52 research outputs found

    Unambiguous Tracking Method Based on Combined Correlation Functions for sine/cosine-BOC CBOC and AltBOC Modulated Signals

    Get PDF
    Unambiguous tracking for Binary Offset Carrier (BOC) modulated signals is an important requirement of modern Global Navigation Satellite System (GNSS) receivers. An unambiguous tracking method based on combined correlation functions for even/odd order sine/cosine-BOC, Composite BOC(CBOC) and Alternate BOC(AltBOC) modulated signals is proposed. Firstly, a unitary mathematical formulation for all kinds of BOC modulations is introduced. Then an unambiguous tracking method is proposed based on the formulation and the idea of pseudo correlation function (PCF) method. Finally, the tracking loop based on the proposed method is designed. Simulation results indicate that the proposed method can remove side peaks while retaining the sharp main peak for all kinds of BOC modulations. The tracking performance for AltBOC is examined and the results show that the proposed method has better performance in thermal noise and long-delay multipath mitigation than the traditional unambiguous tracking methods

    Linear-Combined-Code-Based Unambiguous Code Discriminator Design for Multipath Mitigation in GNSS Receivers

    Get PDF
    Unambiguous tracking and multipath mitigation for Binary Offset Carrier (BOC) signals are two important requirements of modern Global Navigation Satellite Systems (GNSS) receivers. A GNSS discriminator design method based on optimization technique is proposed in this paper to meet these requirements. Firstly, the discriminator structure based on a linear-combined code is given. Then the requirements of ideal discriminator function are converted into the mathematical constraints and the objective function to form a non-linear optimization problem. Finally, the problem is solved and the local code is generated according to the results. The theoretical analysis and simulation results indicate that the proposed method can completely remove the false lock points for BOC signals and provide superior multipath mitigation performance compared with traditional discriminator and high revolution correlator (HRC) technique. Moreover, the proposed discriminator is easy to implement for not increasing the number of correlators

    Unambiguous Acquisition and Tracking Technique for General BOC Signals

    Get PDF
    This article presents a new unambiguous acquisition and tracking technique for general Binary Offset Carrier (BOC) ranging signals, which will be used in modern GPS, European Galileo system and Chinese BeiDou system. The test criterion employed in this technique is based on a synthesized correlation function which completely removes positive side peaks while keeping the sharp main peak. Simulation results indicate that the proposed technique completely removes the ambiguity threat in the acquisition process while maintaining relatively higher acquisition performance for low order BOC signals. The potential false lock points in the tracking phase for any order BOC signals are avoided by using the proposed method. Impacts of thermal noise and multipath on the proposed technique are investigated; the simulation results show that the new method allows the removal of false lock points with slightly degraded tracking performance. In addition, this method is convenient to implement via logic circuits

    Performance of precise marine positioning using future modernised global satellite positioning systems and a novel partial ambiguity resolution technique

    Get PDF
    The International Maritime Organisation (IMO) established a set of positioning requirements for future Global Navigation Satellite System (GNSS) constellations in IMO resolution A.915. It is important to be able to determine if these requirements can be met, and what shore infrastructure would be required. This thesis describes the collection of data in a marine environment and the analysis of these data with regards to the requirements. The data collection exercise was held at the beginning of May 2008 and saw THV Alert navigate into Harwich Harbour whilst Global Positioning System (GPS) observation data were recorded from onboard the vessel and from shore-based reference stations. Additional data were obtained from nearby Ordnance Survey reference stations, and two total stations were used to track the vessel’s passage to provide a truth model. Several modernised GPS satellites were tracked. The data were processed under different scenarios, using software developed at UCL, and the positioning performance was analysed in the context of the IMO requirements. Potential performance improvements from modernised GPS and Galileo were then discussed. Providing integrity through single-epoch real-time kinematic positioning, required to meet the strictest IMO requirements, is particularly difficult. The identification of phase observation outliers is not possible before the integer ambiguities are resolved, but an undetected outlier could prevent successful ambiguity resolution. It will not always be necessary to fix all the ambiguities to achieve the required positioning precision, particularly with a multi-GNSS constellation. This thesis introduces a new algorithm for partial ambiguity resolution in the presence of measurement bias. Although computationally intensive, this algorithm significantly improves the ambiguity resolution success rate, increasing the maximum baseline length over which the highest requirements are met with dual-frequency GPS from 1 km to 66 km

    Signal Quality Monitoring of GNSS Signals Using a Chip Shape Deformation Metric

    Get PDF
    The Global Navigation Satellite System continues to become deeply em-bedded within modern civilization, and is depended on for confident, accurate navigation information. High precision position and timing accuracy is typically achieved using differential processing, however these systems provide limited compensation for distortions caused by multi-path or faulty satellite hardware. Signal Quality Monitoring (SQM) aims to provide confidence in a receivers Position, Navigation, and Timing solution and to offer timely warnings in the event that signal conditions degrade to unsafe levels. The methods presented in this document focus on implementing effective SQM using low-cost Commercial Off-the-Shelf equipment, a Software Defined Radio, and a typical software receiver architecture that tracks the Galileo E1C signals and the Global Positioning System L1 Coarse-Acquisition signals. Techniques are centered on acquiring and discriminating signal chip shapes with a goal of identifying both 1) clean and 2) deformed signals. The demonstrated identification method is relevant to the growing significance of SQM for SoL applications while providing benefit for confidently monitoring received GNSS signal integrity without requiring specialized receiver hardware

    Modeling and Simulating GNSS Signal Structures and Receivers

    Get PDF
    In this thesis an end-to-end simulation was implemented encompassing the important effects from the user segments point of view. The modeling and implementation aimed to take all the relevant features into account that have a direct and significant impact on the performance of a GNSS receiver. In particular, emphasis was on the effects that are hard to formulate and treat theoretically, such as non-linearities, stochastic processes and the highly complex boundary conditions generated by the interaction of the signal with the environment. The three most important parts of the model development are the signal model, the signal propagation model and the receiver model. The signal model is an extension of the well-known signal modeling used to describe GPS signals. The present model was extended to include any sort of signal structure The most important part of the signal propagation model is essentially a ray-tracing algorithm together with the application of the Fresnel equations. This is a 3-D exact specular ray-tracing, which was derived and implemented during the work accompanying this thesis. Beside the signal model the receiver model constitutes a major part of this work. Essentially, it is a dynamic modeling of the tracking process (DLL and PLL). As the model is based on continuous calculus it was a challenge to incorporate the effects of the noise processes. However, this was solved by using the Îto calculus to extend the ordinary differential equations to stochastic differential equations. The implementation was verified by comparing the results to known theoretical expressions and an indirect experimental verification was performed in the sense that some of the theoretical formulas have been compared with experimental data.In dieser Artbeit wurde ein end-to-end Simulator entwickelt, der die wichtigsten Effekte aus der Sicht des Empfängernutzers berücksichtigt. Bei der Modellierung und der Implementierung wurde versucht die Faktoren zu berücksichtigen, die einen wesentlichen Einfluss auf die Performance eines GNSS Empfängers haben. Die drei wichtigsten Modellkomponenten sind das Signalmodell, das Signalausbreitungsmodell und das Empfängermodell. Das Signalmodell ist eine Verallgemeinerung des bekannten Signalmodells, das für die Modellierung von GPS C/A-code Signalen verwendet wird. Dieses Modell wurde für beliebige Signalstrukturen erweitert. Der Kern des Signalausbreitungsmodells ist ein Ray-tracing Algorithmus zusammen mit der Anwendung der Fresnel Gleichungen. Dabei handelt es sich um ein exaktes, dreidimensionales Ray-tracing Modell, das während der Arbeit entwickelt und implementiert wurde. Das Empfängermodell stellt ebenfalls einen wichtigen Teil der Arbeit dar. Im Wesentlichen werden die Regelkreise (DLL und PLL) als dynamischer Prozess modelliert. Das Modell basiert auf einem kontinuierlichen Ansatz, was die Einbindung von Rauschprozessen erschwerte. Durch die Interpretation der gewöhnlichen Differentialgleichungen als stochastiche Differentialgleichungen und Verwendung des Îto Kalküls konnten verrauschte Signale berücksichtigt werden. Die Implementierung wurde durch den Vergleich bekannter theoretischer Ergebnisse verifiziert. Da die meisten theoretischen Ausdrücke schon mit Experimenten verglichen worden sind, kann dies als indirekter Vergleich mit Experimenten gesehen werden

    Positioning Performance Limits of GNSS Meta-Signals and HO-BOC Signals

    Get PDF
    Global Navigation Satellite Systems (GNSS) are the main source of position, navigation, and timing (PNT) information and will be a key player in the next-generation intelligent transportation systems and safety-critical applications, but several limitations need to be overcome to meet the stringent performance requirements. One of the open issues is how to provide precise PNT solutions in harsh propagation environments. Under nominal conditions, the former is typically achieved by exploiting carrier phase information through precise positioning techniques, but these methods are very sensitive to the quality of phase observables. Another option that is gaining interest in the scientific community is the use of large bandwidth signals, which allow obtaining a better baseband resolution, and therefore more precise code-based observables. Two options may be considered: (i) high-order binary offset carrier (HO-BOC) modulations or (ii) the concept of GNSS meta-signals. In this contribution, we assess the time-delay and phase maximum likelihood (ML) estimation performance limits of such signals, together with the performance translation into the position domain, considering single point positioning (SPP) and RTK solutions, being an important missing point in the literature. A comprehensive discussion is provided on the estimators’ behavior, the corresponding ML threshold regions, the impact of good and bad satellite constellation geometries, and final conclusions on the best candidates, which may lead to precise solutions under harsh conditions. It is found that if the receiver is constrained by the receiver bandwidth, the best choices are the L1-M or E6-Public Regulated Service (PRS) signals. If the receiver is able to operate at 60 MHz, it is recommended to exploit the full-bandwidth Galileo E5 signal. In terms of robustness and performance, if the receiver can operate at 135 MHz, the best choice is to use the GNSS meta-signals E5 + E6 or B2 + B3, which provide the best overall performances regardless of the positioning method used, the satellite constellation geometry, or the propagation conditions

    The Global Navigation System Scope (GNSScope): a toolbox for the end-to-end modelling simulation and analysis of GNSS

    Get PDF
    The thesis provides a detailed overview of the work carried out by the author over the course of the research for the award of the degree of Doctor of Philosophy at the University of Westminster, and the performance results of the novel techniques introduced into the literature. The outcome of the work is collectively referred to as the Global Navigation System Scope (GNSScope) Toolbox, offering a complete, fully reconfigurable platform for the end-to-end modeling, simulation and analysis of satellite navigation signals and systems, covering the signal acquisition, tracking, and range processing operations that take place in a generic Global Navigation Satellite System (GNSS) receiver, accompanied by a Graphical User Interface (GUI) providing access to all the techniques available in the toolbox. Designed and implemented entirely in the MATLAB mathematical programming environment using Software Defined Radio (SDR) receiver techniques, the toolbox offers a novel new acquisition algorithm capable of handling all Phase-Shift Keying (PSK) type modulations used on all frequency bands in currently available satellite navigation signals, including all sub-classes of the Binary Offset Carrier (BOC) modulated signals. In order to be able to process all these signals identified by the acquisition search, a novel tracking algorithm was also designed and implemented into the toolbox to track and decode all acquired satellite signals, including those currently intended to be used in future navigation systems, such as the Galileo test signals transmitted by the GIOVE satellites orbiting the Earth. In addition to the developed receiver toolbox, three novel algorithms were also designed to handle weak signals, multipath, and multiple access interference in GNSScope. The Mirrored Channel Mitigation Technique, based on the successive and parallel interference cancellation techniques, reduces the hardware complexity of the interference mitigation process by utilizing the local code and carrier replicas generated in the tracking channels, resulting in a reduction in hardware resources proportional to the number of received strong signals. The Trigonometric Interference Cancellation Technique, used in cross-correlation interference mitigation, exploits the underlying mathematical expressions to simplify the interference removal process, resulting in reduced complexity and execution times by reducing the number of operations by 25% per tracking channel. The Split Chip Summation Technique, based on the binary valued signal modulation compression technique, enhances the amount of information captured from compressing the signal to reveal specific filtering effects on the positive and negative polarity chips of the spreading code. Simulation case studies generated entirely using the GNSScope toolbox will be used throughout the thesis to demonstrate the effectiveness of the novel techniques developed over the course of the research, and the results will be compared to those obtained from other techniques reported in the literature
    • …
    corecore