7,136 research outputs found

    Storing cycles in Hopfield-type networks with pseudoinverse learning rule: admissibility and network topology

    Full text link
    Cyclic patterns of neuronal activity are ubiquitous in animal nervous systems, and partially responsible for generating and controlling rhythmic movements such as locomotion, respiration, swallowing and so on. Clarifying the role of the network connectivities for generating cyclic patterns is fundamental for understanding the generation of rhythmic movements. In this paper, the storage of binary cycles in neural networks is investigated. We call a cycle Σ\Sigma admissible if a connectivity matrix satisfying the cycle's transition conditions exists, and construct it using the pseudoinverse learning rule. Our main focus is on the structural features of admissible cycles and corresponding network topology. We show that Σ\Sigma is admissible if and only if its discrete Fourier transform contains exactly r=rank(Σ)r={rank}(\Sigma) nonzero columns. Based on the decomposition of the rows of Σ\Sigma into loops, where a loop is the set of all cyclic permutations of a row, cycles are classified as simple cycles, separable or inseparable composite cycles. Simple cycles contain rows from one loop only, and the network topology is a feedforward chain with feedback to one neuron if the loop-vectors in Σ\Sigma are cyclic permutations of each other. Composite cycles contain rows from at least two disjoint loops, and the neurons corresponding to the rows in Σ\Sigma from the same loop are identified with a cluster. Networks constructed from separable composite cycles decompose into completely isolated clusters. For inseparable composite cycles at least two clusters are connected, and the cluster-connectivity is related to the intersections of the spaces spanned by the loop-vectors of the clusters. Simulations showing successfully retrieved cycles in continuous-time Hopfield-type networks and in networks of spiking neurons are presented.Comment: 48 pages, 3 figure

    Schrieffer-Wolff transformation for quantum many-body systems

    Full text link
    The Schrieffer-Wolff (SW) method is a version of degenerate perturbation theory in which the low-energy effective Hamiltonian H_{eff} is obtained from the exact Hamiltonian by a unitary transformation decoupling the low-energy and high-energy subspaces. We give a self-contained summary of the SW method with a focus on rigorous results. We begin with an exact definition of the SW transformation in terms of the so-called direct rotation between linear subspaces. From this we obtain elementary proofs of several important properties of H_{eff} such as the linked cluster theorem. We then study the perturbative version of the SW transformation obtained from a Taylor series representation of the direct rotation. Our perturbative approach provides a systematic diagram technique for computing high-order corrections to H_{eff}. We then specialize the SW method to quantum spin lattices with short-range interactions. We establish unitary equivalence between effective low-energy Hamiltonians obtained using two different versions of the SW method studied in the literature. Finally, we derive an upper bound on the precision up to which the ground state energy of the n-th order effective Hamiltonian approximates the exact ground state energy.Comment: 47 pages, 3 figure
    • …
    corecore