4,139 research outputs found

    Visual art inspired by the collective feeding behavior of sand-bubbler crabs

    Full text link
    Sand--bubblers are crabs of the genera Dotilla and Scopimera which are known to produce remarkable patterns and structures at tropical beaches. From these pattern-making abilities, we may draw inspiration for digital visual art. A simple mathematical model is proposed and an algorithm is designed that may create such sand-bubbler patterns artificially. In addition, design parameters to modify the patterns are identified and analyzed by computational aesthetic measures. Finally, an extension of the algorithm is discussed that may enable controlling and guiding generative evolution of the art-making process

    Stochastic Parrots Looking for Stochastic Parrots: LLMs are Easy to Fine-Tune and Hard to Detect with other LLMs

    Full text link
    The self-attention revolution allowed generative language models to scale and achieve increasingly impressive abilities. Such models - commonly referred to as Large Language Models (LLMs) - have recently gained prominence with the general public, thanks to conversational fine-tuning, putting their behavior in line with public expectations regarding AI. This prominence amplified prior concerns regarding the misuse of LLMs and led to the emergence of numerous tools to detect LLMs in the wild. Unfortunately, most such tools are critically flawed. While major publications in the LLM detectability field suggested that LLMs were easy to detect with fine-tuned autoencoders, the limitations of their results are easy to overlook. Specifically, they assumed publicly available generative models without fine-tunes or non-trivial prompts. While the importance of these assumptions has been demonstrated, until now, it remained unclear how well such detection could be countered. Here, we show that an attacker with access to such detectors' reference human texts and output not only evades detection but can fully frustrate the detector training - with a reasonable budget and all its outputs labeled as such. Achieving it required combining common "reinforcement from critic" loss function modification and AdamW optimizer, which led to surprisingly good fine-tuning generalization. Finally, we warn against the temptation to transpose the conclusions obtained in RNN-driven text GANs to LLMs due to their better representative ability. These results have critical implications for the detection and prevention of malicious use of generative language models, and we hope they will aid the designers of generative models and detectors.Comment: 15 pages, 6 figures; 10 pages, 7 figures Supplementary Materials; under review at ECML 202

    Beyond Rewards: a Hierarchical Perspective on Offline Multiagent Behavioral Analysis

    Full text link
    Each year, expert-level performance is attained in increasingly-complex multiagent domains, notable examples including Go, Poker, and StarCraft II. This rapid progression is accompanied by a commensurate need to better understand how such agents attain this performance, to enable their safe deployment, identify limitations, and reveal potential means of improving them. In this paper we take a step back from performance-focused multiagent learning, and instead turn our attention towards agent behavior analysis. We introduce a model-agnostic method for discovery of behavior clusters in multiagent domains, using variational inference to learn a hierarchy of behaviors at the joint and local agent levels. Our framework makes no assumption about agents' underlying learning algorithms, does not require access to their latent states or policies, and is trained using only offline observational data. We illustrate the effectiveness of our method for enabling the coupled understanding of behaviors at the joint and local agent level, detection of behavior changepoints throughout training, discovery of core behavioral concepts, demonstrate the approach's scalability to a high-dimensional multiagent MuJoCo control domain, and also illustrate that the approach can disentangle previously-trained policies in OpenAI's hide-and-seek domain

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Learning to Speak and Act in a Fantasy Text Adventure Game

    Get PDF
    We introduce a large scale crowdsourced text adventure game as a research platform for studying grounded dialogue. In it, agents can perceive, emote, and act whilst conducting dialogue with other agents. Models and humans can both act as characters within the game. We describe the results of training state-of-the-art generative and retrieval models in this setting. We show that in addition to using past dialogue, these models are able to effectively use the state of the underlying world to condition their predictions. In particular, we show that grounding on the details of the local environment, including location descriptions, and the objects (and their affordances) and characters (and their previous actions) present within it allows better predictions of agent behavior and dialogue. We analyze the ingredients necessary for successful grounding in this setting, and how each of these factors relate to agents that can talk and act successfully

    From Chess and Atari to StarCraft and Beyond: How Game AI is Driving the World of AI

    Get PDF
    This paper reviews the field of Game AI, which not only deals with creating agents that can play a certain game, but also with areas as diverse as creating game content automatically, game analytics, or player modelling. While Game AI was for a long time not very well recognized by the larger scientific community, it has established itself as a research area for developing and testing the most advanced forms of AI algorithms and articles covering advances in mastering video games such as StarCraft 2 and Quake III appear in the most prestigious journals. Because of the growth of the field, a single review cannot cover it completely. Therefore, we put a focus on important recent developments, including that advances in Game AI are starting to be extended to areas outside of games, such as robotics or the synthesis of chemicals. In this article, we review the algorithms and methods that have paved the way for these breakthroughs, report on the other important areas of Game AI research, and also point out exciting directions for the future of Game AI

    Privacy in crowdsourcing:a systematic review

    Get PDF
    The advent of crowdsourcing has brought with it multiple privacy challenges. For example, essential monitoring activities, while necessary and unavoidable, also potentially compromise contributor privacy. We conducted an extensive literature review of the research related to the privacy aspects of crowdsourcing. Our investigation revealed interesting gender differences and also differences in terms of individual perceptions. We conclude by suggesting a number of future research directions.</p

    Methods for Interpreting and Understanding Deep Neural Networks

    Full text link
    This paper provides an entry point to the problem of interpreting a deep neural network model and explaining its predictions. It is based on a tutorial given at ICASSP 2017. It introduces some recently proposed techniques of interpretation, along with theory, tricks and recommendations, to make most efficient use of these techniques on real data. It also discusses a number of practical applications.Comment: 14 pages, 10 figure
    • …
    corecore