12 research outputs found

    Irrelevant feature and rule removal for structural associative classification

    Get PDF
    In the classification task, the presence of irrelevant features can significantly degrade the performance of classification algorithms,in terms of additional processing time, more complex models and the likelihood that the models have poor generalization power due to the over fitting problem.Practical applications of association rule mining often suffer from overwhelming number of rules that are generated, many of which are not interesting or not useful for the application in question.Removing rules comprised of irrelevant features can significantly improve the overall performance.In this paper, we explore and compare the use of a feature selection measure to filter out unnecessary and irrelevant features/attributes prior to association rules generation.The experiments are performed using a number of real-world datasets that represent diverse characteristics of data items.Empirical results confirm that by utilizing feature subset selection prior to association rule generation, a large number of rules with irrelevant features can be eliminated.More importantly, the results reveal that removing rules that hold irrelevant features improve the accuracy rate and capability to retain the rule coverage rate of structural associative association

    Semantics-based classification of rule interestingness measures

    Get PDF
    Assessing rules with interestingness measures is the cornerstone of successful applications of association rule discovery. However, as numerous measures may be found in the literature, choosing the measures to be applied for a given application is a difficult task. In this chapter, the authors present a novel and useful classification of interestingness measures according to three criteria: the subject, the scope, and the nature of the measure. These criteria seem essential to grasp the meaning of the measures, and therefore to help the user to choose the ones (s)he wants to apply. Moreover, the classification allows one to compare the rules to closely related concepts such as similarities, implications, and equivalences. Finally, the classification shows that some interesting combinations of the criteria are not satisfied by any index

    Uplift Modeling in Direct Marketing, Journal of Telecommunications and Information Technology, 2012, nr 2

    Get PDF
    Marketing campaigns directed to randomly selected customers often generate huge costs and a weak response. Moreover, such campaigns tend to unnecessarily annoy customers and make them less likely to answer to future communications. Precise targeting of marketing actions can potentially results in a greater return on investment. Usually, response models are used to select good targets. They aim at achieving high prediction accuracy for the probability of purchase based on a sample of customers, to whom a pilot campaign has been sent. However, to separate the impact of the action from other stimuli and spontaneous purchases we should model not the response probabilities themselves, but instead, the change in those probabilities caused by the action. The problem of predicting this change is known as uplift modeling, differential response analysis, or true lift modeling. In this work, tree-based classifiers designed for uplift modeling are applied to real marketing data and compared with traditional response models, and other uplift modeling techniques described in literature. The experiments show that the proposed approaches outperform existing uplift modeling algorithms and demonstrate significant advantages of uplift modeling over traditional, response based targeting

    Efficient Temporal Synopsis of Social Media Streams

    Get PDF
    Search and summarization of streaming social media, such as Twitter, requires the ongoing analysis of large volumes of data with dynamically changing characteristics. Tweets are short and repetitious -- lacking context and structure -- making it difficult to generate a coherent synopsis of events within a given time period. Although some established algorithms for frequent itemset analysis might provide an efficient foundation for synopsis generation, the unmodified application of standard methods produces a complex mass of rules, dominated by common language constructs and many trivial variations on topically related results. Moreover, these results are not necessarily specific to events within the time period of interest. To address these problems, we build upon the Linear time Closed itemset Mining (LCM) algorithm, which is particularly suited to the large and sparse vocabulary of tweets. LCM generates only closed itemsets, providing an immediate reduction in the number of trivial results. To reduce the impact of function words and common language constructs, we apply a filltering step that preserves these terms only when they may form part of a relevant collocation. To further reduce trivial results, we propose a novel strengthening of the closure condition of LCM to retain only those results that exceed a threshold of distinctiveness. Finally, we perform temporal ranking, based on information gain, to identify results that are particularly relevant to the time period of interest. We evaluate our work over a collection of tweets gathered in late 2012, exploring the efficiency and filtering characteristic of each processing step, both individually and collectively. Based on our experience, the resulting synopses from various time periods provide understandable and meaningful pictures of events within those periods, with potential application to tasks such as temporal summarization and query expansion for search

    Desarrollo de un sistema para minería de datos basado en los métodos Biplot

    Get PDF
    [ES]Con esta tesis se buscó realizar dos objetivos: 1. Demostrar que tiene sentido la construcción de sistemas de minería gráfica de datos basados en el concepto de biplot, utilizando las característica únicas de interpretabilidad de estos gráficos que presentan, en un espacio métrico, conceptos expresos por conjuntos de observaciones, por conjuntos de variables y por conjuntos de variables y observaciones – lo que permite una fácil, útil e intuitiva interpretación de las proximidades geométricas de esos conceptos. Este objetivo fue cumplido construyendo un prototipo de ese tipo de sistema, testado con datos reales. 2. Mostrar que es posible crear un lenguaje para expresar los resultados de una gran clase de métodos de análisis de datos multivariantes – análisis de clústeres, componentes principales, escalamiento multidimensional, análisis canónica y otras- que permite la generación automática de expresiones con sugestiones de interpretación de esos resultados, fácilmente interpretables por los seres humanos. Ese lenguaje es formada por expresiones conjuntivas de átomos de significado del tipo (Variable = valor). Las expresiones resultantes pueden ser miradas como caminos en grafos de intersección construidos con el objetivo de facilitar la implementación de los algoritmos de interpretación. Este sistema ha sido testado con éxito usando datos reales.[EN] With this thesis I had in mind two main objectives: 1. To show that it makes sense to build graphical data mining systems using the unique interpretability features of biplots (that presents, in a metric space, both concepts expressed by sets of variables, by sets of observations and by sets of variables and observations - allowing an easy and intuitive interpretation of proximities between those concepts). This objective was achieved building one prototype of such system. 2. To show that it is possible to create a language to express the results of a large class of multivariate data analysis methods - cluster analysis, principal components analysis, multidimensional scaling, canonical analysis and other – that allows the automatic generation of expressions to convey suggestions of interpretation of those results, easily interpretable by humans. That language is formed by conjunctive expressions formed by atoms of meaning of the type (Variable = value). The resulting expressions can be geometrically interpreted as paths in an intersection graph constructed for that purpose. This system was successfully tested with real data

    Association Pattern Analysis for Pattern Pruning, Clustering and Summarization

    Get PDF
    Automatic pattern mining from databases and the analysis of the discovered patterns for useful information are important and in great demand in science, engineering and business. Today, effective pattern mining methods, such as association rule mining and pattern discovery, have been developed and widely used in various challenging industrial and business applications. These methods attempt to uncover the valuable information trapped in large collections of raw data. The patterns revealed provide significant and useful information for decision makers. Paradoxically, pattern mining itself can produce such huge amounts of data that poses a new knowledge management problem: to tackle thousands or even more patterns discovered and held in a data set. Unlike raw data, patterns often overlap, entangle and interrelate to each other in the databases. The relationship among them is usually complex and the notion of distance between them is difficult to qualify and quantify. Such phenomena pose great challenges to the existing data mining discipline. In this thesis, the analysis of patterns after their discovery by existing pattern mining methods is referred to as pattern post-analysis since the patterns to be analyzed are first discovered. Due to the overwhelmingly huge volume of discovered patterns in pattern mining, it is virtually impossible for a human user to manually analyze them. Thus, the valuable trapped information in the data is shifted to a large collection of patterns. Hence, to automatically analyze the patterns discovered and present the results in a user-friendly manner such as pattern post-analysis is badly needed. This thesis attempts to solve the problems listed below. It addresses 1) the important factors contributing to the interrelating relationship among patterns and hence more accurate measurements of distances between them; 2) the objective pruning of redundant patterns from the discovered patterns; 3) the objective clustering of the patterns into coherent pattern clusters for better organization; 4) the automatic summarization of each pattern cluster for human interpretation; and 5) the application of pattern post-analysis to large database analysis and data mining. In this thesis, the conceptualization, theoretical formulation, algorithm design and system development of pattern post-analysis of categorical or discrete-valued data is presented. It starts with presenting a natural dual relationship between patterns and data. The relationship furnishes an explicit one-to-one correspondence between a pattern and its associated data and provides a base for an effective analysis of patterns by relating them back to the data. It then discusses the important factors that differentiate patterns and formulates the notion of distances among patterns using a formal graphical approach. To accurately measure the distances between patterns and their associated data, both the samples and the attributes matched by the patterns are considered. To achieve this, the distance measure between patterns has to account for the differences of their associated data clusters at the attribute value (i.e. item) level. Furthermore, to capture the degree of variation of the items matched by patterns, entropy-based distance measures are developed. It attempts to quantify the uncertainty of the matched items. Such distances render an accurate and robust distance measurement between patterns and their associated data. To understand the properties and behaviors of the new distance measures, the mathematical relation between the new distances and the existing sample-matching distances is analytically derived. The new pattern distances based on the dual pattern-data relationship and their related concepts are used and adapted to pattern pruning, pattern clustering and pattern summarization to furnish an integrated, flexible and generic framework for pattern post-analysis which is able to meet the challenges of today’s complex real-world problems. In pattern pruning, the system defines the amount of redundancy of a pattern with respect to another pattern at the item level. Such definition generalizes the classical closed itemset pruning and maximal itemset pruning which define redundancy at the sample level. A new generalized itemset pruning method is developed using the new definition. It includes the closed and maximal itemsets as two extreme special cases and provides a control parameter for the user to adjust the tradeoff between the number of patterns being pruned and the amount of information loss after pruning. The mathematical relation between the proposed generalized itemsets and the existing closed and maximal itemsets are also given. In pattern clustering, a dual clustering method, known as simultaneous pattern and data clustering, is developed using two common yet very different types of clustering algorithms: hierarchical clustering and k-means clustering. Hierarchical clustering generates the entire clustering hierarchy but it is slow and not scalable. K-means clustering produces only a partition so it is fast and scalable. They can be used to handle most real-world situations (i.e. speed and clustering quality). The new clustering method is able to simultaneously cluster patterns as well as their associated data while maintaining an explicit pattern-data relationship. Such relationship enables subsequent analysis of individual pattern clusters through their associated data clusters. One important analysis on a pattern cluster is pattern summarization. In pattern summarization, to summarize each pattern cluster, a subset of the representative patterns will be selected for the cluster. Again, the system measures how representative a pattern is at the item level and takes into account how the patterns overlap each other. The proposed method, called AreaCover, is extended from the well-known RuleCover algorithm. The relationship between the two methods is given. AreaCover is less prone to yield large, trivial patterns (large patterns may cause summary that is too general and not informative enough), and the resulting summary is more concise (with less duplicated attribute values among summary patterns) and more informative (describing more attribute values in the cluster and have longer summary patterns). The thesis also covers the implementation of the major ideas outlined in the pattern post-analysis framework in an integrated software system. It ends with a discussion on the experimental results of pattern post-analysis on both synthetic and real-world benchmark data. Compared with the existing systems, the new methodology that this thesis presents stands out, possessing significant and superior characteristics in pattern post-analysis and decision support

    Quality and interestingness of association rules derived from data mining of relational and semi-structured data

    Get PDF
    Deriving useful and interesting rules from a data mining system are essential and important tasks. Problems such as the discovery of random and coincidental patterns or patterns with no significant values, and the generation of a large volume of rules from a database commonly occur. Works on sustaining the interestingness of rules generated by data mining algorithms are actively and constantly being examined and developed. As the data mining techniques are data-driven, it is beneficial to affirm the rules using a statistical approach. It is important to establish the ways in which the existing statistical measures and constraint parameters can be effectively utilized and the sequence of their usage.In this thesis, a systematic way to evaluate the association rules discovered from frequent, closed and maximal itemset mining algorithms; and frequent subtree mining algorithm including the rules based on induced, embedded and disconnected subtrees is presented. With reference to the frequent subtree mining, in addition a new direction is explored based on utilizing the DSM approach capable of preserving all information from tree-structured database in a flat data format, consequently enabling the direct application of a wider range of data mining analysis/techniques to tree-structured data. Implications of this approach were investigated and it was found that basing rules on disconnected subtrees, can be useful in terms of increasing the accuracy and the coverage rate of the rule set.A strategy that combines data mining and statistical measurement techniques such as sampling, redundancy and contradictive checks, correlation and regression analysis to evaluate the rules is developed. This framework is then applied to real-world datasets that represent diverse characteristics of data/items. Empirical results show that with a proper combination of data mining and statistical analysis, the proposed framework is capable of eliminating a large number of non-significant, redundant and contradictive rules while preserving relatively valuable high accuracy rules. Moreover, the results reveal the important characteristics and differences between mining frequent, closed or maximal itemsets; and mining frequent subtree including the rules based on induced, embedded and disconnected subtrees; as well as the impact of confidence measure for the prediction and classification task
    corecore