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Abstract

A high-speed pre-production superscalar microprocessor that ‘works encrypted’ is described here. Data in registers, on buses, and

(in consequence) in memory, is kept in encrypted form. It is intended to protect user data being processed remotely or overseen by

untrusted operators.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

In 2013, the authors showed1 that if the arithmetic in a conventional processor is modified appropriately, then, given

three provisos (described in Section 2), the processor continues to operate correctly, but all its states are one-to-many

encryptions of those obtained in an unmodified processor running the same program. In particular, data in registers,

data and addresses on buses, etc., is kept in an encrypted form. In consequence, the data input from and output to

memory and disk or other I/O may be encrypted to start with and stays that way. Such a processor may evidently be

of use where it is important to protect user data from the possibility of a dishonestly acting owner/operator, such as in

voting machines2, smart meters3, ATMs, and in processing big data in the cloud. A follow-up paper in 2014 pointed

to several possible directions4 for a practical implementation.

Development of the idea over the last two years has resulted in the working prototype the architecture of which is

described here. The prototype is sophisticated enough to bear comparison with off-the-shelf production processors:

it is superscalar (it executes multiple instructions at a time), with a pipeline in which full ‘forwarding’ has been

embedded (pipeline stalls in which an instruction behind waits for data from an instruction ahead have been eliminated

as far as is logically possible), along with branch prediction, instruction and data caching, speculative execution, etc. It

is intended in its present form to run as a coprocessor: just as a GPU takes on code sent to it that performs graphically-

oriented calculations, so this processor takes on code sent to it that is to be run encrypted.
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The technical question answered by prototyping has been whether or not an architecture based on a changed

arithmetic can really attain the performance level of a modern general purpose processor, running encrypted. Modern

processors break instructions into small operations and execute the parts simultaneously along one or more pipelines.

Some of the execution is speculative – liable to be discarded and/or reversed – and instructions and their component

parts may be accelerated or delayed according to a complex system of dependencies and constraints. A processor

is not purely numerical – it is supposed to react to arithmetic overflows and a host of exception conditions and flags

that might not be compatible with a modified arithmetic and encrypted execution. It is not a priori clear that any of

that level of technological practice is sustainable, and the prototype has been a platform on which to test these issues,

developing and refining solutions where there turn out to be problems. Broadly speaking, we do have the performance

required, and we do have exactly the correct instruction semantics in all aspects with respect to a recognised standard.

The prototype runs the OpenRISC version 1.1 rev. 0 instruction set, with minor adaptations and conforms to

the specification opencores.org/or1k/Architecture_Specification. It has the register structure and be-

havioural semantics described therein. The prototype passes the Or1ksim functional test suite (opencores.org/

or1k/Or1ksim) in encrypted and unencrypted running. Data words are logically 32 bits under the encryption, but

they physically occupy a whole encryption block, 64 or 128 bits, etc., as the case may be, depending on the encryption

used. The prototype is set up to use 64-bit Rijndael5 symmetric encryption and a 64-bit physical word, but it has also

been run with a 72-bit Paillier encryption6. The latter is a (slower) asymmetric encryption with an additive property

that means that no keys need be embedded in the processor, whereas for the Rijndael an embedded key is required.

The Rijndael implementation, however, is the focus for this article, as we believe it to be the practical option.

The objective of the design is to permit the system operator only to be able to see user data in encrypted form, in a

processor that works at near normal speed. Section 4 below reports the speed of this prototype running in encrypted

mode as 60-70% of the speed in unencrypted mode, with improvements still available. An instruction is emitted

every 1.67-1.8 machine cycles, and with, say, a 2GHz clock, that is 1.1-1.2×109 instructions per second. One should

compare with the speed of a smart card7, ubiquitously used today to provide secure computing solutions, standardly

clocked at a 3.57MHz or 4.92MHz for approximately 106 instructions per instruction, hundreds of times slower.

Previous efforts at creating a processor that works with greater security against observation and tampering have

concentrated on protecting memory with encryption and keyed access, while the processor itself continues to work

unencrypted. The earliest work in that direction appears to be Hashimoto et al.’s US Patent for a “Tamper Resistant

Microprocessor”8 where the authors state “it should be apparent to those skilled in the art that it is possible to add

[a] data encryption function to the microprocessor . . . ”. They meant that an encryption/decryption device (‘codec’)

could be placed on the path between entertainment media content stored encrypted in memory and the processor.

In that arrangement, the user is seen as the possible attacker, trying to get at unencrypted media content, and the

system is seen as the defender. That has echoes in very recent approaches such as Schuster et al.’s implementation

of MapReduce for cloud-based query processing9 on Intel SGX machines, which employs the machine’s built-in

hardware10 to isolate the regions of memory involved to well-defined ‘enclaves’, and encryption may also feature. We

do not focus on key management here, but many works, Hashimoto et al.’s among them, offer management of keys

within the processor as the means of enforcing security barriers.

In contrast, our approach relies on the principle of having everything that passes through the processor in encrypted

form, making the security analysis dependent on questions of computer architecture, not electronics, and we aim to

protect the user from the system rather than the other way round. There are no codecs on the path from processor to

memory, slowing access. The Rijndael codec is embedded (as 10 stages) in the 15-stage processor pipeline, through

which every instruction must pass, so there is no extra delay per instruction; one is still emitted (at best) every cycle.

The layout of this paper is as follows. In Section 2 the hardware/software conditions for the design to work are laid

out. An account of the architecture is given in Section 3. Section 4 discusses performance, setting out the numbers.

2. Conditions for encrypted running

There are well-defined conditions established1 for a processor of this kind to run correctly, encrypted (it is a

bisimulation of a conventional processor via the encryption relation):

(A) The modified arithmetic implemented in the processor must be a ‘homomorphic image’ of ordinary computer
arithmetic;
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(B) encrypted programs must never combine program addresses (the addresses of machine code instructions) with
other data values;

(C) programs must be compiled either to save data addresses for reuse, or recalculate them exactly the same way the
next time.

The first proviso (A) means that the modified arithmetic in the processor must be a ‘homomorphic image’ of ordinary
computer arithmetic. That is, when encrypted inputs x′, y′ corresponding to integers x, y are supplied to the unit for

addition, what comes out must be an encryption z′ of the ‘plain’ sum z = x + y. The direct way to do that in hardware

is to construct the output z′ exactly as described, using an encryption device E and a decryption deviceD:

z′ = E(D(x′) +D(y′))

and the implementation for Rijndael in the prototype is analogous (see Section 3), but it is not the only possibility.

For example, for the Paillier encryption modulus m, one has instead

z′ = x′y′ mod m

needing only multiplication modulo m to be implemented in the hardware, with no encryption or decryption device,

thanks to the ‘homomorphic’ propertyD(x′y′ mod m) = D(x′) +D(y′) mod m of the Paillier encryption.

The second proviso (B) has to do with memory addressing and the kind of programs that can run. Because data

addresses look no different from other numbers, and are produced dynamically in the course of a program, for example

by adding an offset to a base address, inevitably data addresses are encrypted exactly as other data is. However,

program addresses (addresses of program instructions) are not encrypted. The program counter in any processor is

advanced by a constant (the length of an instruction in bytes) at each tick of the clock and that would allow an attack

against the encryption, if the encryption were used for program addresses. The solution adopted is not to encrypt

program addresses at all. To conform, programs must never combine program addresses with ordinary data values.

So link-loaders and compilers must run in supervisor mode, or remotely on the user’s own platform (encrypted

code for a possibly hostile platform will not sensibly do late linking).

The third proviso (C) is due to the fact that many different encryptions may be generated at runtime for what

the programmer intended as one memory address. They look different to memory, which is ordinary RAM. From the

program’s point of view, the same address seems to sporadically access different locations (‘hardware aliasing’). Code

that steps in reverse down a string is problematic, for example. The right thing for the program is to save the address

of each character first time for reuse.

Conforming machine code may either be generated from source or existing machine code (after encryption/translation)

may be mechanically checked for conformance11.
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Fig. 1. Idealised modified arithmetic logic unit

(ALU) for encrypted operation (ALU′ box) show-

ing decryption devices (D) on inputs and encryp-

tion device (E) on output.

The GNU ‘gcc’ v4.9.1 compiler (github.com/openrisc/

or1k-gcc) and ‘gas’ v2.24.51 assembler port (github.com/

openrisc/or1k-src/gas) for the OpenRISC 1.1 architecture have

been modified to emit code that respects these provisos12. The mod-

ified source code is at sf.net/p/or1k64kpu-gcc and sf.net/p/

or1k64kpu-binutils.

3. Architecture

In user mode, the prototype processor runs on encrypted data and

executes the OpenRISC 32-bit instruction subset (those instructions

that target 32-bit data). Encrypted data physically occupies 64 bits (or

more, depending on the encryption used), but it contains only 32 bits

of data when decrypted. A 64-bit instruction run in user mode raises

an ‘illegal instruction’ exception. As per the OpenRISC specification, user mode accesses the 32 general purpose

registers (GPRs), and a very few permitted special purpose registers (SPRs). Attempts to write ‘out of bounds’ SPRs

are silently ignored in user mode, and zero is read. Running encrypted, the OpenRISC 32-bit integer and floating

point instruction set coverage is complete.
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In supervisor mode the processor may execute either 32- or 64-bit instructions and access to registers is unrestricted.

There is no enforced division of memory into ‘supervisor’ and ‘user’ parts, so a supervisor mode process can read

user data in memory, but the user data will be in encrypted form.

Instructions divide naturally into two kinds: ‘immediate’ instructions, which carry 16 bits of data in the (32-bit)

instruction itself, and the rest, which do not. Immediate instructions are problematic in user mode because we want

them to carry data in encrypted form, but encrypted data takes up 64 bits or more and an instruction is only 32

bits long, so it does not fit. To solve this problem, a prefix instruction has been added to the instruction set. An

immediate instruction is preceded in the instruction stream by prefix instructions, carrying the initial segments of

the encrypted datum, and the immediate instruction itself carries only the final 16-bit segment. Those OpenRISC

immediate instructions that are supposed to carry fewer than 16 bits of data (register shifts and rotations each carry 5

or 6 bits) have been respecified to carry exactly 16 bits of data, 10 bits of which are discarded in unencrypted running.

The instruction pipeline in (unencrypted) supervisor mode is the standard short 5-stage fetch, decode, read, execute,

write pipeline expected of a RISC processor13, except that it is physically embedded in a longer pipeline that is

traversed in full by (encrypted) user mode instructions. The pipeline is configured in two different ways for the user

mode instructions as shown in Fig. 2 (the hardware for those stages with two different configurations is doubled). The

reason is that, in order to reduce the frequency with which codecs are brought into action for user mode instructions,

ALU operation has been effectively extended in the time dimension, so that it covers a series of consecutive (encrypted)

arithmetic operations in user mode. Only the first of the series is associated with a decryption event and only the last

of the series is associated with an encryption event. Longer series mean less frequent codec use. The two pipeline

configurations described below cover the needs of instruction processing in encrypted running.

The ‘A’ configuration is deployed when a store instruction puts an encrypted result into memory, or a load in-

struction decrypts incoming data from memory. The ‘B’ configuration is used when encrypted immediate data in an

‘add immediate’ instruction is read in. Instructions that do not exercise the codec pass through the pipeline in ‘A’

configuration, because the early execution makes results available for early forwarding to instructions entering be-

hind, avoiding pipeline stalls. The codec covers 10 stages in the prototype implementation, corresponding to 10 clock

cycles per encryption/decryption, but that may be varied to suit the encryption.

ALU

ALU

A

B

Fetch Decode Read Write

Fetch Decode Read WriteExecute

Execute

codec

codec

Fig. 2. The pipeline is configured in two different ways, ‘A’ and ‘B’, for two

different kinds of user mode instructions during encrypted working.

To support this mode of operation, there is

a private set of user-mode-only registers that

shadow the GPRs (and the few SPRs accessi-

ble in user mode). These contain the decrypted

version of the encrypted data in the ‘real’ GPRs

and SPRs. They are aliased in as registers for

read and write stage of a user mode instruc-

tion, and aliased out for supervisor mode in-

structions, so they are unavailable to supervisor

mode. The protocol maintains the register en-

tries in decrypted form in the shadow registers

from one instruction to the next in user mode.

Additionally, a small user-mode-only data

cache retains the unencrypted version of any en-

crypted data that is written to memory during

user mode operation. On load from memory, this cache is checked first. Almost all execution stack reads in normal

operation are intercepted by this mechanism. The cache is physically within the processor boundary, so will be cov-

ered by the measures that protect the processor chip from spying or interference (e.g., those that accrue from a smart

card-like fabrication and layout).

Note that program addresses are unencrypted (as opposed to data addresses, which are encrypted), which poten-

tially is a source of confusion in user mode. A peculiar protocol addresses the issue: unencrypted 32-bit addresses

zero-filled to 64 bits are regarded as an ‘encrypted’ form, and they are ‘decrypted’ to an ‘unencrypted’ form consisting

of the same data with the top 16 bits of 64 rewritten to 0x7fff. Thus an instruction such as jump-and-link (JAL) in

user mode, which fills the return address (RA) register with the program address of the next instruction, writes the



1286   Peter T. Breuer and Jonathan P. Bowen  /  Procedia Computer Science   83  ( 2016 )  1282 – 1287 

zero-filled address to the real RA register, and the 0x7ff form to the shadow RA register. The padding under the

encryption is arranged so that (really) encrypted data avoids both forms of program address.

In principle, encrypted addresses emanating from the prototype fall anywhere in the full address range (although

the addresses under the encryption are 32-bit). Since no real machine ever has even a full 64 bits-worth of RAM,

address translation conventionally takes place within the memory management unit to a physically backed area of

memory via a ‘translation look-aside buffer’ (TLB). However, the TLB is conventionally organised at page-sized

granularities, saying where each 8KB-sized area of logical addressing should be translated to in physical addressing

terms. That architecture is not appropriate here because encrypted addresses are not clustered, if the encryption is

any good. Instead, the TLB must be organised with unit granularity. Further, all encrypted addresses generated in

user mode are first remapped internally by the TLB to a pre-set range of logical addresses with the allocation serially

ordered by ‘first-come, first-served’. Since data that will later be accessed together tends also to be addressed for the

first time in close sequence, this allows conventional cache lookahead policies to continue to operate successfully, on

either logical or physical addresses.

Moreover, it has turned out to be possible to pass the unencrypted data address to the memory unit during the

processing of load and store instructions, with no additional processing. We are nervous of the security implications,

so we do not suggest that that should be done. However, the bare 32-bit address can be hashed or encrypted in a

different way from there.

4. Performance

Table 1. Performance data, or1ksim test-suite instruction set add

test.

@exit : cycles 315640, instructions 222006

mode user super

register instructions 0.2% 0.2%

immediate instructions 7.3% 9.2%

load instructions 0.9% 2.8%
(cached) ( 0.9%)

store instructions 0.9% 0.0%
(cached) ( 0.9%)

branch instructions 1.0% 4.9%

jump instructions 1.1% 4.8%

no-op instructions 6.4% 15.8%

prefix instructions 11.5% 0.0%

move from/to SPR instructions 0.1% 2.7%

sys/trap instructions 0.5% 0.0%

wait states 24.7% 4.9%
(stalls) (22.1%) ( 3.8%)
(refills) ( 2.7%) ( 1.1%)

total 54.8% 45.2%

Branch Prediction Buffer

hits 10328 ( 55%) misses 8219 ( 44%)

right 8335 ( 44%) right 6495 ( 35%)

wrong 1993 ( 10%) wrong 1724 ( 9%)

User Data Cache

read hits 2942 (99%) misses 0 ( 0%)

write hits 2933 (99%) misses 9 ( 0%)

The OpenRISC ‘or1ksim’ simulator (opencores.org/

or1k/Or1ksim) has been modified heavily to run the pro-

totype discussed here. It is now a cycle-accurate sim-

ulator, 800,000 lines of finished C code having been

added to the original over two years through a sequence

of prototypes. The first upgraded the 32-bit simula-

tor to meet the 64-bit OpenRISC standard (sf.net/p/

or1ksim64ptb), the second introduced the Rijndael en-

cryption, the third pipelined the model, and so on. The

code archive and development history is available at

sf.net/p/or1ksim64kpu and analytics are at nbd.it.

uc3m.es/~ptb/or1ksim64KPU-stats. The instruction

function part comprises 30K lines, of 90K lines per model.

The processor instruction set tests from the or1ksim

suite have been modified to run encrypted. The original

tests ran in supervisor mode, which would not have tested

the prototype because supervisor mode is unencrypted.

Our modification (sf.net/p/or1k64kpu-binutils) of

the OpenRISC port of the GNU ‘gas’ assembler v2.24.51

produced the encrypted machine code.

Table 1 displays the performance statistics from the

modified instruction set add test (‘is-add-test’) of the

or1ksim test-suite. The statically compiled executable con-

tains 185628 machine code instructions, which occupy

742512 bytes in the 769454 byte executable, the rest be-

ing comprised of the executable file headers, symbol table,

etc. Table 1 shows that when this test was run (success-

fully) to completion, 222006 instructions were executed,

so there are few loops and subroutines (the code is largely

built using assembler macros) in 315640 cycles. If one

reckons with a 1GHz clock, then the speed was just over 700Kips (instructions per second).
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In supervisor mode, pipeline occupation is just under 90%, at 892Kips for a 1GHz clock (wait states, cycles in

which the pipeline fails to complete an instruction, comprise 4.9% of the 45.2% total), which one may take as a

baseline for a single pipeline superscalar design. In user mode pipeline occupation is only 54.9%, as measured by

numbers of non-wait states, for 549Kips with a 1GHz clock. Measured against supervisor mode, that is 61.6% of the

unencrypted speed. Experiment shows that every extra codec stage drops throughput 2.5%.

The wait states are caused by unavoidable pipeline data hazards. Most (84%) are due to a load instruction feeding

directly to an arithmetic instruction. A stall occurs because the data address for the load instruction is only calculated

in execute stage, so the data cannot at that time already be available to the instruction sitting in read stage just behind.

5. Future work

The performance data indicates that a dual pipeline and on-the-fly instruction reordering would bring speed up

over 70% of unencrypted running, and we plan to implement that. We will also model memory bus interactions more

closely in order to optimise cache positioning and configuration.

An ‘administrator’ mode should be added between supervisor and user mode to run encrypted with privileges to

support an encrypted operating system with a view to possible virtualisation.

A secure boot chain and secure operating system kernel and virtual machine in software can be offered as an

alternative to the encrypted processor hardware – sensitive routines and data being confined to work in registers only

while interrupts are masked.

6. Conclusion

A sophisticated superscalar pipeline design for a high-speed processor that works encrypted in user mode has

been described here, with performance measured at 60-70% of unencrypted processing while embedding a 10-cycle

(Rijndael) 64-bit encryption in this prototype. Registers, memory and buses contain encrypted user data, opaque to

the operator and operating system, offering an avenue towards secure, remote high-speed computing in future.
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