173 research outputs found

    Deep Learning Techniques in Radar Emitter Identification

    Get PDF
    In the field of electronic warfare (EW), one of the crucial roles of electronic intelligence is the identification of radar signals. In an operational environment, it is very essential to identify radar emitters whether friend or foe so that appropriate radar countermeasures can be taken against them. With the electromagnetic environment becoming increasingly complex and the diversity of signal features, radar emitter identification with high recognition accuracy has become a significantly challenging task. Traditional radar identification methods have shown some limitations in this complex electromagnetic scenario. Several radar classification and identification methods based on artificial neural networks have emerged with the emergence of artificial neural networks, notably deep learning approaches. Machine learning and deep learning algorithms are now frequently utilized to extract various types of information from radar signals more accurately and robustly. This paper illustrates the use of Deep Neural Networks (DNN) in radar applications for emitter classification and identification. Since deep learning approaches are capable of accurately classifying complicated patterns in radar signals, they have demonstrated significant promise for identifying radar emitters. By offering a thorough literature analysis of deep learning-based methodologies, the study intends to assist researchers and practitioners in better understanding the application of deep learning techniques to challenges related to the classification and identification of radar emitters. The study demonstrates that DNN can be used successfully in applications for radar classification and identification.   &nbsp

    Semi-Supervised Specific Emitter Identification Method Using Metric-Adversarial Training

    Full text link
    Specific emitter identification (SEI) plays an increasingly crucial and potential role in both military and civilian scenarios. It refers to a process to discriminate individual emitters from each other by analyzing extracted characteristics from given radio signals. Deep learning (DL) and deep neural networks (DNNs) can learn the hidden features of data and build the classifier automatically for decision making, which have been widely used in the SEI research. Considering the insufficiently labeled training samples and large unlabeled training samples, semi-supervised learning-based SEI (SS-SEI) methods have been proposed. However, there are few SS-SEI methods focusing on extracting the discriminative and generalized semantic features of radio signals. In this paper, we propose an SS-SEI method using metric-adversarial training (MAT). Specifically, pseudo labels are innovatively introduced into metric learning to enable semi-supervised metric learning (SSML), and an objective function alternatively regularized by SSML and virtual adversarial training (VAT) is designed to extract discriminative and generalized semantic features of radio signals. The proposed MAT-based SS-SEI method is evaluated on an open-source large-scale real-world automatic-dependent surveillance-broadcast (ADS-B) dataset and WiFi dataset and is compared with state-of-the-art methods. The simulation results show that the proposed method achieves better identification performance than existing state-of-the-art methods. Specifically, when the ratio of the number of labeled training samples to the number of all training samples is 10\%, the identification accuracy is 84.80\% under the ADS-B dataset and 80.70\% under the WiFi dataset. Our code can be downloaded from https://github.com/lovelymimola/MAT-based-SS-SEI.Comment: 12 pages, 5 figures, Journa

    Deep learning in light-matter interactions

    Get PDF
    The deep-learning revolution is providing enticing new opportunities to manipulate and harness light at all scales. By building models of light-matter interactions from large experimental or simulated datasets, deep learning has already improved the design of nanophotonic devices and the acquisition and analysis of experimental data, even in situations where the underlying theory is not sufficiently established or too complex to be of practical use. Beyond these early success stories, deep learning also poses several challenges. Most importantly, deep learning works as a black box, making it difficult to understand and interpret its results and reliability, especially when training on incomplete datasets or dealing with data generated by adversarial approaches. Here, after an overview of how deep learning is currently employed in photonics, we discuss the emerging opportunities and challenges, shining light on how deep learning advances photonics

    Machine Learning based RF Transmitter Characterization in the Presence of Adversaries

    Get PDF
    The advances in wireless technologies have led to autonomous deployments of various wireless networks. As these networks must co-exist, it is important that all transmitters and receivers are aware of their radio frequency (RF) surroundings so that they can learn and adapt their transmission and reception parameters to best suit their needs. To this end, machine learning techniques have become popular as they can learn, analyze and even predict the RF signals and associated parameters that characterize the RF environment. In this dissertation, we address some of the fundamental challenges on how to effectively apply different learning techniques in the RF domain. In the presence of adversaries, malicious activities such as jamming, and spoofing are inevitable which render most machine learning techniques ineffective. To facilitate learning in such settings, we propose an adversarial learning-based approach to detect unauthorized exploitation of RF spectrum. First, we show the applicability of existing machine learning algorithms in the RF domain. We design and implement three recurrent neural networks using different types of cell models for fingerprinting RF transmitters. Next, we focus on securing transmissions on dynamic spectrum access network where primary user emulation (PUE) attacks can pose a significant threat. We present a generative adversarial net (GAN) based solution to counter such PUE attacks. Ultimately, we propose recurrent neural network models which are able to accurately predict the primary users\u27 activities in DSA networks so that the secondary users can opportunistically access the shared spectrum. We implement the proposed learning models on testbeds consisting of Universal Software Radio Peripherals (USRPs) working as Software Defined Radios (SDRs). Results reveal significant accuracy gains in accurately characterizing RF transmitters- thereby demonstrating the potential of our models for real world deployments

    Artificial intelligence methods for security and cyber security systems

    Get PDF
    This research is in threat analysis and countermeasures employing Artificial Intelligence (AI) methods within the civilian domain, where safety and mission-critical aspects are essential. AI has challenges of repeatable determinism and decision explanation. This research proposed methods for dense and convolutional networks that provided repeatable determinism. In dense networks, the proposed alternative method had an equal performance with more structured learnt weights. The proposed method also had earlier learning and higher accuracy in the Convolutional networks. When demonstrated in colour image classification, the accuracy improved in the first epoch to 67%, from 29% in the existing scheme. Examined in transferred learning with the Fast Sign Gradient Method (FSGM) as an analytical method to control distortion of dissimilarity, a finding was that the proposed method had more significant retention of the learnt model, with 31% accuracy instead of 9%. The research also proposed a threat analysis method with set-mappings and first principle analytical steps applied to a Symbolic AI method using an algebraic expert system with virtualized neurons. The neural expert system method demonstrated the infilling of parameters by calculating beamwidths with variations in the uncertainty of the antenna type. When combined with a proposed formula extraction method, it provides the potential for machine learning of new rules as a Neuro-Symbolic AI method. The proposed method uses extra weights allocated to neuron input value ranges as activation strengths. The method simplifies the learnt representation reducing model depth, thus with less significant dropout potential. Finally, an image classification method for emitter identification is proposed with a synthetic dataset generation method and shows the accurate identification between fourteen radar emission modes with high ambiguity between them (and achieved 99.8% accuracy). That method would be a mechanism to recognize non-threat civil radars aimed at threat alert when deviations from those civilian emitters are detected

    XR-RF Imaging Enabled by Software-Defined Metasurfaces and Machine Learning: Foundational Vision, Technologies and Challenges

    Full text link
    We present a new approach to Extended Reality (XR), denoted as iCOPYWAVES, which seeks to offer naturally low-latency operation and cost-effectiveness, overcoming the critical scalability issues faced by existing solutions. iCOPYWAVES is enabled by emerging PWEs, a recently proposed technology in wireless communications. Empowered by intelligent (meta)surfaces, PWEs transform the wave propagation phenomenon into a software-defined process. We leverage PWEs to i) create, and then ii) selectively copy the scattered RF wavefront of an object from one location in space to another, where a machine learning module, accelerated by FPGAs, translates it to visual input for an XR headset using PWEdriven, RF imaging principles (XR-RF). This makes for an XR system whose operation is bounded in the physical layer and, hence, has the prospects for minimal end-to-end latency. Over large distances, RF-to-fiber/fiber-to-RF is employed to provide intermediate connectivity. The paper provides a tutorial on the iCOPYWAVES system architecture and workflow. A proof-of-concept implementation via simulations is provided, demonstrating the reconstruction of challenging objects in iCOPYWAVES produced computer graphics
    • …
    corecore