1.5 Problem statement 

 

In the social system under study, the environment comprises of the Task-set, Consumer-Agents, 

and Producer-Agents as main actors. Task-set is the collective representation of tasks available to 

perform in a given environment and each task is defined as, 𝑡 ∈   TS ≜ (tid, S, ReqC) where TS 

denotes the Task-set, tid denotes the task id, S denotes the stimulus intensity and ReqC represents 

the required capabilities to perform the task and is defined as, 𝑅𝑒𝑞𝐶 =

(𝑟𝑒𝑞𝑐1, 𝑟𝑒𝑞𝑐2, 𝑟𝑒𝑞𝑐3 … . 𝑟𝑒𝑞𝑐𝑛) where reqc1, reqc2, reqc3 till reqcn represents the abilities 

required by a Consumer-Agents to achieve the selected task (Example, reqc1: Reading, reqc2: 

Writing, reqc3: Coding, reqc4: Problem-solving ability, reqc5: Technical skills, reqc6: Research 

skills, etc). Consumer-Agents are characterized as the consumer class agents of the system and 

each Consumer-Agent is defined as, 𝑎𝑔𝑐  ∈  𝐶𝐴𝐺 ≜  (𝐶𝑎𝑔𝑐, T𝑇 ) where CAG represents Consumer-

Agent class, TT denotes the tasks and the corresponding threshold available for each task. That is, 

for every task in the environment, an internal threshold is assigned. TT is defined as, 𝑇𝑇 ∈ (θ𝑇𝑗) 

where 𝜃𝑇𝑗  is the threshold associated with task Tj and the value j represents the task id of every 

task in the environment. Cagc represents the capability set of the Consumer-Agent and is defined 

as, 𝐶𝑎𝑔𝑐  =  {𝑐1|𝑐2 … . |𝑐𝑛} where c1, c2 till cn represents the abilities possessed by the 
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Consumer-Agents (Example, c1: Reading, c2: Writing, c3: Problem-solving ability, etc). 

Producer-Agents are characterized as the producer/provider/expert/influencer class agents of the 

system and each Producer-Agent is defined as, 𝑎𝑔𝑝  ∈  𝑃𝐴𝐺 ≜  (𝑃𝑎𝑔𝑐, 𝐸𝑋) where PAG represents 

Producer-Agent class and Pagc represents the capability set offered by the Producer-Agent and is 

defined as, 

 𝑃𝑎𝑔𝑐  = {𝑐3, 𝑜𝑝|𝑐9, 𝑜𝑝 … . |𝑐𝑛, 𝑜𝑝}  where c3, c9 till cn represents the capabilities/services 

offered by the Producer-Agents. (Example, c3: coding services, c9: Typing services, etc) and ‘op’ 

associated with every capability/service denotes the operational cost/service charge of the 

capability provided/serviced. EX represents the expertise of the Producer-Agent.  

Consequently, every Consumer-Agent selects a task subjected to varying constraints in the 

environment and has to have respected required capabilities to achieve its selected task but is not 

the case every time. Because the Consumer-Agents has minimal capabilities at initialization and 

hence has to rely on the Producer-Agents to acquire the required capabilities. Multiple Producer-

Agents may be needed to support a Consumer-Agent.  

Now, the problem is to select a task on which relatively more resource/ time is to be spent in order 

to specialize in the selected task and to identify suitable Producer-Agents to rely on. (Example: 

Supposedly, Consumer-Agent selects ‘Computer Engineering’ as a task from the Task-set and the 

capabilities including ‘reading, writing, coding, problem-solving ability, technical skills, and 

research skills, etc.’  are the required capabilities to achieve the task. But initially, the Consumer-

Agent has minimal capabilities and the capabilities like coding, technical skills, and research skills 

are considered to be missing from the agent’s capability set. Now, with multiple Producer-Agents 

in the system offering the required missing capabilities, how to identify suitable Producer-

Agents?). 
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 That is, how can Consumer-Agents select suited tasks in a dynamic environment to attain 

specialization and evolve by acquiring required capabilities from suitable Producer-Agents during 

the process to achieve its respective selected tasks?  

The agents (individuals) who operate as generalists are most vulnerable to being replaced and with 

a need to focus on agent specialization (Example: how to specialize in Computer Engineering), 

the primary research question is formalized as, how can Consumer-Agents evolve in a dynamic 

environment by selecting feasible tasks to perform and acquiring required capabilities from 

suitable Producer-Agents during the process to attain specialization and achieve its respective 

tasks?  

 

1.6 Thesis statement 

The social system under study has Task-set, Consumer-Agents, and Producer-Agents. We map 

the Consumer-Agents and Producer-Agents to the nodes of the social network (SN). The social 

network representing the system is an undirected weighted graph with nodes representing agents 

and edges are associated with distance cost. The distance cost can be the travel time taken or the 

resource required to travel from one node to another. The efficiency of the social system is 

enhanced by increasing the productivity of the system using the specialization concept. Improving 

the degree of specialization and assisting the ability of the agents through capability evolution 

with identifying suitable Producer-Agents in the system is anticipated to increase the productivity 

of the system.  

If we introduce Producer-Agents in the social network and consider the positive social influence 

exerted by them in selecting the tasks, then we expect to see the increase in the degree of 

specialization. The degree of specialization in measured using the division of labor (dol) 

technique. Our method is compared with the standard genetic threshold model where the agents 
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select their tasks at the absence of experts. That is, the agents in the genetic threshold model select 

the available tasks randomly without considering the influence of the experts.  

Furthermore, if we use the evolutionary algorithm (CA) in identifying suitable Producer-Agents 

to assist the required capability evolution of the Consumer-Agents then we expect to identify the 

team of Producer-Agents providing the required capabilities/services at (near-optimal) minimum 

operational cost and (near-optimal) minimum distance cost at reduced run time. We measure the 

performance of the algorithm by calculating the average operational cost and average distance cost 

of the identified team of Producer-Agents. The run time of the algorithm is evaluated (algorithm 

execution time in seconds). Our proposed algorithm is compared with exhaustive search, random 

search, and genetic algorithm.   
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1.7 Background 

 

1.7.1 Social Systems 

A social system can be described as a group of social actors with common goals. In any given 

environment, the social actors are interacting actors with basic orientations [30]. The examples of 

social systems include a group of friends, neighbors, a circle of family, etc., which plays a key 

role in everyday human life.  The interactions amongst the actors of the social systems and the 

social system on a whole critically impact the society and the people(individuals) in society. 

Hence, they are studied from both individual and systematic perspective. A social system and the 

fundamental foundations of such interacting systems can help the experts to systematize the 

society to study the behavior and interactions amongst the social actors of the system.  

 

1.7.2 MABS 

Multi-Agent Based Simulation (MABS) is a well-established discipline for modeling social 

systems. A social system can be described as a group of social actors with a patterned network of 

relationships between them [30]. Examples of social systems include a corporation, a government, 

society, family, friends circle, etc. The individual actors/agents are entrusted with a task or 

responsibility in order to perform a collective function or a common goal. The individuals are 

interdependent as they form a part of the social system. The individuals/actors in a social system 

can make choices that affect the state of their environment. Social systems aid experts to classify 

society into social systems to learn the behavior and interactions amongst them [30]. Due to the 

critical impact of social systems on people and society, they are to be explored both from an 

individual perspective and a systematic perspective.  

Multi-Agent Systems (MAS) or Agent-Based Models (ABM) are beneficial with environments 

that comprise complex interactions, possess dynamic population size or exhibits complex agent's 
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behavior including learning ability [31]. Agent-based models are composed of multiple interacting 

agents operating in an artificial world which in turn helps imitate the social systems for better 

understanding. The interacting autonomous agents of ABMs can represent humans, organizations 

or any entity that can act upon its environment. ABM uses the power of computers to explore the 

dynamics of the given system which is out of reach for pure mathematical methods. This 

characterization and several other characteristics of ABMs makes them a prominent technology 

for modeling social systems. The models are considered flexible, as the autonomous interacting 

agents of the model can be added or removed as per requirement. Also, the agents can be created 

with a changing degree of rationality and can be given the ability to learn in the presence of other 

agents [31]. Applications of Agent-Based Models for analyzing social systems span over a variety 

of fields including social science, engineering, economics, biological science, etc, [7]. 

Additionally, the widespread interest in ABMs is that they as a technology, aid in the development 

of new models in human-centered systems. This very aspect of ABM allows people with no 

technical background to interact with the model in a simple way [32]. 

Social simulation is a scientific discipline concerning social interactions in the system. Simulating 

social interactions in social systems helps in studying various issues in social sciences. Multi-

Agent Based Simulations (MABS) also referred to as Multi-Agent Based Social Simulations are 

social simulations built using ABMs. In MABS, the goal of ABMs is to examine informative 

insight into the collective behavior of agents obeying simple rules, typically in natural systems, 

rather than in designing agents or solving specific practical problems [33].  The modeling process 

of MABS is best described as inductive. That is, the inputs/evidence given to the model results in 

a probable conclusion rather than a certain conclusion. This inductive quality of MABS helps the 

modeler to articulate assumptions that are relevant to the dynamics of circumstances and then 

watch the assumptions that are relevant to the dynamics of circumstances and then watch the 

phenomena emerge from the agent’s interactions [34]. Modeling the communication/interactions 
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between the social agents in a system can be realized with the help of social networks [23] [24]. 

Additionally, the inclusion of the cultural evolutionary component in MABS systems results in a 

powerful tool for modeling the system [25] [26] [27] [28].   

 

1.7.3 Agents 

In computing, the term “agent” implies an entity that performs a task or collective task on behalf 

of one or more humans/individuals. Also, any agent that can observe and act upon its environment 

is termed as an intelligent agent [36]. In [35] the authors describe different types of agents in the 

field of Artificial Intelligence (AI): Simple, Problem-Solving and Learning Agent. A simple agent 

is the one which receives data from the environment and reacts to the environment. A simple agent 

receives data about the current situation of the environment, matches the same with the rules of 

the agent and selects the best action accordingly. Whereas, a problem-solving agent decides to 

choose a proper action based on environmental situations and the agent’s goals. In other words, it 

measures the effect of its acts on the environment to find out how the series of actions can lead it 

to the acceptable states (goal). A learning agent is yet another type of agent which stores the 

obtained knowledge of its previous experiences and use them in the future action selection process. 

Therefore, an intelligent agent can be defined as a problem-solving entity that is working 

autonomously in the environment to achieve its destined goal. Also, an intelligent agent is 

adaptable to the environment and receives the data from the environment by sensors and react to 

the environment by actuators [37][8][35]. 

 

1.7.4 Agent Capabilities 

The concept of capability was introduced in the BDI (Belief-Desire-Intention) model [38] to make 

the agent more adaptable. The agent acts as an entity in an environment and adding flexibility to 
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the agent’s characteristic enables it to adapt to the dynamics of its environment. Capabilities, at 

the foundation level, represent the task-directed/goal-directed subset of requirements that an agent 

must possess in order to achieve its tasks/goals. In [39] the authors defined and formulated the 

capability in a single BDI agent. In [40], the authors extend the definition of capabilities into two 

classes: Internal capabilities and External capabilities, to facilitate the agent’s collaboration with 

other tools or agents. Internal capabilities are formalized as those capabilities that the agent already 

has. As internal capabilities alone are not enough for an agent to achieve its tasks, there is a need 

for the agents to acquire external capabilities. The agents can acquire the capabilities to achieve 

their tasks by various techniques including evolutionary computation algorithms [2]. That is, the 

agent capabilities can be synthesized to evolve over-time using evolutionary algorithms like CA 

to achieve its tasks.  

 

1.7.5 Social Networks 

Social Networks can simply be described as a set of social actors connected with a set of 

relationships between them. Social Networks are the best way to model interactions amongst 

people in a community. An ideal way of representing these networks is by mapping them to a 

graph structure [41]. A social network can be represented using: Unweighted graph (or) Weighted 

graph. G = {V, E} represents an unweighted graph where “V” is the set of vertices (actors-can be 

a person, organization or any other entity) and “E” is the set of edges (relations). Whereas, in a 

weighted graph, the edges are associated with some weight “w”.  The weight associated is usually 

decided based on the similarity of two nodes, the distance between them or frequent relationships 

amongst them. This weight usually is a numeric value that represents how closely the social 

actors/vertices are tied together. In addition to the weighted and unweighted characteristics, a 

graph can either be directed or undirected as well. A directed graph comprises a set of vertices 

connected by edges, and the edges have a direction associated with them [42] as opposed to the 
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undirected graphs [43]. Such graphs with n vertices can be described by an adjacency matrix (n 

by n matrix). The value in the matrix is either 1 or 0 based on the presence or absence of the link 

between the respective vertices.   

Another important characteristic of the social network is that it displays dynamic behavior, 

meaning, their topology changes over time. A social network defines a relationship between social 

individuals in a population. When viewed as a graph the individuals can be seen as nodes with ties 

between them. Nodes in social networks are characterized by their degree of connectivity and 

clustering coefficient [44]. Here, node’s degree of connectivity is the number of links or 

connections it has with other nodes, whereas, the clustering coefficient is referred to as the density 

of which extent one’s neighbors are neighbors of each other. With different types of social network 

models used in agent-based modeling, small-world networks are more of a replica to real-world 

networks. In small-world networks, the majority of nodes are connected to their nearest neighbors. 

The small-world phenomenon is the one in which the social actors are linked together through 

short chains of intermediate friends. That is, the small world phenomenon demonstrates that all 

the actors in a network are linked via short paths of acquaintances. In addition, the degree 

distribution in these networks follows the power-law distribution [45]. The power-law pattern is 

very common in real-world networks and SN (social network) plays the main role in the evolution 

of social systems mainly because of its digital connectivity. 

 

1.7.6 Cultural Algorithm (CA) 

Cultural Algorithms (CA) are computational models of cultural evolution [46] [47] and comprises 

of population and belief space connected via a communication protocol. Belief space gathers and 

maintains the experiences contributed by selected individuals from the evolving population 

through an acceptance function. The experiences are stored as categories of knowledge sources, 
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which in turn is used to influence the evolution of individuals in the population space through an 

influence function. Knowledge sources in belief space component are characterized into five 

categories including situational, normative, topographic, historical or temporal and domain 

knowledge. Situational knowledge captures the best performers in the population. Normative 

knowledge maintains encouraging variable ranges and can help individuals leap into good ranges. 

Topographical knowledge refers to the spatial characteristics of the search space. Historical or 

temporal knowledge constitutes important events or temporal patterns during the search process. 

Domain knowledge is knowledge specific to the domain of the problem being addressed by the 

CA. The knowledge sources can be used selectively or collectively to guide the search process of 

the CA. The CA framework facilitates extracting, storing and exploiting experiences in a 

population of individuals over time thus permitting self-adaptation and learning at various levels 

[48]. 

The very idea of cultural algorithms is inspired by the natural cultural evolution process. It 

assumes that by using the knowledge, generations can evolve faster than the regular biological 

evolution (Genetic Algorithm). CAs have been applied to solve a variety of optimization problems.  

 

1.8 Research Motivation 

Considering a social system with multiple interacting social actors advancing towards common 

goals, foreseeing the outcomes of the system under varying environmental constraints would help 

in understanding every inductive decision-making process involved. Realization of all such 

possible decision-making processes under varying constraints in advance will aid in selecting the 

best decision towards an effective outcome. We require frameworks/models to replicate/mimic 

the given system at hand. This can be achieved efficiently by incorporating the techniques of AI 

to learn the possible outcomes of the systems, meaning, people’s/individual’s decision-making 
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process could be eased and paced with the help of available technological resources like DSS 

(Decision Support Systems) and MABS (Multi-Agent Based Simulation). MABS systems are built 

with the objective of understanding the intricacies involved in the evolution of complex 

systems(societies). A social system consists of linked social circles of services, 

an environment with certain conditions and constraints, and a growing population(individuals). 

The individuals of the population who operate as generalists are the most vulnerable to being 

replaced. Hence, there is a need for the individuals comprising the population to specialize. In 

order to specialize, the individuals should select a suitable task to spend relatively more 

resources/time and also acquiring the required capabilities to achieve the tasks becomes important, 

as borrowing or extension of capabilities through other agents is not ideal always. The fact is, very 

few researches have explored the system from the social network and with the inclusion of an 

evolutionary concept perspective.  

The idea and the motivation are to offer a better understanding of the decision-making etiquette 

of individuals in an environment that is subject to social influence. The individuals acquire their 

required abilities from providers to enhance themselves and evolve with the growing population. 

Exploring the system from a social network perspective and the inclusion of CA and positive 

social influence will result in an enhanced model where the individuals(agents) can evolve over-

time into specialized agents. 

 

 

 

1.9 Research Contributions 

An enhanced MABS model, synthesizing agent specialization and capability evolution is proposed 

in this thesis work. A novel method is introduced to enhance/improve agent specialization by 

adopting ‘Positive Social Influence’ factor exerted by experts/influencers/producer-agents 
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realized through social networks and to identify the suitable producer-agents in the network to 

acquire the agent's capabilities using the benefits of social networks and a CA component. To the 

best of our knowledge, this is the first attempt to blend the component of evolutionary algorithm 

and agent specialization techniques. The output of this research will be an augmented/enhanced 

model that can be used as a decision support system to achieve Consumer-Agent specialization by 

selecting tasks based on the positive social influence exerted by experts in the network/system and 

to recommend suitable Producer-Agents in the network to Consumer-Agents, aiding the 

Consumer-Agents to acquire the required capabilities at minimized operational cost and distance 

cost. 

 

1.10  Research Objective 

Our first objective is to describe the system, its dynamic environment and all the components of 

the social system in an appropriate computable form using a MABS model. The next objective is 

to include the ‘Positive Social Influence’ factor exerted by experts in the network which improves 

agent specialization and to propose an algorithm (CA) that aids in finding suitable Producer-

Agents in the environment to assist the Consumer-Agents. The proposed system can provide an 

opportunity to augment a MABS model by using the benefits of social networks and a CA to 

achieve the following goals, 

 

• Assisting in a better understanding of environmental dynamics and complexity, in turn 

assisting agent specialization. 

• Finding/Selecting/Identifying the suitable Producer-Agents to provide services. 

• Reducing the operational cost and distance cost in acquiring the missing capabilities 

required to achieve a task. 
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• Improving the degree of agent specialization. 

 

 

1.11 Thesis Outline 

The rest of this thesis is organized as follows. In chapter 2, some of the approaches and research 

works that are related to our proposed model are reviewed. Our proposed model and algorithm, 

the use of knowledge sources in belief space and the role of positive social influence in agent 

specialization are discussed and explained in detail in chapter 3. The implementation, 

experimental setup and parameters used in the evaluation of our model are discussed in chapter 4. 

Evaluation of the obtained results is presented in chapter 5. Chapter 6 presents a discussion of the 

example system, challenges and limitations that needs to be addressed while implementing our 

proposed system in real world. Finally, the conclusion and future works are discussed, in chapter 

7. 
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Chapter 2: A Literature review 

 

This chapter fixates on the discussion concerning the existing work that has been built by 

researchers over the years. Various approaches starting from the eminence of task selection and 

resource allocation in MABS that results in agent specialization to different techniques aiming 

evolution of capabilities, signification on the inclusion of SNs in MABS, the usefulness of CA in 

MABS modeling is discussed. 

 

2.1 Social Influence, Task Selection and Agent Specialization 

 

In reference to the context of the problem we are trying to solve, efficient task selection/allocation 

amongst the agents become crucial. There are multiple ways to handle task selection problems 

ranging from simplex algorithms to more efficient algorithms. 

The role of social influence in task selection, in turn, resulting in specialization of agents is 

discussed in detail in this section. Given a set of agents and a set of tasks, it would not be ideal for 

the agents to select a random task to perform. In [53], a genetic algorithm is proposed to deal with 

the task selection problem. The functionality of the algorithm is to get the requirements of each 

task and try to identify the best set of agents to perform that particular task. Genetic algorithms 

aid in finding the near-optimal solution. It is claimed in [53] that their proposed algorithm can find 

a near-optimal solution for this way of task selection with stability, robustness, scalability, and 

accuracy. A task can be done by a single agent or can be divided amongst a team of agents, also, 
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the allocation of a task to a group of agents is decided with respect to the best collaboration rate. 

In [54], the task selection/allocation problem in a dynamic environment is discussed. In a given 

dynamic environment, each task can be assigned to an agent or a group of agents. The authors 

proposed three algorithms for task allocation with the inclusion of the concept of synergy to 

identify the best group of agents for a given task. The tasks are interdependent, meaning, each task 

has its priority and many prerequisites. That is if a provider has all the capabilities to perform a 

task, only then the task would be allocated to it. In case if none of the providers can provide a task, 

then the task would be divided into sub-tasks. Now the model will look for a team of providers for 

the sub-tasks. In [1], the authors have explored the system from a social network perspective and 

have claimed that applying social network techniques on the system can enhance both planning 

and task selection/allocation processes. In [18], the authors involved the idea of demand levels, 

which in turn helps in observing the behavior of their proposed approach when there is a variation 

of demands for a task. Demand is the total amount of effort needed to satisfy all tasks relative to 

the total work ability of all agents. The variation of demand levels ranges from a shortage of 

demand for a task to an excess of demand for a task. It is shown that the concept of positive social 

influence in task selection was able to increase the level of task specialization within a population 

given all demand levels. In [55], the authors propose a model to show the importance of social 

influence in impacting the decisions of the agents with the help of social networks. The model 

accounts the local interactions amongst the agents within the network and the impact of 

interactions (impact of social influence) in formalizing the decision (opinion/attitude) of the 

agents. Selecting a task and spending the agent resource on one selected task results in the 

emergence of specialization in agents. The use of DOL (Division of Labor) technique in beehives, 

aiding the adaptive mechanism of its colony in discussed in [56]. During winter, the goal of the 

beehive is survival, and hence the workers are all generalists. Whereas, in summer, the goal of the 
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beehive changes to maximize growth and accumulation. Group of workers are divided to perform 

particular tasks eventuating specialization.  

Specialization is one way in which agents can increase their productivity [20] by co-operating 

with other individuals. There are several approaches to model agent specialization, few of them 

includes, Effect of Social Influence in Agent Specialization, WASPS: A Weight Allocated Social 

Pressure System for the Emergence of Agent Specialization, A Genetic and Social Computational 

Model for the Emergence of Skill-Based Agent Specialization, A Social and Economic Model for 

Agent Specialization in the Simulation of Human Societies. 

Paper [3] explores the idea of positive social influence leading to agent specialization where each 

agent possesses a genetic threshold for available tasks. When the thresholds for multiple tasks has 

been surpassed, agents will consider the choices of their neighbors in choosing which task to 

perform. Here, the probability of choosing a task would correlate with the number of neighbors 

performing that task. The more the neighbors, the higher the probability. It is shown that this 

approach leads to an increase in agent specialization when compared to the existing standard 

genetic threshold model. In [18], a social inhibition computational model is presented to show the 

emergence of specialization in agents. This model called the WASPS, allows agents to possess 

different skill levels for tasks and also allows agents to divide the resources among multiple tasks. 

The model uses the concept of social inhibition, which is a negative influence. Agents attempt to 

discourage neighbors from performing the same task. It is shown that the WASPS model increases 

the level of specialization in a random population of heterogeneous agents. The hybrid approach 

in [19] allows agents to respond to levels of stimuli in the environment. The hybrid model shows 

increased skill-based specialization allowing the emergence of specialization in populations of 

heterogeneous agents with different skills. In 'Social and Economic Model for Agent 

Specialization in the Simulation of Human Societies', the agents maintain the level of resource 

storage. The information regarding resource storage served as the primary factor for determining 
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the agent’s influence on its neighbors. With respect to economic sense, the increased specialization 

had a significant effect on the market and population. 

 

 

2.2 Evolution of Agent Capabilities (Capability Evolution) 

 

Agent Capabilities are task-directed/goal-directed subset of requirements, introduced to make the 

agent more adaptable/flexible to the environment. The capability concept has been studied and 

extended by researchers to develop its features such as its modularization [40]. In [21], the authors 

define capability as an identifiable unit which can be a set of plans, belief knowledge, associated 

rules and the recursive inclusion of other capabilities. In [23], it is discussed that an agent needs 

external capabilities because internal capabilities are not always enough for an agent to achieve its 

tasks/goals. The external agent capabilities are divided into two types. Firstly, those capabilities 

that can be achieved by collaboration with tools in the environment, and secondly, those 

capabilities that can be achieved with the association of other agents in the environment. A model 

that aims at extending capabilities of the agent with the help of other agents in the environment is 

proposed in [26]. Here, the social network is created using a weighted-graph (inclusion of distance 

cost between the nodes) method. And the agent aims to fill its capabilities by searching its network 

to find the required capabilities/required services with lower operational cost at minimum time. Also, 

a unique message sending mechanism has been proposed to propagate the agent’s requirements to the 

other agents in the network through the agent’s circle of friends. The best provider in the network 

is found using the domain knowledge and neighbor connectivity in the network. The results of 

their work prove that their algorithm can find near-optimal solutions in a very short time in 

comparison with the exhaustive search. The research is mainly aimed at extending the agent 

capabilities. In [43], the impact of social inhibition on the process of artifact selection is evaluated. 
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An artifact is a tool in the environment that has some capabilities and can be used by the agents to 

achieve their tasks. The authors simulated the effects of social inhibition and demands on the 

artifact selection by using a computational multi-agent model. The artifact selection in the 

presence and absence of inhibition are tested. As a result, the authors show the effect of social 

inhibition in capability selection. Also, the effect of demand on group performance is put forth.  

In [24], a model is proposed in which the agents exploit the desired artifact to achieve its goal. 

The knowledge about using the proper artifact of the agent is updated and the agent can improve 

its capabilities. Different types of evolutionary computation algorithms have been used for 

individual and social learning, that includes: Genetic Algorithm (GA), Cultural Algorithm (CA) 

and Multi-Population Cultural Algorithms (MPCA). These evolutionary computation algorithms 

have been used alongside with social network benefits and adaptation strategies to evolve 

capabilities in MABS. The author in [24] proposes a model in which the learning agent can learn 

to exploit proper artifact from the environment. An artifact can be seen as a set of external 

capabilities with special abilities that can help the agent to achieve its goals. Capability structure 

stores the knowledge about capabilities plans (select and use plans) of the artifact. The 

Performance Element selects the best artifact with respect to the plans in the capabilities and 

restriction in beliefs to achieve a goal. The belief space keeps the experience of using unsuccessful 

artifacts for each capability. The Learning Element is responsible for improving the capabilities 

with the help of its learning strategies. The intelligent agents requiring additional capabilities to 

perform a task are provided with extended capabilities using a reader module to the repository of 

capabilities (residing in the docking system of the network) [49]. [50] shows the cruciality of agent 

capabilities because of their autonomic self-management, self-adaptation, extensible knowledge, 

and flexibility. A MABS model that formulates capability evolution is proposed in [2]. The model 

emphasizes the evolutionary approach for capability extension/evolution. Evolutionary 

computation methods including GA, CA and Multi-Population CA supports the capability 
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evolution at individual, population and multi-population levels. It is shown that the capability 

evolution is in regard to the evolution of society. Meaning, the significance of the capability 

evolution in societal evolution is stated in [2].  

 

2.3 MABS and SNs 

 

MABS can help experts to simulate and monitor the behavior of complex social systems and the 

inclusion of social networks in MABS models helps to solve a complex issue by breaking the 

issues into smaller pieces [8]. In recent years, this approach has been used to solve various types 

of problems in different fields such as marketing, anthropology, etc. A social system is a complex 

system comprised of a dynamic environment with varying constraints and growing/evolving 

population (individuals/agents). Individuals/Agents/Intelligent-Agents are designed to operate in 

such dynamic environments and mapping them to social networks proves to be helpful in making 

complex decisions at run-time. In a social network, nodes represent the agents, that is, the 

intelligent agents are mapped to the nodes of the social network and the relationship between the 

agents is depicted by the connections of the social network. Thus, enabling the agents to use the 

topological knowledge of the network accordingly to the problem at hand. In [51], the impact of 

network structure and its properties, such as maximum degree, average degree in addition with 

MABS properties in solving complex issues is discussed. A multi-agent based model to extend 

the agent’s capabilities by using the advantages of the social network to minimize the operational 

costs and maximize the service quality is proposed in [1]. The model aims in filling its capabilities 

by searching its network to find its required services associated with lower operational cost. The 

external capabilities needed by agents is borrowed from service providers in the given network. 

An algorithm is proposed in [1], to assist the agent in the decision-making process by considering 

the agent’s neighbor list as topological knowledge of the agent. It is shown that the inclusion of 
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social networks results in an improved multi-agent framework. The results show that the algorithm 

can find the near-optimal solution/ ideal service provider in a very short time when in comparison 

with the exhaustive search. It is also shown that the performance of the proposed method with 

respect to the quality of services is much better when compared with the random selection method. 

In [52], the proposed model articulates the topological knowledge which is extracted from the 

structure of the network to form the normative knowledge (of the belief space of CA). The 

topological knowledge is used to direct and enhance the search process thus reducing the size of 

the required search space for finding the near-optimal solution. In [2], the proposed model is 

extended to address adaptation strategies for artifact use in unpredictable/uncertain environments 

with the aid of SNs. SN structures are introduced into the agent population and agents maintain 

static (or dynamic) social networks through which they communicate with other members of the 

population. Additional learning strategies of the agents are enabled through social networks. The 

model considers a multi-population setting where the agent migration is used to facilitate 

knowledge transfer between independently evolving social populations. Agents within each 

population learn both through social networks and their respective cultural belief spaces. The 

social learning strategies implemented here utilize a social network for agent communication 

towards learning. The social network may be an existing one or one that is constructed solely for 

learning artifact use. Social networks can remain fixed throughout the simulation or they can be 

dynamic in nature. The agents of this model do not commence learning with randomly generated 

actions, rather, these agents use the latest evaluated use action of their nearest neighbor as an 

influence to initiate the learning process with the aid of social network benefits.  

 

 

2.4 MABS and Cultural Evolutionary Component 
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MABS model using social networks can be extended to use the evolutionary computation methods 

to develop learning and adaptation strategies for evolving capabilities. Researchers are constantly 

searching for unique ways to explain and provide insight into the complexities of human societal 

evolution [6]. A domain-independent computational evolutionary model for agent capabilities 

should prove beneficial to both new and existing MABS systems towards understanding the effects 

of domain knowledge and their exploitation in the evolution of complex societies.   

Paper [2] emphasizes the strategies that take advantage of the social dimensions of MABS, where 

agents evolve through influence from other agents in the environment. Artifacts are reduced to a 

set of functional attributes whose values can be evolved by applying computational intelligence 

methods. Evolutionary approaches like genetic algorithms, cultural algorithms, and multi-

population cultural algorithms aid in the evolution of artifacts in MABS. The proposed model 

supports artifact exploitation at individual, population and multi-population levels. The superiority 

of learned artifact use over random use is demonstrated in [63]. 

In papers [64][65] the evolutionary process in the context of optimization is discussed. Paper [66] 

shows the blend of evolutionary algorithms in multi-agent based modeling and the importance of 

evolutionary methods in decision support systems, mainly in dynamic environments is discussed. 

 

2.5 Shortcomings/Limitations of the existing works 

 

As we review the existing work in the field of computational modeling, it can be observed that 

none of the existing approaches model the synthesizing of ‘Agent Specialization’ and ‘Evolution 

of domain-independent agent capabilities in a dynamic environment by using the benefits of social 

networks and an evolutionary component’ techniques.  
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None of the existing works have used the concept of positive social influence exerted by experts 

in the network. 

 

Very few research works in the field consider the dynamics of an environment (dynamics: 

changing external task stimuli, varying internal task thresholds, demand impact, etc).  

Moreover, to the best of our knowledge, none of the existing works have blended the concept of 

capability evolution and agent specialization to improve the quality of individuals, in turn, is 

anticipated to improve the quality of the overall system.  

With the widespread of social networks, it is possible to use its advantages to solve the open 

problems in the field much faster and accurately than the traditional approaches. Ultimately, the 

inclusion of the positive social influence factor exerted by experts in the network will help in 

creating specialized agents. We believe, exploring the system from a social network perspective 

and the inclusion of evolutionary component (CA) and positive social influence will result in an 

augmented/enhanced model where the agents can evolve into specialized agents, in turn improving 

the quality of agents(individuals) and quality of the overall system(population). 
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Chapter 3: Proposed Method 

 

Our model to formulate the use of ‘positive social influence’ (PSI) exerted by 

influencers/experts/producer-agents in the network to design specialized agents and evolution of 

agent capabilities with the identification of best Producer-Agents using an evolutionary 

component (CA) is described here. The social system consisting of agents and an environment is 

seen as a network. The agent (Consumer and Producer-Agent) representation and their 

characterizations are described in detail in the next section. Then, the Consumer-Agents and 

Producer-Agents are mapped to the nodes of the social network and a detailed description of the 

network used is defined. Then, it is described how the components work with each other to evolve 

into specialized agents in an environment by exploiting positive social influence exerted by experts 

in the network. The cultural algorithm used to find suitable Producer-Agents in the network by 

using knowledge belief space is discussed in the latter part of this chapter. 

 

3.1 Proposed Methodology 

 

The proposed methodology builds a MABS model by integrating the benefits of social networks 

and cultural algorithms to aid the decision-making abilities of Consumer-Agents and the evolution 

of Consumer-Agent capabilities. The model exploits the ‘Positive Social Influence’ factor exerted 

by experts in the social network to mitigate ‘Agent Specialization’.  
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The social system under study has Consumer-Agents, Producer-Agents and a Task-set comprising 

of all the tasks within the system (Figure 1). 

 

Figure 1 Social System Representation 

 

In our multi-agent based simulation model, a social system with Consumer-Agents and Producer-

Agents are mapped to social network of type small-world networks as they are more of a replica 

of the real-world networks and are presented using weighted graphs (Figure 2). A sample network 

with five Consumer-Agents and three Producer-Agents is presented here. The connecting edges 

have weights representing the distance cost between the nodes.  
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Figure 2 Consumer-Agents and Producer-Agents mapped to SN 

 

 The system with mapped agents (Consumer-Agents and Producer-Agents) and the task-set 

comprising all the tasks within the system/network is shown in Figure 3.  

 

Figure 3 System with Task-set and mapped Agents 
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In social systems, examples varying from insect colonies with 20 to 40 specializations to the 

human environment where there are thousands of job choices [78]. That is, there are multiple tasks 

(Task-set) in a given social system that is to be selected and performed by the individuals in the 

population to evolve/grow over time. Initially, the Consumer-Agents needs to select a task from 

the task set available in the environment under various varying constraints. The social system 

under study is a replica of the human environment (increased number of job/specialization choices 

and growing population) and our simulation includes the concept of demand factor. Demand (𝜕) 

is the total amount of effort needed to satisfy all tasks in the system/environment relative to the 

total work ability of all the agents. In a system with low demand, the availability of agents to 

perform tasks is greater than current stimulus levels across all tasks [75]. That is, for demand (𝜕 <

1), the stimulus across the tasks increases in smaller amounts when compared with the maximal 

amount of work the agents can perform. For simplicity, the demand was identical for all tasks. 

With the examples of demand parameters varying from 𝜕 = 0.7, 𝜕 = 1 𝑎𝑛𝑑 𝜕 = 1.3, we explore 

the system under the demand parameter 𝜕 = 0.7. This value for 𝜕 is selected as it is evident from 

the works [75] [18] [19], that the division of labor increased with this demand value for both 

increasing task number and increasing group size(agents). Division of Labor (DOL) can be 

described as a fundamental property in which the different class of agents within a system 

performs different tasks.  The empirical evidence suggests that the division of labor in social 

systems/ social groups increases with increasing group size (agent population) [79] [80]. The 

measure of division of labor indicates the level of specialization. The DOL values less than 0.2 

indicates the agents in the system are generalists, more than 0.6 indicates the emergence of 

specialization. The individuals(agents) performing the one task are called tasks specialist which is 

the higher level of specialization. The agents/social groups with DOL values (0.2 to 0.8) varied in 

the propensity of individuals to be task specialists or generalists [78]. We calculate the DOL values 
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by using the method proposed in [74]. This method describes the procedure to calculate and 

quantify the degree to which the agents are specialized. 

The specialization model used in our work is inspired from [3]. Our model is the extension of the 

basic concept adapted in the Response Threshold Model (Standard Genetic Threshold Model). 

Before describing the simulation mechanism implemented in our model, the brief of Response 

Threshold Model [75] is discussed for a basic understanding of the underlying model. In Response 

Threshold Model, the varying DOL values for the varying parameters of demand, stimulus 

intensity, task number and group size (agents) is calculated to understand which is the ideal 

condition that increases DOL values for the fixed response threshold model. A fixed response 

threshold indicates that the thresholds assigned to the individual agents remained constant (i.e., 

there is no self-reinforcement or forgetting). An internal threshold is assigned for all the available 

tasks in the system/environment for a given agent and is constant throughout the simulation run. 

For each simulation, the agents in the system select a task whose stimulus is higher than the 

corresponding intrinsic threshold. That is, the environment has tasks, each of which is associated 

with stimulus intensity and the agents has a threshold for all the tasks in the environment, once the 

simulation starts, the agents filter all the tasks whose external stimulus is higher than the intrinsic 

threshold and selects a task from the filtered set without any influence from the experts (the tasks 

are selected randomly). The Consumer-Agent’s probability to stop performing a task is arbitrarily 

chosen to be 0.2. The stimulus of the tasks in the environment is updated using a formula [75] for 

every simulation run and the stimulus of a particular task is decreased by a constant value (chosen 

arbitrarily) once that task is selected by an agent in the system. The response threshold model 

explores the variability of response thresholds, group size, task number and demand value in 

influencing division of labor. The results of the response threshold model indicate that both low 

demand and high task number positively influences the emergence of specialization (increased 

DOL value) [75]. In [3], the concept of positive social influence is introduced where the system is 
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seen as a network and the direct neighbors of the agents in the network influence the agents in 

selecting a particular task.  

In our model, the concept of ‘Positive Social Influence’ is introduced in our social network, 

whereby the agent’s choice of specialization is influenced by the ‘Experts/Influencers/Producer-

Agents’ in its neighbor list. ‘Positive Social Influence’ is a concept where an agent’s choice of 

specialization is influenced by the choices of those within its social network. With an option of 

multiple specializations available in a given system, we factor in what the agent’s expert neighbors 

are doing and allow that to influence the Consumer-Agent’s decision. Study shows that in most of 

the cases, the introduction of ‘Positive Social Influence’ in a network causes an increase in the 

level of agent specialization in comparison with the system with no social influence. Specialization 

allows individual agents to maximize their productivity. The example of tasks in a given 

environment includes, a student becoming a ‘Computer Engineer’, an individual becoming a 

‘Sports Player’, etc. A Consumer-Agent selects the task that is influenced by the agent’s network 

expert neighbors. Before each simulation run, every Consumer-Agent is given a list of all the tasks 

in the environment and each task is associated with a threshold θ which is arbitrarily chosen as θ 

= 50 with standard deviation ranging from (-5 to +5). The standard deviation can vary from 0 to 

15, but here each agent is associated with a threshold whose deviation ranges from -5 to +5, as the 

amount of threshold level variation between the agents is irrelevant (as long as some variation 

exists). For simplification, the threshold value and deviation are assumed to be identical. This does 

not mean that the thresholds for all available tasks for a given Consumer-Agents were identical. 

That is, the thresholds assigned to given Consumer-Agent remained constant for the whole 

simulation run. Each task in the environment is associated with a stimulus. ‘St’ is the amount of 

stimulus available with the task ‘t’. First, the Consumer-Agent filters all the possible tasks in set 

T, where the stimulus of the task in the environment is greater than the threshold associated to the 

task in its task list. Then the Consumer-Agent selects a task using two methods compared in this 
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work: Standard Genetic Threshold Model and Positive Social Influence Model. In the standard 

genetic threshold model, the consumer-agent selects a task without any influence from the experts 

(randomly) from the filtered set T. In our positive social influence model, the task is selected from 

T, which is influenced by the agent’s expert neighbors.  

 

Given the set T, Consumer-Agent selects one task t ∈ T having probability: 

(1+𝜓𝑁𝑡)

∑(𝜓𝑁+# 𝑇)
         

 

for all tasks t in T. The formula is similar to the one used [3]. Here, for a set of tasks T, Nt 

represents the number of agent’s expert neighbors currently engaged in task t, N represents the 

number of active neighbors and #T holds the value of total number of tasks available in the 

environment. Symbol 𝜓 (psi) represents the influence impact an agent has on its neighbour 

selection. The value of 𝜓 is arbitrarily set to 0.5, as the tests conducted in [3] shows no pattern 

from varying this value. The concept of demand 𝜕 is included in our simulation. Demand is the 

total amount of effort needed to satisfy all the tasks relative to the total work ability of all the 

consumer agents in the environment. Here, the demand level of 0.7 is tested as the results from 

the previous works [75] [18] [19] shows that the DOL values are improved with low demand 

values for higher task numbers. We are interested in understanding the influence of factors (like 

demand, stimulus) on a system with higher task numbers and increased agents as we are 

considering the human societal environment where the environment has thousands of job choices 

(tasks) and increasing number of individuals.  

At the beginning of each iteration, the stimulus level of each task is updated. Initially the stimulus 

value is set to 0. For every iteration, the stimulus value is updated(increased) using the formula 
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𝛼 (
𝑁

𝑇
) 𝜕 , where 𝛼 is arbitrarily chosen and assigned as 3, N is the number of Consumer-Agents, 

T is the number of tasks and 𝜕 is the demand level. Once a task is selected by the Consumer-

Agent, the stimulus of that task in the environment is decreased by the value of 𝛼 (i.e. 3). Meaning, 

the stimulus level for a task is reduced when a Consumer-Agent selects that task. Therefore, it is 

possible to exhaust the demand for each task, especially when the demand level is below 1. Once 

a task is selected, the individual agent can spontaneously cease working on that task with a 

probability of (
1

𝜏
). 

The value of 𝜏 is 5 (time steps, arbitrarily chosen). That is, an individual agent performs any given 

task for an average duration of five time-steps. Meaning, the probability of an agent to stop 

performing a task is arbitrarily chosen to be (
1

𝜏
), that is, 0.2. The frequency of the selected tasks 

is used to determine the division of labor values, which in turn determines the level of 

specialization of the agents. Our system with Task-set associated with external stimulus and their 

respective requirement capabilities, Consumer-Agents associated with an internal threshold for 

tasks, and Producer-Agents with influencing expertise and serving capabilities are shown in Figure 

4. 
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Figure 4 System with Task-set, Consumer-Agent and Producer-Agent Representation 

 

The Task-set shows the associated stimulus with every task within the system and the ‘Req Caps’ 

(Required Capabilities) to achieve a particular task. The Producer-Agent services capabilities and 

has an EX (expertise) influencing the direct neighbors. The Consumer-Agents have respective 

capability set and the value of the internal thresholds (𝜃) associated with each task (Figure 4). As 

the Consumer-Agents decisions are based on probability, there still remains a chance for the 

Consumer-Agent to choose a specialization that none of its expert neighbors have chosen. Also, 

when the agent’s neighbors are consistent and are maintaining their specialization, then there is a 

higher probability of it choosing the popular tasks determined by expert neighbors. A detailed 

explanation of the embraced methodology can be found in [3] [75]. 

In this work, the expert/influencer/Producer-Agent neighbors are considered rather than 

considering all the network neighbors to influence the agent’s decision. In [3], the influence of the 
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agents is impacted by all its neighbors. Ideally, all the neighbors in the network may not be experts 

or influencers. Hence, the impact of influencers alone is considered in this model. The DOL 

measure of the recorded frequency of tasks for all the agents for every simulation run is calculated 

using the method proposed in [74].  

The active Consumer-Agents record their specialization (their selected tasks) at the end of each 

iteration. The frequency of the tasks selected by the consumer-agents recorded is then stored in a 

n x m matrix, where n indicates each Consumer-Agent and m indicates each task. The matrix is 

normalized such that the sum of all the cells in the matrix is 1.  The DOL value is calculated by 

dividing the mutual entropy score with Shannon’s index of the matrix. Each cell of the matrix 

contains the frequency with which a specific Consumer-Agent was observed performing a specific 

task, and the matrix is normalized. The Shannon index, Htasks for the distribution of individuals 

across tasks [74] and the mutual entropy [81] of the entire matrix are calculated. Dividing mutual 

entropy with Shannon’s index Htasks yields the resulting index.  

The result (DOL value) indicates how specialized consumer-agents were, ranging between 0 and 

1. A score of 1 indicates that the agents are fully specialized, and zero indicating no specialization 

at all.  

The evolution of capabilities is addressed with the identification of suitable Producer-Agents in 

the network using an evolutionary algorithm (CA). Realizing the best decision-making process 

that improves the degree of specialization for different number of tasks, varying group size 

(agents) and a varying number of influencers in the network, an ideal environment with varying 

parameters (number of tasks, number of experts, number of Consumer-Agents) is passed as input 

to our CA. Though the selection of tasks/specialization of consumer-agents is influenced by 

experts/influencer/producer-agents in the network, it is not necessary that the consumer-agents has 

to acquire the required capabilities to achieve its tasks from the influencing experts/influencers. 
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Also, the influencing Producer-Agent in the network is not necessarily the Producer-Agent 

providing the required capabilities. For example, let’s consider a student Consumer-Agent and a 

parent influencer (Producer-Agent). The student is influenced to select Computer Engineering as 

a specialization from the influence of parent (Computer Engineer Professional). Few capabilities 

of acquiring this selected specialization include coding, problem-solving ability, technical skills, 

and research skills. Now, the student has to acquire the required skills from suitable Producer-

Agents in the network. The suitable producer-agents in the network include teachers, professors, 

coaching centers, universities, etc. With the aid of an evolutionary algorithm, we can find suitable 

Producer-Agents in the network. A Producer-Agent can provide a single capability service or 

multiple capability services; therefore, more than one Producer-Agent might be needed to support 

every consumer-agent. Suitable Producer-Agents are a team of Producer-Agents/ a Producer-

Agent providing capability services at minimum operational cost and minimum distance cost.  

Once the task is selected by a Consumer-Agent by considering ‘Positive Social Influence’ factor 

exerted by the experts, the required capabilities to achieve its selected task are listed. As the 

Consumer-Agents has minimal capabilities at initialization, more so often, they do not possess all 

the required capabilities. Evolution of Consumer-Agent capabilities can be approached as a 

problem to acquire the missing capabilities from suitable Producer-Agents to attain their selected 

tasks. As discussed, every Producer-Agent has a predefined set of capabilities to serve and each 

capability is associated with an operational cost. The influencers can also be the Producer-Agents 

providing services or not in a given network.  

In this problem of identifying a team of Producer-Agents or a Producer-Agent in a social network, 

each Producer-Agent possess a set of capabilities (or a capability) to offer/service. As Consumer-

Agents selects tasks (this task information is collected from the matrix from the specialization 

model), the required capabilities are to be acquired to achieve its selected tasks and the suitable 

Producer-Agents servicing the required capabilities are identified using an evolutionary CA. The 



41 
 

success of task achievement depends on finding a team of suitable Producer-Agents that services 

all the required capabilities for the selected task. Our system with Task-set representing 

requirement capabilities, Consumer-Agent with capability set and Producer-Agents with servicing 

capabilities are as shown in Figure 5.  

 

Figure 5 System with Task-set, Consumer-Agent and Producer-Agent Capability Representation 

 

Task-set comprises of the tasks, associated stimulus and respective requirement capabilities, 

Consumer-Agents has a capability and threshold associated with tasks and Producer-Agents has 

EX (expertise) information and servicing capabilities with associated operational cost. The ‘dc’ 

associated with the edges represent the distance cost (Figure 5). The Consumer-Agent selects a 

task, the required capabilities to achieve the selected task is predefined. The Consumer-Agent 

possess a set of capabilities initially, the difference of the required capabilities and the possessed 
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capabilities are the missing capabilities that are to be acquired. The missing capability set is 

represented using a list and if three capabilities are missing, then the length of the list is 3. For 

each missing capability, the value of the cell of the list is selected from a set of Producer-Agents 

which services/provide the capability.   

CA aids in identifying suitable Producer-Agents using adaptation strategies and by exploiting the 

benefits of social networks. CA consists of a population space and a belief space with a 

communication protocol between them. The suitable team of Producer-Agents (producer-agent) 

is identified by executing a series of iterations. The population space is used to maintain the current 

list of generated teams of Producer-Agents in each iteration. At the start state of the algorithm, the 

predefined set of random Producer-Agent teams is generated to form the initial population. A team 

(individual) in the population space represents a candidate solution to the problem. Now, for each 

cell of missing capability, we have a set of producer-agents who provide services to that particular 

missing capability. The suitable Producer-Agents are the ones which provide services with 

minimum operational cost and minimum distance cost. Here, the distance between the Consumer-

Agent and the Producer-Agent in the network is considered as the distance cost. Consumer-Agents 

and Producer-Agents mapped to a weighted graph and is given as input to the algorithm (CA). 

The weights represent the distance cost. The shortest weights are precomputed. The fitness 

function assigns the fitness score to the candidate solutions in the population space by considering 

operational cost and distance costs. The fitness score is maximum for the minimum operational 

cost and minimum distance cost values. The fitness score determines how fit the solution is. From 

the considered initial population in the population space, the new population is generated by 

applying evolutionary algorithm operations like selection, crossover, and mutation on the first 

iteration. The top teams selected constitutes the knowledge of belief space. In the next iteration, 

the selected population space and the knowledge from belief space influence the new population 

creation and so on. At the end of a given number of iterations, the top team from the candidate 
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solutions is selected and is the near-optimal suitable Producer-Agent team for the respective 

missing capability list of a Consumer-Agent.  

That is, the weighted graph of Consumer-Agents and Producer-Agents of the network is given as 

input. Each Consumer-Agent has information about the selected task and has a set of capabilities. 

The Producer-Agents in the network possess an expertise and offer the capabilities with respect to 

the expertise. Every task has a predefined set of required capabilities. The missing capability of 

each Consumer-Agent with respect to the required capabilities is listed. For every missing 

capability, the Producer-Agents servicing that particular missing capability is listed. A single 

Producer-Agent can service/provide more than one capability. For a list of missing capabilities, 

each cell of missing capabilities has a list of Producer-Agents servicing the capability. The 

combination of the Producer-Agents for the given list of missing capabilities constitute the 

candidate solutions of the initial population space. For every candidate solution, a fitness score is 

assigned using a fitness function, where the function assigns minimum fitness score for the 

Producer-Agents with minimum operational cost and minimum distance cost. The teams 

(candidate solutions) are sorted in ascending order with respect to the fitness score, such that the 

solution with minimum fitness score is at the beginning of the sorted list. A percentage value of 

the best-fit solutions from the sorted list of candidate solutions is selected (algorithm operation: 

Selection) and is subjected to crossover and mutation. In the next iteration, the same procedure is 

repeated, and a percentage (or a predefined number) of best top team solutions of the sorted list 

generated constitutes the knowledge belief space. From the next iteration (generation) onwards, 

the new population is generated from the previous ‘selected population (selection)’, ‘applying 

crossover and mutation’ and ‘knowledge from belief space’. The same process is repeated for the 

given number of iterations (generations). The knowledge obtained from the belief space guides 

the search direction and aids in evolving the team of Producer-Agents faster when in comparison 

with exhaustive search, random search, and basic genetic algorithm (GA). At the end of 
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generations, the top team is selected as a suitable team of producer-agents from which the 

consumer-agents can acquire the missing capabilities to achieve its selected task. The agent 

representation and characterization, the sample social network mapping of consumer-agents and 

producer-agents, and the algorithm proposed to identify the suitable producer-agents are 

represented in the forthcoming sections.    

 

3.2 Agent Representation and Characterization  

 

Our social system comprises of Consumer-Agents, Producer-Agents and a set of tasks global to 

the network environment. The representation and characterization of Consumer-Agents, Producer-

Agents and Task-set are presented here.  

 

3.2.1 Task-set 

 

The tasks in the environment are associated with stimulus levels whose value is subjective to the 

demand factor in the system/network. Demand represents the total effort required to complete all 

tasks relative to the available total effort from the Consumer-Agents. In a system with low demand, 

the availability of Consumer-Agents to perform the tasks is greater than the current stimulus levels 

across all tasks. Thus, the demand of the system decreases with the increase in the group size 

(increase in the number of Consumer-Agents). For 𝜕 < 1, the stimulus across the tasks increases 

less than the maximal amount of work the system/environment/Consumer-Agents can perform. 

Since we consider the human environment as our social system, there are more tasks and 

Consumer-Agents in the system and hence low demand levels are considered. We consider a 

demand level of 𝜕 = 0.7 , and the stimulus in the environment is zero initially and updated with 
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stimulus updated formula for each simulation cycle. The stimulus update formula is 𝛼 (
𝑁

𝑇
) 𝜕 , 

where 𝛼 is arbitrarily chosen and assigned as 3, N is the number of Consumer-Agents, T is the 

number of tasks and 𝜕 is the demand level. Once a task is selected by the Consumer-Agent, the 

stimulus of that task in the environment is decreased by the value of 𝛼 (i.e. 3). Meaning, the 

stimulus level for a task is reduced when a Consumer-Agent selects that task. 

Task-set is the collective representation of tasks available to perform in a given environment and 

each task is defined as 𝑡 ∈   TS ≜ (tid, S, ReqC) where TS denotes the Task-set, tid denotes the 

task id, S denotes the stimulus intensity and ReqC represents the required capabilities to perform 

the task and is defined as 𝑅𝑒𝑞𝐶 = (𝑟𝑒𝑞𝑐1, 𝑟𝑒𝑞𝑐2, 𝑟𝑒𝑞𝑐3 … . 𝑟𝑒𝑞𝑐𝑛) where reqc1, reqc2, reqc3 till 

reqcn represents the abilities required by a Consumer-Agent to achieve the selected task.  

 

3.2.2 Consumer-Agents 

 

Consumer-Agents are intelligent agents commencing their role as consumers in the system. 

Consumer-Agents (individual, student, child, sports player, etc) selects the task by considering the 

external stimuli associated with the tasks in the environment, its internal thresholds associated 

with the tasks of and the positive social influence exerted by the experts. Also, Consumer-Agents 

consumes the services(capabilities) from the Producer-Agents to evolve over time. Every 

Consumer-Agent is characterized by an initial set of capabilities, a task set with associated 

thresholds and is defined as, 

𝑎𝑔𝑐  ∈  𝐶𝐴𝐺 ≜  (𝐶𝑎𝑔𝑐, T𝑇 )         

where CAG represents Consumer-Agent class, Cagc represents the capability set of the Consumer-

Agent and is defined as 𝐶𝑎𝑔𝑐  =  {𝑐1|𝑐2 … . |𝑐𝑛} where c1, c2 till cn represents the abilities 

possessed by the Consumer-Agents and TT denotes the tasks and the corresponding threshold 
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available for each task. That is, for every task in the environment, a threshold is assigned. TT is 

defined as, 𝑇𝑇 ∈ (θ𝑇𝑗) where 𝜃𝑇𝑗  is the threshold associated with task Tj and the value j represents 

the task id of every task in the environment. 

 

3.2.3 Producer-Agents 

 

Producer-Agents are providers of services/capabilities in the system. Examples of Producer-

Agents in a network can include a teacher, parent, sports coach, an institution, etc. Each Producer-

Agent is defined as, 

𝑎𝑔𝑝  ∈  𝑃𝐴𝐺 ≜  (𝑃𝑎𝑔𝑐, 𝐸𝑋) 

where PAG represents Producer-Agent class and Pagc represents the capability set offered by the 

Producer-Agent and is defined as, 

𝑃𝑎𝑔𝑐  = {𝑐9, 𝑜𝑝|𝑐3, 𝑜𝑝 … . |𝑐𝑛, 𝑜𝑝} 

where c9, c3 till cn represents the capabilities/services offered by the Producer-Agents and ‘op’ 

associated with every capability/service denotes the operational cost/service charge of the 

capability provided/serviced. EX represents the expertise of the Producer-Agent. The associated 

operational cost can vary from 1 to 10 (1 <= operational cost <= 10).  

 

3.3 Mapping of a Social System to a Social Network (Network Representation) 

 

A social network defines connectivity between individuals in a population. The agents (Consumer-

Agents and Producer-Agents) in our social system are mapped to the nodes of the social network. 

The network is defined as, 
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𝑁 ≜ 𝑎𝑔𝑐  ⋃ 𝑎𝑔𝑝         

Where agc represents the set of Consumer-Agents and agp represents the set of Producer-Agents 

respectively. Each agent in the network is linked to one or more agents forming a graph.  

Though the network/graph can be created randomly, the likelihood of hub nodes created by 

random approach results in a poor reflection of real-world social networks. There are multiple 

ways of creating a small-world network that replicates real-world social networks. Note that the 

small-world networks should also be scale-free networks whose degree distribution follows a 

power pattern, as is very common in real-world networks. 

As the unweighted graph does not show the level of connection between the agents, hence a 

weighted graph is considered. The geographical distance between the nodes of the network 

constitutes the weight of the edges between the nodes. Therefore, the weight here can be 

interpreted as a geographical distance cost between the agents. The weight/distance cost is the 

value between 1 to 10 (1 =< distance cost <= 10) and can be interpreted as the geographical 

closeness of agents in the network.  

 

3.3.1 Algorithm: Pseudocode to find Suitable Producer-Agents 

 

Input: Graph G (Consumer-Agents and Producer-Agents mapped as network), and Task-set. 

Output: Suitable Producer-Agent team who provide services with minimum operational and 

distance cost 

1. gen  number of generations, pop_size  size of population, tp  number of top 

performing teams for belief space knowledge, et  number of elite teams for next 

generation, population  Initialize the population with candidate solutions   

2. Begin 

i. for i  1 to gen do 

ii.         calculate fitness score for candidate solution in population 

        { 
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         fitness_function(population) 

         for j  1 to pop_size do 

                 #Applying fitness_score 

                 population(j)_fit = sum (operational cost + distance cost) 

         end for 

          } 

iii.         sort population based on fitness score 

iv.         for k  1 to tp do 

                BeliefSpace  (population(k)) 

        end for 

v.         Select elite team of candidate solutions from BeliefSpace 

                 BeliefSpace(et)  

vi.         Apply Selection 

                selection(population) 

vii.         Apply Crossover 

     crossover(population) 

 parent_1  random(population) 

 parent_2  random(population) 

 # select winner and loser with respect to fitness_score 

 child  crossover of loser parent with winner parent 

viii.         Apply Mutation 

                mutation(population) 

  # Apply mutation on randomly selected candidate solution 

             mutated_child  mutation(random(population))  

ix.         Create new population  

new_population = add (selected_population, BeliefSpace(et), child,mutated_child) 

population  new_population 

x. end for 

3. suitable_producer_agents  population[0] 

4. End 

 

There are multiple Consumer-Agents and Producer-Agents in the network graph. For every task 

selected by the Consumer-Agent from the Task-set, the required capabilities are listed. The 
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Producer-Agents servicing each capability is listed. The combination of Producer-Agents 

(candidate solutions) for the required capability set constitutes the population space of our 

algorithm.  The suitable Producer-Agent team is selected through iterations/generations using 

evolutionary operations like selection, crossover, and mutation. For each iteration (gen), the 

population of a given size (pop_size) is updated as the population and the fitness score for each 

candidate solution in the population is assigned using a fitness function. The fitness function 

calculates the sum of operational cost associated with the producer-agents in the candidate solution 

and distance costs between the Consumer-Agent and all the Producer-Agents in the candidate 

solution. The lesser the fitness score, the fitter the solution. The population is sorted in ascending 

order, such that the first candidate solution in the population is the one offering services at 

minimum operational and minimum distance cost, the second solution is the next best and so on. 

Note that the evolutionary algorithm provides the near-optimal solutions and hence the minimum 

operational cost here does not mean the least possible operational cost. From the sorted population, 

we select the top teams of a specific percentage value, called the selection operation.  The top 

teams of a given size (tp) is updated to the Belief Space knowledge. The population of size et 

(number of elite teams) is created using the top team performers in the Belief Space. Then the 

evolutionary operations, crossover, and mutation are applied to the population. In crossover, the 

parents are selected randomly from the population. Each parent is considered a winner or a loser 

with respect to the fitness score. If the fitness score of the parent_1 candidate solution is lesser 

than the fitness score of the other parent, then parent_1 is the winner and parent_2 is the loser. We 

apply crossover only to the loser parent. A part of the loser parent’s candidate solution is swapped 

with a part of the winner parent to create a child. If the created child’s fitness score is less than the 

loser parent, then the child is added to the population for the next generation. In mutation, a random 

candidate solution from the population is selected and a part of that solution is replaced with a part 

of another solution from the population (mutated) to create a mutated child. Mutated child is a 
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solution created with a random mutation. Now, the population from the selection process, belief 

space, crossover (child) and mutation (mutated child) is gathered to create a new population for 

the next iteration. The same process of evolutionary operations is implemented over a given 

number of generations and the best Producer-Agent team from the population is selected as a 

suitable solution (suitable Producer-Agent team). 

 

3.3.2 Identifying Suitable Producer-Agents 

 

In a network mapped with Consumer-Agents and Producer-Agents, identifying the suitable 

Producer-Agents for acquiring the required capabilities needed to achieve the Consumer-Agent 

selected task is discussed in detail here.  

The network considered is a weighted undirected graph with weights depicting the distance cost 

between the nodes. Consumer-Agents and Producer-Agents are mapped to the nodes of the graph. 

There are ‘C’ number of Consumer-Agents and ‘P’ Producer-Agents in the network and is 

represented as, ConsumerAgents = {ca1,ca2,…cac} and ProducerAgents = {p1,p2,…pp} 

respectively. Each Consumer-Agent selects the task from a set of tasks in the network under the 

influence of positive social influence exerted by the influencer/experts/producer-agents. Task-set 

is the collective representation of tasks available to perform in a given environment and each task 

is defined as 𝑡 ∈   TS ≜ (tid, S, ReqC) where TS denotes the Task-set, tid denotes the task id, S 

denotes the stimulus intensity and ReqC represents the required capabilities to perform the task 

and is defined as, 𝑅𝑒𝑞𝐶 = (𝑟𝑒𝑞𝑐1, 𝑟𝑒𝑞𝑐2, 𝑟𝑒𝑞𝑐3 … . 𝑟𝑒𝑞𝑐𝑛) where reqc1, reqc2, reqc3 till reqcn 

represents the abilities required by a Consumer-Agent to achieve the selected task. Once the task 

from the Task-set is selected by the Consumer-Agent, the required capabilities (ReqC) to achieve 

the task is listed. The Consumer-Agent has a minimal set of capabilities initially, Cagc represents 

the capability set of the Consumer-Agent and is defined as, 𝐶𝑎𝑔𝑐  =  {𝑐1|𝑐2 … . |𝑐𝑛} where c1, c2 
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till cn represents the abilities possessed by the Consumer-Agents. The required capabilities which 

are not possessed by the Consumer-Agents are to be acquired from the suitable Producer-Agents 

in the network. That is, the required capabilities needed to be acquired are listed (ReqC – Cagc). 

For example, if a Consumer-Agent ca1 selects a task t1 then the required capabilities to achieve t1 

is defined in ReqC of t1 and the difference in ReqC of t1 and Cagc of ca1 is listed. Let Cagc of ca1 

have a capability set of {c1,c3,c5,c6,c7} and ReqC = {c1,c2,c3,c4,c8}, then the difference in the 

sets gives the list that needs to be acquired. Therefore, (ReqC – Cagc) gives the needed required 

capabilities {c2,c4,c8}. 

From ProducerAgents, the suitable Producer-Agents servicing the needed requirement capability 

set is identified using an evolutionary algorithm (CA). For every needed requirement capability, 

all the Producer-Agents servicing the capability is listed. Then the producer-agents are assigned 

to every capability. There can exist many such combinations of Producer-Agents, however, we 

are interested in the team of Producer-Agents with minimum operational cost and minimum 

distance cost. A ProducerAgent can have one or multiple capabilities to service and can support 

multiple ConsumerAgents. For each capability required there are multiple ProducerAgents in the 

network to service the capability. Example, capability c2 is serviced by {p4, p2, p8, p9, p12}, 

capability c4 is serviced by {p3, p4, p8} and c8 is serviced by {p1, p2, p6, p7, p11, p16}. Pictorial 

representation of the same is as shown.  
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Figure 6 Example Producer Agent servicing required capabilities 

 

The combination of Producer-Agents for required capability set constitutes the population space 

of our algorithm and are the candidate solutions to our problem of identifying the suitable 

Producer-Agents for the required capability set. That is, the combination of Producer-Agents for 

the capability set {c2,c4,c8} includes {(p4,p3,p1), (p4,p3,p2), (p4,p3,p6), (p4,p3,p7) 

...(p12,p8,p16)}. For a capability set of length three, there are 90 (5*3*6) possible solutions from 

the given combination of Producer-Agents.  The best suitable team of Producer-Agents from the 

combination of ProducerAgents is to be selected by considering minimum operational cost and 

minimum distance cost. Operational cost is the cost associated with every capability serviced by 

the producer-agent ranging from 1 to 10 (1 <= operational cost <= 10). Whereas, distance cost is 

the edge weight of the edge connecting the consumer-agent node and the producer-agent node 

ranging from 1 to 10 (1 =< distance cost <= 10). Here the shortest path values between all pairs 

of nodes are precomputed. For a given combination of a team of Producer-Agents, the collective 

operational cost and collective distance cost between the Consumer-Agent node to the Producer-
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Agent nodes is calculated. The sum of operational cost and distance cost constitutes the fitness 

score. The lesser the fitness score, the fitter the solution.  

The population space of the proposed CA is populated with the candidate solutions. The fitness 

score of each candidate solution is assigned by the fitness function which calculates the operational 

cost and distance costs. The fitness score is the sum of operational cost and distance cost. The 

solutions with minimum fitness score are sorted, and the top teams are selected to constitute the 

knowledge of the belief space. Belief space has the top teams of candidate solutions and guides 

the search direction and evolves the teams faster than the basic genetic algorithm. The combination 

of candidate solutions from the top teams from Belief Space is created, and the elite teams of 

specified number from the belief space is added to the population. For a given number of 

generations, the process of finding the suitable Producer-Agent team with minimum operational 

cost and minimum distance cost using evolutionary operations like selection, crossover, and 

mutation is repeated. For every iteration/generation, the new population is generated from the 

previous ‘selected population (selection)’, ‘applying crossover and mutation’ and ‘knowledge 

from belief space’. Crossover is implemented by selecting two random parents from the solution. 

The one parent with a minimum fitness score is considered the winner and the one with lower 

fitness score is considered the loser. Part of a loser parent is swapped with part of a winner parent 

to create a child. The fitness of the created child is calculated and is added to the population if the 

fitness score of the child is lesser than the fitness score of the loser parent. Mutation is implemented 

by selecting a random candidate solution and applying mutation, that is, a part of the selected 

candidate solution is replaced from another random candidate solution from the population. At the 

end of generations, the best candidate solution with minimum operational cost and minimum 

distance cost is selected.  
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Chapter 4: Implementation and Experimental Setup 

 

A MABS model to simulate a social system consisting of Consumer-Agents and Producer-Agents 

and Task-set in the environment is implemented using ‘Mesa Agent-Based Modeling Framework’ 

(Python) [76] to show the emergence of agent specialization. To imitate a network for our social 

system, dynamic social networks using the Barabasi-Albert [77] model is created.   

All the real-world networks thought to be scale-free networks. Scale-free networks are a type of 

network characterized by the presence of large hubs and are the ones whose degree of distribution 

follows a power law. In such power-law distributed networks, the nodes of the network are not 

evenly connected. As the creation of random networks ends up being a poor reflection of real-

world networks, we use the Barabasi-Albert model. Barabasi-Albert model creates scale-free 

networks, wherein all the agents are connected to all other agents, but not necessarily directly.  

 

Once our social system is mapped using a social network structure, the preliminary effort is taken 

in task delegation/selection. The system is subjected to the demand factor, where the value of 

demand more than 1 (𝜕 > 1)represents that there is more work than the collective efforts of all 

the agents (consumer-agents), the value of demand equal to 1 (𝜕 = 1) means that the work 

required and effort needed to satisfy the work is equal and the value of demand less than 1 (𝜕 <

1) indicates that there is less work available than can be performed by all the agents. The demand 

value of 0.7 is selected in our simulation as it is proven to increase the emergence of agent 

specialization for a social system where the number of tasks and the number of agents is relatively 

more. We consider the human environment, where there are more tasks/jobs in the environment 

and the group size/population/agents in the human environment are growing, hence the demand 

level of 𝜕 = 0.7 is considered in our simulations. Every task from the Task-set in the environment 

is associated with stimulus intensity. The stimulus of each task is updated using stimulus update 
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formula  𝛼 (
𝑁

𝑇
) 𝜕, where 𝛼 is arbitrarily chosen and assigned as 3, N is the number of Consumer-

Agents, T is the number of tasks and 𝜕 is the demand level. Once a task is selected by the 

Consumer-Agent, the stimulus of that task in the environment is decreased by the value of 𝛼 (i.e. 

3). Meaning, the stimulus level for a task is reduced when a Consumer-Agent selects/consumes 

that task. Initially, the stimulus levels of all the tasks are set to zero, in each iteration the value of 

the stimulus is updated and decreased accordingly. Every Consumer-Agent is associated with an 

internal threshold for every task in Task-set. That is, every Consumer-Agent is associated with a 

threshold θ which is arbitrarily chosen as θ = 50 with a standard deviation ranging from (-5 to +5) 

for every task. 

At the beginning of the simulation, every Consumer-Agent filters all possible tasks in the 

environment which meets the agent threshold. That is, the tasks whose stimulus level is more than 

the threshold value of the task in Consumer-Agent is filtered, and the task from this filtered set is 

selected using two methods, standard genetic threshold method, and positive social influence 

method. In the standard genetic threshold method, a task is selected from the filtered set without 

any influence from the experts (a random task from the filtered set is selected) and in our method 

the task is selected using positive social influence exerted by the neighboring 

experts/influencer/Producer-Agents.  The formula to select a task using positive social influence 

is, probability of 

(1 + 𝜓𝑁𝑡)

∑(𝜓𝑁 + # 𝑇)
 

 

Here, for a set of tasks T, Nt represents the number of agent’s expert neighbors currently engaged 

in task t, N represents the number of active neighbors and #T holds the value of total number of 

tasks available in the environment. Symbol 𝜓 (psi) represents the influence impact an agent has 
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on its neighbor’s selection. The value of 𝜓 is arbitrarily set to 0.5. At each iteration, an agent has 

a chance of (
1

𝜏
) to switch specialization. (The value of 𝜏 is arbitrarily set to 5).  

 

Experiments conducted in [75] demonstrated that the group size (number of consumer-agents) and 

task number play a role in the level of specialization within the environment. We, therefore, tested 

our simulations with task number 2, 5 10, 20, 100 and group size of 5, 10, 50, 100, 500, 1000. 

That is, we tested our model with 2 tasks and 5 agents, 2 tasks and 10 agents, 2 tasks and 50 agents 

and so on. As we are considering the human social system, we felt that the increased number of 

tasks and agents in the system would provide a clear impression of agent specialization under 

varying parameters (threshold, stimulus, demand, etc.). 

The proposed model aids agent specialization by modeling the selection of tasks using positive 

social influence exerted by the neighboring experts. Therefore, the number of experts for each 

combination of the above-mentioned variation of the number of tasks and agents is to be selected. 

For a given number of Consumer-Agents, the number of experts in the network is selected as 

minimum, average, half, equal and maximum value of number of Consumer-Agents. That is, if 

there are 50 agents (Consumer-Agents) in the system, then we test our agent specialization under 

the values of varying experts ranging from minimum to maximum. Therefore, the number of 

experts considered are minimum (~10%), average (~35%), half (~50%), equal (~100%), 

maximum (~200%). That means the number of experts in the network tested is [5, 17, 25, 50, 100] 

for 50 agents (Consumer-Agents). Meaning, the model is tested for 50 agents and 5 producer-

agents, 50 agents and 17 producer agents and so on.  

The combination of task numbers, group size and the varying number of experts in the network is 

tested. The frequency of the tasks selected by Consumer-Agents for the mentioned setup is 

recorded. We ran 100 simulations for every combination of task number, group size, and expert 

number. The frequency of the tasks recorded for each simulation by all the agents is stored in an 
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nxm matrix, where n indicates each agent and m each task. This matrix is subjected to a series of 

calculations and the DOL value of the matrix is obtained. The quantitative description of the 

division of labor reflects the extent to which each agent is a specialist. Division of Labor is 

quantified and the details can be found in [74]. The DOL value results between 0 and 1. A score 

of 1 indicates that all the agents are fully specialized, while 0 indicates, no specialization. The 

obtained results are compared with the standard genetic threshold model. 

 

The calculation of DOL value is presented in detail here. Once the frequency of selected tasks is 

recorded and presented in a matrix, the matrix is normalized. The matrix is normalized by dividing 

each entry of the matrix by the total frequencies of all the selected tasks, so the sum of all the 

entries in the matrix equals 1.  

The DOL value is calculated by the formula,  

1. Division of consumer-agents(X) into tasks(Y) DY|X : 
𝑀𝑢𝑡𝑢𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑣𝑒𝑟 𝑗𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋 𝑎𝑛𝑑 𝑌

𝑆ℎ𝑎𝑛𝑜𝑛′𝑠 𝑖𝑛𝑑𝑒𝑥 (𝑒𝑛𝑡𝑟𝑜𝑝𝑦) 𝑜𝑣𝑒𝑟 𝑋
 

 

2. 𝑀𝑢𝑡𝑢𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑣𝑒𝑟 𝑗𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋 𝑎𝑛𝑑 𝑌 (I(X,Y)):  

𝐼(𝑋, 𝑌) =  ∑ 𝑝(𝑥, 𝑦) log [
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
] 

where, (𝑝(𝑋, 𝑌), 𝑥 ∈ X, y ∈ Y)) 

p(x,y) is the bivariate probability over a combination of set of Consumer-Agents (labeled X) 

and  set of tasks (labeled Y). 

3. 𝑆ℎ𝑎𝑛𝑜𝑛′𝑠 𝑖𝑛𝑑𝑒𝑥 [81] (𝑒𝑛𝑡𝑟𝑜𝑝𝑦) 𝑜𝑣𝑒𝑟 𝑋, H(X): 

𝐻(𝑋) =  −p(x)log ∑[p(x)] 

4. Therefore, DOL value is calculated using,  

DY|X : 
𝐼(𝑋,𝑌)

𝐻(𝑋)
=

∑ 𝒑(𝒙,𝒚)𝐥𝐨 𝐠[
𝒑(𝒙,𝒚)

𝒑(𝒙)𝒑(𝒚)
]

− ∑ 𝒑(𝒙)𝐥𝐨 𝐠[𝒑(𝒙)]
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Consumer-Agents and their selected tasks are captured. Now, the Consumer-Agent should acquire 

the required capabilities to achieve the selected task. The missing required capabilities are listed 

and are acquired one by one from suitable Producer-Agents using CA. The operational cost, 

distance cost, and time-taken for execution of the algorithms are captured.  

 

A total of ten capabilities is considered and every Consumer-Agent has a range of three to four 

missing capabilities. For the missing capability set of each Consumer-Agent, the algorithm is 

executed for 100 generations/iterations. The missing capability is represented using list in python. 

The candidate solutions are a vector of the Producer-Agent team represented using a list data 

structure as well. The length of the list of the Producer-Agent combination team is as same as the 

length of the missing capability list. The fitness score of the summation of operational cost and 

distance cost (precomputed distance cost from Consumer-Agent to each Producer-Agent) is 

assigned to every candidate solution. The top teams of specified number(tp) are updated to belief 

space. Belief Space is comprised of a list of lists, that is, the main list data structure has sublists 

of all the selected top teams. A combination of the items in the sublists generates new candidate 

solutions and the main list is sorted with respect to the fitness score of the sublist candidate 

solutions. The elite team from the generated candidate solutions from the belief space is added to 

the new population and the same procedure is repeated for a given number of generations. 

 

We consider two setups to implement and test our proposed CA. In the first setup, the network 

graph with 50 Consumer-Agents and 100 Producer-Agents is given as input. A population size of 

100 is set. The near-optimal solution of suitable Producer-Agent team is identified and their 

respective operational cost, distance cost, fitness score (sum of operational and distance cost) is 

captured. The average operational cost, distance cost and fitness score for the entire Consumer-

Agent capability requirement is reported. The execution time taken by the algorithm are reported. 



59 
 

 

Similarly, in the second setup, the network graph with 100 Consumer-Agents and 200 Producer-

Agents is given as input. A total of ten capabilities is considered and every Consumer-Agent has 

a range of three to four missing capabilities. For the missing capability set of each Consumer-

Agent, the algorithm is executed for 100 generations/iterations. A population size of 150 is set. 

The near-optimal solution of suitable Producer-Agent team is identified and their respective 

operational cost, distance cost, fitness score (sum of operational and distance cost) is captured. 

The average operational cost, distance cost and fitness score for the entire Consumer-Agent 

capability requirement are reported. The execution time taken by the algorithm is reported. 

 

The results obtained (average operational cost, average distance cost, and average fitness score) 

by executing CA for the two setups are compared with the exhaustive search technique, random 

search technique and GA (Genetic Algorithm). The execution time taken by all the algorithms is 

reported and compared. The system specifications on which the experiments are performed is as 

described below, 

 

 

 

Processor Intel(R) Core (TM) i5 

Installed RAM 8 GB 

System Type 64-bit OS, x64-based processor 

OS Windows 10 V 1903 

Version used Python 3 (Anaconda) 

Table 1 System (Device) Specification 
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Chapter 5: Evaluation and Results 

 

The performance of the proposed model is evaluated, and the results are reported and analyzed in 

this section. We used MABS to simulate the emergence of agent specialization under the influence 

of positive social influence exerted by the experts in the system/network. The evolution of 

Consumer-Agent capabilities is addressed by identifying the suitable Producer-Agents in the 

network from whom the Consumer-Agents can acquire the required capabilities from, by using an 

evolutionary algorithm (CA).  In our social system, there are Consumer-Agents and Producer-

Agents mapped to a network. Each individual in a network, that is, each person in society knows 

some people, for example, teacher, coach, family members, friends, etc. All the individuals in a 

network communicate or interact with others who are connected directly or indirectly. Each agent 

should select a task, which is influenced by the known neighboring experts in the network. On the 

other hand, an agent has to evolve over time in a system/environment but has some missing 

capabilities, which needs suitable Producer-Agents to collaborate with in order to acquire the 

missing capabilities, in turn, achieving the selected tasks. 

 

Each Producer-Agent in the network provide services like teaching, coaching, mentoring, etc., 

within related operational cost. This operational cost can be financial cost or time. As mentioned, 

the aim of this dissertation is to find suitable Producer-Agents with minimum operational and 

distance cost to acquire from and evolve over time and to attain specialization by selecting 

appropriate tasks. Several scenarios to deal with the problem are simulated and the obtained results 

are reported. The result of the standard genetic threshold model is reported for comparison. In 

addition, our Cultural Algorithm (CA) is tested for varying parameters and the results are reported 

in comparison with the exhaustive search, random search, and genetic algorithm.  
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5.1 Quantifying Emergence of Specialization 

 

Consumer-Agent selects a task using two methods namely, Standard Genetic Threshold Model 

(random selection of tasks under no expert influence) and Positive Social Influence Model 

(selection of tasks under expert influence). In Random Selection Model, an agent selects a task 

randomly. In Positive Social Influence Selection model, an agent selects a task that is influenced 

by the agent’s network expert neighbors. 

 

To measure and quantify the degree to which the agents are specialized, the chosen specialization 

of all agents needs to be recorded. This is achieved by having each active agent record its 

specialization at the end of each iteration. The mutual information and Shannon entropy index for 

the distribution of individual agents across tasks is calculated. Dividing mutual information score 

by Shannon entropy score results in values ranging from 0 to 1, indicating how specialized agents 

are. Score 1 indicates that all the agents (Consumer-Agents) are fully specialized, while 0 indicates 

no specialization. 

For each combination of group size (5, 10, 50, 100, 500, 1000) and task numbers (2, 5 10, 20, 

100), division of labor (DOL) is quantified.  
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The DOL values for the genetic threshold model for the above-mentioned combinations are as 

shown, and the rows indicate the number of tasks and columns indicate the group size (Consumer-

Agents). The cell values show the DOL value with the standard deviation. 

 

 GT 5 10 50 100 500 1000 

2 0.580 ± 0.120 0.555 ± 0.155 0.617 ± 0.023 0.702 ± 0.099 0.712 ± 0.036 0.719 ± 0.056 

5 0.528 ± 0.098 0.559 ± 0.075 0.663 ± 0.026 0.733 ± 0.054 0.740 ± 0.033 0.765 ± 0.050 

10 0.469 ± 0.054 0.536 ± 0.094 0.665 ± 0.038 0.778 ± 0.018 0.778 ± 0.042 0.782 ± 0.048 

20 0.417 ± 0.063 0.510 ± 0.111 0.702 ± 0.048 0.800 ± 0.015 0.800 ± 0.031 0.800 ± 0.035 

100 0.378 ± 0.008 0.428 ± 0.029 0.560 ± 0.029 0.663 ± 0.026 0.823 ± 0.038 0.844 ± 0.050 

 

Table 2 DOL values of Genetic Threshold Model 

 

The demand level considered in our experiment is 𝜕 = 0.7, and at the demand level less than one, 

both group size and task number positively affects division of labor. The detailed analysis of the 

results of the genetic threshold model can be found in [75]. 

  

In our PSI (Positive Social Influence) model, for each combination of group size (5, 10, 50, 100, 

500, 1000), task numbers (2, 5 10, 20, 100) and varying expert numbers (minimum, average, half, 

equal, maximum), division of labor (DOL) is quantified for our Positive Social Influence Model. 

The model is implemented using “Mesa Agent Based Modeling” and the figure below shows how 

the parameters can be adjusted using the sliders shown on the left side of the figure.  



63 
 

 

 

Figure 7 The screenshot of our implemented Specialization Model (PSI) 

 

The grid shows the number of agents in the system. Number of Consumer-Agents, the number of 

tasks, demand levels, level of connectivity (of the social network implemented using the Barabasi-

Albert model) and number of Producer-Agents is adjustable. After providing inputs, the model is 

started. At the end of the simulation, we obtain the recorded information of tasks/ specialization 

selected by the agents. Then the frequency of the selected task specializations is presented in a 

matrix and the dol calculations are performed.  
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The DOL values for the positive social influence model for the varying parameter combinations are as 

shown, the rows indicate the number of tasks and columns indicate the group size (Consumer-Agents). 

The cell values show the DOL value with the standard deviation. %E represents the value of percentage 

of agents considered and E represents the number of experts. 

PSI %E E 5 E 10 E 50 E 100 E 500 E 1000 

  ~10% 1 0.793 ± 0.132 1 0.746 ± 0.107 5 0.628 ± 0.022 10 0.727 ± 0.089 50 0.766 ± 0.081 100 0.756 ± 0.047 

  ~35% 2 0.763 ± 0.143 3 0.760 ± 0.106 17 0.644 ± 0.025 35 0.735 ± 0.084 175 0.754 ± 0.084 350 0.758 ± 0.029 

2 

~50% 3 0.783 ± 0.139 5 0.765 ± 0.109 25 0.653 ± 0.022 50 0.727 ± 0.087 250 0.751 ± 0.084 500 0.762 ± 0.030 

  Equal 5 0.821 ± 0.132 10 0.763 ± 0.094 50 0.665 ± 0.029 100 0.704 ± 0.094 500 0.742 ± 0.082 1000 0.765 ± 0.026 

  Max 10 0.782 ± 0.128 20 0.771 ± 0.102 100 0.679 ± 0.023 200 0.706 ± 0.091 1000 0.744 ± 0.081 2000 0.747 ± 0.027 

                            

  ~10% 1 0.648 ± 0.127 1 0.667 ± 0.071 5 0.640 ± 0.020 10 0.759 ± 0.063 50 0.768 ± 0.048 100 0.773 ± 0.035 

  ~35% 2 0.674 ± 0.122 3 0.697 ± 0.075 17 0.702 ± 0.053 35 0.750 ± 0.065 175 0.763 ± 0.058 350 0.805 ± 0.027 

5 ~50% 3 0.674 ± 0.140 5 0.709 ± 0.067 25 0.655 ± 0.022 50 0.748 ± 0.062 250 0.753 ± 0.055 500 0.816 ± 0.023 

  Equal 5 0.700 ± 0.122 10 0.702 ± 0.072 50 0.666 ± 0.020 100 0.742 ± 0.074 500 0.745 ± 0.054 1000 0.822 ± 0.026 

  Max 10 0.688 ± 0.133 20 0.696 ± 0.065 100 0.678 ± 0.024 200 0.749 ± 0.063 1000 0.731 ± 0.064 2000 0.806 ± 0.025 

                            

  ~10% 1 0.543 ± 0.051 1 0.634 ± 0.049 5 0.693 ± 0.062 10 0.779 ± 0.065 50 0.765 ± 0.063 100 0.826 ± 0.076 

  ~35% 2 0.548 ± 0.050 3 0.641 ± 0.064 17 0.744 ± 0.039 35 0.777 ± 0.053 175 0.782 ± 0.065 350 0.869 ± 0.066 

10 ~50% 3 0.555 ± 0.046 5 0.642 ± 0.049 25 0.726 ± 0.049 50 0773 ± 0.069 250 0.790 ± 0.040 500 0.867 ± 0.061 

  Equal 5 0.553 ± 0.049 10 0.638 ± 0.050 50 0.725 ± 0.045 100 0.776 ± 0.067 500 0.786 ± 0.037 1000 0.862 ± 0.060 
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Table 3 DOL values of PSI Model 

 

The reason for varying dol values for varying numbers of experts is discussed here. Though the 

experts are introduced in the network for a varying percentage of agents ranging from minimum 

to maximum, the resulting dol values, that is agent specialization selection is influenced by the 

neighboring experts alone. That is even if there are 20 experts in the network, if the agent has no 

direct expert neighbors then the agent has no influence at all. Then the agent ends up selecting 

tasks randomly without any influence exerted by the experts in the environment. Such agents turn 

up to grow as generalists without a particular specialization.  

 

  Max 10 0.560 ± 0.051 20 0.657 ± 0.058 100 0.733 ± 0.048 200 0.775 ± 0.069 1000 0.782 ± 0.042 2000 0.857 ± 0.067 

                            

  ~10% 1 0.477 ± 0.025 1 0.575 ± 0.025 5 0.768 ± 0.048 10 0.804 ± 0.054 50 0.845 ± 0.015 100 0.879 ± 0.051 

  ~35% 2 0.478 ± 0.027 3 0.573 ± 0.024 17 0.763 ± 0.058 35 0.817 ± 0.043 175 0.851 ± 0.045 350 0.905 ± 0.044 

20 ~50% 3 0.477 ± 0.026 5 0.580 ± 0.028 25 0.753 ± 0.055 50 0.814 ± 0.042 250 0.813 ± 0.042 500 0.911 ± 0.043 

  Equal 5 0.479 ± 0.025 10 0.582 ± 0.032 50 0.745 ± 0.054 100 0.820 ± 0.036 500 0.815 ± 0.039 1000 0.910 ± 0.039 

  Max 10 0.479 ± 0.025 20 0.580 ± 0.028 100 0.731 ± 0.064 200 0.828 ± 0.041 1000 0.822 ± 0.035 2000 0.894 ± 0.041 

                            

  ~10% 1 0.378 ± 0.008 1 0.458 ± 0.007 5 0.614 ± 0.034 10 0.722 ± 0.083 50 0.853 ± 0.040 100 0.911 ± 0.042 

  ~35% 2 0.377 ± 0.008 3 0.459 ± 0.007 17 0.632 ± 0.034 35 0.694 ± 0.080 175 0.865 ± 0.043 350 0.922 ± 0.036 

100 ~50% 3 0.376 ± 0.009 5 0.460 ± 0.006 25 0.639 ± 0.031 50 0.718 ± 0.080 250 0.852 ± 0.042 500 0.932 ± 0.033 

  Equal 5 0.379 ± 0.008 10 0.460 ± 0.008 50 0.649 ± 0.037 100 0.708 ± 0.091 500 0.860 ± 0.042 1000 0.931 ± 0.032 

  Max 10 0.379 ± 0.008 20 0.464 ± 0.008 100 0.652 ± 0.035 200 0.733 ± 0.051 1000 0.860 ± 0.038 2000 0.921 ± 0.035 
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If the experts are at the neighboring nodes, then there exist four different possibilities in resulting 

dol values. If there is a single expert in the neighboring nodes which influences one specialization 

selection, increasing the agent specialization.  Multiple experts with similar specialization (same 

specialization) influence one specialization selection which furthermore increases the degree of 

specialization of an agent (Consumer-Agent). Complete specialization is a possibility here with 

resulting dol values of 1. Multiple experts with varying (different) specialization influence various 

specialization (tasks) selection, decreasing the agent specialization. The agent is confused with 

multiple specialization options and ends up selecting multiple tasks and grow to be a generalist. 

Also, at times the filtered task set may not have the specialization influenced by the neighboring 

experts, then the agent ends up selecting a random task, which reduces the degree of specialization.  

 

In a given system, at a given point in time, there are active and inactive agents. For demand levels 

less than one, the work available in the environment is less than the total efforts needed from the 

agents. Therefore, with low demand levels, the inactivity of the agents has no negative impact on 

the division of labor, because the active agents in the system efficiently perform the tasks. That 

means, at lower demand levels, only fewer agents are needed to perform the available tasks as the 

work required (to perform all tasks) is less than the efforts available (from all the agents in the 

system). Although few agents remain inactive, their presence is not detrimental to task 

specialization because all work is completed by the active agents at each time step and so the 

stimulus levels do not accumulate. The variations/fluctuations in the stimulus levels decreases 

with increased group size and decreased demand levels and hence partially offsets the negative 

effect of group size on division of labor.  It is evident from the dol values in the table, that the ratio 

of group size and task number significantly influences the dol values. Changes in the task number 

is likely to be strongest at the stage where the group size is lower. The demand level becomes a 

stronger influence on dol values as the group size grows. For small group size, the dol values 
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decreases with the increase in the task number. For increased group size, the lesser demand aids 

in lower fluctuations of stimulus level, in turn, decreasing the randomness in task selection and 

increasing the dol values, which is increasing the level of specialization.  

Analyzing from both task number and group size variation, for a given task number the dol values 

increases as the group size increases. The rows from left to right shows that the dol values increases 

with group size for any given task number. Whereas, the values of the column represent that for 

the smaller group size the dol values decreases as the task number increases. The first two columns 

represent this pattern. But as the group size increases, the dol values increases with increase in 

task number as a result of demand the stimulus levels impact. Group size and task number 

positively affect division of labor. 

 

By comparing the results of the ‘Genetic Threshold Model’ and our ‘Positive Social Influence 

Model’, that is by comparing the dol values from table 2 and table 3, it is evident that our model 

results in a significant increase in the dol values, in turn, improving the degree of agent 

specialization. 

 

 

5.2 Capability Evolution using CA 

 

Consumer-Agent selects a task using PSI, where an agent selects a task that is influenced by the 

agent’s expert network neighbors. The agent must acquire the missing required capabilities for the 

task selected.   

 

Each Consumer-Agent has predefined capabilities out of which we formulate few capabilities as 

available capabilities, and few capabilities as not available capabilities to show the missing 

capabilities. In order to complete each task, several capabilities are needed. Required capabilities 
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are captured and the Consumer-Agents acquire the capabilities from suitable Producer-Agents. 

Each Producer-Agent provides some capabilities/services and each capability is associated with 

an operational cost. The operational cost is assigned by a random number between 0 and 10 

(0 <= operational cost <= 10).  

As discussed, knowledge belief space is used to find suitable Producer-Agents offering the 

services with minimum operational and distance costs.  

 

The operational cost, distance cost, and execution time taken by our algorithm (CA) is captured 

and are compared with the exhaustive search technique, random search technique, and GA. The 

suitable Producer-Agents team for every capability set requirement is identified using all the 

techniques (all the algorithms) mentioned above. The fitness score gives the summation of 

operational cost and distance costs. The average of all fitness score, operational cost and distance 

cost is calculated for the setup implemented and the average values are reported.  

 

We formulate the setup details for two network combinations. The first setup includes a network 

with 50 consumer-agents and 100 producer-agents. Each consumer-agent has a set of capability 

requirements for which the suitable Producer-Agent team is to be identified. The number of 

iteration/generations considered for GA and CA is 100. The frequency of capabilities possessed 

by Producer-Agents are not taken into consideration. The frequency is random and is not defined. 

The size of the population is set to 100. The total number of capabilities is set to ten and the 

missing capabilities range from 3 to 4. That is, the capability requirement set has three or four 

missing capabilities. In our CA approach, the search space is directed to identify the suitable 

Producer-Agent team using the knowledge from the belief space. The average fitness score, 

operational cost, distance cost and time taken by our model for setup 1 is as shown,  
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Figure 8 CA Result for 50 x 100 Network 

 

Similarly, for setup 2, 100 Consumer-Agents and 200 Producer-Agents graph is given as input. 

The setup is similar to the first setup. Whereas, the population size is set to 150. In our CA 

approach, the search space is directed to identify the suitable Producer-Agent team using the 

knowledge from the belief space. The average fitness score, operational cost, distance cost and 

time taken by our model for setup 2 is as shown,  

 

Figure 9 CA Result for 100 x 200 Network 
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In the Exhaustive search technique, the whole population is analyzed every time for suitable 

Producer-Agents who offer required capabilities/services with minimum operational and distance 

costs. Though the suitable Producer-Agent with minimum operational cost and distance cost is 

found, the time taken by this technique is too high when compared to the proposed model. The 

results for exhaustive search technique for network combination of 50 X 100 (50 Consumer-

Agents and 100 Producer-Agents) is reported below, 

 

Figure 10 EX Result for 50 x 100 Network 

 

The results for the exhaustive search technique for network combination of 100 X 200 (100 

Consumer-Agents and 200 Producer-Agents) is reported below, 
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Figure 11 EX Result for 100 x 200 Network 

In the Random technique, the Consumer-Agent acquires the capabilities from available Producer-

Agents which provides the required capabilities. There is no decision-making process involved in 

the random approach that is being compared here and hence time taken is relatively lower in this 

technique. As shown in the figure below, the obtained operational cost, distance cost by random 

search method is reported. The results for the random approach for network combination of 50 X 

100 (50 Consumer-Agents and 100 Producer-Agents) are shown below, 

 

Figure 12 RA Result for 50 x 100 Network 
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The results for random approach for network combination of 100 X 200 (100 Consumer-Agents 

and 200 Producer-Agents) are shown below and It is evident that the proposed method 

outsmarts the random approach 

 

 

Figure 13 RA Result for 100 x 200 Network 

 

In GA, the same setup as proposed model is used, but a GA component lacks belief space. The 

results for GA for network combination of 50 X 100 (50 Consumer-Agents and 100 Producer-

Agents) are shown below, 

 

Figure 14 GA Result for 50 x 100 Network 
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The results for GA for network combination of 100 X 200 (100 Consumer-Agents and 200 

Producer-Agents) are shown below, 

 

Figure 15 GA Result for 100 x 200 Network 

 

 

The results (average operational cost, average distance cost, and time taken) of GA are 

approximately similar to the proposed model.  

 

According to the results, it is evident that the proposed model finds a near-optimal solution at 

reduced execution time. In comparison with the exhaustive search algorithm, our algorithm 

finds the near-optimal solutions at significantly lesser execution time. In comparison with GA, 

no significant changes for the considered setup are observed when the results of CA and GA 

approaches are compared.  In comparison with the random search algorithm, our algorithm 

reports the near-optimal solution for operational and distance costs, but the time taken by 

random search algorithm is relatively low as there is no computational process involved in 

selecting a solution randomly. The accuracy of the results of our approach is significantly 

feasible when compared with the overall results of all the approaches.  
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Chapter 6: Discussion 

 

In this chapter, we will be discussing a working example, challenges, and limitations that need 

to be addressed while implementing our proposed system in the real world. 

Let the system under study be a working educational model where the ‘students’ are Consumer-

Agents and the Producer-Agents can be ‘teachers’, ‘parents’, ‘guides’, ’university’, ‘coaching 

centers’ etc. The tasks in the Task-set include, ‘computer engineering’(T1), ‘sports 

professional’(T2), ‘physician’(T3), etc. Now, the student has to select a task to perform, that is, 

the student has to select the tasks and should allocate the resources (time) in the respective 

tasks to perform the tasks.  

Consider three students who are directly connected to experts and also note that the task 

selection is influenced by the direct neighboring experts alone.  

Case 1: ‘student 1’ has ‘parent’ as a single neighboring expert. Let the expertise of the parent 

(expert) be ‘Computer Engineer’. The task ‘computer engineer’ (T1) will be selected by the 

student and the student spends most of his/her resource (time) in performing the selected task. 

And task ‘sports professional’(T2) might be selected by the student, but a minimum of his/her 

resource will be spent on task 2 as this task is not influenced by the expert. This scenario 

contributes to the increase in dol values. Meaning, the student spends more time perfecting a 

task rather than generalizing in many tasks, therefore, the improved dol values suggest that the 

degree of specialization of the student is improved respectively.  

Case 2: ‘student 2’ has ‘parent’ whose expertise is ‘Computer Engineer’ and ‘teacher’ whose 

expertise is ‘computer science subject’. The task ‘computer engineer’ (T1) will be selected by 

the student and the student spends a maximum of his/her resource (time) in performing the 

selected task. This scenario contributes to the increase in dol values on a higher degree. 
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Case 3: ‘student 3’ has ‘parent’ whose expertise is ‘computer engineer’, ‘teacher’ whose 

expertise is ‘biology subject’ and ‘coach’ whose expertise is ‘basketball’. Now the student has 

many experts with varying specialization which results in confusion. The student tends to 

allocate his/her resources among all the three tasks and this scenario decreases the degree of 

specialization of the student.  

Case 4: ‘student’ has no direct neighboring expert. Therefore, a random task is selected the dol 

value decreases respectively. 

Case 5: The filtered task set might not have the specialization influenced by the expert.  

Therefore, the student selects the tasks from the filtered task set randomly. This scenario results 

in the decrement of dol values. 

These are the five scenarios contributing to the varying dol values in Table 3. 

Coming to the ‘capability evolution’ section, case 1 shows that the ‘student 1’ selects T1. The 

capabilities of acquiring this selected specialization include reqc1: Reading, reqc2: Writing, 

reqc3: Coding, reqc4: Problem-solving ability, reqc5: Technical skills, reqc6: Research skills. 

The student has minimal capabilities and the capabilities like coding, technical skills, and 

research skills are missing from the student’s capability set. Now, with multiple Producer-

Agents in the system offering the required missing capabilities, the suitable team of Producer-

Agents offering the missing capabilities is identified using cultural algorithms.  

Cultural algorithms aids in identifying the best suitable Producer-Agent team offering the 

services/capabilities at near-optimal operational and distance costs at reduced execution time.  

Conclusively, our model guides the student’s decision-making ability in task selection by 

considering positive social influence exerted by neighboring experts. Additionally, our model 
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aids the students to acquire the required capabilities by identifying the best suitable Producer-

Agents in the network (system). 

Our model can be adapted to mimic the real-world social systems like society, educational 

institutions, corporations, etc to improve the productivity of the individuals and in turn 

improving the productivity of the overall system.    

However, there are a few challenges and limitations that need to be addressed in adapting the 

proposed model to the real-world. The challenges and limitations of implementing the model 

to a real system are, as listed, 

a. The interrelationships between the agents (individuals) of the system are hard to realize, 

capture, and replicate. 

b. The demand factor will not always be a static number. That is, the demand factor can 

vary with respect to the dynamics of the environment of the considered system. 

c. Our model considers the positive social influence exerted by experts alone, but in 

reality, the agents (individuals) might be subjected to negative social influence as well.  

d.  Precomputing the distance costs between the Consumer-Agents and Producer-Agents 

might take up a lot of storage space as the network grows. 

e. Currently, our model considers one single network setup for one simulation run, but the 

real network connecting the individuals mimicking the interrelationships between the 

agents is a changing network (dynamic network).  
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Chapter 7: Conclusion and Future work 

7.1 Conclusion 

The proposed MABS model simulates the social system under study by considering the demand 

factor, variations in stimulus and varying threshold values to attain specialization by using the 

benefits of social networks. In our specialization model, we consider the positive social 

influence exerted by the expert neighbors directly connected with the Consumer-Agents in 

selecting the specialization (selecting the tasks).  

Once the task is selected, the required capabilities to achieve the selected task is to be acquired 

by the Consumer-Agents. The evolution of agent capabilities is addressed with the 

identification of best suitable Producer-Agents using an evolutionary component (CA).   

The Consumer-Agent aims to acquire the capabilities by searching the social network to find 

suitable Producer-Agents who provides the services with minimum operational cost and 

distance costs. 

Results (DOL values) show that our proposed model of specialization improves the degree of 

specialization of agents successfully by considering expert's positive social influence in the 

network when compared with the results of the genetic threshold model.  

According to the results, the proposed model performs better than the exhaustive search model, 

random selection model, and GA by identifying the near-optimal solution of a suitable 

Producer-Agent team with minimum operational cost, minimum distance cost at reduced 

execution time.  

The proposed model is an augmented model that supports the decision-making process and 

aids in improving the degree of specialization by considering positive social influence exerted 
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by agent’s neighboring experts and in identifying the suitable Producer-Agents team to acquire 

the required capabilities, in turn, achieving the selected tasks.  

Limitations of the proposed model include the assumption that all the capabilities are available 

in the network. That is, all the required capabilities are serviced by the Producer-Agents in the 

network which is not the case in a real system. 

 

7.2 Future work 

 

In the future, we are going to test the performance of our algorithm on the real-world data and 

compare them with the actual decisions that a human expert can take manually. Meanwhile, 

exploring the performance of our algorithm on larger and dynamic networks is another goal. 

The distance cost precomputed in our model can be efficiently calculated using ‘on the go’ 

techniques like 2 hop cover [82][83]. The frequency of capabilities serviced by the Producer-

Agents can be considered for more efficient modeling.  
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Appendix 

 

Appendix A 

Code: Specialization Model 

Mesa Agent Based Modelling has model and server modules. The model.py describes our 

model, server.py has the configurations and run.py has the code to launch our model. Command 

to run the model: python run.py 

model.py 

# libraries used 1 

from mesa import Agent, Model 2 

from mesa.time import RandomActivation 3 

from mesa.space import MultiGrid 4 

from mesa.datacollection import DataCollector 5 

import random 6 

import numpy 7 

from functools import reduce 8 

import time 9 

import pickle 10 

import networkx as nx 11 

import matplotlib.pyplot as plt 12 

 13 

# threshold variation implementation 14 

def generate_numbers(wanted_avg, numbers_to_generate): 15 

    initial_selection = [random.choice([45,50,55]) for _ in range(numbers_to_generate)] 16 

    initial_avg = reduce(lambda x, y: x+y, initial_selection) / float(numbers_to_generate) 17 

    if initial_avg == wanted_avg: 18 

        return initial_selection 19 

    off = abs(initial_avg - wanted_avg) 20 
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    manipulation = off * numbers_to_generate 21 

    sign = -5 if initial_avg > wanted_avg else 5 22 

 23 

    manipulation_action = dict() 24 

    acceptable_indices = range(numbers_to_generate) 25 

    while manipulation > 0: 26 

        random_index = random.choice(acceptable_indices) 27 

        factor = manipulation_action[random_index] if random_index in manipulation_action 28 
else 0 29 

        after_manipulation = initial_selection[random_index] + factor + sign * 1 30 

        if 45 <= after_manipulation <= 55: 31 

            if random_index in manipulation_action: 32 

                manipulation_action[random_index] += sign * 1 33 

                manipulation -= 5 34 

            else: 35 

                manipulation_action[random_index] = sign * 1 36 

                manipulation -= 5 37 

        else: 38 

            list(acceptable_indices).remove(random_index) 39 

 40 

    for key in manipulation_action: 41 

        initial_selection[key] += manipulation_action[key] 42 

    return list(initial_selection) 43 

 44 

def threshold_for_all_tasks(task_num,num_con_agents): 45 

    task_threshold = {} 46 

    k = [] 47 

    for j in range(num_con_agents): 48 

        g = generate_numbers(50,task_num) 49 

        task_threshold[j] = g 50 

    return task_threshold 51 

 52 
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# barabasi albert model for social network creation 53 

 54 

def barabasi_albert_graph(n, m, seed=None): 55 

    if m < 1 or m >=n: 56 

        raise nx.NetworkXError("Barabási–Albert network must have m >= 1 and m < n, m = 57 
%d, n = %d" % (m, n)) 58 

    if seed is not None: 59 

        random.seed(seed) 60 

    G=empty_graph(m) 61 

    G.name="barabasi_albert_graph(%s,%s)"%(n,m) 62 

    targets=list(range(m)) 63 

    repeated_nodes=[] 64 

    source=m 65 

    while source<n: 66 

        G.add_edges_from(zip(*m,targets)) 67 

        repeated_nodes.extend(targets) 68 

        repeated_nodes.extend(*m) 69 

        targets = _random_subset(repeated_nodes,m) 70 

        source += 1 71 

    return G 72 

 73 

# experts task selected randomly 74 

def prod_tasks(ML,T): 75 

    r = list(range(T)) 76 

    pro_t = {} 77 

    for i in range(len(ML)): 78 

        ml = ML[i] 79 

        pro_t[ml] = random.choice(r) 80 

    return pro_t 81 

 82 

# neighboring experts 83 

def con_neigh_task(nm,G,N,M,T): 84 
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    neigh_list = {} 85 

    for v in G: 86 

        neigh_list[v] = [u for u in G[v]] 87 

    ML = list(range(N,nm)) 88 

    MT = prod_tasks(ML,T) 89 

    con_nei = {} 90 

    c = {} 91 

    for i in range(N): 92 

        con_n = (neigh_list[i]) 93 

        con_n1 = (list(sorted(set(con_n) & set(ML)))) 94 

        con_nei[i] = [[q,MT.get(q)] for q in con_n1 ] 95 

        c[i] = [MT.get(q) for q in con_n1] 96 

    return con_nei,c 97 

 98 

# PSI model 99 

class PSI(Model): 100 

 101 

    def __init__(self, N, T, D, L, M, width=10, height=10): 102 

        super().__init__() 103 

        self.N = N 104 

        self.T = T 105 

        self.M = M 106 

        self.L = L 107 

        self.grid = MultiGrid(height, width, True) 108 

        self.schedule = RandomActivation(self) 109 

        self.thre = threshold_for_all_tasks(T,N) 110 

        with open("consumer_agents.data","wb") as filehand: 111 

            pickle.dump(self.N-1,filehand) 112 

        filehand.close 113 

        nm = self.N+self.M 114 
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        self.G = nx.barabasi_albert_graph(nm,self.L) 115 

        self.datacollector = DataCollector() 116 

        self.c_n_t,self.n_t = con_neigh_task(nm,self.G,self.N,self.M,self.T) 117 

        # Create agents 118 

        for i in range(self.N): 119 

            consumer_agents = ConsumerAgent(i,self.thre,self.n_t,self) 120 

            # Add the agent to a random grid cell 121 

            x = self.random.randrange(self.grid.width) 122 

            y = self.random.randrange(self.grid.height) 123 

            self.grid.place_agent(consumer_agents, (x, y)) 124 

            self.schedule.add(consumer_agents) 125 

 126 

        for i in range(1): 127 

            tasks = TaskAgent(i,T,N,D,self) 128 

        # Add the agent to a random grid cell 129 

            x = self.random.randrange(self.grid.width) 130 

            y = self.random.randrange(self.grid.height) 131 

            self.grid.place_agent(tasks, (x, y)) 132 

            self.schedule.add(tasks) 133 

 134 

        self.running = True 135 

        self.datacollector.collect(self) 136 

 137 

 138 

    global u 139 

    u = [] 140 

    def step(self): 141 

        frq=5 142 

        self.schedule.step() 143 

        self.datacollector.collect(self) 144 
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        new = self.schedule._agents 145 

        neeww = list(self.schedule._agents.keys()) 146 

        neeww.pop(0) 147 

        if len(neeww) == 0: 148 

            self.running = False 149 

        else: 150 

            for q in neeww: 151 

                u_id = new[q].__dict__["unique_id"] 152 

                task_id = new[q].__dict__["task_t"] 153 

                u.append([u_id,task_id]) 154 

                if new[q].freq == frq: 155 

                    del new[q] 156 

 157 

            with open("consumer_agent_ids.data","wb") as filehandle: 158 

                pickle.dump(u,filehandle) 159 

            filehandle.close() 160 

            with open("task_num.data","wb") as fileha: 161 

                pickle.dump(self.T,fileha) 162 

            fileha.close 163 

 164 

    def run_model(self,z=5): 165 

        for i in range(z): 166 

            self.step() 167 

 168 

# Task and stimulus  169 

 170 

class TaskAgent(Agent): 171 

    def __init__(self,unique_id,T,N,D,model): 172 

        super().__init__(unique_id, model) 173 

        self.task_stimulus = [0]*T 174 
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        self.T = T 175 

        self.N = N 176 

        self.D = D 177 

    def step(self): 178 

        self.task_stimulus = [x+(3*(self.N/self.T)*self.D) for x in self.task_stimulus]  179 

 180 

# Consumer-Agent steps 181 

 182 

class ConsumerAgent(Agent): 183 

 184 

    def __init__(self, unique_id, thre, n_t, model): 185 

        super().__init__(unique_id,model) 186 

        self.task_t = None 187 

        self.thre = thre 188 

        self.unique_id = unique_id 189 

        self.freq = 0 190 

        self.n_t = n_t 191 

 192 

    def move(self): 193 

        possible_steps = self.model.grid.get_neighborhood( 194 

            self.pos, moore=True, include_center=False 195 

        ) 196 

        new_position = self.random.choice(possible_steps) 197 

        self.model.grid.move_agent(self, new_position) 198 

 199 

    def select_task(self): 200 

        c = list(self.thre[self.unique_id]) 201 

        task_stim = self.model.schedule.agents[0].task_stimulus 202 

        aa = numpy.array(task_stim) 203 

        bb = numpy.array([c]) 204 
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        f=aa>bb 205 

        F=numpy.where(f)[1] 206 

        if len(F)==0: 207 

            self.task_t = None 208 

        else: 209 

            numF = len(F) 210 

            psi = 0.5 211 

            neighs_tasks = self.n_t.get(self.unique_id) 212 

            if len(neighs_tasks) == 0: 213 

                self.task_t = random.choice(F) 214 

                self.freq+=1 215 

            else: 216 

                nei = [x for x in neighs_tasks if x in F] 217 

                if len(nei) ==0: 218 

                    self.task_t = random.choice(F) 219 

                    self.freq+=1 220 

                else: 221 

                    total_p = 1 222 

                    nei_count = [nei.count(x) for x in F] 223 

                    P=[x/sum(nei_count) for x in nei_count] 224 

                    m = P.index(max(P)) 225 

                    self.task_t = F[m] 226 

                    self.freq+=1 227 

 228 

        if self.task_t is not None: 229 

            self.move() 230 

            self.model.schedule.agents[0].task_stimulus[self.task_t]-=3 231 

 232 

    def step(self): 233 

        self.select_task() 234 
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server.py 235 

 236 

from mesa.visualization.ModularVisualization import ModularServer 237 

from .model import PSI 238 

from .model import ConsumerAgent 239 

from mesa.visualization.modules import CanvasGrid 240 

from mesa.visualization.modules import ChartModule 241 

from mesa.visualization.UserParam import UserSettableParameter 242 

 243 

def agent_portrayal(agent): 244 

    portrayal = {"Shape": "circle", 245 

                 "Filled": "true", 246 

                 "r": 0.5} 247 

    if type(agent) is ConsumerAgent: 248 

        portrayal["Color"] = "black" 249 

        portrayal["Layer"] = 0 250 

    else: 251 

        portrayal["Color"] = "grey" 252 

        portrayal["Layer"] = 1 253 

        portrayal["r"] = 0.2 254 

    return portrayal 255 

grid = CanvasGrid(agent_portrayal, 10, 10, 500, 500) 256 

chart = ChartModule([ 257 

    {"Label": "DOL", "Color": "#0000FF"}], 258 

    data_collector_name='datacollector' 259 

) 260 

 261 

model_params = { 262 

    "N": UserSettableParameter('slider', "Number of agents", 10, 5, 500, 50, 100, 263 

                               description="Choose how many agents to include in the model"), 264 

    "T": UserSettableParameter('slider', "Number of tasks", 5, 2, 100, 10, 20, 265 
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                                description ="Choose how many tasks to include in the model"), 266 

    "D": UserSettableParameter('slider', "Demand Levels", 1.0, 0.7, 1.3, 267 

                                description="Choose demand level"), 268 

    "L": UserSettableParameter('slider', "Level of Connectivity", 5,3,7, 269 

                                description = "Choose level of connectivity"), 270 

    "M": UserSettableParameter('slider', "Number of Producer agents", 10, 2, 500, 50, 100 , 271 

                                description = "Choose how many producer agents to include in the 272 
model"), 273 

    "width": 10, 274 

    "height": 10 275 

} 276 

 277 

server = ModularServer(PSI, [grid, chart], "Specialization Model", model_params) 278 

server.port = 8521 279 

 280 

run.py 281 

 282 

from PSI.server import server 283 

server.launch()284 
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