329 research outputs found

    A Generative-Discriminative Basis Learning Framework to Predict Clinical Severity from Resting State Functional MRI Data

    Full text link
    We propose a matrix factorization technique that decomposes the resting state fMRI (rs-fMRI) correlation matrices for a patient population into a sparse set of representative subnetworks, as modeled by rank one outer products. The subnetworks are combined using patient specific non-negative coefficients; these coefficients are also used to model, and subsequently predict the clinical severity of a given patient via a linear regression. Our generative-discriminative framework is able to exploit the structure of rs-fMRI correlation matrices to capture group level effects, while simultaneously accounting for patient variability. We employ ten fold cross validation to demonstrate the predictive power of our model on a cohort of fifty eight patients diagnosed with Autism Spectrum Disorder. Our method outperforms classical semi-supervised frameworks, which perform dimensionality reduction on the correlation features followed by non-linear regression to predict the clinical scores

    Computational Methods for Analysis of Resting State Functional Connectivity and Their Application to Study of Aging

    Get PDF
    The functional organization of the brain and its variability over the life-span can be studied using resting state functional MRI (rsfMRI). It can be used to define a macro-connectome\u27 describing functional interactions in the brain at the scale of major brain regions, facilitating the description of large-scale functional systems and their change over the lifespan. The connectome typically consists of thousands of links between hundreds of brain regions, making subsequent group-level analyses difficult. Furthermore, existing methods for group-level analyses are not equipped to identify heterogeneity in patient or otherwise affected populations. In this thesis, we incorporated recent advances in sparse representations for modeling spatial patterns of functional connectivity. We show that the resulting Sparse Connectivity Patterns (SCPs) are reproducible and capture major directions of variance in the data. Each SCP is associated with a scalar value that is proportional to the average connectivity within all the regions of that SCP. Thus, the SCP framework provides an interpretable basis for subsequent group-level analyses. Traditional univariate approaches are limited in their ability to detect heterogeneity in diseased/aging populations in a two-group comparison framework. To address this issue, we developed a Mixture-Of-Experts (MOE) method that combines unsupervised modeling of mixtures of distributions with supervised learning of classifiers, allowing discovery of multiple disease/aging phenotypes and the affected individuals associated with each pattern. We applied our methods to the Baltimore Longitudinal Study of Aging (BLSA), to find multiple advanced aging phenotypes. We built normative trajectories of functional and structural brain aging, which were used to identify individuals who seem resilient to aging, as well as individuals who show advanced signs of aging. Using MOE, we discovered five distinct patterns of advanced aging. Combined with neuro-cognitive data, we were able to further characterize one group as consisting of individuals with early-stage dementia. Another group had focal hippocampal atrophy, yet had higher levels of connectivity and somewhat higher cognitive performance, suggesting these individuals were recruiting their cognitive reserve to compensate for structural losses. These results demonstrate the utility of the developed methods, and pave the way for a broader understanding of the complexity of brain aging

    Blending generative models with deep learning for multidimensional phenotypic prediction from brain connectivity data

    Get PDF
    Network science as a discipline has provided us with foundational machinery to study complex relational entities such as social networks, genomics, econometrics etc. The human brain is a complex network that has recently garnered immense interest within the data science community. Connectomics or the study of the underlying connectivity patterns in the brain has become an important field of study for the characterization of various neurological disorders such as Autism, Schizophrenia etc. Such connectomic studies have provided several fundamental insights into its intrinsic organisation and implications on our behavior and health. This thesis proposes a collection of mathematical models that are capable of fusing information from functional and structural connectivity with phenotypic information. Here, functional connectivity is measured by resting state functional MRI (rs-fMRI), while anatomical connectivity is captured using Diffusion Tensor Imaging (DTI). The phenotypic information of interest could refer to continuous measures of behavior or cognition, or may capture levels of impairment in the case of neuropsychiatric disorders. We first develop a joint network optimization framework to predict clinical severity from rs-fMRI connectivity matrices. This model couples two key terms into a unified optimization framework: a generative matrix factorization and a discriminative linear regression model. We demonstrate that the proposed joint inference strategy is successful in generalizing to prediction of impairments in Autism Spectrum Disorder (ASD) when compared with several machine learning, graph theoretic and statistical baselines. At the same time, the model is capable of extracting functional brain biomarkers that are informative of individual measures of clinical severity. We then present two modeling extensions to non-parametric and neural network regression models that are coupled with the same generative framework. Building on these general principles, we extend our framework to incorporate multimodal information from Diffusion Tensor Imaging (DTI) and dynamic functional connectivity. At a high level, our generative matrix factorization now estimates a time-varying functional decomposition. At the same time, it is guided by anatomical connectivity priors in a graph-based regularization setup. This connectivity model is coupled with a deep network that predicts multidimensional clinical characterizations and models the temporal dynamics of the functional scan. This framework allows us to simultaneously explain multiple impairments, isolate stable multi-modal connectivity signatures, and study the evolution of various brain states at rest. Lastly, we shift our focus to end-to-end geometric frameworks. These are designed to characterize the complementarity between functional and structural connectivity data spaces, while using clinical information as a secondary guide. As an alternative to the previous generative framework for functional connectivity, our representation learning scheme of choice is a matrix autoencoder that is crafted to reflect the underlying data geometry. This is coupled with a manifold alignment model that maps from function to structure and a deep network that maps to phenotypic information. We demonstrate that the model reliably recovers structural connectivity patterns across individuals, while robustly extracting predictive yet interpretable brain biomarkers. Finally, we also present a preliminary analytical and experimental exposition on the theoretical aspects of the matrix autoencoder representation

    Generative-Discriminative Low Rank Decomposition for Medical Imaging Applications

    Get PDF
    In this thesis, we propose a method that can be used to extract biomarkers from medical images toward early diagnosis of abnormalities. Surge of demand for biomarkers and availability of medical images in the recent years call for accurate, repeatable, and interpretable approaches for extracting meaningful imaging features. However, extracting such information from medical images is a challenging task because the number of pixels (voxels) in a typical image is in order of millions while even a large sample-size in medical image dataset does not usually exceed a few hundred. Nevertheless, depending on the nature of an abnormality, only a parsimonious subset of voxels is typically relevant to the disease; therefore various notions of sparsity are exploited in this thesis to improve the generalization performance of the prediction task. We propose a novel discriminative dimensionality reduction method that yields good classification performance on various datasets without compromising the clinical interpretability of the results. This is achieved by combining the modelling strength of generative learning framework and the classification performance of discriminative learning paradigm. Clinical interpretability can be viewed as an additional measure of evaluation and is also helpful in designing methods that account for the clinical prior such as association of certain areas in a brain to a particular cognitive task or connectivity of some brain regions via neural fibres. We formulate our method as a large-scale optimization problem to solve a constrained matrix factorization. Finding an optimal solution of the large-scale matrix factorization renders off-the-shelf solver computationally prohibitive; therefore, we designed an efficient algorithm based on the proximal method to address the computational bottle-neck of the optimization problem. Our formulation is readily extended for different scenarios such as cases where a large cohort of subjects has uncertain or no class labels (semi-supervised learning) or a case where each subject has a battery of imaging channels (multi-channel), \etc. We show that by using various notions of sparsity as feasible sets of the optimization problem, we can encode different forms of prior knowledge ranging from brain parcellation to brain connectivity
    • …
    corecore