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ABSTRACT

The advances in wireless technologies have led to autonomous deployments of various wireless

networks. As these networks must co-exist, it is important that all transmitters and receivers are

aware of their radio frequency (RF) surroundings so that they can learn and adapt their transmis-

sion and reception parameters to best suit their needs. To this end, machine learning techniques

have become popular as they can learn, analyze and even predict the RF signals and associated

parameters that characterize the RF environment.

In this dissertation, we address some of the fundamental challenges on how to effectively apply

different learning techniques in the RF domain. In the presence of adversaries, malicious activities

such as jamming, and spoofing are inevitable which render most machine learning techniques inef-

fective. To facilitate learning in such settings, we propose an adversarial learning-based approach

to detect unauthorized exploitation of RF spectrum. First, we show the applicability of existing

machine learning algorithms in the RF domain. We design and implement three recurrent neural

networks using different types of cell models for fingerprinting RF transmitters. Next, we focus on

securing transmissions on dynamic spectrum access network where primary user emulation (PUE)

attacks can pose a significant threat. We present a generative adversarial net (GAN) based solu-

tion to counter such PUE attacks. Ultimately, we propose recurrent neural network models which

are able to accurately predict the primary users’ activities in DSA networks so that the secondary

users can opportunistically access the shared spectrum. We implement the proposed learning mod-

els on testbeds consisting of Universal Software Radio Peripherals (USRPs) working as Software

Defined Radios (SDRs). Results reveal significant accuracy gains in accurately characterizing RF

transmitters- thereby demonstrating the potential of our models for real world deployments.
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CHAPTER 1: INTRODUCTION

The ubiquitous use of wireless services and applications have become ingrained in every aspect

of our lives. We depend on wireless technologies not only for our smart phones but also for

other applications like telemetry, surveillance, emitter location, radio navigation, jamming, anti-

jamming, radar detection, UAV surveillance, navigation, and location tracking. With such large

scale dependence on use of the radio frequency (RF) spectrum, it becomes imperative that we

manage and use the limited available spectrum in the most efficient manner possible. In order to

do that, one needs to better understand the ambient signal characteristics for optimal deployment

of wireless infrastructure and efficient resource provisioning.

Design of new wireless technologies and deployment of wireless networks using those technolo-

gies must take into consideration several factors including detection and monitoring of encroach-

ment, ability to predict RF propagation and coverage, techniques to mitigate noise, policies en-

abling spectrum sharing, characterization of frequencies and waveforms, coverage analysis for

optimal deployment, detection and de-confliction and more importantly identification of adversar-

ial RF signals. Furthermore, the advent of dynamic spectrum access enabled by the use of software

defined radios is pushing the frontiers of wireless communications. These radios are expected to

constantly monitor the radio environment and the resulting data can be used to learn about their

surroundings so that they can intelligently adapt their RF parameters (e.g., operating frequency,

bandwidth, waveform, modulation, noise mitigation) to meet their desired objectives.

In order to best use the radio resources in both the spatial and time domains, and to maximize the

spectral efficiency, past and current knowledge of the RF signals are important. Though sensing

mechanisms can be used to assess the current environment, learning techniques are typically used

to analyze the past observations and predict future occurrences of events related to a signal. With
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the proven success of machine learning (ML) techniques in various domains, such techniques are

also being sought for characterizing and understanding the RF environment. Some of the goals of

the learning techniques in the RF domain are emitter fingerprinting, emitter localization, modula-

tion recognition, feature learning, attention and saliency, autonomous RF sensor configuration and

waveform synthesis.

ML techniques allow the radios to learn and adapt their RF parameters so as to optimize their

respective objectives. Such adaptation by the radios is achieved by exposing their configuration

options to make the operational parameters flexible and tunable. As a consequence, the config-

urability and adaptability features open up avenues for manipulation as well where a radio can be

induced to learn false information by adversaries [9]. This creates an unique set of challenges in

the domain of Radio Frequency Machine Learning (RFML) systems which makes implementing

ML algorithms for RF systems way more challenging.

In this chapter, we discuss the recent trends of facilitating learning in the RF domain using different

machine learning approaches. These ML techniques have their own strengths and weaknesses

depending on the context and the type of dataset being used. We start by broadly classifying the

ML techniques into supervised and unsupervised learning, and highlight the various schemes that

have been used in the RF domain. Then, we discuss five techniques that are currently being widely

explored as they exhibit promising results for future implementations. These are: i) Support Vector

Machine (SVM), ii) Deep Neural Networks (DNN), iii) Convolutional Neural Network (CNN),

iv) Recurrent Neural Network (RNN), and v) Non-parametric Bayesian Classifier. SVM and the

three neural networks (NN) perform better with continuous and multi-dimensional datasets, which

could be leveraged when the RF signals contain multiple attributes. However, applicability of

SVM and NN comes at a cost: they exhibit high variance sensitivity. On the other hand, Bayesian

classifiers are advanced statistical techniques for classifying and identifying features. In spite of

these developments, we argue that the ML techniques have their limitations in an adversarial setting
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i.e., if adversarial RF signals are present during the learning and/or classification process. We show

that approaches based on the relatively new generative adversarial nets (GAN) are well-suited for

learning in adversarial RF environments and are able to distinguish between adversarial and trusted

signals and sources. We also discuss the effectiveness if transmitter fingerprinting technique, the

basics of primary user emulation attack in the dynamic spectrum access (DSA) regime.

1.1 Machine Learning for RF Signals

The basic work flow of any machine learning algorithm starts with digesting the feature space.

Most often the quality of the model learned by the algorithm depends heavily on the quality of the

features used as input to the algorithm which in turn depends on the problem. Thus for example,

even though the RF data may consist of the RSSI values for a given problem, using the raw input

in this form may not result in the optimal model. In such cases it might be helpful to transform

the raw input features into a higher/lower dimensional feature space that succinctly captures the

essence of the problem thereby making it easier to learn better ML models for the problem. Fig. 1.1

shows the classification of different machine learning algorithms that have been used for learning

in the RF domain. All learning techniques broadly fall under either supervised or unsupervised

training mechanism.

Machine Learning
Algorithms in RF Domain

Supervised
(2.A)

K Nearest
Neighbours

(2.A)

Decision
Trees
(2.A)

Bayesian
Classifier
(2.A)

Unsupervised
(2.B)

Neural
Networks

(3)

DNN
(3.B)

SVM
(3.A)

CNN
(3.C)

RNN
(3.D)

K Means
Clustering
(2.B)

Hierarchical
Clustering
(2.B)

Neural
Networks

(4)

PCA
(2.B)

Generative
Adversarial Nets

(4)

Naive
Bayes
(2.A)

Baysian
Learning
(3.E)

Non
parametric

(3.E)

Figure 1.1: Classification of Machine Learning Algorithms in the RF Domain
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1.1.1 Supervised Learning in RF Domain

Supervised learning algorithms are a set of learning algorithms where a set of mutually exclusive

labeled data is used for building the learning model (also called training). One of the simplest

supervised learning algorithm is based on the K-nearest neighbor (KNN) search. The KNN algo-

rithm classifies previously unseen data based on the labels of nearest data samples that are included

in the training set. Algorithms based on KNN searches are usually very computation intensive, spe-

cially in the higher dimensions where the dimension of the feature space factors into the running

time of the known algorithms for computing KNNs. This also makes algorithms based on KNN

search unsuitable for the RF domain. Furthermore, KNN may not provide optimal performance

for higher dimensional dataset, which is often the case for RF signal data. Another set of super-

vised learning algorithms are based on the idea of decision trees. Decision trees are used to assign

specific class labels to the items using predictive modeling based on the values of the features asso-

ciated with the item of interest. The decision trees perform well with high dimensional data, which

could be advantageous for handling multidimensional RF data, however longer training time and

lack of accuracy could hinder usefulness in mission critical applications as is most often the case

with RF processing. Another important class of supervised algorithms are based on the idea of

Bayesian classifiers. Bayesian classifiers predict the probability of a given sample belonging to a

particular class using a priori knowledge. A specific category of Bayesian classifier is the Naïve

Bayes, where one assumes that each feature contributes towards the classification and are mutually

correlated. Since different parameters from the same kind of radios can be considered as mutu-

ally correlated, Naïve Bayes can potentially be used successfully in the RF domain. Naïve Bayes

also works reasonably well with limited training data and is less likely to suffer from overfitting.

However, the predictions are less accurate compared to the other methods like neural networks.

We defer our discussions on SVMs, DNN, CNN, and RNN to Section 1.2 as they have shown

promising results in the RF domain and thus deserve to be discussed in details.
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1.1.2 Unsupervised Learning in RF Domain

Unsupervised learning algorithms are a set of algorithms where there is no explicit training phase

for building a model from labelled data as is done with the supervised algorithms. These algo-

rithms make inference from the unlabelled data, most often exploiting the observed variance of the

data and their association relative to each other. K-means clustering is one such learning algorithm

where the observed data is partitioned into clusters using information about the distance between

the data points (or more generally using the similarity between the observed data points). New data

is assigned to a cluster such that the data point is closest to a particular cluster mean. Another set of

clustering algorithms are based on the idea of hierarchies. Here the items of interest are progres-

sively partitioned into a hierarchy of clusters, the clusters which are higher up in the hierarchy are

coarse whereas the ones that are lower are more fine grained. Hierarchical clustering can be used

for transmitter identification and classification where the number of entities are unknown. Another

set of unsupervised algorithms concerns with the problem of dimensionality reduction. Dimen-

sionality reduction aims to identify a subspace of the feature space such that the projection of the

data into the subspace (which has a lower dimension than the feature space) would explain most

of the variation observed in the data. Principal component analysis (PCA) is one such method for

dimensionality reduction and data compression. PCA can be very useful for the multi-dimensional

RF data as it can be leveraged to speed up the underlying classification or regression algorithms

when faster online learning and processing is required.

The final and most important category of unsupervised algorithms for the RF domain is the Gener-

ative Adversarial Networks (GANs) [32]. It is a relatively new class of algorithms that have been

shown to perform well in adversarial settings. GANs use a generative model which enables the

realistic generation of samples from a given distribution which can then be used to train a discrim-

inator for identifying real samples drawn from the distribution as opposed to fake ones obtained
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from the generator.

1.2 Important ML Algorithms for RF Domain

In this section, we describe the ML techniques that have been most successful in characterizing

the RF environment by identifying and differentiating signals from different kinds of transmitters

like broadcast radio, local and wide area data and voice radios, radars etc. Support vector ma-

chine (SVM) was one of the earliest algorithms used due to the availability of different standard

library packages and its applicability to multi-dimensional labeled dataset. However, neural net-

work based classification have become popular in recent times as they are flexible with the learning

parameters and also yield better accuracy. As far as unsupervised learning is concerned, there are

a few efforts towards RF parameter identification, the non-parametric version of the Bayesian clas-

sifier probably being the most successful one.

1.2.1 Support Vector Machine

SVMs have been one of the most successful classical machine learning algorithms and have been

applied to a vast array of problems. SVM is a discriminative classifier using supervised learning

and generates an optimal hyperplane for data classification and identification. It has been applied

to the RF domain for transmitter identification using fingerprinting. At its heart SVMs are bi-

nary classifiers that assume that the data is linearly separable and computes the optimal separating

hyperplane by solving a quadratic program on the space defined by the training data.

SVMs have been successfully applied for the task of transmitter identification using the RF finger-

print of the transmitter. In [43], Kroon et al. presented a RF fingerprinting technique for banning

prohibited transmitters from accessing the cellular base stations. They proposed a customized en-

6



semble classifier based on the probability density of a SVM classifier, which achieved 97% true

positives and 80% true negative rates.

However in recent times, the research trends on RF fingerprinting is shifting towards using raw

signal data as compared to using hand engineered features. This has also been facilitated by the

availability of automatic feature learning systems like the multi layer perceptron. In [40], Youssef

et al. investigated different ML strategies including SVM and neural networks using raw I/Q data,

rather than using any hand-engineered features. I/Q data consists of complex-valued in-phase (I)

and quadrature (Q) component in a signal data constellation. Their implementation produces good

training accuracy of 87.6% but poor test accuracy of 67.6%.

SVM classifiers are relatively easy to implement and can be extended for higher dimensional data.

However, achieving a high accuracy remains a challenge. Furthermore, SVM implementations do

not typically consider any adversarial situation; thus, when malicious entities try to pass as a trusted

device, the SVM classifier has no way of determining its true identity and thus would incorrectly

classify it as one of the trusted devices. This makes the possibility of using SVMs in adversarial

settings quite low. Moreover SVMs require hand engineered features even when raw I/Q data is

used. As a result of these drawbacks and the recent resurgence of neural networks attention as

turned to using the same for RFML applications.

1.2.2 Deep Neural Networks

Deep Neural Networks (DNN) have revolutionized the field of artificial intelligence in the last few

years. The problems tackled by DNNs range over Computer Vision, Natural Language Processing,

Speech Processing and so on. They have been shown to perform better than humans, for some

of these problems. More recently, [65] and [67] have shown the efficacy of using DNNs in RF

communication systems. In [65], Shea et al. presented a modulation recognition approach using
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DNN, achieving nearly 82%-87% accuracy. They used a synthetic dataset consisting of 11 widely

used modulations: 8 digital and 3 analog modulations. Their RF fingerprinting was based on the

modulation type which was used as the primary input feature (for the network which then computes

more complex features for model learning).

The automatic features learned by DNNs are often times better and more informative than the hand

engineered features used for SVMs and hence the DNNs yield better accuracy. However DNNs do

not perform as well for datasets with spatial and temporal correlations, which is the case for the RF

domain. RF signals exhibit high spatial correlation (e.g., modulation schemes) or high temporal

correlation (e.g., I/Q signal data) or both and in order for a system to work well with RF data these

correlations need to be exploited by the learning system. Furthermore, DNNs have shown to be

susceptible to malicious attacks and fails to distinguish rogue transmitters from trusted ones [68]

in the presence of active adversaries.

1.2.3 Convolutional Neural Networks

Fully connected DNNs are like standard neural networks but with a lot more hidden layers. How-

ever, these networks can be augmented with convolutional layers for faster training and for en-

abling the network to learn more compact and meaningful representations. Deep Convolutional

Neural Networks (DCNN) have been shown to be effective for several different tasks in communi-

cation. There have been quite a few attempts at using DCNN for learning different RF parameters.

One such effort is presented in [68], where Shea et al. presented an optimized DCNN model (with

18 layers) for recognition of modulation schemes for a large synthetic dataset (consisting of 24

modulation schemes), as well as over-the-air data. 94% accuracy on synthetic data and 87% ac-

curacy on over-the-air data, were achieved. Inspired from this and buoyed by the success of the

application of CNNs in communication, Youssef et al. presented a CNN architecture [40] for deep

feature embedding, transmitter identification and classification.
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CNN works with several filters that capture the spatial correlation within the input features for the

purpose of computing lower level features that effectively capture the spatial correlation between

the input features. A cascade of such filters are used for propagation of these features through

multiple layers, in effect computing more low level features, thereby giving the best solution for

datasets having spatially correlated features. However, it does not perform well in general for

datasets where the features are uncorrelated, for example the rise time which is a feature that can

be computed for many RF datasets. CNNs may not perform well if the nature of the correlations

change from the training data to the test data. This is because in such cases the features computed

through the different filters on the training data will not be applicable to the test data. It is also not

recommended for time series data where temporal correlations might exist. Moreover, CNNs have

the same limitations as DNNs in regards to immunity from malicious attacks.

1.2.4 Recurrent Neural Networks

Recurrent neural networks (RNN) are capable of predictions with time series data. They have been

shown to work well with speaker recognition tasks [74] and inspired by this and based on the fact

that the raw RF signal data from the transmitter represent a time series, RNN can be considered

as a potential model to build a system for learning transmitter embedding and classification. One

variant of RNN is long short term memory (LSTM) [28], which has been successfully used for

modeling temporal data such as speech. The problem of estimating the noise from the signal,

requires analysis of the temporal data because the noise characteristics can only be estimated by

looking at the received signal over time.

In order to estimate the noise, any system needs to “listen” to the underlying signal for sometime

and “remember” the same, for noise estimation. Previously, neural networks lacked this capability.

Another issue was the problem of vanishing gradients, when trying to use back propagation with
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temporal data. However, both these problems were solved by the invention of gated units, such as

the Long Short-Term Memory (LSTM), the Gated Recurrent Unit (GRU), and their variants.

In [73], Sreeraj et al. presented a 2-layer LSTM model to perform modulation recognition over

the synthetic dataset of 11 modulation schemes. Accuracies close to 90% was achieved for data

with high signal to noise ratio coupled with time domain data. This implementation establishes

the feasibility of using recurrent neural network models for learning RF features related to time

domain analysis. However, effectiveness of LSTM models for learning other RF parameters is still

an open research challenge.

RNN performs well with temporally correlated dataset through the implementation of the con-

cepts of “memory” and “gates”. However it responds poorly to spatially correlated data. RNN

implementations also incorrectly classify the rogue data as one of the trusted ones when active

adversaries spoof the signals as coming from trusted sources in cases where they are not.

1.2.5 Non-parametric Bayesian Classifier

A non-parametric Bayes classifier is an unsupervised learning strategy which uses a probability

density estimator to determine the probability of an observation belonging to a particular class.

Nguyen et al. presented a non-parametric Bayesian learning [59] approach to identify wireless

devices by characterizing their fingerprints. They considered a device dependent feature space

modeled as multivariate Gaussian distribution, which includes frequency difference and phase shift

difference as dominant features. The non-parametric Bayesian learning approach is then employed

over the generated distributions and used to identify the unknown number of clusters. Experimental

results reveal that the proposed method was capable of clustering 1 to 4 Zigbee transmitting devices

with a 100% hit rate. Next, they showed that the proposed RF fingerprinting approach can be

applied for intrusion detection for Sybil and masquerade attacks by spoofing the MAC address.
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There is still a dearth of methods that are resilient to any general type of attacks for RFML systems.

1.2.6 Comparison of Different ML Techniques

Analyzing the potential of different kinds of ML approaches in RF parameter learning, we summa-

rize that (a) SVM struggles to achieve high accuracies for higher dimensional datasets, (b) DNN is

best suited for fixed valued RF parameters (e.g., rise time), (c) CNN works well with RF parame-

ters that exhibit high spatial correlations (e.g., modulation techniques), (d) RNN is the best option

for RF parameters with high temporal correlations (e.g., I/Q signal data), and (e) Non-parametric

Bayesian classifiers are limited to specific type of applications and datasets.

It must be noted that all the aforementioned ML techniques are susceptible to attackers. Once the

attacker gets to know of the features used by the learning engine, it becomes easy for the attacker

to mislead the learning process. The same applies in the RF domain where a RF transmitter can

spoof the signals of others and remain undetected.

1.3 Adversarial Learning via GAN

The idea of a generative adversarial net (GAN) [32] in machine learning is based on synergistic

application of ideas from game theory and unsupervised learning. It consists of two competing

systems: a generator (adversary) and a discriminator. The input from the “adversaries” is used to

build robust discriminative models that can operate in the presence of real adversaries. The over-

all training mechanism can be conceptualized as a min-max game with two players, namely the

generator and the discriminator. They help each other to improve themselves through an iterative

training process. Though in theory, the generator and discriminator should play the game indefi-

nitely, in reality, depending on the ratio of data and model density, the discriminator overpowers
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the generator in a finite amount of time, due to the vanishing gradient of the generator. In prac-

tice, this results in generating more accurate and robust ML models. Note that the discriminator

implementation is made deeper than the generator in order to get a purposeful implementation of

the GAN framework.

1.4 Transmitter Fingerprinting

The ubiquitous usage of wirelessly connected Internet-of-Things (IoT) [99] along with the deploy-

ment of wireless autonomous systems has ushered in a new era of industrial scale deployment

of radio frequency (RF) devices. This prevalence of large scale peer-to-peer communication and

the nature of the underlying ubiquitous network brings forth the challenge of accurately identify-

ing a RF transmitter. Every device that is part of a large network needs to be able to identify its

peers with high confidence in order to set up secure communication channels. One of the ways in

which this is done is through the interchange of “keys” [84] for host identification. However, such

schemes are prone to breaches by malicious agents [90] because often the actual implementations

of such systems are not cryptographically sound. In order to get around the problem of faulty im-

plementations, one can use the transmitter’s intrinsic characteristics to create a “fingerprint” that

can be used by a transmitter identification system. Every transmitter, no matter how similar, has

intrinsic characteristics because of the imperfections in its underlying components such as ampli-

fiers, filters, frequency mixers as well as the physical properties of the transmitting antenna; these

characteristics are unique to a specific transmitter. The inaccuracies present in the manufacturing

process and the idiosyncrasies of the hardware circuitry also contribute to the spatial and temporal

characteristics of the signal transmitted through a particular device.

Those inherent heterogeneity can be exploited to create unique identifiers for the transmitters. One

such property is the imbalance in the Inphase (I) and Quadrature (Q) phase components of the
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signal (I/Q data). However, because of the sheer number of the transmitters involved, manually

“fingerprinting” each and every transmitter is not a feasible task [21]. Thus, in order to build such

a system, there needs to be an “automatic” method of extracting the transmitter characteristics and

using the resulting “fingerprint” for the differentiation process. One way of achieving this is by

learning the representation of the transmitter in an appropriate “feature space” that has enough dis-

criminating capability so as to be able to differentiate between “apparently identical” transmitters.

Among the various approaches that can be used to discern this feature space, deep learning (DL [45])

based methods provide an efficient and automatic way of learning and characterizing the feature

space. They are able to learn and analyze the inherent properties of large deployments and use

it to predict and characterize the associated parameters for the task of automatic feature learning

for classification (or regression). Deep neural networks have been shown to be effective for au-

tomatically learning discriminating features from data for various tasks [31]. With proper choice

of the neural network architecture and associated parameters, they can compute arbitrarily good

function approximations [48]. Since the task of classification is equivalent to learning the decision

boundary, neural networks have been a natural candidate for a learning machine.

1.5 Primary User Emulation Attack

The opportunity for abundant usage of wireless devices has created an overly crowded radio spec-

trum and led to the scarcity in spectrum availability. In order to deal with this different pervasive

measures are taken to deal with competitive nature of the spectrum availability. However, studies

have shown that a large portion of licensed spectrum is unused at any given time or location [54].

To exploit such unused spectrum, the concept of dynamic spectrum access (DSA) was envisioned.

The deployment of such spectrum management approach requires the use of intelligent systems at

lower levels of the communication stack, even at the end users. Cognitive radio networks (CRN)
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have proven its competence for such deployments [107]. The basic idea of DSA is to allow some

unlicensed users (secondary users) to opportunistically access the spectrum of the licensed users

(primary users) when the spectrum is not in use. The rules strictly restrict any harmful overlap or

pretentious use of spectrum by secondary users (SUs) when primary users (PUs) are present. The

cognitive properties of CRN, enable the radio devices to take decision on how to manage spec-

trum for both PUs and SUs. One important challenge in order to achieve the goal of ideal CRN

deployment is ensuring the security of PUs.

Most of the research on such spectrum allocation and management techniques for DSA deploy-

ment, are build on the assumption that all participants are cooperative, honest, and the network is

without the presence of adversaries. The Federal Communications Commission (FCC) [27] man-

dated that all SUs must release the occupied spectral band as soon as any PU starts to transmit

in that band, ensuring full privacy and availability for the licensed users. However, since till now

the CRN network deployments are lacking any measure to implement the security guidelines [10],

a situation could arise where the PUs get denied the required spectrum due to the presence of a

malicious SU. This threat could be categorized as denial-of service (DoS) attack [39]. An adver-

sarial SU could pose itself as a PU by transmitting the signal with characteristics identical to the

PU. Such malicious SUs could threaten the integrity of the CRN in two ways: (i) by preempting

the existing SUs in any spectral band, by posing as a PU; and (ii) by fooling the spectrum man-

ager to deny the PU, as the malicious SU is impersonating itself as a valid PU. Such malicious

deployment of large scale can hijack the entire white space of any spectrum band, thus launching a

“DoS” attack on the legitimate SUs and PUs. Such attacks were first described by Chen et al. [15]

as primary user emulation (PUE) attacks.
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1.6 Primary User’s Activity Prediction

The ever-increasing demands for spectrum access from different emerging wireless applications

have made it necessary to better manage and utilize the radio spectrum. The successful deploy-

ment of such spectrum management approaches requires intelligent and adaptive systems, in order

to accurately assess the radio environment such that unlicensed (secondary) users are able to op-

portunistically access the spectrum of licensed (primary) users when such spectrum is not in use,

thereby increasing the spectrum utilization. However, such spectrum management and deployment

practices must take into account the fact that spectrum access policies prohibit any interference vi-

olation by the secondary users (SUs) when primary users (PUs) use the spectrum. The Citizens

Broadband Radio Service (CBRS) [82] is an example of a DSA implementation, where variety of

commercial users share the 3.5 GHz band with incumbent federal and non-federal licensed users.

The Federal Communications Commission (FCC) [27] mandated that all SUs must release the

occupied spectral bands as soon as any PU starts to transmit on that band, ensuring uninterrupted

availability to the licensed users. To ensure this, the SUs must have knowledge about the spectrum

availability. This awareness is typically achieved by sensing the transmission activities on the

target spectrum bands using various techniques like: use of beacons, geolocation database, and

local energy sensing at the receivers [52, 108].

In this dissertation, we focus on spectrum sensing performed at a central spectrum sensor (SS), as

the use of a centralized SS has broaden applications and lower infrastructure costs [103].

We illustrate the various aspects of spectrum sensing in Fig. 1.2. The first row represents the

PU’s ON-OFF activity and the remaining rows show the SU’s activities that include sensing and

transmissions when PU is in the OFF state.
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Figure 1.2: Typical Spectrum Sensing Scenarios

Note that the first two strategies do not involve separate SS and we also assume that the SUs sense

the spectrum continuously. The last two strategies involve the SUs deciding to access the spectrum

based on the information obtained from a local centralized SS. Thus in the first case, a conserva-

tive strategy is imposed on the SU for use of the channel. The cognitive SU continuously senses

the channel and whenever it finds that the channel is free, it transmits in the next timestamp, go-

ing back to the sensing state after that. The second strategy is also conservative but here the SU

transmits in bursty mode. Both these conservative strategies aim to avoid interference violations;

however, under-utilization is high. As for the third strategy, the spectrum sensors send information

to secondary user whenever it senses the channel to be free. The secondary user transmits from

one timestamp and consults the spectrum sensor for the next timestamp. Note that here we assume
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that the time taken to consult the spectrum sensor is less than the spectrum sensing time. This as-

sumption coupled with the strategy minimizes the under-utilization of the previous two strategies.

The fourth strategy is proposed in this dissertation. In this case, the spectrum sensor is intelligent

and trained over the historical data of primary user activity. It can predict the primary use’s activity

for the next timestamp. The secondary user uses that prediction to transmit in bursty mode. It is

evident from all the four strategies that long term prediction from the SS enables the SU to transmit

efficiently over the shared channel by minimizing both the under-utilization and the interference

violations.

1.7 Contribution of this Dissertation

This dissertation focuses on four approaches to address some of the fundamental challenges on

how to apply different learning techniques in the RF domain. (1) First, we propose an adversarial

learning based approach to detect malicious attacks in the RF domain. (2) We explore the spatio-

temporal properties in RF data for fingerprinting of RF transmitters. (3) We propose a defense

mechanism against primary user emulation attacks using generative adversarial network based

learning for dynamic spectrum access (DSA) networks. (4) Lastly, we propose a machine learning

model for primary user activity prediction in DSA networks using recurrent structures. We show

the applicability of existing machine learning algorithms in RF domain is feasible. Those learning

techniques can be leveraged to different cheap and robust security measures in dynamic spectrum

access era of RF transmission in general. The designed models, and testbed evaluations show

the significant accuracy over real collected dataset, therefore portraying feasible scenarios of real-

world deployment. The main contributions of this dissertation are as follows:

1. We propose and implement the Radio Frequency Adversarial Learning (RFAL) framework
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using a GAN with two primary components: i) a generative model that uses a deep neural

network (DNN) for generating fake (aka, counterfeited) signals that closely resembles the

real signals, by deducing the parameter space and replicating the time-invariant features

and ii) a discriminative model that also uses a neural network (DNN) to distinguish trusted

transmitters from rogue ones. During the learning phase, the outcome of the decision process

is fed to the generative model, allowing the adversary (generator) to update its model. The

generator thus serves as a compact front-end for mimicking a transmitter (rogue transmitter

in this case).

2. Once RFAL detects the trusted transmitters from the rogue ones, RFAL uses standard NN

models to differentiate between the different trusted transmitters. RFAL first uses a con-

volutional neural network (CNN) which leverages the correlation between the complex-

valued I/Q data constellations. We also test RFAL using a fully connected deep neural

network (DNN) that improves upon the accuracy of the CNN. Finally, a recurrent neural

network (RNN) with both long short term memory (LSTM) and gated recurrent units (GRU)

is used with RFAL that exploits the time series properties of the I/Q data.

3. Our models have been validated on a laboratory testbed consisting of several universal soft-

ware radio peripheral (USRP) B210s [26] and a RTL-SDR receiver which is also a software

defined radio (SDR) [60]. The USRPs transmitted signals on a particular frequency which

were received by the RTL-SDR. We also collect I/Q data from a SDR made by another

manufacturer, namely ADALM-PLUTO [23]. We show that the I/Q imbalance is more pro-

nounced (and thus easier to exploit both explicitly as well as implicitly) when different types

of SDRs (from different manufacturers) are used as transmitters. We also collect three more

datasets of I/Q values from 8 USRP B210s with varying signal-to-noise-ratio (SNR). We use

distance and multi-path as the defining factors for SNR variation during data-collection.

4. We train the proposed models and present a competitive analysis of the performance of our
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models against the traditional techniques and state-of-the art techniques for transmitter iden-

tification (classification). Results reveal that the proposed methods out-perform the existing

ones thus establishing the superiority and usefulness of the proposed models, more so con-

sidering the fact that the proposed models do not require any pre-processing of the raw I/Q

data that feeds into the NN models.

5. We exploit the temporal properties of I/Q data and propose a supervised learning approach

for transmitter identification using a recurrent network structure. We use two approaches:

first, we exploit only the temporal property, then we exploit the spatio-temporal property. We

propose RNNs with LSTM and GRU cells for the first approach. We propose a convLSTM

model for the latter. Although transmitter fingerprinting has been studied earlier, but to the

best of our knowledge this is the first work which leverages the spatio-temporal property of

the over-the-air signal data.

6. We validate the proposed RNN models using the indoor testbed setup mentioned earlier. The

novelty of our approach lies in accurately modeling and implementing the different types of

RNNs to generate a robust transmitter fingerprinting system from over-the-air signal data,

by exploiting the spatio-temporal correlations within the signal data.

7. We propose a generative adversarial net based solution towards the primary emulation at-

tack. We impersonate SUs using two types of generator models: (a) dumb attacker, and (ii)

smart attacker. The dumb attacker has no “prior" information about the signal characteristics

of the PUs, but still tries to emulate the PUs. However, the smart attackers has sufficient

information about the PU’s signal data and therefore can emulate the PU’s signal in an in-

telligent way. We also model two discriminators (neural networks) and train them over the

PU data, and generated data. The “dumb discriminator” gets generated data from dumb gen-

erator attack model, and “smart discriminator” gets data from smart one. We show that the

GAN training makes the discriminator able to distinguish between a wide array of possible
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malicious entity types and therefore being able to detect the real adversaries with intention

of PUE attack.

8. Using USRP, we collect the raw over-the-air signal data from PUs to train both the discrim-

inators. We also extract the PU’s signal characteristics from the collected data and train

the smart generator. We show that the untrained discriminators have a ∼50% accuracy for

detecting PUE attackers during the deployment phase. We present 100% training accuracy

for both the generator models. The trained discriminators over dumb, and smart generator

models exhibit testing accuracy of 98%, and 99.5% respectively during deployment phase,

with real PUE attackers present.

9. We propose three machine learning based models for long-term prediction of the primary

user’s activity. They are: (i) Linear regression; (ii) Recurrent neural network (RNN) with

Long Short Term Memory (LSTM) cells; and (iii) RNN using Convolutional LSTM (ConvL-

STM) cells. Using a testbed, we record transmission activities of 8 software defined radios

(USRP B210) [26], which are used as primary users. A central spectrum sensing module is

trained using the proposed models on the collected dataset for multiple epochs by minimiz-

ing the mean squared error over the training data. The trained models are then used by the

spectrum sensor and used for long-term prediction of the activities of the primary user, to be

used by the secondary users during the deployment phase.

10. We deployed the trained version of all the models in a spectrum sensor and predicted the

shared channel availability for the secondary users with 75%, 97%, and 99% accuracy re-

spectively for linear regression, LSTM, and ConvLSTM. Note that intuitively the ConvL-

STM based model is able to achieve this high accuracy by exploiting the spatio-temporal

correlation present within the recurrent structure of the collected I/Q data. We also show

through testbed evaluation that the proposed models can decrease interference violations by

0.2%, 99.3%, and 100% for linear regression, LSTM and ConvLSTM models, respectively.
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Under-utilizations are decreased by 98.9%, 99.5%, and 100% respectively, for the aforemen-

tioned models.

1.8 Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 presents the related work that is relevant to

this dissertation. In Chapter 3, we propose a rogue transmitter detection technqiue using GAN

based framework in adversarial learning. Chapter 4 presents the machine learning algorithms for

classification of authentic transmitters using recurrent structures of I/Q data. A defense mechanism

against the PUE attack is presented in Chapter 5. The primary user prediction modelling and

testbed implementation is presented in Chapter 6. Finally, Chapter 7 presents the conclusions.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we discuss the related works that are most relevant to this dissertation. We di-

vide the discussion into i) transmitter fingerprinting, ii) use of recurrent neural network (RNN)

for transmitter fingerprinting, (iii) existing defense against PUE attacks, and (iv) primary user’s

activity predictions.

2.1 Transmiter Fingerprinting

The problem of transmitter classification has been studied in the past. Here we first discuss a

few traditional learning based approaches for transmitter classification. Finally, we discuss more

recent transmitter identification methods based on the idea of automatic feature detectors (like

neural networks). We also discuss the advantages of using automatic feature learning techniques

over the traditional ones.

2.1.1 Traditional Learning based Techniques

Traditional transmitter classification methods are based on statistical learning techniques that use

expert engineered features which leverage some unique characteristics of the transmitters. In [94],

the authors proposed a genetic algorithm based solution for transmitter classification based on

transients. A transient signal is transmitted when a transmitter is powered up or powered down.

During this short period (typically few micro seconds), capacitive loads charge or discharge. A ge-

netic algorithm generated the “transient times” from 5 different types of transmitters, which were

later classified using a NN model yielding a 85% - 98% accuracy. It is to be emphasized that the

experimental results were solely based on the synthetically generated transient values. Though this
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work used NNs for the final classification, the features (transients) were empirically determined

and hence we categorize this as an example of a traditional approach. A multifractal segmentation

technique was proposed in [86] using the same concept of transients. The segmentation technique

extracted significant features from transient signals and generated a compact multifactral model.

Later a probabilistic NN classifier achieved 92.5% success rate over the extracted transient fea-

tures in a simulated environment. Another transient based transmitter classification was proposed

in [41]. A k-nearest neighbor discriminatory classifier was used to create a classification engine

which leveraged transient signals for spectral feature selection. The authors achieved a 97% accu-

racy at 30 dB SNR and 66% accuracy at 0 dB SNR for classification of 8 transmitters.

A different approach for transmitter fingerprinting was proposed in [101], where the authors clas-

sified FM radio transmitters based on unique stray features extracted from spurious modulation

characteristics. The proposed approach was able to classify samples (20 dB SNR) from 3 FM radio

stations with 62%-71% accuracy. This method does not provide a competitive accuracy and is also

constrained by the need to have knowledge of modulation technique. A particle swarm optimiza-

tion (PSO) technique was proposed in [25], where two radar transmitter models were classified

based on the radar pulse’s time-frequency representation. An acceptable classification accuracy

was reported with 20 dB SNR and relatively low component tolerances. In [106], the authors

proposed a location-based transmitter fingerprinting approach by extracting signal characteristics

(skewness and kurtosis) from wavelet transform. This transmitter location fingerprint was per-

formed for 4 stationary transmitters in an indoor office environment. In [30], the authors proposed

a dimensionality reduction method for extracting intrinsic features from bispectrum information of

transmitters. They reported 99% accuracy for transmitter identification from the bispectrum ma-

trices. However, deployment of such techniques in real-time is challenging due to the additional

overhead for generating the bispectrum before the classifier can be invoked for identification.

As seen from the above discussion, there are some advantages to using traditional fingerprinting
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techniques such as classifying the transmitters based on their unique identifications in that we are

able to leverage the expertise of the “human-in-the-loop” using such techniques through feature

engineering. However, these methods have extra overhead due to the feature extraction step and

furthermore the quality of the solution is constrained by the knowledge of the expert making such

techniques limited in scope. Moreover, as the features are signal and protocol dependent, any

change in the nature of the transmission mandates a change in the underlying model, thus making

them hard to generalize across different types of transmissions (having varying protocols, hetero-

geneous transmitters etc.).

2.1.2 Automatic Feature Learning based Techniques

In recent years, there has been some effort at using automatic feature learning techniques for fin-

gerprinting RF transmitters. In [65] the authors presented a radio modulation classification method

using naively learned features. They have shown that blind temporal learning on densely encoded

time series using CNNs is a viable approach. However, this method did not perform well in the

low signal to noise ratio (SNR) regime. In [92], the authors have presented an unsupervised learn-

ing technique using convolutional autoencoders, to learn the modulation basis functions and then

leverage that to recognize different digital modulation schemes. They also proposed and evaluated

quantitative metrics for evaluating the quality of the encoding using domain relevant performance

metrics.

In [67] the authors have demonstrated the use of NN for modulation detection. Apart from the

results, an interesting aspect of the work is the way I/Q values were used as input to the NN.

More precisely, given N I/Q values, the authors used a vector of size 2N as an input to the NN,

effectively using the I and Q components as a tuple representing a point in the complex plane.

A method for modulation classification was proposed in [73], for a distributed wireless spectrum
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sensing network. The authors used a recurrent neural network using long short term memory

(LSTM) cells yielding 90% accuracy on a synthetic dataset [72].

An in-depth study on the performance of deep learning based radio signal classification was pre-

sented in [68]. The authors considered 24 modulation schemes with a rigorous baseline method

that uses higher order moments and strong boosted gradient tree classification for detection. The

authors also applied their method to real over-the-air data collected by Software Defined Radios

(SDRs). In [66] an approach based on the idea of adversarial learning was proposed for synthe-

sizing new physical layer modulation and coding schemes. The adversarial approach is used to

learn the channel response approximations in any arbitrary communication system, enabling the

design of a smarter channel autoencoder. All these approaches demonstrate the efficacy of using

an “end-to-end” technique based on learning deep feature representations, for different tasks in the

RF domain.

There have been quite a few studies that have used CNN based models for automatic feature learn-

ing [17,55,56,75,85,102,109] for the task of transmitter classification (or identification). The CNN

models presented in [55,75,85] require some pre-processing on the raw signal data before it can be

used as input. In [102], the authors compared several learning paradigms for the task of transmitter

identification. More precisely, they looked at conventional deep neural nets, convolutional neural

nets, support vector machines, and deep neural nets with multi-stage training. They showed that

deep neural nets with multi-stage training worked best for the problem and achieved 100% accu-

racy with a novel dataset having 12 transmitters. On the other hand CNN models were proposed

in [17, 56, 109] for existing datasets (ACARS [4], ADS-B [5], FIT/CorteXlab [53]). However,

none of these models directly take the the raw signal data as input. Note that none of the methods

that we have discussed till now in regards to the task of transmitter identification are resilient to

the presence of active adversaries. This motivated us to propose a robust NN based model which

would be resilient to the presence of active adversaries and at the same time provide an end-to-end
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solution to the transmitter classification problem.

2.1.3 Comparison of Traditional and Deep Learning based Methods

All the traditional techniques that have been used for RF analysis lack flexibility and robustness.

These approaches require an expert’s involvement for determining which features (e.g., transients,

spurious modulation, etc.) to extract and how to design an algorithm tuned to that feature. Even if a

feature is identified, it is not necessary that this feature will be applicable for all scenarios. For ex-

ample, location based fingerprinting [106] will work well for indoor environments but will fail for

non-stationary transmitters. However, deep learning (DL) based methods are capable of learning

the features automatically from the data and hence they do not require the feature engineering step.

Furthermore it is possible to use DL techniques in conjunction with adversarial learning to build

robust transmitter classification models that can function in the presence of active adversaries. In

this work, we use the raw I/Q data as an input to the learning model. The model automatically

discerns the features that can encode the information required to disambiguate the transmitters.

Note that the features computed by the DL system can be implicitly based on the “I/Q imbalance”

or some other intrinsic features of the transmitter or a combination of these.

2.1.4 I/Q Imbalance based Fingerprinting

“I/Q imbalance” based fingerprinting approaches provide more significant discriminant informa-

tion than transient based or modulation-metrics based approaches [37]. Though the use of RF

signal data in general (and I/Q data in particular) with machine learning algorithms has been lim-

ited in the past, more recently there has been several applications (see [57] and references therein).

An “I/Q imbalance” based fingerprinting approach was proposed in [37], where a subclass dis-
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criminant analysis (SDA) ML method was used to estimate the distortion parameters from the I/Q

constellations as features. The proposed method was tested on transmitted signals from 7 Time-

division multiple access (TDMA) satellite terminals, relayed by a transparent transponder, giving

97% accuracy over 15 dB SNR. However, this method is not guaranteed to capture the difference

between transmitter’s “I/Q imbalances,” as it is aggregated by the imbalance of the transpon-

der. Similarly, a classifier based on Gaussian mixture models (GMM) was proposed in [70].

Though, the study showed ∼100% accuracy, the experiments were conducted on artificial data.

A simulation-based transmitter authentication scheme was proposed in [33] using an “I/Q imbal-

ance” matrix and multiple collaborating receivers. After analyzing these existing DL techniques,

it is evident that there is still a lack of systematic “end-to-end” approaches, that can use the raw

signal data from real transmitters and exploit the I/Q imbalance for fingerprinting. It must be noted

that DL-based RF methods will not only exploit the “I/Q imbalances” but also extract and use

other intrinsic features related to the transmitters that may or may not be directly related to I/Q im-

balance. However, the end product will conceptually be able to differentiate between transmitters

having different “I/Q imbalances.”

2.1.5 Consideration of Adversaries

Motivated by the capacity of deep learning systems to automatically learn deep discriminative fea-

tures, we focus on the problem of transmitter identification in the presence of adversaries using

a generative adversarial network (GAN). The idea of training discriminative models via an ad-

versarial process was first proposed by Goodfellow [32]. Since then, GANs have been adopted

for solving problems in varied fields of applications and particularly for image processing where

GANs have proved to be highly efficient for several different tasks [8,22,110]. We take inspiration

from [67] for using the raw I/Q data for input to our networks.
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2.2 Use of RNN for Transmitter Fingerprinting

Recurrent neural networks [31] have been used extensively for modeling temporal data such as

speech [74]. There is limited amount of work that recognizes the potential of using recurrent

structures in the RF domain and in general the use of deep learning in the RF domain has been

limited in the past with only a few applications in recent times [65, 67].

In [62], O’Shea et. al. presented a recurrent neural network that extracted high level protocol

information from the low level physical layer representation for the task of classification. A radio

anomaly detection technique was presented in [64], where the authors used a LSTM based RNN as

a time series predictor using the error component to detect anomaly from real signals. Another ap-

plication of RNN was proposed in [83], where the authors used a deep recurrent neural network to

learn the time-varying probability distribution of received powers on a channel and used the same

to predict the suitability of sharing that channel with other users. A method for modulation clas-

sification was proposed in [73] for a distributed wireless spectrum sensing network. The authors

proposed a recurrent neural network using long short term memory (LSTM) cell, yielding 90% ac-

curacy on a synthetic dataset [72]. Bai et. al. proposed an end-to-end RF fingerprinting [6] method

using two RNNs in order to learn the spatial or temporal pattern. Both simulated and real-world

data was used to improve the positioning accuracy and robustness of moving RF devices.

2.3 Existing Defenses against PUE Attack

In this section we discuss the main premise of PUE attack and its properties. We also present

different ideas for defending against these attacks and finally we discuss the existing research on

these concepts.
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PUE attack, first conceptualized and proposed by Chen et al. [15], is a DoS attack for CRNs. In a

CRN, the PUs are prioritized over any SU. At the heart of a CRN, a spectrum manager makes the

decision of preempting SUs when any PU is in need of transmission. For example, the PUs can be

TV stations with a wide range, wireless microphones with a limited range [16], or mobile public

safety devices surging with sudden transmissions during the times of emergency [14]. The SUs

can be conceptualized as wireless devices connected to a WiFi network.

As per the policies mandated by FCC [27], SUs cannot cause any interference with PU’s transmis-

sion, or hurt the PU’s transmission in any other way. However, the malicious SUs can pretend to

be a PU by “mimicking” certain features of PUs. One example is, where a malicious SU emulates

itself to be a PU by using a low power commercial off-the-shelf TV transmitter [47] located near

some legitimate PUs and starts to transmit on a particular spectrum band. The objective of the

emulated primary user (EPU) could be of two types: (i) a selfish goal to maximize the spectrum

usage for itself, (b) malicious goal with a tendency to prevent the legitimate SUs from detecting

vacant spectrum bands, leading to a DoS attack. The selfish EPU attacker starts transmitting on a

vacant frequency band without going into the waiting queue for SU selection by the central spec-

trum allocator. The malicious EPU attacker starts to “attack” over multiple vacant frequency bands

randomly, resulting in starvation of PUs’ and legitimate SUs.

Any security threat can be thwarted by several defense mechanisms through continuous research.

Though there is still a dearth of opportunities to come up with a robust defense mechanism to over-

come all technical challenges related to PUE attacks, there are few existing defense mechanisms

which are available today. One such technique is matched filtering-based detection [13] of PUE

attacker, which requires specialized hardware and software. On the other hand, energy detection-

based schemes [61] poises high risk of missed false alarm and missed detection possibility. The

location-based detection technique [15] is limited to stationary PUs with known coordinates. An-

other approach was the use of phase noise as a signature [105] to identify PUs and defend against
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PUE attacks. The key idea behind this technique is to erase modulation from captured signal

(which is modulated) and extract phase noise of local oscillator (LO) to work as a signature. This

approach is also constrained over the prior knowledge of modulation scheme. However, the use

of a cryptographic signature and wireless link signature [50] to detect PUE attacker requires an

additional helper node in close physical proximity of each PU. Similarly, a cyclostationary calcu-

lation [71] based artificial neural network model needs prior knowledge of modulation schemes of

PUs, and it is constrained to be different for the other users.

All the mentioned defense mechanisms are burdened with overheads or constraints of different

types. To resolve this, we propose a GAN based robust PUE attack defense (in Chapter 5) which

will involve only centralized deployment and can provide defense mechanism for both mobile and

stationary PUs or legitimate SUs, without any such constraints.

2.4 Primary User’s Activity Prediction

In this section, we discuss some previous important work in this area of primary user’s activity

prediction modeling that have used machine learning techniques. Various traditional methods of

spectrum sensing and their applications have been presented in [103]. The idea of cooperative

spectrum sensing was presented as the solution to security related problems in the spectrum sensing

domain. Though the concept of estimating spectrum usage in multiple dimensions such as time,

frequency and space, was introduced, no prediction attempts were made. In [91], the authors

presented opportunistic spectrum access based on a Markovian model that accounted for the bursty

nature of ON/OFF traffic models. Through empirical results, the authors have shown that the

selection of a channel for the secondary user will depend on the probability distribution of the

primary user’s traffic as well the elapsed OFF time. This dissertation established the feasibility of

using PU usage modeling for designing the spectrum access methods for SU bursty traffic.
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There are few existing researches on spectrum sensing and prediction that use machine learning

based techniques. An artificial neural network based approach for spectrum sensing in noisy envi-

ronment was proposed in [93]. The simulation results accomplished better sensing reliability than

traditional techniques for signals with low signal-to-noise ratio (SNR). A machine learning based

spectrum prediction approach was proposed in [96]. A multi-layer perception (MLP) based neural

network was used to predict the primary user’s activity, the resulting model was validated through

extensive simulations.

In [100], the authors give an analytical overview of various existing methods for spectrum predic-

tion, that are based on: moving average, autoregressive models, hidden Markov models, Bayesian

interference and static neighbor graph. It was established that all these models have limited scope

for accurate long-term prediction. A deep cooperative sensing scheme was proposed by Lee et

al. in [46]. A convolutional neural network (CNN) model was proposed to exploit both spectral

and spatial correlation of individual sensing outcomes for multiple PUs and SUs. All these studies

demonstrate the necessity of a practical long-term spectrum usage prediction method for the PUs

that leverage machine learning techniques.

Our focus is on the effectiveness of recurrent neural networks [31] which have been used exten-

sively for modeling temporal data such as speech [74]. There is limited amount of work that

recognizes the potential of using recurrent structures in the Radio frequency (RF) domain. Though

such use of I/Q data for building machine learning systems for communication has been limited

in the past, recently it has been used in several applications [57, 65, 67, 79]. RF data (being a time

series data) has both spatial and temporal property within the I/Q components. However, to the

best of our knowledge there is no recurrent neural network based application which exploits both

the spatial and temporal property of the RF data and use that for a long-term prediction model for

PU’s presence or absence.
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CHAPTER 3: ADVERSARIAL LEARNING AND DETECTION

In this chapter we propose the Radio Frequency Adversarial Learning (RFAL) framework for build-

ing a robust system to identify rogue RF transmitters by designing and implementing a generative

adversarial net (GAN). We first demonstrate the use of generative adversarial nets (GAN) to dis-

ambiguate trusted transmitters from rogue (fake) ones. After eliminating the rogue transmitters,

we use different standard neural network (NN) models to identify (classify) the trusted transmitters

based on their radio fingerprints.

We program 8 universal software radio peripheral (USRP) software defined radios (SDRs) as

trusted transmitters and collect “over-the-air” raw I/Q data from them using a Realtek Software

Defined Radio (RTL-SDR), in a laboratory setting. We also implement a discriminator model that

discriminates between the trusted transmitters and the counterfeit ones with 99.9% accuracy and

is trained in the GAN framework using data from the generator. Finally, after elimination of the

adversarial transmitters, the trusted transmitters are classified using a convolutional neural network

(CNN), a fully connected deep neural network (DNN) and a recurrent neural network (RNN) to

demonstrate building of an end-to-end robust transmitter identification system with RFAL. Exper-

imental results reveal that the CNN, DNN, and RNN are able to correctly distinguish between the

8 trusted transmitters with 81.6%, 94.6% and 97% accuracy respectively. We also show that better

“trusted transmission” classification accuracy is achieved for all three types of neural networks

when data from two different types of transmitters (different manufacturers) are used rather than

when using the same type of transmitter (same manufacturer).

The chapter is organized as follows: Section 3.1 presents some background on feature selection for

the proposing RFAL. The GAN architecture along with the generator and the discriminator models

are proposed in Section 3.2. The various NN models used are discussed in Section 3.3. We present
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the testbed setup and evaluation framework in Section 3.4. The results are presented in Section 3.5.

The contents of this chapter appeared in [76, 77, 79].

3.1 Feature Selection

In order for ML techniques to be effective for the task of emitter identification, one must choose an

attribute or feature that is unique to a transmitter, irrespective of the signals it transmits. A feature

that is commonly used for this task is the “I/Q imbalance” that is generated by the random noise

introduced into the transmitter manufacturing process due to the use of uncharacterized mixers,

oscillators and unbalanced low pass filters [97]. However, building robust learning systems using

traditional methods that only uses the “I/Q imbalance” is hard due to the underlying characteristics

of the RF channel. This when coupled with the presence of active adversaries, renders the use of

traditional learning algorithms in RF channels moot.

3.1.1 I/Q Imbalance

The low price of radio devices comes with a trade-off; namely the presence of “almost unde-

tectable” hardware impairments in the radio units due to the use of inexpensive bulk produced

commercial off-the-shelf (COTS) components during manufacturing. One such impairment is the

imbalance between the in-phase (I) and quadrature (Q) components of the transmitted signal, com-

monly known as the “I/Q imbalance,” that is unique to different radio hardware and are caused by

imperfections in local oscillators and mixers. As a result of this, the I and Q components of the

modulator are not orthogonal. When a signal is transmitted using a particular radio transmitter

having an I/Q imbalance, this is imposed over the complex-valued I/Q data that is being transmit-

ted [44], as shown in Fig. 3.1. The presence of I/Q imbalance leads to performance degradation
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for higher order modulations because the symbol rotation becomes more sensitive with increasing

number of constellations, towards both the I and Q components [49].
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Figure 3.1: I/Q Imbalance for QPSK: (a) Before (b) After 45° Phase Imbalance

The number of resources having information about the I/Q imbalance of real systems is limited.

Some prior works [3, 7, 12, 20, 36, 49, 95] on I/Q imbalance estimation and compensation have

reported amplitude imbalance test values ranging from 0.02 to 0.82 and phase imbalance test values

between 2° and 11.42° [44]. These estimates can in turn be used to compensate for the imbalance.

The in-phase and quadrature component of baseband signal is generated from RF signal for signal

processing convenience. Ideally, I and Q baseband signals should be orthogonal to each other with

same amplitude. However, different channel environment and transmitters configuration poise

various numbers of imbalances, e.g. magnitude imbalance, phase imbalance, quadrature offset,

inphase offset, DC offset, in the transmitted signal.

Therefore, the transmitted signal, along with different imbalances and impairment from the trans-

mitter radio, can be written as following:

I ′(t) = α cos(ωt) + βI (3.1)

Q′(t) = sin(ωt+ ψ) + βQ (3.2)
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where βI and βQ are DC offsets on two baseband component, α and ψ represent amplitude and

phase imbalance respectively.

In spite of these techniques for compensation of the imbalance, the fact remains that all transceivers

exhibit this unique I/Q imbalance. Furthermore, the I/Q imbalance depends on the choice of the

hardware components used, and is an unwanted byproduct of the manufacturing process that is

hard to imitate. Hence the I/Q imbalance can be used as a basis for feature engineering (implicit

or otherwise) for transmitter identification and recognition.

3.2 GAN for Rogue Transmitter Detection

As pointed out earlier, most of the traditional ML techniques are susceptible to malicious attacks.

The susceptibility increases once the attacker knows the features used by the learning algorithm.

With the knowledge of the feature space (and hence the underlying feature distribution) the attacker

becomes smart enough to mislead the learning process. Thus, for the problem of transmitter iden-

tification, the target of the adversaries would be to learn the probability distribution of the training

data used for model creation, given a sample of the same. With this knowledge, the adversaries

can use a generative model to generate signals so as to spoof the transmission of known transmit-

ters. A GAN [32] uses a generative model which enables the realistic creation of samples from a

given distribution which can then be used to train a discriminator for identifying real samples from

false/counterfeited ones obtained from the generator. The GAN training makes the model resilient

over the trained adversarial data and thus intuitively helps it to be prepared for the “yet-to-be-seen”

adversaries.
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3.2.1 Proposed GAN Architecture

The proposed GAN framework, as shown in Fig. 3.2, has two primary components: a generative

model (G) that generates false data using a given data distribution and a discriminative model (D)

that estimates the probability that a sample came from the training data (that is known transmitters)

rather than G. The adversary generates random modulation scheme (m(t)), signal amplitude (r(t))

and phase (l(t)) and mixes additive white Gaussian noise (AWGN) (n(t)) with the false signal.

The generated signal (g(t)) which is initially random in nature improves over time as the generator

learns from the discriminator and improves on its ability to imitate real data. On the other hand, the

discriminator (D) gets input from both the generator (G) and Trusted transmitters. This helps it

to learn to differentiate between real and false inputs. The known transmitter data is collected and

fed to the discriminator (D) as raw I/Q values.
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Figure 3.2: Proposed RFAL GAN architecture

Overall, our objective is to train G in such a way that will maximize the probability of D making a

mistake. G tunes its hyper parameters with the feedback fromD. We argue that GAN is an efficient
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way to generate correlated data samples and thereby approximate an accurate generative model,

something the adversary aims to achieve. Once the model is trained, RFAL synthesizes signals

using the generator to mimic adversarial transmitters based on the learned probability distribution

on the sample space of I/Q signal data from the known transmitters.
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Figure 3.3: A Simplified View of GAN Implementation
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Figure 3.4: GAN Implementation for Rogue Transmitter Detection

3.2.2 The Generative Model

In order to build the generator, we treat the overall problem as an N -class decision problem where

the input is a complex base-band time series representation of the received signal. That is, the

training data consists of the in-phase and quadrature components of a radio signal obtained at

discrete time intervals through analog to digital conversion with a carrier frequency to obtain a
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1×N complex valued vector. Classically, this is written as:

s(t) = c1m(t) + c2r(t) + c3l(t) (3.3)

where s(t) is a continuous time series signal modulated onto a sinusoid with either varying fre-

quency, phase, amplitude, trajectory, or some permutation of these parameters. Here, m(t), r(t),

and l(t) are the time series continuous signals for modulation, amplitude, and phase respectively,

selected randomly by the generator. The coefficients c1, c2, and c3 are some path loss or constant

gain terms associated with m(t), r(t), and l(t) respectively. The output g(t) is obtained as:

g(t) = s(t) + n(t) (3.4)

where n(t) is the AWGN. The output g(t) is then fed to a generator which is used as an un-

supervised learning tool as a part of the GAN framework. The generator learns the probability

distribution pg(x) over sample space (x) of the I/Q input.

3.2.3 The Discriminative Model

The discriminative model learns by minimizing a cost function during training. The cost function,

C(G;D), depends on both the generator (G) and the discriminator (D). It is formulated as C(G;D)

= Epdata(x) logD(x) + Epg(x) log(1 − D(x)), where pg(x) is the generator’s distribution over x,

pdata(x) is the data distribution over x, D(x) is the probability that x came from pdata(x) than

pg(x) [32]. The training is formulated as:

max
D

min
G
C(G;D) (3.5)
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For the GAN framework, there is an unique optimal discriminator for a fixed generator, D∗(x) =

pdata(x)

pdata(x) + pg(x)
[32]. It is also inferred that G is optimal when pg(x) = pdata(x), i.e., the gener-

ator is optimal when the discriminator cannot distinguish real samples from false ones. Similarly,

the D is optimal when the discriminator can recognize each real sample from the false ones.

3.2.4 GAN Implementation

For implementing the GAN, we use “over-the-air” signal data collected from the trusted transmit-

ters. (The testbed setup is discussed in Section 3.4.) The generator (G) generates counterfeit data

from the same sample space to impersonate a trusted transmitter. True and counterfeit I/Q data

are fed to the discriminator (D) with equal probability. We design the discriminator and generator

separately, as shown in Fig. 3.3. The overall GAN implementation is shown in Fig. 3.4.

The generator starts by generating random data within (−∞,+∞). As the training evolves, the

generator learns that the sample space of real data is [−1, 1]. Thus, the generator will gradually

generate I/Q values within [−1, 1] in turn reducing the parameter space. The time-invariant features

being automatically learned by the discriminator should implicitly capture the inherent imbalance

within the I/Q data. The generator gradually learns the real data distribution over multiple training

epochs and starts to replicate the I/Q imbalances in the generated I/Q values.

Once the initial random values are generated, they are passed through two dense layers of size 512

and 1024 respectively with tanh [11] activation. Then a single dense layer of twice the sample size

(2048 in our case) is invoked with the sigmoid activation function [11]. G continues to learn the

data distribution (pg) and generates counterfeit samples of size 2048 within the sample space of

the I/Q values.

D consists of one input layer of 2048 nodes, two hidden layers of 1024 and 512 nodes respectively,
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and finally a softmax output layer of 2 nodes to classify an input as either Counterfeited or

Trusted. We used tanh as activation function at the hidden layers and added Dropout [89] of 0.5

in between these layers for regularization. We train both the generator and discriminator through

iterative sequential learning to strengthen the generative model over time.

Once the discriminator recognizes the trusted transmitters from the counterfeit ones, we feed the

trusted transmitter data into another DNN (either convolutional or fully connected (dense)) for

further classification into a number of classes (as determined by the number of trusted transmitters).

Next we discuss the NN architectures we use for this purpose.

3.3 Proposed Neural Networks for Transmitter Classification

Recent advances in NNs have made it possible to obtain robust models with low generalization

errors by training “deep” neural architectures efficiently. The “depth” signifies the number of iter-

ative operations performed on the input data using each layer’s transfer function and deeper archi-

tectures allow the network to learn more robust feature representations from the input data. Though

such techniques require higher computation power and involve complicated layer-by-layer back-

propagation, nevertheless, most DL systems are able to efficiently learn deep feature represen-

tations from the training data using back-propagation and some variation of gradient decent, with

adaptive learning rates (e.g., Adam [42]) and regularization to avoid overfitting (e.g., Dropout [89]).

Next, we present our proposed NN models for classification of Trusted transmitters. We use a

total of 8 transmitters, the details of which are given in Section 3.4.
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3.3.1 CNN Model

In order to capture the correlation between I/Q values, we started by implementing a convolutional

neural network (CNN). We implement the CNN with three conv2D layers with 1024, 512 and 256

filters respectively, a Flatten operation and three fully connected (FC) layers of size 512, 256 and

8 nodes [18] respectively, as shown in Fig. 3.5. We use Dropout [89] of 0.25 and 0.5 after each

conv2D and dense layer respectively. We also use kernel size of (2,3) and stride of (2,2) at each

of the Conv2D layers. We apply a pooling layer MaxPooling2D after each conv2D layer with

pool size of (2,2) and stride of (2,2). We use ReLU [58] activation for all convolution and fully

connected layers, other than the last, where we use softmax. Note that, the number of nodes in

the last layer is changed based on the number of classes the dataset has. We use Adam [42] (with

learning rate of 10−3) based optimization with categorical cross-entropy training.

It is to be noted that we design the CNN with only 3 convolution layers and 4 fully connected

layers for faster training [34], since no significant increase in the testing accuracy was observed

after increasing the number of layers.

(None, 1024, 2)

In
p
u
t

Flatten

8 8

O
u
tp

u
t

Convolution Neural Net

Signal Processing 
and 

Data Collection

C
o
n
v

La
y
e
r

1

C
o
n
v
 L

a
y
e
r 

2

C
o
n
v
 L

a
y
e
r 

3

FC FC FC

1024 512 256

512 256

Data

Figure 3.5: CNN Implementation for Transmitter Classification
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3.3.2 DNN Model

Apart from the CNN discussed above, we also use a fully connected (dense) DNN for the task of

trusted transmitter classification. The implementation of the DNN is similar to the discriminator

model of GAN and is shown in Fig. 3.6. The only difference is that the softmax output layer has

8 nodes to recognize the 8 transmitters (or more generally k nodes if there are k transmitters). We

implement a DNN with 5-layers with 1 input layer and 4 dense layers. We use tanh [11] activation

function for the Dense layers in this model. We apply biases and regularization to avoid under-

and over-fitting. In this case also, use Adam [42] based optimization with learning rate of 10−3, for

categorical cross-entropy training.
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Figure 3.6: DNN Implementation for Transmitter Classification

3.3.3 Recurrent Neural Network (RNN)

In order to exploit the the time-series property of the collected data, we use RNNs with LSTM

and Gated Recurrent Unit (GRU) cells, as both avoid the “vanishing” or the “exploding” gradient

problems [24].
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3.3.3.1 Long Short Term Memory (LSTM) Cell Model

Though LSTM cells can be modeled and designed in various ways depending on the need, we

implement the cells as shown in Fig. 3.7. In each LSTM cell, there are (i) three types of gates:

input (i), forget (f ) and output (o); and (ii) a state update of internal cell memory. The most

interesting part of the LSTM cell is the “forget” gate, which at time t is denoted by ft. The forget

gates decide whether to keep a cell state memory (ct) or not. The forget gates are designed as per

the equation (3.6) on the input value of xt at time t and output (ht−1) at time (t− 1).

ft = σ(Wxfxt +Whfht−1 + bf ) (3.6)

where, σ denotes the sigmoid activation function, Wxf and bf represent the associated weight

and bias respectively, between the input (x) and the forget gate (f ). Once ft determines which

memories to forget, the input gates (it) decide which cell states (c̃t) to update as per equations (3.7)

and (3.8).

it = σ(Wxixt +Whiht−1 + bi) (3.7)

c̃t = tanh(Wxcxt +Whcht−1 + bct−1) (3.8)

In equation (3.9), the old cell state (ct−1) is updated to the new cell state (ct) using forget gates (ft)

and input gates (it):

ct = ft ◦ ct−1 + it ◦ c̃t (3.9)
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where, ◦ is the Hadamard product. Finally, RFAL filters the output values through output gates

(ot) based on the cell states (ct) as per equations (3.10) and (3.11).

ot = σ(Wxoxt +Whoht + bo) (3.10)

ht = ot ◦ tanh(ct) (3.11)

LSTM Cell

σ tanh

σ σ

(xt,ht-1)

it

ft ot htct-1

ĉt
tanhct

σ
tanh

sigmoid activation

tanh activation

Hadamard product

sum over all elements

Figure 3.7: LSTM Cell Architecture Used in the RNN Model

We design and implement a RNN with LSTM, the structure of which is shown in Fig. 3.8. We use 2

LSTM layers with 1024 and 256 units sequentially. Next we add 2 fully connected layers with 512

and 256 nodes respectively. We use batch normalization on the output and pass it through a dense

layer of 8 nodes. We use ReLU [58] as activation function for the LSTM layers and tanh [11]

as activation for the dense layers. Lastly, we use stochastic gradient descent (SGD) [11] (with

learning rate of 10−3) based optimization with categorical cross-entropy training.
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Figure 3.8: RNN Implementation for Transmitter Classification

3.3.3.2 Gated Recurrent Unit (GRU) Model

The main drawback of using LSTM cells is the need for additional memory. GRUs [19] have one

less gate than LSTMs for the same purpose, thus having a reduced memory and CPU footprint.

The GRU cells control the flow of information just like the LSTM cells, but without the need for a

memory unit. It just exposes the full hidden content without any control. It has a “reset gate” (zt),

an “update gate” (rt), and a cell state memory (ct) as shown in Fig. 3.9. The reset gates determine

whether to combine the new input with a cell state memory (ct) or not. The update gate decides

how much of ct to retain. The equations (3.12), (3.13), (3.14), and (3.15) related to different gates

and states of GRU are given below.

zt = σ(Wxzxt +Whzht−1 + bz) (3.12)

rt = σ(Wxrxt +Whrht−1 + br) (3.13)

ct = tanh(Wxcxt +Whc(rt ◦ ht−1)) (3.14)
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ht = (1− zt) ◦ ct + zt ◦ ht−1 (3.15)
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Figure 3.9: GRU Cell Architecture Used in the RNN Model

We implemented the recurrent model with GRU cells and used the same architecture as the LSTM

implementation (GRU cells instead of LSTM cells at the first two layers). The proposed GRU

network needs fewer parameters than the LSTM model. In this case, we also use SGD [11] based

optimizer with a learning rate of 10−3. An quantitative comparison of the results is discussed in

Section 3.5.6.

3.4 Testbed Setup and Evaluation

In order to validate the proposed models, we wanted to use our own “over-the-air” RF data col-

lected from different transmitters, instead of synthetic or publicly available data. We implemented
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the generator and discriminator (of the GAN) to detect an unknown (adversarial) transmitter and

then used the NN models to classify the known ones, the details of which are discussed next.

3.4.1 Signal Generation and Data Collection

In order to learn the discriminating fingerprints (features) of similar transmitters, we used 8 uni-

versal software radio peripheral (USRP) radios of the same kind, namely B210 from Ettus Re-

search [26]. The overall setup for signal generation and reception is shown in Fig. 3.10. The

B210s were programmed to transmit random data on 904 MHz using Quadrature Phase Shift Key-

ing (QPSK) modulation. We used GNURadio [29] for signal processing and data transmission.

The flow graph is presented in Fig. 3.11. The modulated signal was transmitted through the USRP

sink block. For the receiver, we used a RTL-SDR [60] which captured “over-the-air” raw I/Q data

and wrote it onto a file.

3.4.2 Analysis of Data Collection Environment

We set up the data collection testbed in an indoor lab environment with a direct line of sight be-

tween the transmitter and the receiver with a distance of 10 ft. Thus, the underlying channel can

be modeled as a Rician fading channel. There was also multi-path effects due to the reflections

from the walls. We measured the signal to noise ratio (SNR) using a RTL-SDR [60] dongle and

Spekrtum [69] which is an open source spectrum analyzer available for both Windows and Linux.

We decided to calibrate the SNR using the Spekrtum software (rather than using a spectrum an-

alyzer) due to cost and portability issues. We found that the noise floor in the lab was between

-20 dB and -30 dB. The signal strength for the 200 KHz (from 903.9 MHz to 904.1 MHz) channel

was between 0 dB and 10 dB. We set the transmitter gain to 45 dB and calculated the SNR as the

difference between the noise floor and the signal strength. Our calculated SNR was 5 dB - (-25 dB)
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= 30 dB, with a 45 dB transmitter gain. It is to be noted that the signal strengths (in dB) of noise

and signal measured by the Spektrum is relative, but the difference between them is absolute.

We also collected data for different SNR values by varying the transmitter-receiver distance and

hindering the line-of-sight in the laboratory. As mentioned earlier, we obtained a SNR of 30 dB

by keeping the transmitter and receiver at 10 feet from each other. Similarly we collect 3 more

datasets with SNR of 20 dB, 10 dB and 0 dB at 20 feet, 30 feet, and 45 feet respectively. It is to be

noted that the SNR of the transmitter frequency was measured at the receiver with Spektrum.

Random
Signal

QPSK
Mod Transmitters Receiver

Dataset
Generation

GNURadio USRP B210/ 
PLUTO

RTL-SDR rtlsdr
Python
Library

Data

(#samples,
2*sample size)

Signal Processing and Data Collection

Figure 3.10: Signal Generation and Data Collection Setup

3.4.3 I/Q Datasets

We collected raw I/Q signal data with a sample size of 1024, i.e., each sample consists of 1024

I and 1024 Q values. The choice of 1024 as the sample size was sufficient to capture the unique

pattern of I/Q imbalances and at the same time it was not computationally expensive. We experi-

mented with other sample sizes as well: smaller sample size yields degraded performance whereas

larger sample size does not improve the accuracy. We collected 40,000 training samples from each

transmitter to avoid the data skewness problem observed in ML. The configuration parameters used

are given in Table 3.1. We collected two different datasets at 30 dB SNR and three datasets with

three different SNRs, as discussed below.
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Figure 3.11: GNU Radio Flow Graph for Data Collection for USRPs

Table 3.1: Transmission Configuration Parameters

Parameters Values
Transmitter Gain 45 dB

Transmitter Frequency 904 MHz (ISM)
Bandwidth 200 KHz

Sample Size 1024
Samples/Transmitter 40,000

# Transmitters 2 to 8

3.4.3.1 Homogeneous Dataset

For the “homogeneous” dataset, we use only one type of radio, namely, the USRP B210 from Ettus

Research. We collected two sets of data: (i) using 4 USRP B210 transmitters: 6.8 GB size, 160K

rows and 2048 columns and (ii) using 8 USRP B210 transmitters: 13.45 GB size, 320K rows and

2048 columns. Note that the SNR was 30 db.

49



3.4.3.2 Heterogeneous Dataset

In order to investigate the performance of the proposed classification methods, when different types

of transmitters (from different manufacturers) are present, we use PLUTO SDR [23] apart from

the B210s when collecting the data. The GNURadio flow graph for signal generation is similar to

Fig. 3.11 with a different sink block for the PLUTO SDR. Note that the SNR in this case was also

30 db. The ‘heterogeneous’ datasets were obtained using (i) 2 USRP transmitters: 3.31 GB size,

80K rows and 2048 columns and (ii) 1 USRP B210 and 1 PLUTO transmitter: 2.85 GB size, 80K

rows and 2048 columns.

3.4.3.3 Varying SNR Datasets

We collected 3 more datasets with 8 USRP B210 transmitters and SNRs of 20 dB, 10 dB, and 0

dB respectively. Each dataset is of size ∼13 GB with 320K rows and 2048 columns.

3.4.4 Correlation in Dataset

Correlation between each data sample plays a crucial role in transmitter classification. Given T

training samples (for T timestamps) and a sample size of M for each time stamp, where each

sample is a vector (I,Q) ∈ C representing a number in the complex plane, we create a new vector

X(t) = [Ii, Qi; i = 1, 2, · · · ,M ]t ∈ C2M ; t = 1, 2, · · · , T for timestamp t, and use it as an input

to the NN. As mentioned before in our case (M = 1024). Thus we represent the I and Q values

of each training sample at timestamp (t) as: [I0Q0I1Q1I2Q2I3Q3I4Q4 · · · I1023Q1023]
t. We used

QPSK modulation [88] , which generates a constellation plot like Fig. 3.1. This signifies that the

correlation should be between every fourth value, i.e., between I0 and I4, andQ0 andQ4 and so on.

Hence we calculate the correlation coefficient of between I0I1I2I3, I4I5I6I7 and similarly, between
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Q0Q1Q2Q3 and Q4Q5Q6Q7 and so on. We take the average of all the correlation coefficients for

each sample.

We use numpy.corrcoef for this purpose which uses Pearson product-moment correlation coeffi-

cients, denoted by r. The Pearson’s method for a sample is given by:

r =

(M−1)∑
i=0

(Ii − I)(Qi − Q̄)√
(M−1)∑
i=1

(Ii − I)2

√
(M−1)∑
i=0

(Qi − Q̄)2

(3.16)

where, M is the sample size, Ii and Qi are the sample values indexed with i. The sample mean is

Ī =
1

M

(M−1)∑
i=0

Ii and similarly for the Q values.

The correlations for all the 40,000 samples for each transmitter are shown in Fig. 3.12. We ob-

served that around 75% of the samples’ correlation coefficients are between −0.1 and 0.1 and

the remaining 25% are close to 0.9. However, for transmitter ID 3, all the samples’ correlation

coefficients are between −0.1 and 0.1. This behavior of transmitter ID 3 is an obvious example

of manufacturing differences. However, this observation gives us intuition about the difficulty of

CNN with 2D convolutions for the task of transmitter classification. CNNs capture the correla-

tion (local features) in the data. However, in this case, as the nature of the correlations are the same

for all but one transmitter, hence there is not enough discriminative information in the correlations

to disambiguate between all the transmitters, thus leading to the conclusion that CNNs with sim-

ple two dimensional convolutions will not be effective for the classification task. This was later

corroborated via our testbed implementation (Section 3.5).
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(a) Trans ID 1 (b) Trans ID 2

(c) Trans ID 3 (d) Trans ID 4

(e) Trans ID 5 (f) Trans ID 6

(g) Trans ID 7 (h) Trans ID 8

Figure 3.12: Correlation Plot for Different Transmitters in the Collected Dataset
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3.4.5 Machine Learning Libraries Used

There are several libraries and tools that implement learning frameworks with support for im-

mensely concurrent GPU architectures, that reduce the burden of programming the traditional

GPU routines for training of larger NNs. We use Keras [18] as the frontend with Tensorflow [1] as

the backend. Keras is an overlay on neural network primitives with Tensorflow [1] or Theano [2]

that provides a customizable interface for quick deployment of complex NNs. We also use Numpy,

Scipy, and Matplotlib Python libraries.

3.4.6 Performance Metric

To measure the effectiveness of any NN architecture, “classification accuracy” is used as the typ-

ical performance metric. However, “classification accuracy” as it is defined can sometimes be

misleading and incomplete when the data is skewed. A confusion matrix overcomes this problem

by showing how the classification model performs when it comes to erroneous detections (false

alarms), and correct “counterfeit” classifications. It provides more insights on the performance by

identifying not only the number of errors, but more importantly the types of errors. As a result we

use confusion matrices to display and analyze the results of our experiments.

3.5 Implementation Results and Discussions

In this section, we present the results of i) adversarial transmitter detection using GAN and ii)

transmitter classification using different NN architectures. We conducted the experiments on a

Ryzen 8 Core system with 64 GB RAM and a GTX 1080 Ti GPU unit with 11 GB memory. For

the sake of being robust and statistically significant, we present the experimental results for each

53



model after several runs of each implementation. We focused on four main aspects:

• Implementing a GAN to distinguish adversarial transmitters from trusted ones.

• Implementing a CNN with 2D convolutions to exploit the correlation in collected signal data

of the trusted transmitters for trusted transmitter identification.

• Implementing a DNN to classify the trusted transmitters.

• Implementing RNN with both LSTM and GRU cells to improve the accuracy of trusted

transmitter classification by exploiting the temporal aspect of the signal data.

3.5.1 GAN Results

In order to detect the adversarial transmitters, we implemented a GAN based model as described

in Section 3.2.4. We used categorical cross-entropy training and Adam [42] for gradient based

optimization. We notice that the discriminator was able to detect the adversarial transmitters with

50% accuracy before the GAN based training. Once the GAN goes through several epochs (<

50) of adversarial training, the optimal discriminator (D∗) is able to detect the Counterfeit

transmissions with about 99.9% accuracy as shown by the receiver operating characteristic (ROC)

curve and confusion matrix in Fig. 3.13. Note that one epoch consists of a forward pass and a

backward pass through the GAN over the entire dataset. It is clear from the confusion matrix

that the number of false negatives and false positives are very low and well within an acceptable

range [11]. The testing accuracy of the GAN implementation on datasets with different SNRs is

presented in Table 3.2 . The “parameters” represent the total number of hyper-parameters required

for the respective model.

54



Table 3.2: Accuracy of GAN for 4 and 8 Transmitters

Dataset SNR #Trans #Parameters Acc (%)
3.6 M (G)

6.8 GB 30 4 6.8 M (D) 99.9
10.4 M (GAN)

3.6 M (G)
13.45 GB 30 8 6.8 M (D) 99.9

10.4 M (GAN)
3.6 M (G)

13.45 GB 0 8 6.8 M (D) 99.9
10.4 M (GAN)

(a) ROC Curve (b) Confusion Matrix

Figure 3.13: ROC Curve and Confusion Matrix of Counterfeit Transmitter Detection from RFAL

In Fig. 3.14, we present three plots to represent how the proposed generator behaves. Note that we

first show the plots using randomly selected 128 samples from both the real and generated datasets.

We choose the number 128 as it is also used as the batch size for the training. In Fig. 3.14(b), we see

that the data generated before the GAN training does not represent the distribution of the real data

as shown in Fig. 3.14(a). It is evident that initially the I/Q values are randomly generated between

0 and 1. However, once the generator is trained over multiple iterations, it starts generating more
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realistic data as shown in Fig. 3.14(b) which shows that the distribution of the generated data

is starting to resemble the real data shown in Fig. 3.14(a). Once the GAN training converges,

the generator has learned the data distribution of the I/Q values from the known transmitters and

hence it starts to generate counterfeit data that succinctly captures the actual distribution of the I/Q

values. Thus now the generated I/Q values are distributed within the range of [-1,1] as is the case

with the real data. Figure 3.15 shows the plots for the real data and the generated data after full

GAN training. These images are obtained by plotting 2000 I/Q samples. Also we do not discuss

the theory of why the generator is able to generate realistic data because though there is some idea

in the research community as to why GANs work, it is not fully understood yet. Furthermore,

since this is a more applied work we refrain from adding such theory into the dissertation. Rather

we provide references which interested readers may consult to learn more about the GANs.

(a) Real Data (b) Generated Data before
GAN Training

(c) Generated Data after GAN
Training

Figure 3.14: Output from the Proposed Generator (Plot for 128 samples)

Note that though this chapter is not about trusted transmitter classification (but rather about using

adversarial learning using GANs for identifying rogue transmitters), we decided to explore the

capability of systems based on neural networks for the task of trusted transmitter classification as

well. Next we present the results of this endeavor.
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(a) Real Data (b) Generated Data after Full
GAN Training

Figure 3.15: Final Output from the Proposed Generator (2000 samples)

3.5.2 CNN Results

(a) 4 Transmitters (b) 8 Transmitters

Figure 3.16: Accuracy Plots for Transmitter Classification using CNN

Once the rogue transmitters are detected and eliminated, our system classifies the “trusted” trans-

mitters using a neural network. First we used a CNN built according to the implementation details

provided in Section 3.3.1 for trusted transmitter classification. We obtain 89.07% and 81.6% accu-

racy for 4 and 8 transmitter classifications respectively. The accuracy plots and confusion matrices

for both the cases are presented in Figs. 3.16 and 3.17. We note that both the training and validation
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accuracy increases with the number of epochs. However for our CNN implementation the number

of false positives and false negatives are somewhat high. Intuitively, this shows that the convolu-

tional filters that were used with the network were not able to identify and encode discriminative

features for this task. Since we know that there is at least one discriminative characteristic that

distinguishes between the transmitters (namely the I/Q imbalance), we conclude that the input rep-

resentation that we used with the CNN did not effectively encode these characteristics and hence

the system could not efficiently learn them.

(a) 4 Transmitters (b) 8 Transmitters

Figure 3.17: Confusion Matrices for Transmitter Classification using CNN

In order to understand the inner workings of the CNN better, we present the feature maps obtained

from the first convolution layer of the CNN, for the case of four transmitter classification, in Fig.

3.18. It can be seen that each of these feature maps encodes a different pattern, one for each of

the four different transmitters. However, we also notice that the convolutions fail to capture the

highly discriminative patterns from the I/Q data. Thus for example, none of the feature maps

resemble feature characteristic of the data shown in 3.15(a). Thus even though the features are

different for each transmitter, they do not fully encode discriminative features present in the I/Q

samples. Intuitively this is because of the fact that the I/Q samples does not have significant spatial

correlation that can be leveraged through the use of the convolution operation. Since further tuning

of the CNN parameters was unsuccessful, we decided to build a fully connect DNN to try and
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achieve better accuracy for this task.

(a) Radio 1

(b) Radio 2

(c) Radio 3

(d) Radio 4

Figure 3.18: Feature Maps for the First Convolution Layer of the Proposed CNN Model

3.5.3 DNN Results

To overcome the deficiencies of the CNN, we use a DNN as described in Section 3.3.2. The DNN

yields an accuracy of 96.49% for 4 transmitters and 94.60% for 8 transmitters. The accuracy
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plots and confusion matrices are shown in Figs. 3.19 and 3.20 respectively. It is evident that the

number of false positives and false negatives in the confusion matrices are significantly low for the

DNN as compared to the CNN and thus intuitively the DNN can capture and learn better features

from the I/Q samples than the CNN for the task of transmitter classification. Note that from the

perspective of the features learned by the DNN, it is hard to explain the types of features that are

learned by these systems. However since the task of classification boils down to learning a decision

boundary and recently it has been shown that DNNs are capable of learning approximations of such

boundaries efficiently [48], the possible reason for the better performance of the DNN might be tied

to learning a better approximation to the underlying function representing the decision boundary

for this task.

(a) 4 Transmitters (b) 8 Transmitters

Figure 3.19: Accuracy Plots for Transmitter Classification using DNN

3.5.4 RNN (with LSTM Cells) Results

For the RNN, we first implement the LSTM cells as described in Section 3.3.3.1. We achieved

97.40% and 95.78% testing accuracy for 4 and 8 transmitters respectively. The accuracy plots and

confusion matrices are given in Figs. 3.21 and 3.22 respectively.
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(a) 4 Transmitters (b) 8 Transmitters

Figure 3.20: Confusion Matrices for Transmitter Classification using DNN

(a) 4 Transmitters (b) 8 Transmitters

Figure 3.21: Accuracy Plots for Transmitter Classification using LSTM Cells

3.5.5 RNN (with GRU Cells) Results

Finally, we implement RNN with GRU cells as described in Section 3.3.3.2. We achieved 97.85%

and 97.06% testing accuracy for 4 and 8 transmitters respectively. The accuracy plots and con-

fusion matrices are shown in Figs. 3.23 and 3.24 respectively. It must be noted that the GRU

implementation achieves better accuracy than the one using LSTM cells.
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(a) 4 Transmitters (b) 8 Transmitters

Figure 3.22: Confusion Matrices for Transmitter Classification using LSTM Cells

(a) 4 Transmitters (b) 8 Transmitters

Figure 3.23: Accuracy Plots for Transmitter Classification using GRU Cells

During the training phase, the hyper-parameters get adjusted depending on the categorical cross-

entropy loss. Sometimes, with such adjustments, the model tends to over-fit the training data.

To avoid such scenarios, we used Dropout [89] regularization in our models. Another way to

monitor and possibly avoid over-fitting is through the use of cross validation during the training

phase. This way, we ensure that the proposed model gets trained fairly so that it generalizes well

during the testing phase. Note that the fluctuations in the validation curve show that for certain

epochs with a particular set of hyper-parameter values, the model tends to over-fit the data, but in
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later epochs the hyper-parameter values get adjusted so as to counter the effect of the overfitting.

Furthermore, the training can be tweaked using the results of the validation phase. Note that

since the I/Q samples represent a time series data, it is natural to model them using a RNN. Since

RNNs learn the temporal correlation between the time series data, they can encode the transmitter

specific variations in the I/Q data and intuitively this makes the RNNs better at the task of trusted

transmitter classification than the CNNs.

(a) 4 Transmitters (b) 8 Transmitters

Figure 3.24: Confusion Matrices for Transmitter Classification using GRU Cells

3.5.6 Classification Comparison of CNN/DNN/RNN

Once a transmitter is found to be Trusted via the proposed GAN, we used a CNN, DNN, and

RNN respectively, to uniquely identify it. We used 90%, 5%, and 5% to train, validate and test

respectively. The overall accuracy of the different NNs for the task of trusted transmitter classi-

fication is shown in Table 3.3. We see that the CNN does not exhibit the best performance for

transmitter classification, which intuitively is due to the lack of distinguishing spatial correlation

in the data from each transmitter. In Fig. 3.26, we show a graphical representation of the classifi-

cation accuracy obtained using the different neural network architectures.
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We present the observed empirical training time for each model as the last column in Table 3.3.

It is evident that the training time for the CNN is almost double compared to the rest of the pro-

posed models, as convolution operations are significantly more complex than other neural network

computations. We also conducted experiments by varying the number of transmitters from 2 to 8,

using the proposed DNN. In Fig. 3.25, we show how the training and testing accuracy varies as the

number of transmitters are increased. We note that the training accuracy decreases when there are

more classes (more number of transmitters). However the testing accuracy of the model is stable

and does not change significantly with the increase in the number of transmitters. This establishes

the efficacy of these methods for the task of transmitter classification, as for production systems

one wants the test accuracy to be stable no matter the number of classes involved in the problem.

Table 3.3: Comparison of the Various Implementations

#Trans Models #Parameters Acc (%) Time (min)
4 CNN 38 Million 89.07 ∼25
4 DNN 6.8 Million 96.49 ∼12
4 RNN - LSTM 14.2 Million 97.40 ∼12
4 RNN - GRU 10.7 Million 97.85 ∼12
8 CNN 38 Million 81.59 ∼30
8 DNN 6.8 Million 94.60 ∼15
8 RNN - LSTM 14.2 Million 95.78 ∼16
8 RNN - GRU 10.7 Million 97.06 ∼16

In our testbed evaluation one of the goals was to explore different types of NNs to find the archi-

tecture (and model) having the best possible accuracy within the constraints of the training time

(which was not more than 30 minutes in our test-bed setup for all models). The performance of

any NN architecture depends, among other things, on the values of the hyper-parameters. Further-

more, as a given hyper-parameter setting may be optimal for one network but not for another, we

used different hyper-parameter values to train different networks. Intuitively, this dependence on

the values of the hyper-parameters is due to the fact that the underlying optimization problem and
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hence the solution space, is different for different types of networks. We observed that decreasing

the learning rate of the CNN to 10−4 increases the accuracy by 7-8%. However, decreasing the

learning rate to less than 10−3 for RNN and DNN does not improve the testing accuracy by a sig-

nificant amount (even by 0.5%). In Table 3.4 we record the values which gave the best possible

accuracy under the constraints of the training time. During each training, we set the maximum

epoch to 50 with an early stopping condition, such as, if there is no improvement of validation

loss for five consecutive epochs, then the training is stopped. We observed through multiple runs

of training, that each of the models converged within a given range of the maximum number of

epochs, as presented in Table 3.4.

Table 3.4: Comparison of Configuration Settings for Different Models

Models #Layers Learning Rate Batch Size Epochs Optimizer
CNN 7 10−4 128 45-50 Adam [42]
DNN 5 10−3 128 35-40 Adam [42]

RNN-LSTM 6 10−3 128 30-35 SGD [11]
RNN-GRU 6 10−3 128 30-35 SGD [11]
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Figure 3.25: Training and Accuracy with Increasing numbers of Transmitters

It is clear from the the results presented above that the GAN based NN is effective for the task

of rogue transmitter identification whereas DNN and RNN are effective for the task of trusted

transmitter classification. In summary we have established the following:
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Figure 3.26: Detection Accuracies of the Neural Networks

1. A GAN is able to distinguish between Trusted and Counterfeited RF transmitters.

2. CNN yields 81%-86% accuracy for trusted transmitter classification proving the inefficacy

of spatial correlation as a discriminative attribute for transmitter classification.

3. DNN yields 94-97% accuracy for known transmitter classification.

4. RNN yields an accuracy of 97% for known transmitter classification using GRU cells.

5. Comparing the accuracies, we can conclude that I/Q data of radio signals exhibits more

temporal correlation than spatial correlation.

6. DNN or RNN can be used for transmitter fingerprinting for identifying trusted transmitters

and in conjunction with GAN this can be used to create an end-to-end robust system for

transmitter identification.
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3.5.7 Computational Complexities

In this section we present the computational time complexity for the training phase only, as the

trained model gives the output within constant time (O(1)) during the deployment phase. Under-

standing the time complexity of training a NN is still an evolving research area. In [51], the authors

proved that a NN of depth δ can be learned in poly(s2
δ
) time, where s is the dimension of the in-

put, and poly(.) takes a constant time depending on the configuration of the system. However, the

convolution operations of CNN add additional time complexity along with the forward and back-

propagation operations. In [34], the authors mentioned that the time complexity for training all the

convolutional layers is: O(
∑ζ

τ=1(ητ−1ν
2
τ .ητρ

2
τ ), where ζ is the number of convolutional layers, τ

is the index of a convolutional layer, ητ−1 is the number of input channels of the τ th layer, ντ is

the spatial size of the filters at the τ th layer, ητ is the number of filters at the τ th layer and ρτ is the

size of the output features of the τ th layer. In the proposed CNN model, we have 3 convolutional

layers, and 4 fully connected layers and hence we add in additional time complexity for training

the three convolutional layers.

The time complexities for each implemented NN model is presented in Table 3.5, using the afore-

mentioned results on time complexity of neural network training. The numbers within the paren-

thesis in the second column represents the total number of layers for a particular model. Note that

we have two different datasets of dimensions 160K and 320K and as mentioned earlier, we use

95% of data for training and validation purpose. For example, the complexity for GAN with 8

layers using 95% of 160e3 data samples for training and validation, is poly(0.95 × 160e328). On

another note we should mention that for quick estimates of the time complexity of training neural

networks, the number of hyper-parameters (as presented in Table 3.3) can also be used as a mea-

sure of the required training time. Thus, the more the number of hyper-parameters, the more the

training time required.
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Table 3.5: Time Complexities for Training of the Various Implementations

#Trans Models Complexity
4 GAN (8) poly(0.95× 160e328)

4 CNN (7) poly(0.95× 160e323)

×O(
∑3

τ=1(ητ−1.ν
2
τ .ητ .ρ

2
τ )

+ poly(0.95× 160e324)

4 DNN (5) poly(0.95× 160e325)

4 RNN - LSTM (6) poly(0.95× 160e326)

4 RNN - GRU (6) poly(0.95× 160e326)

8 GAN (8) poly(0.95× 320e328)

8 CNN (7) poly(0.95× 320e323)

×O(
∑3

τ=1(ητ−1.ν
2
τ .ητ .ρ

2
τ )

+ poly(0.95× 320e324)

8 DNN (5) poly(0.95× 320e325)

8 RNN - LSTM (6) poly(0.95× 320e326)

8 RNN - GRU (6) poly(0.95× 320e327)

3.5.8 Experiments with Heterogeneous Dataset

So far, we have used the proposed trusted transmitter identification models on “homogeneous”

datasets in that the transmitters were implemented using the SDRs from the same manufacturer.

However, in reality the trusted transmitters can be from several different manufacturers. Now we

want to explore how the accuracy of the trusted transmitter identification system would change if

“heterogeneous” data obtained from different types of transmitters (manufacturers) (as was dis-

cussed in Section 3.4.3) was used. From the testing accuracy as shown in Table 3.6 we observe

that all the NNs perform better when the transmitters are from different manufacturers and hence

are fundamentally of different types. This confirms the intuition that radios manufactured using

different processes (from different manufacturers) contain easily exploitable characteristics in their

I/Q samples, that can be implicitly learned using a NN. We also observe that the CNN can exploit

the spatial correlation better for the heterogeneous dataset, yielding a 11.2% increase in the testing
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accuracy compared to the homogeneous dataset.

Table 3.6: Comparison of testing Accuracies for Different Classification Models for Homogeneous
and Heterogeneous Datasets

Models USRP-USRP PLUTO-USRP
CNN 89.91 (%) 99.91 (%)
DNN 99.9 (%) 100 (%)
RNN 99.95 (%) 100 (%)

3.5.9 Existing Transmitter Classification Techniques Comparisons

Though RFAL demonstrates the use of adversarial learning for rogue transmitter identification,

a part of our work has been devoted to the problem of “trusted transmitter classification” after

elimination of the rogue transmitters. “Trusted transmitter” identification systems when augmented

with adversarial learning systems, as was done in RFAL, results in robust transmitter identification

systems that are immune to presence of adversarial transmissions. Though our focus was not on

improving or building novel “trusted transmitter” classification systems, we have explored the use

of deep learning for building the same using I/Q data from the received signal. In this section we

present a comparative study of our approach to “trusted transmitter classification with I/Q data”

against some existing techniques for “transmitter classification” and the results of this endeavor is

shown in Tables 3.7 for traditional approaches (low accuracy) and 3.8 for “state-of-the-art” (high

accuracy) respectively. Note that here the “Inputs” column refers to the type of inputs used for

the classification algorithms. It is to be noted that all the traditional methods use some form of

extracted features (obtained through pre-processing of the data) as inputs ( [41, 86, 94, 101]), or

work with synthetic dataset ( [73]). A few existing work on modulation recognition [65, 67, 68]

using NN based approaches also work on synthetic datasets [63,72] and hence they do not yield to

a fair comparison with our “trusted transmitter classification” approach as well.
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For the “state-of-the-art” approaches, we observe that the test bed experiments have used various

types of SDRs for obtaining over-the-air data, or used datasets from actual infrastructure trans-

mitters (ACARS etc.). We present comparison with: (i) [75], where same SDR (USRP B210)

was used, (ii) [102] and [85], where different SDRs from the same manufacturer (USRP N210,

USRP X310) were used, (iii) [55], where different types of devices (Zigbee) were used, and

(iv) [109], [17] and [56] where different datasets (ACARS [4], ADS-B [5], FIT/CorteXlab [53])

were used.

The RFAL “trusted transmitter identification” models outperform [55] where the authors achieved

91.38% accuracy for classifying 7 Zigbee devices. The CNN proposed in [75] achieved 98% ac-

curacy for 5 USRP B210 with preprocessed data (from MATLAB Communication Systems Tool-

box). Similarly, in [85], Sankhe et al. presented a CNN classifier with 16 X310 radios with

99.5% accuracy, but that method used demodulated symbols rather than raw signal data. Youssef

et al. presented a multi-stage training model to achieve 100% accuracy to classify 12 USRP N210s.

Multi-stage training is a complex procedure and needs a easily parallelizable training environment,

whereas CNN and DNN use a first-order update rule (stochastic gradient) and are comparatively

simple procedures. For the sake of generality, we compare their proposed DNN method (which has

the best accuracy compared to other implemented ML methods) in Table 3.8. The CNN models

presented in [109], [17] and [56] achieved between 96% and 99.9% accuracy for existing datasets

(ACARS [4], ADS-B [5], FIT/CorteXlab [53]).

We need to point out that none of methods discussed above are robust enough to work in adver-

sarial settings. Thus if there is an adversarial transmitter then all the aforementioned methods

will fail. However RFAL, due to its adversarial training will be able to identify the adversarial

transmitter and eliminate it from consideration before classifying the “trusted transmitters”, thus

being more resilient and robust to such interference. Even if we just compare the “trusted transmit-

ter” classification of RFAL with the methods discussed above, our method for “trusted transmitter
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classification” achieves the same accuracy (of 97%) using just the raw I/Q data as input, thereby

paving the way for real-time deployment of “transmitter fingerprinting” systems.

Considering the state-of-art, and to the best of our knowledge, our work is the first to:

1. propose a GAN based model to detect rogue transmitters from authentic ones;

2. demonstrate a high accuracy (97%) to classify 8 USRP B210s using an RNN model consid-

ering the temporal property of RF data;

3. present a testbed evaluation for classifying transmitters from different manufacturers;

4. provide an end-to-end solution of RF transmitter classification without any preprocessing of

raw data. The raw data can be captured through any SDR and is identified by the proposed

models at once;

5. propose RNN based models which needed half the training time than CNN models for the

same experimental training time. Our proposed RNN model entails to be faster than all

state-of-the art CNN models for the same experimental environment.

Table 3.7: Comparison of the Our Implementation with the Traditional ones

Approach #Trans SNR (dB) Acc (%) Inputs
Genetic Algorithm [94] 5 25 85-98 Transients

Multifractal Not
Segmentation [86] 8 mentioned 92.5 Transients

Orthogonal Component Spurious
Reconstruction (OCR) [101] 3 20 62 - 71 Modulation

k-NN [41] 8 30 97 Transients
RNN [73] - 20 90 Synthetic Dataset [72]

RFAL (Ours) 8 30 97.04 Raw Signal
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Table 3.8: Comparison of the Our Implementation with State-of-the-art

Approach #Trans SNR (dB) Acc (%) Input
CNN [55] 7 30 91.38 Preprocessed data

from MATLAB
CNN [75] 5 50 98 Preprocessed data

from MATLAB
CNN [109] - - 99.67 ACARS data [4]
DNN [102] 12 - 84.4 Raw signal
Inception - - 98.1 & 96.3 ACARS [4] &

ResNet [17] ADS-B [5]
CNN [85] 16 30 99.5 Demodulated symbols
CNN [56] 21 - 99.99 FIT/CorteXlab [53]

RNN (Ours) 8 30 97.04 Raw signal

3.5.10 Performance Comparison for Varying SNR

In this section, we present the results of RFAL “trusted transmitter classification” for varying SNR

values. We compare the accuracy for the proposed NN models having 8 USRP B210s with 30 dB

SNR, with 3 other datasets collected at 0 dB, 10 dB, and 30 dB SNRs having the same number of

transmitters (8 B210s) as shown in Table 3.9. It is seen that we achieve better accuracy with all the

models for higher SNR values, which is intuitive. It is to be noted that the proposed RNN (with

GRU cell) model gives more than 92% accuracy at 0 dB SNR too, whereas CNN and DNN models

fail to achieve that.

It must be pointed out that the proposed NN models can be a trained using raw signal data from any

type of radio transmitter. We would also like to point out that though our data was collected in a lab

setting, we had no control over the RF environment: there were other transmissions, uncontrolled

movement of people, and multi-path effects due to the location and layout of the lab. Moreover,

the power of the transmitters was low which compounded the problem further. Thus, though we

mention that the data was collected in a lab environment, in reality it was an uncontrolled RF

environment reflective of our surroundings. We can safely argue that the proposed methods will
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perform equally well in any real world deployment of large scale radio networks.

Table 3.9: Accuracies for Different Neural Network Models with Varying SNRs

SNR(dB) Accuracy (%)
CNN DNN RNN (GRU)

0 51.53 85.12 92.3
10 78.64 92.24 95.64
20 81.3 94.60 97.02
30 81.59 94.60 97.06

3.6 Summary

In this chapter, we address the problem of building a robust and resilient model for identifying sim-

ilar RF transmitters in the presence of adversaries. We argue that non-adversarial machine learn-

ing techniques would not be effective in adversarial settings and that breakthroughs in generative

adversarial nets (GANs) can be instrumental in building such systems for detection of rogue trans-

mitters and subsequent accurate identification of known ones in such settings. We propose and

implement RF Adversarial Learning (RFAL) framework which includes a discriminative model

for identifying rogue transmitters trained with data generated from a generative model. RFAL also

contains a “trusted transmitter” identification system that for categorizing the known transmitters

once the adversarial transmitters have been identified and eliminated from consideration. We col-

lected over-the-air raw I/Q data using USRP B210s and used that to train the GAN. The discrimina-

tor was able to detect rogue transmitters with an accuracy of∼99.9%. As for the subsequent trusted

transmitter classification, we first implemented a CNN (accuracy ∼89%) for exploiting the spatial

correlation between the I/Q data. Then we designed and implemented a fully connected DNN and

RNNs both of which obtained an accuracy of around 97% for trusted transmitter identification. We

also show how the proposed NN models for “trusted transmitter classification” (especially CNN)
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worked when radios from different manufacturers were used. RFAL will be able to detect any ac-

tive attack that involves a secondary device to pose as an authentic emitter, such as replay attacks,

but it will not be able to detect passive attackers, such as traffic sniffers. Going forward we would

like to use these methods for identification of actual infrastructure transmitters (for example FM,

AM or GSM) in contested real world settings.
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CHAPTER 4: TRANSMITTER FINGERPRINTING USING

RECURRENT STRUCTURES

In this chapter, we propose a transmitter fingerprinting technique for radio device identification

using recurrent structures, by exploiting the temporal property of the received radio signal. We

design and implement three recurrent neural networks (RNNs) using different types of cell models:

(i) long short term memory (LSTM); (ii) gated recurrent unit (GRU) and (iii) convolutional long

short term memory (ConvLSTM), for this task. We program 8 universal software radio peripheral

(USRP) software defined radios (SDRs) as transmitters and collect over-the-air raw in-phase (I) and

quadrature (Q) (I/Q) time series data from them using a DVB-T RTL-SDR receiver, in a laboratory

setting. We exploit both the temporal variations as well as the inherent spatial dependencies in the

collected I/Q time series data, to learn unique feature representations and use these as “fingerprints”

for identifying the transmitters. Experimental results reveal that the RNNs with LSTM, GRU, and

ConvLSTM cells are able to correctly distinguish between the 8 transmitters with 95%, 97%, 98%

accuracy respectively.

The chapter is organized as follows: in the first section, we present a survey of existing machine

learning based transmitter identification techniques. In section 4.1, we propose different RNN

models. In section 4.2, we present the testbed setup and experiments that we conduct to evaluate

the proposed models. We present the experimental results in section 4.3. The contents of this

chapter appeared in [76, 81].
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4.1 Proposed RNN Models for Classification

Neural networks have previously been used for transmitter identification [65, 68, 79] and are par-

ticularly attractive since they can generate accurate models without knowledge of the apriori data

distribution. Neural networks have been shown to be able to predict modulation techniques [65]

and identify transmitters [79] by only considering the spatial correlations within the actual [68] or

synthetic RF data [63]. It is to be noted that all prior works have only exploited the spatial correla-

tion of the signal data, though a continuous signal can be represented as a time series, having both

temporal and spatial properties [98].

Inspired by the success of deep learning systems for the task of characterizing RF environments [67]

and the successful use of recurrent neural networks (RNN) for the task of analyzing time series

data [74], we propose to use deep recurrent structures for learning transmitter “fingerprints” for

the task of transmitter identification. Recurrent Neural Networks (RNNs) [31] have been shown

to be useful for capturing and exploiting the temporal correlations of time series data. There are a

few variants of recurrent neural networks: (i) Long Short-Term Memory (LSTM) [35], (ii) Gated

Recurrent Unit (GRU) [19], and (iii) Convolutional Long Short-Term Memory (ConvLSTM) [87].

All these variants are designed to learn the long term temporal dependencies and are capable of

avoiding the “vanishing” or “exploding” gradient problems [24].

In order to estimate the noise in a RF channel, the system needs to “listen” to the underlying signal

for sometime and “remember” the same. Previously, neural networks lacked this capability when

used in the context of temporal data. Another issue with using neural networks with temporal

data was the problem of vanishing gradients, when trying to use back propagation. Both these

problems were solved by the introduction of Recurrent Neural Networks (RNN) [45].

76



4.1.1 Formulation of temporal property of RF data

Given T training samples (for T timestamps) where each training sample is of size of M and

consists of a vector of tuples of the form (I,Q) ∈ C representing a number in the complex plane,

we represent a single sample as xt = [[(I,Q)i]
t; i = 1, 2, · · · ,M ] ∈ CM for each timestamp

t = 1, 2, · · · , T , and we use it as an input to the neural network. We use a sample size (M ) of 1024

as a default. We want to find the probability of the input vector for next time step (xt+1) to belong

to class Ck, where k ∈ 1, 2, . . . , K, K being the number of classes. The probability P (Ck|xt+1)

can be written as

P (Ck|xt+1) =
P (xt|Ck)P (Ck)

P (xtxt+1)
(4.1)

where (P (xt|Ck)) is the conditional probability of xt given the class Ck and (P (xtxx+1)) is the

probability of xt and xt+1 occurring in order.

The details of used LSTM and GRU cell models are described in Section 3.3.3.1 and 3.3.3.2 in

Chapter 3. So we next describe the details of convolutional LSTM network.

4.1.2 Convolutional LSTM Network Model

The recurrent neural networks with LSTM or GRU cells, do not consider the spatial information

encoded in the the input-to-state or state-to-state transitions. To mitigate this problem, we use a

convolution within the recurrent structure of the RNN. We first discuss the spatio-temporal property

of RF data and then model a convolutional LSTM network to exploit the same.
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4.1.2.1 Formulation of Spatio-temporal property for RF data

Suppose that a radio signal is represented as a time varying series over a spatial region using R

rows and C columns. Here R represents the time varying nature of the signal and as such in our

case it represents the total number of time stamps at which the signal was sampled (T in our case).

C on the other hand represents the total number of features sampled at each time stamp (in our

case its 2048 since there are 1024 features sampled each of dimension 2). Note that each cell

corresponding to one value of R and one value of C represents a particular feature (I or Q) at a

given point in time.

In order to capture the temporal property only, we use a sequence of vectors corresponding to

different timestamps 1, 2, · · · , t as x1, x2, · · · , xt. However, to capture both spatial and temporal

properties, we introduce a new vector χt,t+γ , which is formulated as: χt,t+γ = [xt, xt+1, · · · , xt+γ−1].

So the vector χt,t+γ eventually preserves the spatial properties with an increment of γ in time. So,

we get a sequence of new vectors χ1,γ, χγ,2γ, · · · χt,t+γ, · · · , χt+(β−1)γ,t+βγ , where β is bR/γc, and

the goal is to create a model to classify them into one of the K classes (corresponding to the trans-

mitters). We model the class-conditional densities given by P (χt−γ,t|Ck), where k ∈ 1, · · · , K.

We formulate the probability of the next γ-length sequence to be in class Ck as per equation 4.2.

The marginal probability is modeled as P (χt,t+γ).

P (Ck|χt,t+γ) =
P (χt−γ,t|Ck)P (Ck)

P (χt,t+γ)
(4.2)

4.1.2.2 The ConvLSTM Model

The cell model is similar to an LSTM cell, but the input transformations and recurrent transforma-

tions are both convolutional in nature [87]. We formulate the input values, cell state and hidden
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states as a 3-dimensional vector, where the first dimension is the number of measurements which

varies with the time interval γ and the last two dimensions contain the spatial information (rows (R)

and columns (C)). We represent these as: (i) the inputs: χ1,γ, χγ,2γ, · · · χt,t+γ, · · · , χt+(β−1)γ,t+βγ

(previously stated); (ii) cell outputs: C1, · · · , Ct, and (iii) hidden states: H1, · · · ,Ht. We represent

the gates in a similar manner as in the LSTM model. The parameters t, it, ft, ot, W , b hold the

same meaning as in Section 3.3.3.1 in Chapter 3. The key operations are defined in equations 4.3,

4.4, 4.5, 4.6, and 4.7. The probability of the next γ-sequence to be in a particular class (from

equation 4.2) is used within the implementation and execution of the model.

it = σ(Wxiχt,t+γ +WhiHt−1 + bi) (4.3)

ft = σ(Wxfχt,t+γ +WhfHt−1 + bf ) (4.4)

Ct = ft ◦ Ct−1 + it. tanh(Wxcχt,t+γ +WhcHt−1 + bc) (4.5)

ot = σ(Wxoχt,t+γ +WhoHt−1 + bo) (4.6)

Ht = ot ◦ tanh(Ct) (4.7)

4.2 Testbed Evaluation

In order to validate the proposed models, we collected raw signal data from 8 different universal

software radio peripheral (USRP) B210s [26]. We collected the data in an indoor lab environment
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with a signal-to-noise ratio of 30 dB, and used the dataset to distinguish between 4 or 8 transmitters,

as mentioned in [79].

4.2.1 Signal Generation and Data Collection

In order to evaluate our methods for learning the inherent spatio-temporal features of a transmitter,

we used eight USRPs of the same type, namely B210 from Ettus Research [26], as transmitters.

The signal generation and reception are shown in Fig. 4.1. We used GNURadio [29] to randomly

generate signal and modulated the same with Quadrature Phase Shift Keying (QPSK). We pro-

grammed the USRP B210s to transmit the modulated signal over the air and sensed the same using

a DVB-T dongle (RTL-SDR) [60]. We generated the entire dataset from “over-the-air” data as

sensed by the RTL-SDR using the rtlsdr python library.

Random
Signal

QPSK
Modulation USRP B210

RTL-SDRData
CollectionDatasets

Over The Air
Transmission

Figure 4.1: Over the Air Signal Generation and Data Collection Technique

We collected I/Q signal data with a sample size of 1024 at each time stamp. Each data sample

had 2048 entries consisting of the I and Q values for the 1024 samples. Note that a larger sample

size would mean more training examples for the neural network. Our choice of 1024 samples was

sufficient to capture the spatial-temporal properties while at the same time the training was not

computationally intensive. We collected 40,000 training examples from each transmitter to avoid

the data skewness problem observed in machine learning. The configuration parameters that were
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used are given in Table 4.1. We collected two sets of data: (i) using 4 transmitters: 6.8 GB size,

160K rows and 2048 columns and (ii) using 8 transmitters: 13.45 GB size, 320K rows and 2048

columns.

Table 4.1: Transmission Configuration Parameters

Parameters Values
Transmitter Gain 45 dB

Transmitter Frequency 904 MHz (ISM)
Bandwidth 200 KHz

Sample Size 1024
Samples/Transmitter 40,000

# Transmitters 4 and 8

4.2.2 Spatial Correlation in the Dataset

The wokring principle of correlation calculation in the collected RF data is already described in

Section 3.4.4 in Chapter 3. The spatial correlations of all the samples for the different transmitters

are shown in Fig. 4.2. We observe that for most of the transmitters, the correlation is ∼0.42,

with a standard deviation of ∼0.2. However, transmitter 3 exhibits minimal correlation between

these samples, which implies that the spatial property of transmitter 3 is different from the other

transmitters. As a result Transmitter 3 should be easily distinguishable from the others. This

claim will be validated later in the experimental result section where we see 0% false positive

and false negative for transmitter 3 for all the three proposed models. This observation gives us

the motivation to exploit the spatial property as well as the temporal property for the collected

time-series data.
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Figure 4.2: Spatial Correlation in the Dataset

4.2.3 Neural Network Libraries

There are many libraries available in python with support for different types of neural network

and concurrent GPU architecture. We use Keras [18] as the frontend and Tensorflow [1] as the

backend for our implementations. Keras is an overlay on the neural network primitives provided

by Tensorflow [1] or Theano [2] and provides a customizable interface for quick deployment of

complex neural networks. We also use Numpy, Scipy, and Matplotlib Python libraries.

4.2.4 Experimental Setup and Performance Metrics

We conducted the experiments on a Ryzen 8 Core system with 64 GB RAM, a GTX 1080 Ti GPU

unit having 11 GB memory. During the training phase, we use data from each transmitter to train

the neural network model. In order to test the resulting trained model, we use test data collected

from one of the transmitters and present the same to the trained network. In general to measure

the effectiveness of any learning algorithm, “accuracy” is used as the typical performance metric.

However, accuracy can sometimes be misleading and incomplete when the data is skewed. For the
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task of classification, a confusion matrix overcomes this problem by showing how confused the

learned model is on its predictions. It provides more insights on the performance by identifying

not only the number of errors, but more importantly the types of errors.

4.3 Implementations and Results

In this section we discuss the implementation of each of the proposed recurrent neural networks.

We train each network for transmitter classification with K classes. For the sake of robustness and

statistical significance, we present the results for each model after averaging over several runs.

4.3.1 Implementation with LSTM Cells

As discussed earlier, the recurrent structure of the neural network can be used to exploit the tem-

poral correlation in the data. To that end, we first implemented a recurrent neural network with

LSTM cells and trained it on the collected dataset using the paradigm as shown in Fig. 4.3. We

used two LSTM layers with 1024 and 256 units sequentially. We also used a dropout rate of 0.5

in between these two LSTM layers. Next we used two fully connected (Dense) layers with 512

and 256 nodes respectively. We apply a dropout rate of 0.2, and add batch normalization [38]

on the output, finally passing it through a Dense layer having 8 nodes. We use ReLU [58] as

the activation function for the LSTM layers and tanh [11] for the Dense layers. Lastly, we use

stochastic gradient descent [11] based optimization with categorical cross-entropy training. Note

that the neural network architecture was finalized over several iterations of experimentation with

the data and we are only reporting the final architecture here. We achieved 97.17% and 95.00%

testing accuracy for 4 and 8 transmitters respectively. The accuracy plots and confusion matrices

are shown in Figs. 4.4 and 4.5 respectively. Note that the number of nodes in the last layer is equal
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to the number of classes in the dataset. It is also to be noted that during the process of designing

the RNN architecture, we also fine tuned the hyper-parameters based generalization ability of the

current network (as determined by comparing the training and validation errors). We also limited

the number of recurrent layers and fully connected layers for each model for faster training [34],

since no significant increase in the validation accuracy was observed after increasing the number

of layers.

The rows and columns of the confusion matrix correspond to the number of transmitters (classes)

and the cell values show the recall or sensitivity and false negative rate for each of the transmitters.

Note that recall or sensitivity represents the true positive rates for each of the prediction classes.
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Figure 4.3: RNN Implementation with LSTM Cells for Transmitter Classification

(a) 4 Transmitters (b) 8 Transmitters

Figure 4.4: Accuracy Plots for Transmitter Classification using LSTM Cells
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(a) 4 Transmitters (b) 8 Transmitters

Figure 4.5: Confusion Matrices for Transmitter Classification using LSTM Cells

4.3.2 Implementation with GRU Cells

Next we implemented another variation of the RNN model using GRU cells for leveraging temporal

correlation. We used the same architecture as the LSTM implementation, presented in Fig. 4.6.

The proposed GRU implementation needs fewer parameters than the LSTM model. A quantitative

comparison is given in Section 4.3.5. The only difference is that we use two GRU layers with

1024 and 256 units instead of using LSTM cells. We achieved 97.76% and 97% testing accuracy

for 4 and 8 transmitters respectively. The accuracy plots and confusion matrices are given in Figs.

4.7 and 4.8. The GRU implementation provided a slight improvement over the accuracy obtained

using LSTM, for each run of the models, for both the datasets.
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Figure 4.6: RNN Implementation with GRU Cells for Transmitter Classification
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(a) 4 Transmitters (b) 8 Transmitters

Figure 4.7: Accuracy Plots for Transmitter Classification using GRU Cells

(a) 4 Transmitters (b) 8 Transmitters

Figure 4.8: Confusion Matrices for Transmitter Classification using GRU Cells

4.3.3 Implementation with ConvLSTM2D Cells

Finally, in order to exploit the spatio-temporal property of the signal data, we implemented an-

other variation of the LSTM model with convolutional filters (transformations). The implemented

architecture is shown in Fig. 4.9. ConvLSTM2D uses two dimensional convolutions for both in-

put transformations and recurrent transformations. We first use two layers of convLSTM2D with

1024 and 256 filters respectively, and a dropout rate of 0.5 in between. We use kernel size of
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(2,2) and stride of (2,2) at each ConvLSTM2D layer. Next we add two fully connected (Dense)

layers having 512 and 256 nodes respectively after flattening the convolutional output. ReLU [58],

and tanh [11] activation functions are used for the convLSTM2D and Dense layers respectively.

ADADELTA [104] with a learning rate of 10−4 and a decay rate of 0.9, is used as the optimizer

with categorical cross-entropy training. We achieved 98.9% and 98% testing accuracy for 4 and

8 transmitters respectively. The accuracy plots and confusion matrices are given in Figs. 4.10 and

4.11 respectively. Being able to exploit the spatio-temporal correlation, ConvLSTM implemen-

tation provides improvement over the accuracies obtained using the LSTM and GRU models, for

both the datasets.
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Figure 4.9: RNN Implementation with ConvLSTM Cells for Transmitter Classification

(a) 4 Transmitters (b) 8 Transmitters

Figure 4.10: Accuracy Plots for Transmitter Classification using ConvLSTM Cells
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(a) 4 Transmitters (b) 8 Transmitters

Figure 4.11: Confusion Matrices for Transmitter Classification using ConvLSTM Cells

4.3.4 Comparisons of LSTM/GRU/ConvLSTM Implementations

We used 90%, 5%, and 5% of the data to train, validate, and test respectively. We ran each model

for 50 epochs with early-stopping on the validation set. One epoch consists of a forward pass and

a backward pass through the implemented architecture for the entire dataset. The overall accuracy

of the different implementations is shown in Table 4.2. We find that the implementation of con-

volutional layers with recurrent structure (ConvLSTM2D) exhibit the best accuracy for transmitter

classification, which clearly shows the advantage of using the spatio-temporal correlation present

in the collected datasets.

Table 4.2: Accuracy for Different Implementations

#Trans Models #Parameters Acc (%)
4 LSTM (6 layers) 14.2 M 97.17
4 GRU (6 layers) 10.7 M 97.76
4 ConvLSTM (6 layers) 14.2 M 98.90
8 LSTM (6 layers) 14.2 M 95.00
8 GRU (6 layers) 10.7 M 97.02
8 ConvLSTM (6 layers) 14.2 M 98
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4.3.5 Comparisons of Proposed and Existing Approaches

Next we present two comparative studies of our proposed implementations with some existing

techniques. We introduce a differential analysis of different RNN based implementations in the RF

domain in Table 4.3. Another comparative study for different transmitter classification techniques

is shown in Table 4.4.

Table 4.3: Comparison of Proposed Approach with the Existing RNN Implementations

Approaches Model SNR (dB) Acc (%) Inputs
Traffic Sequence
Recognition [62] LSTM 20 31.2 Hybrid Real-synthetic Dataset

Automatic Modulation
Classification [73] LSTM 20 90 Synthetic Dataset [72]

Transmitter
Classification (Ours) ConvLSTM 30 98 Raw Signal

Table 4.4: Comparison of the Our Implementation with the Existing Transmitter Classification
Approaches

Approach #Trans SNR (dB) Acc (%) Inputs
Orthogonal Component Spurious

Reconstruction (OCR) [101] 3 20 62 - 71 Modulation
Genetic Algorithm [94] 5 25 85-98 Transients

Multifractal Not
Segmentation [86] 8 mentioned 92.5 Transients

k-NN [41] 8 30 97.2 Transients
Ours 8 30 98 Raw Signal

The “Inputs” column in both the tables refer to the type of inputs used for the methods under

consideration. Table 4.3 shows a comparison of our ConvLSTM based RNN for transmitter clas-

sification with other RNN based implementations for separate tasks like modulation recognition

and traffic sequence recognition. Table 4.4 establishes the efficacy of our ConvLSTM based RNN

model for the task of transmitter classification by comparing the accuracy with that obtained using
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other methods, for the same task. It is to be noted that all the other methods use expert crafted

features as inputs ( [41, 86, 94, 101]), or work with synthetic datasets ( [62], [73]). Our method,

on the other hand achieves superior accuracy (98%) using features automatically learned from

the raw signal data, thereby paving the way for real-time deployment of large scale transmitter

identification systems.

It must be pointed out that the proposed RNN models can be a trained using raw signal data from

any type of radio transmitter operating both in indoor as well as outdoor environments. We would

also like to point out that though our data was collected in a lab environment, we had no control

over the environment, there were other transmissions in progress, people were moving in and out

of the lab and there was a lot of multi-path due to the location and design of the lab. Furthermore

the power of the transmitters was low and hence this compounded the problem further. Given this,

though we say that the data was collected in a lab environment, in reality it was an uncontrolled

daily use environment reflective of our surroundings. Thus we can safely say that these methods

will work in any real world deployment of large scale radio network. In summary,

• Exploiting temporal correlation only, recurrent neural networks yield 95-97% accuracy for

transmitter classification using LSTM or GRU cells. RNN implementation with GRU cells

needs fewer parameters than LSTM cells as shown in Table 4.2.

• Exploiting spatio-temporal correlation, the implementation of RNN using ConvLSTM2D

cells provides better accuracy (98-99%) for transmitter classification, thus providing a po-

tential tool for building automatic real world transmitter identification systems.

• We present a comparative study of the proposed spatio-temporal property based fingerprint-

ing with the existing traditional and neural network based models. This clearly shows that

the proposed model achieves the best accuracy compared to any of the existing methods for

the task.
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4.4 Summary

In this chapter, we proposed a robust transmitter identification technique by exploiting both the

inherent spatial and temporal properties of RF signal data. We designed and implemented three

different types of neural network models for this purpose. We collected over-the-air signal data

from USRP B210s and used the same to train and validate our system. The RNN model using

LSTM cells yields 95% testing accuracy leveraging only temporal property of the signal data.

The one using GRU cells does the same with lower space requirement and yields a better testing

accuracy of 97.02%. Finally, the RNN model with ConvLSTM cell achieves 98% testing accuracy

for the same dataset leveraging both the temporal and spatial correlations.
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CHAPTER 5: DEFENSE AGAINST PUE ATTACK USING GAN BASED

LEARNING

In this chapter, we present a solution towards the PUE attacks. We present two generative adver-

sarial net (GAN) [32] based models to successfully emulate the primary users (PUs) in two ways.

We propose a (i) dumb generator model without any “prior" knowledge of PU’s feature space, (ii)

a smart generator model with some “prior" knowledge about PU’s transmission. Any GAN based

model works on a synergistic training of two neural networks: (i) a generator, and (ii) a discrimi-

nator. Therefore, we use generated malicious entities to train the discriminator for “yet to be seen”

real PUE attackers. We propose two deep neural network based discriminator models to discrim-

inate between the PU and the emulated primary users (EPU) from the corresponding generators.

Both the generator and discriminator of each GAN model gets smarter with iterative and sequen-

tial GAN training. Through a testbed evaluation, we show that discriminators are able to catch

∼50% of PUE attackers without the GAN training during the deployment phase. We also observe

100% accuracy for both the GAN models during training phase. Ultimately, after the GAN train-

ing, the discriminators achieved 98% and 99.5% accuracies, for dumb and smart generator models

respectively, to distinguish “yet to be seen" PUE attacker.

The chapter is organized as follows: section 5.1 proposes a GAN based mechanism to train a cen-

tralized module to defend against the PUE attacker. In section 5.2, we present the implementation

and experimental results of our proposed approach. The contents of this chapter appeared in [78].
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5.1 Proposed GAN Approach

In this section we propose a GAN based approach to present a robust defense mechanism for

PUE attack. In a GAN, we have one generator and one discriminator. We propose two GAN

based models: (i) one model which will work without any prior knowledge about the PU or the

CRN, (ii) the other with the assumption, that the attacker will have prior information about the

PUs characteristics for that CRN. So, for the first case we take the SU to work as a dumb emulated

primary user (EPU). However, in the second case the EPU is smart to gather or know all the helpful

prior information about the PU transmission, so we call those as smart EPUs. Few examples of

prior knowledge that an attacker could leverage to mimic the PUs characteristics are: (i) a set of

modulation schemes which the PUs use, (ii) the used frequency band, (iii) channel bandwidth for

PU’s transmission, (iv) geographical location of the PU’s transmitter, (v) sample space and sample

size of the PU transmission, and so on.

5.1.1 GAN based Problem Formulation for PUEA Defense

A GAN framework comprises of two distinct models: the generator (G) which learns the real data

distribution and generates the “mimicked” data, and the discriminator (D) which tries to distinguish

the mimicked data from the “real” data by estimating the probability that the sample came from

the real data rather than the G. The overall idea is that, during the training phase the generators

will pose as a selfish or malicious PUE attacker and make the discriminator stronger in order to

fight against the real selfish and malicious PUE attackers during the deployment phase. We call the

selfish and malicious PUE attackers as emulated primary users (EPU), and the legitimate primary

users as PUs. We use a centralized spectrum allocator and train it using the GAN model and

therefore work as a robust discriminator during deployment.
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5.1.1.1 Generative Model

The generative model has two main inputs, (i) prior information about the PU’s feature space

(s(t)), (ii) a additive Gaussian white noise (n(t)). The noise is added with the prior information,

z(t) = s(t) + n(t). The output z(t) is then fed to the generator which works as a unsupervised

learning tool and learns the data distribution (pz(z)) of PU’s feature space. Note that we have

indexed the prior information, noise and the generated data by time t. This has been done to

acknowledge the fact that the signal characteristics can change over time. However for this work

we do not consider the effects of variation of the signal characteristics (prior information) and noise

with time and essentially assume that s(t) = s ∀t and n(t) = n ∀t. Hence we also get z(t) = z ∀t.

Recall, there are two types of EPUs, one is dumb and another smart. The generator for dumb EPU

is deprived of any prior information about the PU’s feature space, so s(t) for the generator model

of dumb EPU is random and does not reflect the actual signal characteristics of the PU. The cost

function of generator is denoted by V (G). The GAN model’s target is to minimize this cost, i.e.,

to minimize the probability of D correctly identifying the data from G.

5.1.1.2 Discriminative Model

The discriminator is fed with both real data (x) drawn from a data distribution pdata(x), and gen-

erated data from generator (z(t)). The objective of the discriminator is to successfully distinguish

between these two types, i.e., to learn the difference between pdata(x), and pz(z). The cost func-

tion for discriminator is denoted as V (D). The target of discriminator is to maximize its cost,

i.e., to increase probability to correctly identify samples from training examples and data from

G. Target of the overall GAN model is to minimize the cost for generator and maximize the

cost for discriminator. The overall cost V (G,D) is formulated as V (G,D) = Epdata(x) logD(x) +

Epz(z) log(1 − D(G(z))), where pz(z) is the generator’s distribution over generated data samples
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z, pdata(x) is the data distribution over real data samples x, D(x) is the probability that x came

from pdata(x) than pz(z). D(G(z)) represents the probability that x came from pz(z) than pdata(x).

Objective of the GAN training is:

min
G

max
D

V (G,D) (5.1)

Throughout the training phase, the GAN framework eventually converges to an unique optimal

discriminator for a particular generator, D∗(x) =
pdata(x)

pdata(x) + pz(z)
. It is intuitive that D is optimal

when the discriminator can distinguish between each real sample (x) and generated sample (z).

Similarly, it is also deduced that G is optimal when the D cannot distinguish between x and z, G is

optimal when pz(z) = pdata(x).

min max V(D,G)
G D
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Network 

G(z) 
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Figure 5.1: Implementation of GAN in RF Domain

5.1.1.3 GAN Architecture

The overall GAN architecture is shown in Fig. 5.1. Once the generator (G(z)) is trained, it gen-

erates “mimicked” data from the data distribution (pz(z)) with the prior information. The trained

discriminator knows the difference between the mimicked data distribution (pz(z)) and real data
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distribution (pdata(x)), so it will try to distinguish the mimicked data (z) from the real data (x).

The activation function at discriminator is sigmoid. The feedback from the output is fed to both

G(z), and D(z). So ultimately the target of overall GAN model is to maximize the discriminator’s

cost and minimize the generators cost, mathematically formulated as equation (5.1).
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PU Feature
Space
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PU Feature
Space
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Tuning
Parameters

Wireless links
Wired links

Real 
Data 

s(t)

n(t)

z(t)

Figure 5.2: GAN Training in the Spectrum Allocator

5.1.2 GAN based Approach for PUEA Defense

The proposed method is compatible with the existing system of centralized spectrum allocation

for dynamic spectrum access implementations. The idea is to install a generator and discriminator

model inside the spectrum allocator. During the training phase, the discriminator is trained over the

generated data and real signal data from the legitimate PUs. The overall proposed training approach

is presented in Fig. 5.2. We train the discriminator over the generator model. We consider the

generator to be either one of the two types: (i) a generator posing as a dumb EPU, (ii) a generator

96



posing as a smart EPU. The smart EPUs collect the prior information about the feature space of the

PUs from a feature space extractor. The discriminator gets trained over both real (x) and generated

data (z) over iterations and become robust enough to distinguish between the real and synthetic

data. The output of the discriminator is fed to both the generator and discriminator models so as

to tune-up the hyper-parameters of each model, depending on the result. In this way, the generator

also gets smarter over each iteration and the discriminator gets smarter than the generator over the

next iteration. Thus we design the training in such a way that over time the discriminator eventually

over-powers the smartest possible generator model. Once the GAN training is complete, the trained

discriminator is deployed in the spectrum allocator.

Deployment Phase

Spectrum Allocator

Trained 
Discriminator

PU1

PU3
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SU1 SU1
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GeneratorPU Feature
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Noise Noise

EPU

Generator

3 PU 
4 SU 

Results
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Figure 5.3: Deployment of Trained Discriminator in Spectrum Sensing Scenario

During the deployment phase, the centralized spectrum allocator gets signal information from

spectrum sensors, and pass them through the trained discriminator before the spectrum is allocated.

The overall proposed approach for deploying the trained discriminator is shown in Fig. 5.3. In the

figure we consider 3 legitimate PUs, 1 dumb EPU, 1 smart EPU, and 2 SUs. The dumb EPU

does not have any prior knowledge about PU’s feature space, but the smart one has. The trained

discriminator is able to recognize the 2 EPUs as SU, despite the effort of the malicious entities.
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5.2 Implementation and Results

For implementing the GAN model, we use the proposed generator and discriminator models with

data collected from over-the-air RF transmission. Next we describe the data collection, experimen-

tal setup, implementation details, and experimental results.

5.2.1 Used Dataset and Experimental Setup

We use a dataset of raw I/Q values from 8 software defined radios (universal software radio

peripheral (USRP) B210 [26]). The details of I/Q data generation and data collection mecha-

nism is similar to [79], and [76]. As described in earlier chapters, each I/Q dataset comprises

T training samples (for T timestamps) and a sample size of N , where each sample is a vector

(I,Q) ∈ C representing a number in the complex plane. Each vector at timestamp t is represented

as: x(t) = [[(I,Q)i]
t; i = 1, 2, · · · , N ] ∈ CN for timestamp t = 1, 2, · · · , T . We use these vectors

as input during GAN training. Note that though we collect the data with respect to different time

stamps, we do not treat the data thus collected as a time series for this work, that is we ignore the

temporal aspect of the data.

We conducted the testbed evaluation on a Ryzen 8 Core system with 64 GB RAM, a GTX 1080 Ti

GPU unit, and 11 GB memory. We used different machine learning libraries to design the proposed

GAN models. We useu Keras [18] as the frontend and Tensorflow [1] as the backend for the neural

network architectures used in GAN. We also use Numpy, Scipy, and Matplotlib python libraries for

implementation of different operations.
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5.2.2 GAN for Dumb PUE Attacker

In this case, the generator has no prior information. The generator starts by randomly generating

data within the sample space [X, Y ], where X and Y are random numbers. For our experiments,

we took X as 0 and Y as 1. This dumb generator picks a random sample size N . The randomly

generated data is then used as input to three dense layers of sizes N/2, N , and 2N respectively

with tanh activation function in the first two layers. The third neuron layer uses sigmoid activation

function, and generates data of size 2N .

The generator G(z) continues to learn the data distribution (pz(z)) and generates fake samples

of size 2N within a random sample space. The discriminator (D(x)) for the dumb generator is

simple. We first have one input layer of 2N nodes, which is followed by two hidden layers of

N and N/2 nodes respectively. Ultimately, a softmax output layer of 2 nodes is used to identify

whether the input is from a legitimate SU or malicious EPU. We use tanh as activation function at

the hidden layers and add Dropout [89] of 0.5 in between those layers to avoid overfitting. We also

use l1 regularization for the same purpose. The output from the last layer is fed to the layers of

generator as well as discriminator in the next epoch for tuning the parameters of both. One epoch

is actually a combination of a forward and a backward pass through the designed model over the

entire dataset. The overall GAN implementation using dumb generator is shown in Fig. 5.4. In this

case, the G(z), andD(x) are respectively 3-layered and 5-layered networks. In the figure, the solid

lines represent the connection between two layers, whereas the dotted lines represent the feedback

from output layer of the discriminator to the other layers of both generator and discriminator to be

used in next epoch.
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Figure 5.5: GAN Implementation for Smart Emulated Primary User

5.2.3 GAN for Smart PUE Attacker

In this case, generator G(z) has prior knowledge about some features of PUs. We get a sample

of size 1024 and sample space of [-1, 1] from the PU feature extractor. These features eventually

help the EPUs to better mimic legitimate PUs. In this set of experiments, we get the sample size

(N ) and the sample space from the “feature space extractor”. Feature space extractor is a module

in the spectrum allocator, which extracts features and builds a feature space for the PUs from the

sensed signal data. The GAN implementation with a smart generator is shown in Fig. 5.5. For

the sake of consistency and generality, we use the same number of layers as the dumb one, for

modeling the generator of smart EPU. However, knowing that the generator is smart, we design

the discriminator in a way that it is 1-layer more deep than the one for the dumb one. We use 2
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dense layers with N nodes instead of 1. So now the D(x) becomes a 6-layered network. The rest

of the generator and discriminator properties are similar as before.

5.2.4 Experimental Results

We perform two sets of experiments here: (i) first we train the GAN model on a dumb generator

and use the discriminator as discussed in section 5.2.2, (ii) next we train our proposed model on

the smart generator and use a discriminator as described in section 5.2.3. For both the cases we

performed the training on the data collected from the authentic PUs. We notice that the discrim-

inator trained on the dumb generator was able to detect the EPUs with 49.22% accuracy before

the GAN training. Whereas, the discriminator trained on smart generator was able to do that with

50.15% accuracy. This slight improvement is due to the one extra layer of neurons in the smart

discriminator. However, the overall achieved accuracy is far below expectations. The discrimina-

tor is naive and can distinguish the EPUs from the legitimate PUs only with ∼ 50% of accuracy,

which is similar to what one would obtain for random guessing.

(a) 50 Epochs (b) 100 Epochs (c) 150 Epochs

Figure 5.6: Generator and Discriminator Loss of GAN Model with Dumb EPU
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5.2.4.1 Training Phase

We train both the generator and discriminator through iterative sequential learning to strengthen

the generative and discriminative model over time. We use categorical cross-entropy training on

Adam [42] optimizer for gradient based optimization. We use 90%, 5%, and 5% of the total data

for training, cross-validation and testing respectively.

We experimented with several training paradigms for training the GAN models in order to get the

best performance from it. This leads us to train both the models in a 3-step approach. We first

train the models for 50 epochs with learning rate of 10−4 and 10−3 for generator and discriminator

respectively. Next, we train the models for another 50 epochs with lower learning rates of 10−5

and 10−4 for G(z) and D(x) respectively. In the last 50 epochs, we decrement both the learning

rates by 1/10 again. Notice that in each epoch, the learning rate of generator is lower than the dis-

criminator, as we want the generator to learn precisely about the possible data distribution (pz(z))

of PUs for better EPU emulation. However, we give the discriminator more layers to be able to

accurately learn the decision boundary in order to eventually overpower the generator. It is clear

from the Fig. 5.6, that the generator’s loss starts to decrease and the discriminator’s loss starts to

increase at the beginning. However, after a certain number of epochs, both the losses saturate.

The generator-loss, with the dumb generator fluctuates more and reaches saturation later (after 30

epochs); whereas the generator-loss with smart generator reaches saturation within less than 20

epochs, as shown in Fig.5.7. This result bolsters the intuition that knowing some of the PUs fea-

tures will make the generators smart at emulating the PUs and this in turn will make the system

converge faster. The discriminator’s behavior is more or less stable for both the models. Once both

the models are trained, we proceed to the deployment phase.
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(a) 50 Epochs (b) 100 Epochs (c) 150 Epochs

Figure 5.7: Generator and Discriminator Loss of GAN Model with Smart EPU

5.2.4.2 Deployment Phase

During the deployment phase, we randomly choose over-the-air signal data from EPUs and SUs.

We collect 4000 signal data from legitimate SUs and 4000 signal data from EPUs. We programmed

USRP B210s [26] to work as SUs and EPUs. These EPUs use same sample size and sample

space as the PUs, making themselves indistinguishable to the normal discriminator (trained with-

out GAN). We observe ∼ 50% EPU detection rate prior to GAN training. However, after the

discriminator is trained and learned the data distribution (pz(z)) of the EPUs, we get better de-

tection rate. We achieved a 98.04% accuracy from the discriminator which was trained using the

dumb generator and 99.5% accuracy from the discriminator which was trained using the smart

generator. These results are presented in Table 5.1.

Table 5.1: Accuracies for Different Implementations

Before GAN Training After GAN Training
D with Dumb G Training 49.22% 98.04%
D with Smart G Training 50.15% 99.5%
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(a) Dumb Generator (b) Smart Generator

Figure 5.8: Confusion Matrices with Dumb and Smart EPUs: before GAN Training

(a) Dumb Generator (b) Smart Generator

Figure 5.9: Confusion Matrices with Dumb and Smart EPUs at Deployment Phase: after GAN
Training

5.2.4.3 Performance Analysis

Using accuracy as a measure of efficacy of an algorithm can sometimes be incomplete and mis-

leading depending on the type of data, such as the case for skewed data. A confusion matrix

overcomes those problems by showing a relative relation between false positives and false nega-

tives and actual data labels. Hence we present the confusion matrices for both the experiments of

deployment phase, in Fig. 5.8, and 5.9. It is evident from Fig. 5.8, that almost all of the signals are
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predicted to be transmitted from SU, giving an accuracy of∼50%. So, the discriminator is not able

to distinguish between EPU and SU, thus predicting all as SU. However, the confusion matrices

after the GAN training has lower false positive and false negative rates. We also notice that the

false positives and false negatives are higher in case of the GAN model which was trained over

dumb generator. In summary,

• We achieve ∼50% accuracy of EPU detection using the discriminator trained without the

GAN for both type of proposed models, during deployment phase.

• During training, we observe 100% training accuracy for both dumb and smart GAN models.

• The trained discriminator with dumb and smart generator training gives testing accuracy of

98% and 99.5% respectively during the deployment phase.

• The proposed GAN based model can be applied for any type of cognitive radio transmitter

irrespective of PU or SU’s properties. We achieve 98-99% accuracy of EPU detection after

the dumb generator training. So without any knowledge of PU properties, the proposed

model is capable of detecting PUE attackers with 98% accuracy. Some “prior” information

can boost up the accuracy to 99.5%.

5.3 Summary

In this chapter we present a robust defense mechanism against PUE attack in a cognitive radio net-

work. We design GAN based models considering (a) no prior information and (b) prior information

about the PUs. We call them as dumb and smart GAN models respectively. Through testbed evalu-

ations, we show that the GAN training for both kind of generators give a competitive accuracy for

EPU or PUE attacker detection during the deployment phase. However, GAN model with smart
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generator training achieves better accuracies and faster saturation than the dumb one. Both models

are able to detect the malicious and selfish PUE attacker with more than 98% of accuracy. Extend-

ing this concept towards providing security for other issues in wireless communication, could be

one of the next steps to consider.
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CHAPTER 6: PRIMARY USER’S ACTIVITY PREDICTION

In this chapter, we present recurrent neural network models which are able to accurately predict

the primary users’ activity in dynamic spectrum access (DSA) networks so that the secondary

users can opportunistically access the unused spectrum. Using Universal Software Radio Periph-

eral (USRP) Software Defined Radios (SDRs), we collect over-the-air data from 8 primary users

and train the learning models that we use in conjunction with a central spectrum sensor. We start

by implementing two machine learning models: (i) traditional linear regression and (ii) neural

network model using Long Short Term Memory (LSTM). These models are able to predict the

primary users’ activity with 75% and 97% accuracy respectively. To further improve the predic-

tion accuracy, we exploit the spatio-temporal correlation in the collected data by implementing

a Convolutional LSTM model– which achieves 99% accuracy for predicting the long-term activ-

ity of primary users. The experimental results demonstrate that the proposed models are able to

successfully predict the primary users’ activities, thereby reducing both the under-utilizations and

interference violations in DSA networks. To the best of our knowledge, this dissertation is the first

one to propose a strategy for long term prediction of the activity of the primary user [100].

This chapter is organized as follows: we present the system model and problem formulation in

section 6.1 and different prediction models in section 6.2. The testbed setup and experimental

results are presented in section 6.3. The contents of this chapter appeared in [80].

6.1 Problem Description

In this section, we lay out the assumptions, present the system model, and formulate the problem.
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6.1.1 Primary User Activity Pattern

The primary users alternate between ON (busy) and OFF (idle) periods. Random variables ron

and roff determine the duration ofON andOFF periods respectively. The probability distribution

of rON and roff depends on the specific activity pattern of the primary user. We assume that the

primary user’sON andOFF times are independently and identically distributed and use a Poisson

point process to model them. Thus we model the probability distributions for the ON and OFF

times of the primary users as:

fon(ron; βon) =


1

βon
e
−
ron
βon ron ≥ 0

0 ron < 0

(6.1)

foff (roff ; βoff ) =


1

βoff
e
−
roff
βoff roff ≥ 0

0 roff < 0

(6.2)

where, βon and βoff are the mean ON and OFF times respectively.

We define the activity factor of the primary users as the ratio of the mean PU ON time to the sum

of the mean of PU ON and OFF times and thus this is given by:

PUactivity =
βon

βon + βoff
(6.3)

It must be noted that, it is not required to pre-define a model for learning; the proposed prediction

models are able to learn any kind of PU activity pattern. We considered the Poisson process for
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our testbed experiments.

6.1.2 System Model

We assume that PUs and SUs co-exist in a geographical area. The SUs can utilize the spectrum

bands when they are not being used by the PUs. The PUs have priority and can transmit when

they need to. On the other hand, SUs always have backlogged traffic to transmit and must yield

to the PU as soon as they require the spectrum. The transmission times for the PUs obey the

pattern (distribution) as discussed earlier. As a result of this system model, prior knowledge of

PU activity is vital for SUs to effectively and efficiently share the spectrum. We assume that

there is a centralized spectrum sensor that monitors the PU transmission activities and maintains

records of all past observations. The trained models corresponding to the proposed neural network

architectures are co-located with the spectrum sensor and use the past observations as inputs in

order to predict the activity pattern of the PUs.

6.1.3 Problem Formulation

The trained neural network model predicts the primary user’s activity at time τ for the next Γ

timestamps and the SS sends that information to the secondary user. Depending on the prediction

information received from the spectrum sensor, the secondary user schedules its transmission for

the next Γ timestamps, thus minimizing the interference violation as well as the under-utilization.

We denote the states of the primary user’s and secondary user’s transmission as sPU and sSU . The

ON state of each is represented as 1, and OFF state as 0. We also denote tolerable thresholds for

interference violation and under-utilization as Ithr, and Uthr respectively.

At time τ , the trained model predicts the PU activity for the next Γ timestamps. In our system we
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let the SS inform the secondary user when it sees continuous PU inactivity for more than 50% of

the predicted Γ timestamps. Note that this is a heuristic for solving the underlying optimization

problem as given by equation 6.4. However in the most general setting, at the time τ , depending on

the information received from the SS, the secondary user sets its state sSU to 0 or 1 for the next Γ

timestamps. Let Ich(t) denote the indicator variable at time t (τ < t ≤ τ + Γ), indicating whether

the secondary user causes interference to the primary user on channel ch. Note that: Ich(t) =

sPU(t)×sSU(t). Similarly, letUch(t) denote an indicator variable representing the under-utilization

of ch channel at time t. Notice that: Uch(t) = sPU(t) + sSU(t), where + denotes the logical OR

operation. sPU(t) and sSU(t) represent the PU’s and SU’s states respectively at time t. We note that

a conservative strategy for dynamic spectrum allocation will result in under-utilization, whereas an

aggressive strategy will lead to a considerable amount of interference violation, as discussed in

connection to Fig. 1.2.

The secondary user can transmit on the channel when the primary user is in the OFF state (i.e.,

sPU = 0). It should terminate its transmission as soon as the primary user starts to transmit (i.e.,

sPU = 1). However, while the SU is transmitting (τ < t ≤ τ + Γ), it will not be aware of this

state change of the PU (that is it will not be able to detect the change in the Ich(t) states). Thus

the possibility of having accurate knowledge of Ich(t) will depend on how well the neural network

can model the underlying probability distribution of the activity of the primary user.

Finally, our objective is to maximally assign the secondary user to the ON state constrained over

the thresholds of interference violation (Ithr) and under-utilization (Uthr). Thus, the general prob-

lem can be formulated as follows: let the number of timestamps where the SU is active be denoted

by η where η can takes values between τ + 1 and τ + Γ. Then the problem can be formulated

as that of maximizing η subject to the constraints on the interference and under-utilization being
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bounded above by the respective thresholds. Thus we have:

max η

subject to
η∑
t=1

Ich(t) ≤ Ithr

η∑
t=1

Uch(t) ≤ Uthr

(6.4)

6.2 Proposed RNN Based Prediction Models

We present two types of neural network models that leverage the temporal and spatio-temporal

correlation in the historical data of the PU activities, in order to predict future PU activities. We

take the I/Q values of over-the-air signal data as raw features for future state prediction, as the I/Q

values do not require further sophisticated signal processing. Hence they are capable of providing

an end-to-end solution for our problem using machine learning techniques.

6.2.1 Recurrent Neural Network Model

Fully-connected and convolutional neural networks that are traditionally used for deep learning

lack the capability to exploit the context available in temporal data. Additionally, there is the

problem of vanishing gradients, when trying to use back propagation with temporal data. Both

these problems are addressed by Recurrent Neural Networks (RNN) [45] which we now describe

in brief in the context of our problem.
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6.2.1.1 Temporal Property of I/Q data

Given T training samples (for T timestamps) where each sample is a vector of size M , and each

component of the vector is a tuple (I,Q) ∈ C representing a number in the complex plane, we

represent this vector for a given time stamp t as xt = [[(I,Q)i]
t; i = 1, 2, · · · ,M ] ∈ CM where

t = 1, 2, · · · , T , and use it as an input to the neural network. We use a sample size (M ) of 1024

as a default for our experiments. We want to find the probability of sPU(t) = 0 for the next input

vector (xt+1) for t = t+ 1. The probability P (sPU(t) = 0|xt+1) can be written as:

P (sPU(t) = 0|xt+1) =
P (xt|sPU(t) = 0)P (sPU(t) = 0)

P (xt|sPU(t) = 0)P (sPU(t) = 0) + P (xt|sPU(t) = 1)P (sPU(t) = 1)

(6.5)

where P (xt|sPU(t) = 0) and P (xt|sPU(t) = 1) are the conditional probabilities of xt given sPU(t)

was set to 0 and 1 respectively. P (sPU(t) = 0) and P (sPU(t) = 1) are the marginal probabilities,

values of which will depend on the activity factor of the primary user. The predicted value of

vector x at the next timestamp (t + 1) will depend on the predicted value of the current one [87],

which is given by:

x̃t+1 = arg max
xt+1

(P (xt+1|x̃t)) (6.6)

The details of used LSTM cell models are described in Section 3.3.3.1 in Chapter 3. We next

describe the overview of convolutional LSTM network.
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6.2.2 Convolutional Recurrent Neural Network

The recurrent neural networks using LSTM cells do not consider the spatial information encoded

in the input-to-state or state-to-state transitions [87]. However, there are many applications where

spatio-temporal correlation exists within the dataset. To address this issue, we use a convolution

within the recurrent structure of the RNN. We first discuss the spatio-temporal property of RF data

and then model a convolutional LSTM cell to exploit the same.

6.2.2.1 Spatio-temporal Property of I/Q Data

Suppose that a radio signal is represented as a time varying series over a spatial region using R

rows and C columns. Here R represents the time varying nature of the signal and as such in

our case it represents the total number of time stamps at which the signal was sampled (T in our

case). C on the other hand represents the total number of features sampled at each time stamp (in

our case its 2048 since there are 1024 features sampled each of dimension 2). Note that each

cell corresponding to one value of R and one value of C represents a particular feature (I or Q)

at a given point in time. In order to capture the spatial variation of the signal we need to con-

sider samples from the signal at consecutive time stamps. In our case we consider time intervals

of length γ and hence we represent this by sub-matrices of the original R × C matrix repre-

senting the whole time varying signal. Each of these sub-matrices have γ rows corresponding

to the selected timestamps and C columns. Thus in a nutshell: to capture the temporal property

only, we made use of a sequence of vectors for timestamps 1, 2, · · · , T , namely, x1, x2, · · · , xT

whereas now, to capture both spatial and temporal properties, we introduce a new vector χt,t+γ ,

which is formulated as: χt,t+γ = [xt, xt+1, · · · , xt+γ−1]. So the vector χt,t+γ eventually preserves

the spatial properties with an increment of γ in time. Thus, we get a sequence of new vectors

χ1,γ, χγ,2γ, · · · χt,t+γ, · · · , χt+(ψ−1)γ,t+ψγ , where ψ is bR/γc. We formulate the probability of pri-
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mary user to be idle (P (sPU(t) = 0|χt, t+γ)) for the next γ-length sequence as:

P (sPU(t) = 0|χt, t+γ) =
P (χt−γ, t|sPU(t) = 0)P (sPU(t) = 0)

P (χt−γ, t|sPU(t) = 0)P (sPU(t) = 0) + P (χt−γ, t|sPU(t) = 1)P (sPU(t) = 1)

(6.7)

The marginal probabilities for the primary user to be idle or busy are modeled as P (sPU(t) =

0) and P (sPU(t) = 1) respectively. P (χt−γ, t|sPU(t) = 0), and P (χt−γ, t|sPU(t) = 1) are the

conditional probabilities of χt−γ, t given sPU(t) was set to 0 and 1 respectively. The predicted

value of γ-length sequence vector χ at timestamp t will depend on the predicted value of the

previously predicted γ length sequence [87], which is given by:

χ̃t, t+γ = arg max
χt+1···χt+γ

(P (χt, t+γ|χ̃t−γ, t)) (6.8)

It must be noted that in our case γ = Γ where Γ is as described in Section 6.1.3.

6.2.2.2 The ConvLSTM Model

We model the ConvLSTM cell as presented in Fig. 6.1. It is similar to an LSTM cell, but the input

transformations and recurrent transformations are both convolutional in nature [87]. We formulate

the input values, cell state and hidden states as 3-dimensional vectors, where the first dimension

is the number of features (C/2) and varies over time, and the last two dimensions contain the

spatial information (rows (R) and columns (C)). The details of used ConvLSTM cell models are

described in Section 4.1.2.2 in Chapter 4.
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Figure 6.2: PU Activity Prediction Training of the Spectrum Sensor

6.2.3 Proposed PU Activity Prediction Model

We propose two models based on recurrent neural networks to train the spectrum sensor using the

historical data of primary user activities. The objective is to learn every primary user’s activity

pattern and use it for scheduling SU activity. We also use the traditional linear regression model

for prediction in order to test the performance of the neural network based models against classical

techniques. We present the training strategy of each model in Fig. 6.2. First, we divide the dataset

into subsets for training and validation. In each epoch, we validate the trained model on the val-

idation data and depending on the validation error we tune the hyper-parameters of each model.

A single epoch consists of a forward pass and a backward pass through the implemented architec-
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ture for the entire dataset. We normalize the data for both training and validation to balance each

feature. We design three different models using three different approaches on the normalized data.

The details of the RNN with ConvLSTM cells is presented in Fig. 6.3. The first two hidden layers

consist of ConvLSTM cells with 1024 and 256 filers respectively. The last two hidden layers are

Dense layers, applied after flattening the output from the last ConvLSTM layer. We also apply

Dropout [89] of 0.5 between the different layers to avoid over-fitting of the trained model. The

LSTM implementation is also similar, with the exception of not having the Flatten layer in between

the LSTM and Dense layers. Increasing the number of filters or layers did not help in achieving

higher accuracy for either of the models. The output layer consists of a fully connected Dense

layer with 1 neuron to generate the predicted value. We run and validate the training data for 50

epochs for both the LSTM and ConvLSTM models, beyond which we did not notice any further

improvement. During the testing phase, once we get the predicted values, we compare them with

the known values for the test/validation dataset and estimate the accuracy of the trained models.
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Figure 6.3: RNN Implementation with ConvLSTM Cells for PU Activity Prediction

Next we present the conceptual overview of the deployment phase of the proposed prediction

models for a cognitive radio network as shown in Fig. 6.4. The trained models are deployed

within the spectrum sensor. The SS also collects and stores the historical data of all the primary

users for enough time to build a robust trained model. This trained model also gets updated on

the newly learned primary user’s activity after some specific duration of time. Determining the
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data collection time and model updating time are application specific. Once the spectrum sensor

can get a primary user’s absence prediction from the trained model, it relays the information to the

secondary users. The secondary users later access the idle channel in a cooperative manner, details

of which is beyond the scope of this article. Now we are ready to describe our experimental results.

Trained
Models

Spectrum Sensor SU1

SU1

SUn

PU1

PU2

PUm

Sense 
Channel

Figure 6.4: Deployment of the Proposed PU Prediction Model

6.3 Implementation and Results

In this section we present the details of our implementation and the experimental results.

6.3.1 Experimental Environment

In order to validate the proposed models, we collected over-the-air data in an indoor lab environ-

ment from 8 universal software radio peripheral (USRP) B210s [26] acting as primary users. We

name these 8 radios as PU#1 to PU#8. We collected the dataset on an i7 machine with 16 GB

RAM. We conducted the proposed model training and evaluation on a Ryzen 8 Core system with

64 GB RAM, a GTX 1080 Ti GPU unit with 11 GB graphics memory.
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Table 6.1: Collected Dataset Sizes for Different Primary Users

Primary User Size (GB)
PU#1 3.26
PU#2 3.5
PU#3 3.29
PU#4 3.2
PU#5 3.14
PU#6 3.16
PU#7 3.1
PU#8 3.22

6.3.2 Data Collection Environment

The data collection environment is presented in Fig. 6.5. A random signal is generated using

GNURadio [29] and modulated with Quadrature Phase Shift Keying (QPSK). We programmed

the USRP B210s to alternate between ON or OFF states such that the activity factor remained

between 0.7 and 0.75. Thus, the collected dataset has more PU presence data than absence, which

helps the learning process. The duration of ON and OFF times follows the model described in

Section 6.1.1. We generated datasets of different sizes for different PUs. Collected dataset sizes

are presented in Table 6.1.

The transmitted signal is received by a RTL-SDR [60] that used the rtlsdr python library. The AND

gate (in Fig. 6.5) after the primary user block, is used to represent the fact that either the noise or

the signal from primary user is transmitted at a particular timestamp. Primary user’s OFF time

is the absence of radio signal data, therefore it is represented as “Noise". We generate different

datasets for all the primary users. The “over-the-air" transmission data was collected in an indoor

lab environment where the B210 transmitters and the RTL-SDR receiver were at a distance of 10

feet with a direct line of sight. Thus, the underlying channel can be best modeled as a Rician fading

channel. There was also multi-path effects due to the reflections from the walls.
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Figure 6.6: I/Q Values Representation: (a) Signal Present (b) Noise

During the primary user’s ON time, the I/Q values were organized in a constellation (please refer

to Fig. 6.6(a)). During the primary user’s OFF time the I/Q values are random (please refer to

Fig. 6.6(b)). Each data sample had 2048 entities consisting of 1024 I and 1024 Q values. We chose

1024 as sample size as it was sufficient to capture the spatial properties and at the same time the

training was not computationally intensive. The configuration parameters for the radios are given

in Table 6.2.
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Table 6.2: Primary User Transmission Configuration Parameters

Parameters Values
Transmitter Gain 45 dB

Transmitter Frequency 904 MHz (ISM)
Bandwidth 200 KHz

Sample Size 1024
Samples/Transmitter Variable

Primary Users USRP B210
Receiver RTL-SDR

# Primary Users 8

6.3.3 Signal to Noise Ratio of Data Collection Environment

To measure the signal to noise ratio (SNR) of the testbed environment, we use a RTL-SDR [60]

dongle and Spektrum [69] which is an open source spectrum analyzer available for both Windows

and Linux. The screenshots of Spektrum are shown in Fig. 6.7 and 6.8 when the signal is absent

and present respectively. We calibrate the SNR using the Spektrum software (rather than using a

spectrum analyzer) in order to avoid the associated costs and also in order to show the robustness

of our methods to imprecise measurements (as measurements in software are always inferior to

actual hardware measurements). From Fig. 6.7, we found that the noise floor was between -20 dB

and -30 dB. Fig. 6.8 shows that the signal strength for the 200 KHz (from 904.9 MHz to 904.1

MHz) channel was between 0 dB and 10 dB. We set the transmitter gain to 45 dB and calculated

the SNR as the difference between the noise floor and the signal strength. Our calculated SNR was

5 dB - (-25 dB) = 30 dB, with a 45 dB transmitter gain. It is to be noted that the signal strengths

(in dB) of noise and signal measured by Spektrum is relative, but the difference between them is

absolute.
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Figure 6.7: Noise Floor Plot using Spektrum [69] Software

6.3.4 Used Machine Learning Libraries and Performance Metrics

We used Keras [18] as the frontend and Tensorflow [1] as the backend for desiging the proposed

neural network models. Keras is an overlay on neural network primitives with Tensorflow [1]

or Theano [2] that provides a customizable interface for quick deployment of complex neural

networks. We also use Numpy, Scipy and Matplotlib Python libraries for linear regression and

other traditional methods.

“Accuracy” is used as the typical performance metric to measure the effectiveness of the proposed

neural networks. However, accuracy can sometimes be misleading and incomplete when the data

is skewed. In our dataset, the total PU ON time is greater than OFF times, making the dataset

skewed. A confusion matrix overcomes this problem by showing how confused the classification

model is on its predictions. It provides more insights into the performance by identifying not only

the number of errors, but also the types of those, i.e., false positives and false negatives.
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Figure 6.8: Signal Level Plot using Spektrum [69] Software

We use accuracy and confusion matrix to demonstrate the reliability of the proposed models. We

show the interference violation and under-utilization to show the feasibility and applicability of the

proposed models in cognitive radio networks.

6.3.5 Experimental Results

We train three different machine learning models on the collected dataset of each primary user. The

linear regression model was straight forward and trained with 90% of each dataset. For both the

LSTM and ConvLSTM based models, we use 90%, 5%, and 5% of data for training, validation,

and testing respectively. During each training, we set the maximum epoch to 50 with an early

stopping condition, such as, if there is no improvement of validation loss for consecutive 5 epochs,

then the training is stopped. We choose 50 epochs because we observed through multiple runs of

training, that each model reaches optimum accuracy within 50 epochs. We use Adam [42] based

optimization with 10e−4 learning rate and mean squared error loss for training both the LSTM and
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ConvLSTM based models. We adjusted the hyper-parameter’s values such that the model gives the

best possible accuracy with training time trade-off.

Once each model is trained, we predict each primary user’s activity for the next 4000 timestamps

using the proposed models. We only present last 50 timestamps of those 4000 timestamps in

Fig 6.9, for better display quality and understanding. The plot demonstrates the primary user’s

presence and absence using a threshold on the received signal strength indicator (RSSI) for PU#1.

The threshold is application specific; it is set to -10 dB for our testbed. Although PU#1’s activity

factor was set between 0.7 to 0.75, we see more absence for the last 50 timestamps, which shows

the robustness of the data collection procedure. It is evident from the plots that the predicted

values for both primary user’s presence and absence are getting closer to actual values for LSTM

and ConvLSTM models, however, ConvLSTM yields the best results. We observe similar results

for the other primary users (PU#2 - P#8) as well, plots are given in Appendix.

6.3.5.1 Analysis on Proposed Prediction Models

The prediction accuracy for all the primary users (PU#1 - PU#8), for all the proposed models are

presented in Table 6.3. We notice that linear regression gives 73-76% accuracy, whereas the LSTM

and ConvLSTM models manage to get 97%-99% accuracies respectively. This phenomenon can

be justified by the presence of correlation within the recurrent structure of RF data. The linear

regression based model does not leverage that property. The LSTM based model exploits only the

temporal property of that recurrent structure giving a better accuracy (∼97%). However, ConvL-

STM based model exploits the spatio-temporal property within the data and hence gives the best

accuracy(∼99% - 100%) among all the proposed prediction models for all the 8 primary users.
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(a) Presence@LR (b) Absence@LR

(c) Presence@LSTM (d) Absence@LSTM

(e) Presence@ConvLSTM (f) Absence@ConvLSTM

Figure 6.9: Predictions of last few Timestamps for different Models for PU#1

124



6.3.5.2 Performance of ConvLSTM Model

Figure 6.10: Prediction accuracy for ConvLSTM

The accuracies for training and validation are presented in Fig. 6.10 for PU#1. It is observed that

training and validation accuracy saturates within a few epochs of the start of training. The model

behaves in the same manner for the other PUs as well. Once the ConvLSTM model is trained, we

find the confusion matrices for all the 8 PUs for the next 4000 timestamps, as presented in Fig. 6.11.

Since the PU’s activity factor was set between 0.7 and 0.75, we notice a skewed behavior for the

total presence and absence times of the primary users respectively. It is clear from the confusion

matrices that the ConvLSTM based model yields negligible numbers of false positives and false

negatives during the deployment phase.
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(a) PU#1 (b) PU#2

(c) PU#3 (d) PU#4

(e) PU#5 (f) PU#6

(g) PU#7 (h) PU#8

Figure 6.11: Confusion Matrices for Prediction using ConvLSTM for 8 PUs
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Table 6.3: Accuracies of Implemented Models for different Primary Users

Linear RNN RNN
Regression (LSTM) (ConvLSTM)

PU #1 73.98% 97.62% 100%
PU #2 77.60% 97.83% 99.95%
PU #3 75.15% 97.92% 100%
PU #4 75.15% 97.60% 99.98%
PU #5 75.80% 97.88% 99.98%
PU #6 74.58% 97.62% 99.98%
PU #7 74.72% 97.75% 100%
PU #8 76.75% 97.72% 99.98%

Table 6.4: Comparison of Interference Violation and Under-utilization for the Proposed Models
for PU#1

Techniques Interference IV Under UU
Violation (IV ) Change Utilization (UU ) Change

Conservative 1043 - 1478 -
Linear 1041 ↓0.2% 15 ↓98.9%

Regression
RNN-LSTM 7 ↓99.3 % 6 ↓99.5%

RNN-ConvLSTM 0 ↓100 % 0 ↓100%
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6.3.5.3 Analysis on Interference Violations and Under-utilization

We calculate the total number of interference violations (IV ) and under-utilization (UU ) for each

model. Table 6.4 presents the total numbers and improvement of IV and UU after using all the

proposed learning models, over using the conservative allocation strategies. It is clear that the long-

term prediction from ConvLSTM based model has no interference violation and under-utilization.

Fig. 6.12 gives the graphical overview of how the IV and UU change as the time increases for

all types of models. It is evident that the cumulative number of interference violation is signifi-

cantly high for the conservative approach than the proposed learning based models. However, the

cumulative under-utilization is high for both the conservative and linear regression models. The

changes of LSTM and ConvLSTM based models are not quite visible in this figure, so we present

the enhanced view of their changes in Fig. 6.13.

(a) Interference Violations (b) Under-utilization

Figure 6.12: Cumulative Interference Violations and Under-utilization for Conservative and all
Proposed Models for PU#1

In summary we have shown that, (1) Linear regression based model gives 73-76% accuracy for

primary user’s activity prediction. (2) LSTM based recurrent neural network model increases that

accuracy to 97% for the activity prediction of all the 8 primary users. (3) ConvLSTM based RNN
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model gives the best accuracy (∼100%) for the long-term prediction of primary user’s activity.

(4) The ConvLSTM based model also decreased the number of interference violations and under-

utilizations by 100% compared to the conservative one. (5) Trained ConvLSTM based RNN mod-

els can be deployed in a central spectrum sensor for a robust and efficient cognitive radio network.

(a) Interference Violations (b) Under-utilization

Figure 6.13: Enhanced Comparison of Cumulative Interference Violations and Under-utilization
for the Proposed Models for PU#1

6.3.5.4 Computational Complexities

We focus on the computational time complexity for the training phase only, as the trained model

gives the output within constant time (O(1)) during the deployment phase. Computing the time

complexity for training a neural network is still evolving. In [51], the authors proved that a neural

network of depth δ can be trained in poly(s2
δ
), where s is the dimension of the input, and poly(.)

takes a polynomial time depending on the machine configuration. Here s depends on the dataset

size.

Suppose each dataset has T samples. As mentioned earlier, we use 95% of data for training and
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validation purpose. The complexity for RNN models with 6 layers using 95% of T data samples

for training and validation, is poly(0.95 × Te326). For linear regression model, the complexity is

O(p2T + p3), where p is the number of features. The prediction complexity is O(p).

6.4 Summary

The opportunistic usage of spectrum by secondary users has the possibility of leading to a uni-

form and efficient usage of overly crowded radio frequency bands. In this regard we present the

use of machine learning techniques to predict the possible opportunities for such spectrum usage

by secondary users. We investigate the spatio-temporal aspect of over-the-air radio data for that

purpose. The long-term pattern of primary user’s ON and OFF times are learned by the proposed

neural network models. The comparative analysis with linear regression shows that exploiting

the recurrent structures with respect to temporal and spatial variations achieves the best possible

accuracy, as seen from the proposed prediction models. Leveraging the memory of earlier trans-

mission helps the sensing network to determine primary user activity pattern accurately over time.

Successful implementation of the proposed models will improve spectrum utilization and lower

interference violation for dynamic spectrum access networks.
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CHAPTER 7: CONCLUSIONS

In this dissertation, we addressed some of the fundamental challenges on how to effectively apply

different learning techniques in the RF domain. In the presence of adversaries, malicious activi-

ties such as jamming, and spoofing are inevitable which render most machine learning techniques

ineffective. To facilitate learning in such settings, we proposed an adversarial learning-based ap-

proach to detect unauthorized exploitation of RF spectrum. First, we showed the applicability of

existing machine learning algorithms in the RF domain. We designed and implement three recur-

rent neural networks using different types of cell models for fingerprinting RF transmitters. Next,

we focused on securing transmissions on dynamic spectrum access network where PUE attacks

can pose a significant threat. We presented a GAN based solution to counter such PUE attacks.

Ultimately, we proposed recurrent neural network models which are able to accurately predict the

primary users’ activities in DSA networks so that the secondary users can opportunistically access

the shared spectrum. We implemented the proposed learning models on testbeds consisting of US-

RPs working as Software Defined Radios (SDRs). Results revealed significant accuracy gains in

accurately characterizing RF transmitters- thereby demonstrating the potential of our models for

real world deployments.

We argued that most machine learning techniques would not be effective in adversarial settings

and that breakthroughs in GAN can be instrumental in detection of rogue transmitters and accurate

identification of known ones in adversarial settings. We proposed and implemented a generative

model and a discriminative model for the GAN. We collected over-the-air raw I/Q data using USRP

B210 and used that to train the GAN. The discriminator was able to detect rogue transmitters

with an accuracy of ∼99.9%. As for transmitter classification, we first implemented a convolu-

tion neural network (accuracy ∼89%) for exploiting the correlation between I/Q data. Then we

designed and implemented deep neural network and recurrent neural networks that showed accu-
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racies around 97% for trusted transmitter identification. We also showed how the proposed neural

network models (especially CNN) faired when radios from different manufacturers were used.

As we got promising results for “transmitter fingerprinting" using convolutional and recurrent neu-

ral network both, we wanted to explore the spatial and as well as temporal properties of RF data.

So we appraoched towards exploiting both the inherent spatial and temporal properties for a buld-

ing a robust “transmitter fingerprinting" approach. We modeled the temporal and spatio-temporal

correlations in RF data. We explored that using temporal correlation only, the RNNs can achieve

upto 95-97% of classification accuracy by using LSTM or GRU cell models. Whereas, exploitation

of spatio-temporal properties boosted up the accuracy to 98-99% by using ConvLSTM cell model.

The presence of adversaries can potentially cause some attack on the wireless network system.

To that end, we considered one significant attack, PUE attack, in a CRN. We presented a robust

defense meachnishm against PUE attack by proposing two GAN based models. We catergorized

the proposed GAN model based on the availability of prior information. The dumb generator-

discriminator model did not have any prior knowledge about the attacker, then also acheived 98%

accuracy of PUE attacker detection. Whereas the smart generator-discriminator model leveraged

the prior informations to acheive around 99.5% accuracy to catch the PUE attackers.

As of the PU activity prediction is concerned, we presented different ML techniques to predict the

“long-term" acitivities of the PUs. We leveraged both the temporal, and spatio-temporal aspect

of RF data in proposed a recurrent neural networks consisting of LSTM and ConvLSTM cells

respectively. We found that the long-term pattern of primary user’sON andOFF times are learned

by the proposed neural network models. We noticed the proposed RNN models outperform the

traditional linear regression method for predictions. The proposed ConvLSTM model gives 99.9-

100% accuracy of long term prediction by leveraging the memory of earlier transmissions. Such

accuracte predictions eventually improved spectrum utilization and lower interference violation for
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DSA networks.

7.1 Goal of the Dissertation

With more and more autonomous deployments of wireless networks, accurate knowledge of the

radio frequency (RF) environment is becoming indispensable. For example, a wireless sensor net-

work relies on trustworthy signals; however, malicious transmitters can contaminate the signals

and jeopardize the utility of the sensor network. Existence of such threats underscore the need

for techniques that recognize and authenticate the identity of transmitters, irrespective of the net-

work protocols and communication technologies being used. In recent years, there has been a

proliferation of autonomous systems that use machine learning algorithms on large scale historical

data. When using ML techniques for communication networks, malicious entities, such as rogue

transmitters can alter the signal, hence the data. Such threats and their ease of implementation in

communication networks necessitates the use of robust learning algorithms, that are agnostic to the

network and radio parameters. In this dissertation, we demonstrated the use of adversarial machine

learning for the task of robust RF transmitter characterization.
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APPENDIX : PU ACTIVITY
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(a) PU#1 LR (b) PU#1 LSTM (c) PU#1 ConvLSTM

(d) PU#2 LR (e) PU#2 LSTM (f) PU#2 ConvLSTM

(g) PU#3 LR (h) PU#3 LSTM (i) PU#3 ConvLSTM

(j) PU#4 LR (k) PU#4 LSTM (l) PU#4 ConvLSTM

Figure .1: Predictions of last few Timestamps for different Models for PU#1 - PU#4
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(a) PU#5 LR (b) PU#5 LSTM (c) PU#5 ConvLSTM

(d) PU#6 LR (e) PU#6 LSTM (f) PU#6 ConvLSTM

(g) PU#7 LR (h) PU #7 LSTM (i) PU#7 ConvLSTM

(j) PU#8 LR (k) PU#8 LSTM (l) PU#8 ConvLSTM

Figure .2: Predictions of last few Timestamps for different Models for PU#5 - PU#8
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