2,692 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Impact of PWM strategies on RMS current of the DC-link Voltage Capacitor of a dual-three phase drive

    Get PDF
    The major drawback of usual dual three-phase AC machines, when supplied by a Voltage Source Inverter (VSI), is the occurrence of extra harmonic currents which circulate in the stator windings causing additional losses and constraints on the power component. This paper compares dedicated Pulse Width Modulation (PWM) strategies used for controlling a dual three phase Permanent Magnet Synchronous machine supplied by a six-leg VSI. Since the application is intended for low-voltage (48V) mild-hybrid automotive traction, an additional major constraint arises: the compactness of the drive related to the size of the DC-bus capacitor. Thus, the PWM strategy must be chosen by taking into consideration its impact on both, the motor and the RMS value of DC-bus current

    Analysis of the Harmonic Performance of Power Converters and Electrical Drives

    Get PDF
    Power converters have progressively become the most efficient and attractive solution in recent decades in many industrial sectors, ranging from electric mobility, aerospace applications to attain better electric aircraft concepts, vast renewable energy resource integration in the transmission and distribution grid, the design of smart and efficient energy management systems, the usage of energy storage systems, and the achievement of smart grid paradigm development, among others.In order to achieve efficient solutions in this wide energy scenario, over the past few decades, considerable attention has been paid by the academia and industry in order to develop new methods to achieve power systems with maximum harmonic performance aiming for two main targets. On the one hand, the high-performance harmonic performance of power systems would lead to improvements in their power density, size and weight. This becomes critical in applications such as aerospace or electric mobility, where the power converters are on-board systems. On the other hand, current standards are becoming more and more strict in order to reduce the EMI and EMC noise, as well as meeting minimum power quality requirements (i.e., grid code standards for grid-tied power systems)

    Multi-Frequency Modulation and Control for DC/AC and AC/DC Resonant Converters

    Get PDF
    Harmonic content is inherent in switched-mode power supplies. Since the undesired harmonics interfere with the operation of other sensitive electronics, the reduction of harmonic content is essential for power electronics design. Conventional approaches to attenuate the harmonic content include passive/active filter and wave-shaping in modulation. However, those approaches are not suitable for resonant converters due to bulky passive volumes and excessive switching losses. This dissertation focuses on eliminating the undesired harmonics from generation by intelligently manipulating the spectrum of switching waveforms, considering practical needs for functionality.To generate multiple ac outputs while eliminating the low-order harmonics from a single inverter, a multi-frequency programmed pulse width modulation is investigated. The proposed modulation schemes enable multi-frequency generation and independent output regulation. In this method, the fundamental and certain harmonics are independently controlled for each of the outputs, allowing individual power regulations. Also, undesired harmonics in between output frequencies are easily eliminated from generation, which prevents potential hazards caused by the harmonic content and bulky filters. Finally, the proposed modulation schemes are applicable to a variety of DC/AC topologies.Two applications of dc/ac resonant inverters, i.e. an electrosurgical generator and a dual-mode WPT transmitter, are demonstrated using the proposed MFPWM schemes. From the experimental results of two hardware prototypes, the MFPWM alleviates the challenges of designing a complicated passive filter for the low-order harmonics. In addition, the MFPWM facilitates combines functionalities using less hardware compared to the state-of-the-art. The prototypes demonstrate a comparable efficiency while achieving multiple ac outputs using a single inverter.To overcome the low-efficiency, low power-density problems in conventional wireless fast charging, a multi-level switched-capacitor ac/dc rectifier is investigated. This new WPT receiver takes advantage of a high power-density switched-capacitor circuit, the low harmonic content of the multilevel MFPWMs, and output regulation ability to improve the system efficiency. A detailed topology evaluation regarding the regulation scheme, system efficiency, current THD and volume estimation is demonstrated, and experimental results from a 20 W prototype prove that the multi-level switched-capacitor rectifier is an excellent candidate for high-efficiency, high power density design of wireless fast charging receiver

    Dual‐Inverter Circuit Topologies for Supplying Open‐Ended Loads

    Get PDF
    Power electronic converters are nowadays the most suitable solution to provide a variable voltage/current in industry. The most commonly used power converter is the three-phase two-level voltage source inverter which transforms a direct-current input voltage into alternating-current output voltage with adjustable magnitude and frequency. Power inverters are used to supply three-phase loads which are typically connected in wye or delta configurations. However, in previous years, a type of connection consisting on leaving both terminal ends of the load opened has been studied as an alternative to standard wye or delta connection. To supply loads with this type of connection, two power inverters (one at each terminal end of the load) are required in a circuit topology called dual-inverter. In this chapter, a general study of the dual-inverter topology is presented. The advantages and issues of such converter are studied and different modulation strategies are shown and discussed. Moreover, multilevel dual-inverter converters are presented as an extension to the basic two-level idea. For evaluation purposes, simulations results are presented

    A new three-level indirect matrix converter with reduced number of switches

    Get PDF
    Matrix converters are sine wave in/out forced commutated single-stage AC/AC direct frequency changers using a single bi-directional switch to connect any input to any output. Indirect two-stage matrix converters provide similar input and output performance with no passive component in the dc-link. The difference is that some of these topologies require less switching devices or are able to achieve multilevel output voltage capability. This paper proposes a new indirect matrix converter topology with a three-level phase to neutral output voltage capability and reduced number of devices. A new modulation scheme, simpler that a standard 3-level scheme, is proposed. The performance of the converter in terms of input and output waveform quality and power losses is evaluated through simulations and on an experimental prototype

    Tradeoffs between AC power quality and DC bus ripple for 3-phase 3-wire inverter-connected devices within microgrids

    Get PDF
    Visions of future power systems contain high penetrations of inverters which are used to convert power from dc (direct current) to ac (alternating current) or vice versa. The behavior of these devices is dependent upon the choice and implementation of the control algorithms. In particular, there is a tradeoff between dc bus ripple and ac power quality. This study examines the tradeoffs. Four control modes are examined. Mathematical derivations are used to predict the key implications of each control mode. Then, an inverter is studied both in simulation and in hardware at the 10 kVA scale, in different microgrid environments of grid impedance and power quality. It is found that voltage-drive mode provides the best ac power quality, but at the expense of high dc bus ripple. Sinusoidal current generation and dual-sequence controllers provide relatively low dc bus ripple and relatively small effects on power quality. High-bandwidth dc bus ripple minimization mode works well in environments of low grid impedance, but is highly unsuitable within higher impedance microgrid environments and/or at low switching frequencies. The findings also suggest that the certification procedures given by G5/4, P29 and IEEE 1547 are potentially not adequate to cover all applications and scenarios

    A multi-level converter with a floating bridge for open-ended winding motor drive applications

    Get PDF
    This paper presents a dual three phase open end winding induction motor drive. The drive consists of a three phase induction machine with open stator phase windings and dual bridge inverter supplied from a single DC voltage source. To achieve multi-level output voltage waveforms a floating capacitor bank is used for the second of the dual bridges. The capacitor voltage is regulated using redundant switching states at half of the main dc link voltage. This particular voltage ratio (2:1) is used to create a multi-level output voltage waveform with three levels. A modified modulation scheme is used to improve the waveform quality of this dual inverter. This paper also compares the losses in dual inverter system in contrast with single sided three-level NPC converter. Finally, detailed simulation and experimental results are presented for the motor drive operating as an open loop v/f controlled motor drive and as a closed loop field oriented motor controller

    A survey on capacitor voltage control in neutral-point-clamped multilevel converters

    Get PDF
    Neutral-point-clamped multilevel converters are currently a suitable solution for a wide range of applications. It is well known that the capacitor voltage balance is a major issue for this topology. In this paper, a brief summary of the basic topologies, modulations, and features of neutral-point-clamped multilevel converters is presented, prior to a detailed description and analysis of the capacitor voltage balance behavior. Then, the most relevant methods to manage the capacitor voltage balance are presented and discussed, including operation in the overmodulation region, at low frequency-modulation indexes, with different numbers of AC phases, and with different numbers of levels. Both open- and closed-loop methods are discussed. Some methods based on adding external circuitry are also presented and analyzed. Although the focus of the paper is mainly DC–AC conversion, the techniques for capacitor voltage balance in DC–DC conversion are discussed as well. Finally, the paper concludes with some application examples benefiting from the presented techniques.Peer ReviewedPostprint (published version
    • 

    corecore