33,992 research outputs found

    Preliminary design of a 100 kW turbine generator

    Get PDF
    The National Science Foundation and the Lewis Research Center have engaged jointly in a Wind Energy Program which includes the design and erection of a 100 kW wind turbine generator. The machine consists primarily of a rotor turbine, transmission, shaft, alternator, and tower. The rotor, measuring 125 feet in diameter and consisting of two variable pitch blades operates at 40 rpm and generates 100 kW of electrical power at 18 mph wind velocity. The entire assembly is placed on top of a tower 100 feet above ground level

    AES-EPO study program, volume I Final study report

    Get PDF
    Conceptual study of possible solutions to long- term and time-critical reliability problems affecting Apollo command module guidance and control compute

    A survey of new technology for cockpit application to 1990's transport aircraft simulators

    Get PDF
    Two problems were investigated: inter-equipment data transfer, both on board the aircraft and between air and ground; and crew equipment communication via the cockpit displays and controls. Inter-equipment data transfer is discussed in terms of data bus and data link requirements. Crew equipment communication is discussed regarding the availability of CRT display systems for use in research simulators to represent flat panel displays of the future, and of software controllable touch panels

    General purpose simulator system study

    Get PDF
    Modifications to computerized simulator system for space shuttle and space station application

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Man-rated flight software for the F-8 DFBW program

    Get PDF
    The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program assembly control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools are described, as well as the program test plans and their implementation on the various simulators. Failure effects analysis and the creation of special failure generating software for testing purposes are described

    A First Practical Fully Homomorphic Crypto-Processor Design: The Secret Computer is Nearly Here

    Get PDF
    Following a sequence of hardware designs for a fully homomorphic crypto-processor - a general purpose processor that natively runs encrypted machine code on encrypted data in registers and memory, resulting in encrypted machine states - proposed by the authors in 2014, we discuss a working prototype of the first of those, a so-called `pseudo-homomorphic' design. This processor is in principle safe against physical or software-based attacks by the owner/operator of the processor on user processes running in it. The processor is intended as a more secure option for those emerging computing paradigms that require trust to be placed in computations carried out in remote locations or overseen by untrusted operators. The prototype has a single-pipeline superscalar architecture that runs OpenRISC standard machine code in two distinct modes. The processor runs in the encrypted mode (the unprivileged, `user' mode, with a long pipeline) at 60-70% of the speed in the unencrypted mode (the privileged, `supervisor' mode, with a short pipeline), emitting a completed encrypted instruction every 1.67-1.8 cycles on average in real trials.Comment: 6 pages, draf

    FLARE: A design environment for FLASH-based space applications

    Get PDF
    Designing a mass-memory device (i.e., a solid-state recorder) is one of the typical issues of mission-critical space system applications. Flash-memories could be used for this goal: a huge number of parameters and trade-offs need to be explored. Flash-memories are nonvolatile, shock-resistant and power-economic, but in turn have different drawback: e.g., their cost is higher than normal hard disk and the number of erasure cycles is bounded. Moreover space environment presents various issues especially because of radiations: different and quite often contrasting dimensions need to be explored during the design of a flash-memory based solid-state recorder. No systematic approach has so far been proposed to consider them all as a whole: as a consequence a novel design environment currently under development is aimed at supporting the design of flash-based mass-memory device for space application
    • …
    corecore