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Abstract 
 
Deriving useful and interesting rules from a data mining system are essential and 

important tasks. Problems such as the discovery of random and coincidental patterns 

or patterns with no significant values, and the generation of a large volume of rules 

from a database commonly occur. Works on sustaining the interestingness of rules 

generated by data mining algorithms are actively and constantly being examined and 

developed. As the data mining techniques are data-driven, it is beneficial to affirm 

the rules using a statistical approach. It is important to establish the ways in which 

the existing statistical measures and constraint parameters can be effectively utilized 

and the sequence of their usage.  

 

In this thesis, a systematic way to evaluate the association rules discovered from 

frequent, closed and maximal itemset mining algorithms; and frequent subtree 

mining algorithm including the rules based on induced, embedded and disconnected 

subtrees is presented. With reference to the frequent subtree mining, in addition a 

new direction is explored based on utilizing the DSM approach capable of preserving 

all information from tree-structured database in a flat data format, consequently 

enabling the direct application of a wider range of data mining analysis/techniques to 

tree-structured data. Implications of this approach were investigated and it was found 

that basing rules on disconnected subtrees, can be useful in terms of increasing the 

accuracy and the coverage rate of the rule set.  A strategy that combines data mining 

and statistical measurement techniques such as sampling, redundancy and 

contradictive checks, correlation and regression analysis to evaluate the rules is 

developed. This framework is then applied to real-world datasets that represent 

diverse characteristics of data/items. Empirical results show that with a proper 

combination of data mining and statistical analysis, the proposed framework is 

capable of eliminating a large number of non-significant, redundant and contradictive 

rules while preserving relatively valuable high accuracy rules. Moreover, the results 

reveal the important characteristics and differences between mining frequent, closed 

or maximal itemsets; and mining frequent subtree including the rules based on 

induced, embedded and disconnected subtrees; as well as the impact of confidence 

measure for the prediction and classification task. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Since the explosion of information and data, largely due to the automation of 

business activities and increase in computing power, humans have faced the great 

challenge of converting data/information into meaningful and presentable formats. 

Consequently, this creates a growing space between the data/information generation 

and data/information understanding (Frawley, Piatetsky-Shapiro, & Matheus, 1992). 

Thus, the knowledge discovery process by either automatic or semi-automatic means 

has been introduced in order to discover useful information, hidden patterns or rules 

from large quantities of data.   

 

Knowledge discovery techniques have been well researched by the data mining 

community. Such techniques, especially those used for unsupervised learning, 

generate a large quantity of rules and patterns. While many interesting and useful 

rules can be generated, there are still situations where many of the rules discovered 

are not of interest to the application domain as they often reflect previously 

established patterns (existing domain knowledge), coincidently occurring patterns, 

and in general, those that amount to worthless knowledge in real-world applications.  

 

Sustaining the interestingness of rules generated by data mining algorithms is an 

active and important area of data mining research. Different methods have been 

proposed and have been well examined for discovering interestingness in rules. Even 

though the interesting rules may be found from the database using these methods, a 

problem that can still occur is that those rules nevertheless reflect just the database 

being observed (Webb, 2007). 

 

Therefore, we can still argue the validity of using the rules and patterns for practical 

problems. Data mining approaches naturally are data-driven. For that reason, in order 

to make them more reliable in practice, each hypothesis generated from a data 

mining algorithm can be confirmed by statistical methodology. Therefore, in this 

research, the quality of data mining rules will be verified by both data mining and 

statistical measurement techniques. Such a combination is crucial in addressing the 
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practical problems produced by data overload and an excessive number of 

patterns/rules discovered from the data.  

 

1.2 Knowledge Discovery and Data Mining  

The knowledge discovery process involves several phases including: data pre-

processing, data mining applications, patterns evaluation and knowledge 

presentation. One of the essential phases, considered to be the heart of knowledge 

discovery, is the data mining phase. In this phase, the focus is mainly on developing 

and analysing useful algorithms that can be used to extract and reveal the information 

and patterns emerging from the data. Since the definition of knowledge discovery 

and data mining are interchangeable (Han & Kamber, 2001), we make a clear 

distinction between them. We consider knowledge discovery to be the overall 

process of discovering useful knowledge from data, and data mining is that particular 

phase in the process which concentrates on method and algorithm application 

(Fayyad, Piatetsky-Shapiro, & Smyth, 1996). In the following, we define each of the 

knowledge discovery phases (Han & Kamber, 2001; Roiger & Geatz, 2003) which 

are related to the thesis. 

 

1.2.1 Data Pre-processing 

The main idea of data pre-processing is to ensure that data fed into the data mining 

phase is clean (high quality of data) and only appropriate data are selected. 

Generally, there are multiple sources of data involving different data types and 

metrics sources to be used in the knowledge discovery process. Data may be 

anomalous, incorrect or missing. Within this phase, the erroneous data may be 

corrected or removed, whereas records containing missing data may be ignored, or 

the missing data may be supplied or predicted (often using data mining tools). 

Additionally, data from different sources are often converted into a common format 

for processing and some data may be encoded or transformed into more usable 

formats. Data reduction, data cleaning, data integration, data transformation, data 

reduction and data discretization can offer multiple ways of handling data pre-

processing problem. An early and fairly good understanding of the data is needed 

since the original data are often raw in nature. Hence, a domain expert may be 
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needed to help translate the data into another form that is understandable by the data 

miner in order to model the problem (Han, Kamber, & Pei, 2012).  

 

1.2.2 Data Mining  

An intelligent and efficient method is needed to digest and find hidden and useful 

information from a large volume of data. Generally, the data mining process involves 

the application of certain methods that are capable of extracting information and 

reveal hitherto unknown patterns. The most commonly known methods are 

classification, prediction, characterization, clustering, association rules, sequence 

analysis, etc. The choice of method is strongly related to “what to solve” and “the 

nature of data”. In this thesis, although our main focus is on patterns evaluation, the 

initial phases of data pre-processing and the important selection of suitable data 

mining applications will be discussed in sufficient detail to support the clarity of the 

generated patterns to be evaluated.  

 

1.2.3 Pattern Evaluation 

The hidden patterns or rules that are obtained from the data mining technique, are 

considered interesting and useful if the rules are comprehensible, valid on tests and 

new data with some degree of certainty, potentially useful, actionable, and novel 

(Han & Kamber, 2001). However, problems such as random pattern discovery, 

coincidental patterns, patterns with no significant value and the generation of a large 

volume of rules from a database, commonly occur. Thus, the model generated using 

the selected methods must be evaluated in order to measure its validity. Evaluation 

methods might include the confusion matrix, expert evaluation and field test, and 

statistical analysis. 

 

1.2.4 Knowledge Interpretation/Presentation 

Certain data mining output is in a format not readily understood by humans, and 

hence needs further processing in order to be interpreted. The interpretation may 

require converting such output into an easy-to-understand medium using various 

visualization and knowledge representation techniques. Additionally, the knowledge 
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must be consolidated and resolved with previous knowledge, shared, reported, 

disseminated, and acted upon (Han & Kamber, 2001).  

 

1.3 Data Mining Tasks 

Descriptive modelling and predictive modelling are two major data mining 

functionalities as defined by (Han & Kamber, 2001). In general, predictive modelling 

is defined as the process of making inferences from the current data in order to make 

predictions or classifications; descriptive modelling is the task of characterising the 

general properties of the data in a database. The following is a preview of the major 

tasks in data mining. 

 

1.3.1 Predictive Modelling 

The main aim of predictive modelling is to make predictions about values of data 

using known results or based on other historical data. Example applications include 

credit card fraud detection, breast cancer early warning system, terrorist acts and 

tsunami alerts. Several techniques for predictive modelling tasks are classification, 

prediction and outlier detection.  

 

1.3.1.1 Classification 

Classification is the act of classifying a set of input data with unknown class labels 

according to the correct class label. This involves two steps as defined by (Han & 

Kamber, 2001). The first is the model building step where the set of data which 

consist of input data and predefined class label are analyzed. This set of data is also 

referred to as the training dataset. The training data is used to build a classifier model 

that can map the input attributes into one of several discrete classes. This common 

characteristic is recognised as the supervised learning (Roiger & Geatz, 2003). Next, 

the input data with unknown class labels (the testing dataset) are fed into the 

classifier to determine their correct group as accurately as possible. The classification 

task is crucial in order to build a model that is capable of assigning new instances to 

one of the well-defined classes. For instance, a group of medical practitioners could 

develop a classification model to identify and classify previously unseen patients into 
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two groups, one of which will be the group likely to develop the cancer. Hence, this 

will create an early warning system for the more susceptible patients who then have 

the option of taking preventative measures.  

 

1.3.1.2 Prediction 

(Roiger & Geatz, 2003) agree that the function of the prediction model in the data 

mining task is to determine the future/new outcome(s) rather than discover current 

behaviours. Additionally, the outcomes of the prediction model may be either 

categorical or numerical values as opposed to those of the classification task. For 

example, we may want to build a model to predict the sales volumes of a new 

product, or the number of students enrolling in certain courses offered per semester. 

While, there are slight differences between the classification and prediction tasks, the 

determination of whether a model is suitable for classification or prediction depends 

on the nature of the data used (Roiger & Geatz, 2003).  

  

1.3.1.3 Outlier Analysis 

Real-world data often varies in terms of complexity which presents further 

challenges to the data mining and knowledge discovery process. Moreover, such 

complexities may arise because of the existence of data objects that do not comply 

with the general behaviour or model of the data (Han & Kamber, 2001) and have 

been recognised as outliers. Usually, the outliers may occur because of the noise or 

because they are truly exceptional cases. Outlier analysis is important in certain 

domains such fraud detection, network intrusion detection, credit risk assessment, 

terrorist attack and some financial and marketing applications. These applications 

usually look for uncommon events and rare behaviours as this can provide 

extensional knowledge for further analysis. 

 

1.3.2 Descriptive Modelling 

The descriptive modeling serves mainly to identify patterns or relationships in data. 

It provides a way to explore the properties of data examined, not to predict new 

properties. Generally, no proper group or predefined class label is known in advance. 

Clustering, sequence discovery and association rules are examples of descriptive 
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modeling applications. While predictive modelling provides data with predefined 

class labels for analysis, descriptive modelling is far more challenging as the class 

label for each object is unknown (Han & Kamber, 2001). 

 

1.3.2.1 Clustering 

Clustering is the task of composing a set of data into natural subclasses or groups. 

Such cluster formations may be based on the collection of patterns that are similar to 

one another, and dissimilar to patterns in other clusters (Sestito & Dillon, 1994). The 

aim is to maximize the similarity of data objects within a cluster (intra-cluster 

similarity) and minimize the similarity of data objects belonging to different clusters 

(inter-cluster similarity) (Han et al., 2012). Market segmentation and customer 

profiling are essential applications that greatly benefit from clustering analysis 

(Collica, 2007). 

 

1.3.2.2 Association Analysis 

Association analysis is a popular data mining technique aimed at discovering novel 

and interesting relationships between the data objects present in a database. Market 

basket or transaction data analysis is prominent association rules analysis that has 

attracted great interest from the data mining community. Association rule mining 

involves two important problems as defined by (Agrawal, Imieliski, & Swami, 

1993), namely: frequent patterns discovery and rule construction. Frequent pattern 

discovery poses the greater challenge. Thus, many algorithms have been proposed 

for the efficient mining of frequent patterns (Han & Kamber, 2001). A simple yet 

popular example of this association rule mining task is to find that an association 

between customers buying a certain product will result in increase of or change in the 

customers buying certain other products. 

 

1.3.2.3 Sequence Mining 

Sequence mining is aimed at discovering frequently occurring ordered events or sub-

sequences from a database consisting of ordered items or events, with or without a 

time stamp (Han et al., 2012). Examples include the analysis of weather prediction, 
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telecommunication records for customer retention and targeted marketing, web 

traversal sequence and mining the sequential patterns from protein data included in a 

DNA database. The discovery and generation of sequence patterns present more 

difficult problems (Agrawal & Srikant, 1995; Han et al., 2012), because of the high 

volume of data in databases due to time-volatile and complex applications. 

 

1.4 Types of Data 

The data mining system can be classified into various categories such as the types of 

data, structures and knowledge to discover (Han & Kamber, 2001). In this section, an 

overview is provided of four most commonly encountered data types in the data 

mining process, namely relational, sequential, semi-structured and unstructured data. 

 

1.4.1 Relational Data 

Initially, many data mining tools required input data to be in a flat file such as 

relational data format which is presented in two dimensional tables of rows and 

columns. The schema of the data is fixed and structured. Each column has names 

called ‘attributes’ and values related to each attribute. There are many efficient and 

successful developments in mining the relational data (Han & Kamber, 2001). (Han, 

Cheng, Xin, & Yan, 2007) assert that tremendous progress has been made in 

methods for discovering useful patterns particularly for relational data, especially 

with the development of the association rule mining application. 

 

1.4.2 Sequential Data 

Another advanced relational data type that emerged due to the progress of database 

technologies in addressing new and complex applications is the sequential data. It 

stores sequences of ordered events with which a notion of time may or may not be 

associated (Han et al., 2012). Time series data as described in (Hand, Mannila, & 

Smyth, 2001) are a popular instance of sequential data, in which a sequence of events 

is measured over time, such that each event is indexed by time variable t. However, 

as asserted in (Han et al., 2012), the notion of sequence data might not just be 
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restricted to the function of time, but can further extend into a sequence of ordered 

events such as customer shopping sequence and biological sequence. 

 

1.4.3 Semi-structured Data 

With the rapid growth in the amount of electronic data such as Web pages and XML 

data, this offers a new dimension in pattern recognition and rules discovery. These 

electronic data are a heterogeneous collection of ill-structured data that have no rigid 

structures, and are often referred to as ‘semi-structured data’ (Suciu, 1998; Zhang, 

Ling, Bruckner, Tjoa, & Liu, 2004). Due to the complex structures and semantics 

representation, the semi-structured data poses more challenges to the data mining 

process compared to structured and relational data (Feng, Dillon, Weigand, & Chang, 

2003). 

 

1.4.4 Unstructured Data 

Unstructured data is the most difficult and challenging for data mining purposes. 

This data type has no schema that can describe the underlying structure of the data 

compared to relational and semi-structured data. Examples of such data include the 

data from audio, video and unstructured texts such as the body of email or word 

processor documents. Due to the lack of structure available to be exploited in the 

data mining process, the development of a powerful yet computationally efficient 

data mining algorithm for unstructured data is an important and challenging problem 

(Madria, Bhowmick, Ng, & Lim, 1999).  

 

1.5 Motivation for the Thesis 

Whilst there are many data mining techniques available for discovering hidden 

patterns and rules, each of the techniques differs in term of objectives, outcomes and 

representation techniques. In response to this, (McGarry, 2005) claims that the 

majority of data mining/machine learning type patterns are rule-based in nature with 

a well-defined structure such as rules derived from decision trees and association 

rules. (Geng & Hamilton, 2006) agrees and indicates that the most common patterns 

that can be evaluated by interestingness measures include association rules, 
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classification rules, and summaries. Furthermore, (McGarry, 2005) states that rule-

based patterns are composed of a number of primitive patterns (antecedents) 

connected by logical connectives that imply, if true, the target class (consequent). 

 

Association rule discovery is a problem that has generated a lot of interest in the data 

mining community. The techniques are used for discovering interesting associations 

and correlations between data elements in a diverse range of applications. Obviously, 

association rule mining has been very successful in discovering useful associations 

between data (Agrawal et al., 1993; Han et al., 2012). 

 

The main problems in association rule discovery are frequent pattern and rules 

construction. Frequent pattern discovery is the pre-requisite for and the first step in 

the generation of association rules. Approaches such as candidate generation, 

frequent pattern growth (FP-Growth) have been proposed to discover frequent 

patterns (Han & Kamber, 2001). While there have been many association rule 

algorithms proposed in the data mining literature and successfully used in many 

application, there are still situations that these rules fail to capture (Zhang, Balaji, & 

Alexander, 2004). Rule generation also produces a large number of rules (Hand, 

1998) and it is impossible for an expert in the field being mined to sustain the rules 

(Lenca, Meyer, Vaillant, & Lallich, 2008). The problem in sustaining the 

interestingness of rules generated by a data mining algorithm is an active and 

important area of data mining research. Different methods have been proposed for 

discovering interesting rules from data such as support and confidence (Agrawal et 

al., 1993), lift/interest (Aggarwal & Yu, 1998; Silverstein, Brin, & Motwani, 1998), 

chi-squared test (Silverstein et al., 1998), correlation coefficient (Brijs, Vanhoof, & 

Wets, 2003), log linear analysis (Brijs et al., 2003), leverage (Webb, 2007), and 

empirical bayes correlation (Brijs et al., 2003). 

 

While great progress has been made regarding the discovery of association rules 

within well-structured (relational) data, a number of works are still in the preliminary 

stages concerning semi-structured data (Chi, Muntz, Nijssen, & Kok, 2005). Since 

the introduction of the association rule mining problem by (Agrawal et al., 1993), 

substantial work has gone into various trends, including the development of efficient 

algorithms to find the associations and measure the interestingness of the association 
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rules in relational data. As the increase in data captured in semi-structured format 

such as XML begins to permeate many applications (Mignet, Barbosa, & Veltri, 

2003), association rule mining from semi-structured data has become an important 

research area (Braga, Campi, Ceri, Klemettinen, & Lanzi, 2003; Hadzic, Tan, & 

Dillon, 2011; Tan, Hadzic, Dillon, & Chang, 2008). Similar to the problem of 

frequent pattern mining from relational/transactional data, mining the frequent 

subtrees from semi-structured data comprises of candidate subtrees enumeration and 

frequency counting. Works such as (Asai et al., 2002; Feng et al., 2003; Tan, Hadzic, 

Dillon, Chang, & Feng, 2008; Zhang et al., 2004) have developed algorithms to 

enable efficient and effective association rule mining from semi-structured data. 

 

A rule is said to be interesting if, in addition to meeting certain minimum support and 

confidence criteria, it also satisfies some measure of interestingness. Despite the fact 

that interesting association rules may be found in such databases, the possibility 

remains that they reflect only the database being observed. (Webb, 2007) emphasizes 

that each assessment of whether a given rule satisfies certain constraints is 

accompanied by a risk that the rule will satisfy the constraints with respect to the 

sample data but not with respect to the whole data distribution. This problem arises 

because some association rules are discovered due to pure coincidence resulting from 

certain randomness in the particular dataset being analysed. In addition to that, 

(Hand, 1998, 1999) agrees that the real requirement is to consider how many of the 

discovered rules are real rather than chance of fluctuations in the database. 

Therefore, we still can argue the validity of the rules and patterns to be used in 

practical problems. Since the nature of data mining techniques are data-driven, the 

patterns generated by these algorithms should be further validated by statistical 

methodology in order for them to be useful in practice (Goodman, Kamath, & 

Kumar, 2008). On the other hand, data mining techniques are automated and are 

scalable and effective for finding associations between large numbers of variables, 

while statistical techniques can address only a small number of variables. It is 

therefore imperative to combine the benefits of both approaches and establish the 

ways in which the existing statistical measures and constraint parameters can be 

effectively utilized, and the sequence of their usage. This research employs the 

science and engineering research paradigm to develop a framework to measure and 
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verify the usefulness of rules from association rule mining techniques using 

statistical analysis, and redundancy and contradictive assessment methods. 

 

1.6 Scope of the Thesis 

The goal of this thesis is to develop a unified framework for evaluating the rules 

developed in association rules mining of relational and semi-structured data. Note 

that within the semi-structured data, the focus is on XML documents and tree-

structured data in general. Generally, rules can be discovered by many data mining 

functionalities such as the concept/class description, classification and prediction, 

cluster analysis, outlier analysis, data evolution analysis and sequential analysis (Han 

& Kamber, 2001); however, these are outside the scope of this thesis. From the 

perspectives mentioned above, the main interest is mainly in developing a unified 

framework to evaluate the association rules involving frequent itemsets for relational 

data and frequent subtrees for tree-structured data. The objectives of the thesis are 

outlined in more detail as follows: 

 

Develop a framework to measure and verify the interestingness and statistical 

significance of rules obtained from association rules mining techniques using the 

proper sequence of statistical analysis, redundancy and contradictive assessment 

methods, to reduce the size of the rule set, while preserving/improving the rules 

coverage and accuracy with the following sub-goals: 

 

• Obtain a compact set of rules that have better accuracy and coverage than the 

original large set of rules. 

• Identify proper sequence of applying appropriate measures for use in 

association rules mining quality measurement. 

• Develop a unified model for evaluating the quality of association rules using 

statistical analysis, and measures of redundancy and contradiction. 

• Evaluate the implications of basing association rules on frequent, maximal 

and closed itemsets when used for classification tasks in relational data. 

• Evaluate the implications of basing the association rules on different subtree 

types when used for classification tasks in tree-structured data. 
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The proposed research is significant because it: 

 

• Offers a way to reduce the rules generated from the association rules mining 

process that are commonly overwhelming and impractical for use.  

• Identifies and provides suitable statistical techniques and interestingness 

measures for accessing the association rules. 

• Offers a systematic way to verify the usefulness and statistical validity of 

rules obtained from association rules mining using statistical analysis and 

appropriate measures. 

• Details the sequence of usage of appropriate measures to arrive at a more 

reliable and interesting set of rules. 

• Provides a framework that can arrive at high quality rules by: 

a) removing rules that were randomly and coincidently generated from the 

database 

b) removing redundant rules 

c) removing contradictive rules 

d) choosing suitable confidence thresholds 

• Identifies the implication and the characteristics of rules based on frequent, 

maximal and closed patterns for relational data, and rules based on different 

subtree types for tree-structured data, when used for classification tasks.  

 

1.7 Plan of the Thesis 

The thesis is organized into 8 chapters. 

 

In Chapter 2, the existing works on association rules mining are discussed beginning 

with an overview of the theoretical basis of topics related to association rules mining, 

and interestingness measurement techniques for both relational and semi-structured 

data. The aim of this chapter is to outline the achievements of the interestingness 

measures for relational data and semi-structured data. Existing techniques will be 

examined. Additionally, in one subsection we overview the relationship between 

feature subset selections with rule interestingness. We then conclude this chapter by 

highlighting the current difficulties and challenges that need to be addressed. 
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Chapter 3 focuses on describing the general concepts and definitions; and problem 

definition that serves as a basis for discussion of subsequent chapters. The chapter 

starts with general definitions of relational and semi-structured data. The definitions 

of association rules mining for relational and semi-structured data are elaborated. 

The problems of evaluating the interestingness of frequent itemset and frequent 

subtree are formulated. Finally, the chosen methodology used in this thesis in 

addressing the aforementioned problem is outlined. 

 

Chapter 4 provides an overview of the proposed solution to the problems described 

in Chapter 3. The rationale for the choice of objective measurement technique is 

discussed. The overall proposed solution is divided into two parts: 1) association rule 

mining for relational data; and, 2) association rule mining for tree-structured 

data/XML documents.  

 

Chapter 5 describes the development of a detailed solution to evaluate the association 

rules derived from relational data. Here, the details of the pre-processing task, data 

partitioning and the determination of relevant attributes will be described. A way to 

evaluate rules from association rule mining and its related measures will be 

formalized.  

 

Chapter 6 evaluates the proposed framework and presents the experimental findings 

of significant rules from relational data. Evaluation of the proposed framework is 

performed using real-world datasets of different complexities obtained from UCI 

Machine Leaning Repository (Frank & Asuncion, 2010). 

 

Chapter 7 is devoted to the development of a detailed solution to evaluate frequent 

subtrees generated from the tree-structured data. Here, an overview of tree-structured 

data and the issues pertaining to tree-structured data related to this thesis will be 

discusses. Within the same chapter, the evaluation of the proposed framework using 

three subtree types and datasets with different structural characteristics will be 

explained. 

  

Chapter 8 recapitulates the research works undertaken in this thesis and provides 

insights into future works worth further exploration. 
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CHAPTER 2: LITERATURE REVIEWS 

2.1 Introduction 

This chapter discusses previous work on the interestingness and validity of 

rules/patterns from association rule mining. Thus, the main goal of this chapter is to 

present the current state-of-the-art of the existing research literature in the areas of 

rules interestingness measures with association rule mining as the case point in both 

relational and semi-structured data. 

 

The chapter outline is as follows. General work in association rule mining will be 

discussed in the next section. Then, in Sections 2.3 and 2.4 the discussion focuses on 

mining frequent itemsets from relational data and mining frequent subtrees from 

semi-structured data. This chapter narrows down the focus of the interestingness 

measures for association rule mining in Section 2.5. Section 2.6 focuses on the 

classification of interestingness measures with special attention given to the objective-

based measures. Section 2.7 discusses the existing works on interestingness measures 

for semi-structured data. Additionally, the discussion on the relationship between 

feature subset selection and rules interestingness is presented in Section 2.8. The 

chapter concludes with a summary of the open issues. 

  

2.2 Association Rules Mining (General)  

Promotional pricing, shelf space plans and product placements are several application 

benefits derived from the development of association rule mining analysis. 

Association rules mining has been widely used and successfully implemented for 

discovering useful associations between data in a large database (Aggarwal & Yu, 

1998; Agrawal, Imieliski, & Swami, 1993; Agrawal & Srikant, 1994; Han & Kamber, 

2001; Toivonen, 1996).  

 

Association rule mining is capable of finding useful information from a large 

transactional database. An example is the market basket analysis, which as defined by 

(Han & Kamber, 2001), is a process of gaining insightful information about customer 

buying behaviours in order to discover interesting and useful buying patterns. 
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This can be done by carefully examining customer buying behaviour and then placing 

each item(s) correctly as this will trigger costumer interest in buying additional 

item(s) rather than buying a single item (Han & Kamber, 2001). In this context, the 

aim is to capture the association relationship within costumer transactions. That is, if 

after deciding to buy a certain item(s), the customer is then more or less likely to buy 

another item(s). This can be done by placing frequently associated items close 

together as they are most likely to be bought together. This will increase sales and 

benefit the company.  

 

2.2.1 Basic Concepts 

In general, the association rule mining searches for interesting relationships among 

items in a given data set under minimum support and minimum confidence 

conditions. 

 

The problem of finding association rules yx →  was first introduced in (Agrawal et 

al., 1993) as a data mining task of finding frequently co-occurring items in large 

databases. (Agrawal et al., 1993) developed a two-phase approach to the association 

rules problem. The first step is to find all frequently occurring items, typically 

referred to as frequent itemsets (Lenca, Meyer, Vaillant, & Lallich, 2008). Each of the 

itemsets will occur at least as frequently as a predetermined minimum support count. 

The second step is to generate strong association rules from the frequent itemsets. 

These strong rules must satisfy the minimum support and minimum confidence. 

 

Let { }miiiI ,...,, 21=  be a set of items. Let D, be a transactions database for which each 

transaction T  is a set of items, such that IT ⊆ . An association rule is a condition of 

the form of yx →  where Ix ⊆ and Iy ⊆ and .φ=∩ yx  The support of a rule yx →  is 

the number of transactions that contain both x and .y  Let the support (or support ratio) 

of rule yx →  (denoted as )( yx →σ ) be s%. This implies that there are s% 

transactions in D that contain items (itemsets) x  and .y  In other words, the 

probability )( yxP ∪  = s%. Sometimes, it is expressed as support count or frequency, 

that is, it reflects the actual frequency count of the number of transactions in D that 

contain the items that are in the rules. An itemset is frequent if it satisfies the user-
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specified minimum support threshold. The confidence of a rule yx →  is the 

conditional probability of a transaction containing the consequent )( y  if the 

transaction contains the antecedent )(x . Hence, the confidence of a rule yx →  is 

calculated as )( yx →σ  / )(xσ .  

 

(Aggarwal & Yu, 1998) assert that the idea of the association rule is to develop a 

systematic method by which user can figure out how to infer the presence of some 

sets of items, given the presence of other items in a transaction. Such information is 

useful in making decisions such as shopper targeting, shelf spacing and sales 

promotions. Since the introduction of the association rule mining problem by 

(Agrawal et al., 1993), substantial work has gone into various trends, including the 

development of efficient and scalable algorithms for finding the association rules 

(Aggarwal & Yu, 1998; Agrawal & Srikant, 1994; Mannila, Toivonen, & Verkamo, 

1994; Toivonen, 1996) and measuring the interestingness of the association rules in 

relational data (Bayardo, Agrawal, & Gunopulos, 2000; Jaroszewicz & Simovici, 

2001; Lavrač, Flach, & Zupan, 1999; Lenca et al., 2008; Tan, Kumar, & Srivastava, 

2002; Webb, 2007; Yun, Ha, Hwang, & Ryu, 2003). 

  

2.2.2 Types of Association Rules 

There are various types of association rules, and in (Han & Kamber, 2001) these 

association rule types were classified according to four major criteria.  

 

The first and second criteria are based on the types of data handled by the rules and 

dimensions of data involved in the rule set. (Fukuda, Morimoto, Morishita, & 

Tokuyama, 1996; Ke, Cheng, & Ng, 2008; Moreno, Segrera, Lopez, & Polo, 2006; 

Piatetsky-Shapiro, 1991; Srikant & Agrawal, 1996) are prominent works that discuss 

the association rule based on types of data namely, the Booleen Association Rules and 

the Quantitative Association Rules (QAR). Both the Boolean and the Quantitative 

Association Rules may refer to either the single attribute or the multiple attributes in 

both the antecedent and the consequent. (Han & Kamber, 2001) extensively studied 

the multi-dimensional association rules. These are the rules that imply more than one 

dimension or predicate. In general, the discretization techniques such as the 
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clustering, a set of base interval, concept hierarchy and equal-depth bucket are 

employed in order to handle the quantitative attributes and the multi-dimensional 

rules. Such actions can reduce the large number of distinct values of quantitative 

attributes; however, at the same time, there will be loss of information due to the 

discretization processes.  

 

The third type of association rule is based on the levels of abstraction involved in the 

rule set. The discovery of multi-level abstraction rules have been successfully 

implemented by (Han & Fu, 1995; Srikant & Agrawal, 1995). Also, this multi-level 

approach is capable of finding redundant rules as defined in (Han & Kamber, 2001) 

 

The maximal pattern and closed pattern are various examples that extend the basic 

form of association rule mining approaches. Their capabilities in reducing a large 

volume of frequent patterns to a smaller set of rules while preserving the analytical 

power, has attracted extensive research on the area of maximal and closed patterns. 

Detailed discussion of maximal and closed itemset mining is given in Section 2.3.2. 

 

2.3 Mining Frequent Itemsets (Relational Data)  

2.3.1 Apriori Algorithm 

Mining frequent itemsets in a large transaction dataset is considered as a difficult task. 

Such conditions occur due to the enumeration of all distinct and single items in the 

database. (Agrawal & Srikant, 1994) introduced the Apriori algorithm to overcome 

this problem whereby an iterative approach known as a level-wise search is employed 

to generate the frequent itemsets. This approach first scans the k-itemsets from the 

database, then uses the k-itemsets to generate candidates for the (k+1)-itemsets, and 

checks the database again to obtain the frequent (k+1)-itemsets. The scanning and the 

generation process iterates until there are no more k-itemsets to be found (Han & 

Kamber, 2001).  

 

An Apriori property called downward closure is utilized to improve the level wise 

frequent itemsets generation. The downward closure property (Agrawal & Srikant, 

1994), defines the frequent k–itemsets as follows; A k-itemset is frequent only if all of 
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its sub-itemsets are frequent”. An example derived from (Han & Kamber, 2001) is: if 

an itemsets I does not satisfy the minimum support threshold, min_support, then I is 

not frequent, that is <)(IP  min_support. If an item A added to the itemsets I, then the 

resulting itemset (i.e., AI ∪ ) cannot occur more frequently than I. Therefore, AI ∪  is 

not frequent either, that is <∪ )( AIP min_support. 

 

The Apriori-based algorithms have been favourable and are popular techniques used 

in pattern mining. They perform well on sparse data in discovering frequent patterns. 

The majority of the association rule algorithm evolution is related to and centred on 

the Apriori approach. The hash-based technique, transaction reduction, partitioning, 

sampling and dynamic itemset counting are variations of association rule mining 

techniques that attempt to improve the efficiency of the Apriori algorithm (Han & 

Kamber, 2001).  

 

The Apriori-based algorithm is one of the most recognized frequent itemset mining 

algorithms. However, there are other algorithms such as the frequent-pattern growth-

based algorithm and algorithms that use the vertical format which are also efficient 

and scalable for mining frequent itemsets (Han, Kamber, & Pei, 2012). Two 

prominent methods for each of the aforementioned algorithms are FP-Growth (Han, 

Pei, & Yin, 2000) and ECLAT (Zaki, 2000b). The FP-growth method extracts the 

frequent itemsets without candidate generation and this can be done by constructing a 

compact form of the database utilizing the FP-tree structure (Han & Kamber, 2001). 

The ECLAT, as described in (Han & Kamber, 2001) manipulates a given dataset of 

transactions in the horizontal data format into the vertical data format.  

 

2.3.2 Maximal and Closed Frequent Itemset Mining 

Mining a complete set of rules using the Apriori algorithm will ensure the 

enumeration of all frequent items that satisfy certain thresholds. However, this will 

create problems such as the generation of a large volume of patterns. Maximal 

frequent itemsets mining and Closed frequent itemsets mining were proposed and 

successfully developed as one of the ways to counter this problem (Han, Cheng, Xin, 

& Yan, 2007). A frequent itemset is called a maximal frequent itemset if it is not a 

subset of any other frequent itemset. A closed frequent itemset is a frequent itemset of 
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which no proper superset has the same support count (frequency). All frequent 

itemsets can be generated from a set of maximal or closed patters, and in addition for 

closed patterns the exact support information for each itemset can be worked out.  

 

For an illustrative example, a transactional database from (Zaki & Hsiao, 2002) is 

reproduced, readapted and named it as the ‘Sport Shoes’ transaction database as 

shown in Figure 2.1. There are seven different items, I = {A, B, C, D, E, F, G} and 

eight transactions Tdb
 (n=8). Table C shows that all 17 frequent itemsets are present in 

at least four transactions; i.e., minsup = 50%.  Figure 2.2 shows the 17 frequent 

itemsets organized as a subset lattice; with their corresponding tidsets shown. The 8 

closed sets are obtained by collapsing all the itemsets that have the same tidset, shown 

in the figure with the circled regions. Hence, referring to Figures 2.1 and Figure 2.2, 

ABC, ACD, ACE, AF, AB, AC, AE and A are identified as Closed itemsets. As 

indicated on the top of the Closed itemset lattice, there are 4 maximal frequent 

itemsets (marked with a circle), ABC, ACD, ACE and AF (as these 4 maximal 

itemsets are not a subset of any other frequent itemsets)  

 
Sport Shoes Transactions Database Items (Table A) 

 

 

 

Database  (Table B)                           Table C  

 

 

 

 

 

 

 

 

 

 

**Transaction                    

Figure 2.1: Example Sport Shoes Transactions Database 
 

*Support Itemsets 

100% A 

75% AB,B,C,AC 

62.50% AE,E, 

50% ACD,AF,ACE,D, 

BC,F,AD,ABC,CE,

CD 

* Minimum support =50% 

**Trans. Items 

 1 ABCDEF 

2 CDEAB 

3 DCBA 

4 ABC 

5 BEFA 

6 BFAG 

7 CDEA 

8 CAEFG 

Adidaz Brookr Crocz Dunlap Esics Fuma Gizuno 

A B C D E F G 
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Figure 2.2: Frequent, Closed and Maximal Itemsets at support = 50 % 

 
(Bayardo, 1998) successfully developed an efficient way of mining long patterns from 

a database by extracting only the maximal frequent itemsets. The MaxMiner 

(Bayardo, 1998) algorithm reduces the itemsets through superset frequency-based 

pruning. The main characteristic of MaxMiner is its capability to identify long 

frequent itemsets at an early stage of the searching process. GenMax (Gouda & Zaki, 

2001) is another notable method for mining maximal frequent itemsets. The GenMax 

approach employs backtracking search for efficiently enumerating all maximal 

patterns. 

 

Additionally, MAFIA method proposed in (Burdick, Calimlim, Flannick, Gehrke, & 

Yiu, 2005) is claimed to outperform the GenMax method in terms of performance 

when mining long itemsets and dense data. In the MAFIA method, the vertical bitmap 

representation and compression mechanism is utilized for counting and pruning in 

order to search the itemset lattice. 

 

A-Close, an Apriori-based algorithm used to discover the closed frequent itemsets, 

was successfully developed by (Pasquier, Bastide, Taouil, & Lakhal, 1999). As the A-

Close framework focuses only on the discovery aspect of closed itemsets, (Zaki, 

2000a; Zaki & Hsiao, 2002) proposed a notable algorithm, namely the Charm 

algorithm. This algorithm is claimed to outperform the A-Close (Pasquier et al., 1999) 
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in terms of their rules presentable to user and time optimization. The Closet algorithm 

of (Pei, Han, & Mao, 2000) is another algorithm for mining closed itemsets which 

involves three techniques: firstly, apply the frequent pattern tree FR-tree structure for 

mining closed itemsets without candidate generation; secondly, develop a single 

prefix compression and finally, explore a partition-based projection mechanism. 

These three steps offer an efficient and scalable capacity for the Closet algorithm 

compared to the A-Close algorithm and the Charm algorithm. 

 

Overall, the capacity to preserve the same analytical power as mining the whole set of 

frequent itemsets, proves to be an advantage of the closed algorithm compared to the 

maximal; while closed has an advantage over the Apriori algorithm when dense and 

complex datasets are being considered (Zaki, 2000a; Zaki & Hsiao, 2002). 

 

On examining a number of algorithms for mining itemsets from relational data in 

Section 2.2 to Section 2.3, it was found that the main strength of the aforementioned 

algorithms is their capability of finding comprehensive cases and patterns. While one 

could argue that the discovery of important comprehensive rules might be unrealistic 

and ineffective (Han & Kamber, 2001), a pre-determined threshold plays an important 

role in alleviating this issue. In addition, the association rule algorithms have to scale-

up in many applications such as dense and sparse databases. The introduction of 

algorithms such as Frequent Pattern-Growth (FP-Growth), multi-level association 

rules, and Maximal and Closed itemsets offers a broad area to utilize the association 

rule mining algorithms.  

 

While association rule mining techniques have been successfully utilized, in many 

cases certain aspects of domain knowledge will not be completely captured by the 

extracted rules (Zhang, Balaji, & Alexander, 2004). Another problem is that the rule 

sets are often too large and complex, thereby making it impractical or impossible for a 

domain expert to analyze them in an efficient manner (Hilderman & Hamilton, 2001; 

Lenca et al., 2008). 

 

Additionally, the main weakness as discussed in the literature is the existence of many 

uninteresting rules, even when the algorithms were supplied with certain support and 

confidence thresholds. The fact is that they are unable to discriminate between the 
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significant, interesting rules, and uninteresting or misleading rules. Purely 

coincidental and random association rules may still exist due to these problems. One 

way to resolve this is by developing rules interestingness measures (Han & Kamber, 

2001). The importance of interestingness measures in discovering the association 

rules is discussed in Section 2.5 and Section 2.6. 

 

2.4 Mining Frequent Subtrees (Semi-structured Data)  

With the fast growth in the amount of electronic data in the form as Web pages and 

XML data, this offers a new dimension in pattern recognition and rules discovery. 

These electronic data are heterogeneous collections of ill-structured data that have no 

rigid structures, and are often referred to as semi-structured data (Suciu, 1998; Zhang, 

Ling, Bruckner, Tjoa, & Liu, 2004).  As the increase in data captured in semi-

structured format such as XML begins to flood many applications, association rule 

mining from the semi-structured data has become a new and interesting research area 

(Braga, Campi, Ceri, Klemettinen, & Lanzi, 2003; Chen, Bhowmick, & Chia, 2004; 

Hadzic, Tan, & Dillon, 2011; Zaki, 2005). 

 

Driven by the vast amount of XML applications being exploited in domains such as 

finance, banking, bioinformatics, biomedical, information technology and sciences 

and the successful mining of frequent itemsets, many algorithms have been developed 

to mine XML documents. (Suciu, 1998) assert that, in order to fully utilize and 

analyse the XML data, the right tools and data format are needed. Thus, the traditional 

mining of associations among simple-structured items of atomic values had to be 

extended to detect associations among XML fragments the underlying structure of 

which is a tree (Braga et al., 2003; Feng, Dillon, Weigand, & Chang, 2003). A 

detailed explanation of this problem and the parallelism between XML and tree- 

structured is provided in Chapter 3. As the XML documents can be effectively 

modelled as a rooted ordered labelled tree (as illustrated later in Chapter 3), the 

development of frequent subtree mining algorithms has been the main focus to enable 

association rule discovery from XML. A formal definition of the frequent subtree 

mining problem will be provided in Chapter 3. Next, a brief overview of some 

existing algorithms is provided. 
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2.4.1 Frequent Subtree Mining 

Increasing complexity of data in the form of XML, has posed a greater challenge for 

frequent pattern mining tasks. Frequent subtree mining as discussed by (Chi, Muntz, 

Nijssen, & Kok, 2005) is relatively more complicated compared to frequent itemset 

mining, due to the structural aspects that need to be taken into account. Additionally, 

much progress has been made in approaches for discovering association rules within 

the well-structured data. As a consequence, many frequent subtree mining techniques 

have been developed based on frequent itemset mining techniques. 

 

The general problems of association rule mining include the extraction of all the 

frequent itemsets from which association rules are formed. As described earlier in 

Chapter 1, a rule is said to be interesting if, in addition to meeting certain minimum 

support and confidence criteria, it also satisfies the measure of interestingness. The 

same holds for mining frequent subtrees in semi-structured data which requires 

candidate subtree enumeration and frequency counting.  

 

Different algorithms have been proposed for mining different subtree types using 

different constraints and support definitions. An overview of the current state-of-the-

art methods in this field of study can be found in (Chi et al., 2005; Hadzic et al., 2011; 

Tan, Hadzic, Dillon, & Chang, 2008). The popularity of string-like representation was 

recognized by (Chi et al., 2005; Tan et al., 2008; Zaki, 2005), as an effective way of 

capturing the hierarchical information of trees. As such, it provides a better way of 

data manipulation and space efficiency.  

 

In general, the ordered induced subtree preserves the order of sibling nodes in the 

original subtree and the relationships between nodes positioned vertically in the 

subtree are limited to the parent-child relationship. On the other hand, ordered 

embedded subtree types extend the vertical node relationship in the induced subtree to 

be ancestor-descendant. A detailed explanation of induced and embedded subtrees is 

provided in Chapter 3. (Chi et al., 2005; Hadzic et al., 2011; Zaki, 2005) have 

summarized several algorithms which utilized the induced and embedded data types. 

FREQT(Asai et al., 2002), AMIOT (Hido & Kawano, 2005), IMB3-Miner (Tan, 

Dillon, Hadzic, Chang, & Feng, 2006) and TreeMiner (Zaki, 2005) are several 
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approached proposed to mine induced and embedded subtrees. Moreover, other 

subtree types to be mined are unordered induced and embedded. Mining unordered 

subtrees is important when the order of sibling nodes in the original tree is considered 

as irrelevant or is not known. Hence, in an unordered subtree, the order of sibling 

nodes can be exchanged and it is still considered as the same candidate subtree (Chi et 

al., 2005; Hadzic et al., 2011). This increases the complexity of the subtree mining 

process, as each enumerated ordered subtree candidate needs to first be ordered into a 

standard representative form so that all variations of the subtree with respect to the 

sibling node order are correctly considered as a single entity. To date, several 

approaches have been developed that mine unordered subtrees such as Unot (Asai et 

al., 2002), RootedTreeMiner (Yun, Yirong, & Richard, 2005), HybridMiner (Yun, 

Yirong, & Richard, 2004), TreeFinder (Termier, Rousset, & Sebag, 2002) and 

SLEUTH (Zaki, 2004).  

 

As seen in this section, a number of algorithms have been successfully developed to 

mine different subtree types. While the aforementioned frequent subtree mining 

techniques may discover interesting associations from a given XML dataset, the 

problem that remains and that was inherited from traditional association rules mining 

is that they might reflect aspects only of the database being observed. Some subtrees 

are discovered due to pure coincidence resulting from certain randomness in the 

particular dataset being analyzed and the algorithms developed being unable to 

recognize and discriminate between interesting and significant subtrees and purely 

random association. Therefore, a proper appropriate framework needs to be developed 

for evaluating the interestingness of subtrees. The importance of interestingness 

measures for subtree rules will be discussed in Section 2.7, although the focus of the 

work in this thesis is limited to the interestingness measures for ordered subtrees. 

 

2.5 Interestingness and Validity of Rules 

Association mining is a useful technique for discovering interesting rules and patterns 

from large quantities of data. However, the association rule mining algorithms often 

tend to generate a large volume of rules. This can cause great difficulties in the 

analysis and interpretation of results, and it becomes rather impractical for a domain 

expert to utilize the rules for decision support purposes (Hilderman & Hamilton, 
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2001; Lenca et al., 2008). Thus, determining which of these patterns are useful can be 

very challenging. Figure 2.3, (McGarry, 2005) illustrates three main techniques for 

pattern assessment.  

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Techniques for Knowledge Discovery. Figure 2.3(a) shows that all patterns 

produced by the data mining process are passed to the user. Figure 2.3(b) shows how the 

search for interesting patterns occurs as a post-processing effort. Figure 2.3(c) shows the 

method to integrate the search for interesting patterns within the data mining algorithm 

reproduced from (McGarry, 2005) 

 

Different criteria have been used to limit the nature of rules extracted, such as support 

and confidence (Agrawal et al., 1993), collective strength (Aggarwal & Yu, 1998), 

lift/interest (Silverstein, Brin, & Motwani, 1998), chi-squared test (Silverstein et al., 

1998), correlation coefficient (Brijs, Vanhoof, & Wets, 2003), three alternative 

interest measures any-confidence, all confidence, and bond (Omiecinski, 2003), log 

linear analysis (Brijs et al., 2003), leverage (Piatetsky-Shapiro, 1991; Webb, 2007) 

and empirical bayes correlation (Brijs et al., 2003).  

 

Although there are various criteria for determining the usefulness of rules (Geng & 

Hamilton, 2006; Han & Kamber, 2001; Hilderman & Hamilton, 1999; Lavrač et al., 

1999), the rules reflect only the database being captured. One never knows whether 

the rules produced are useful in practice or are valid for a real-world problem. 

Applying a data mining algorithm to practical problems is not sufficient because one 

needs to ensure that the results have a sound statistical basis. Therefore, in this 

research, the quality of data mining rules will be verified by statistical analysis, and 
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redundancy and contradictive assessment methods. Such unification is sorely needed 

to overcome the data overload in practical problems (Goodman, Kamath, & Kumar, 

2008). Table 2.1 summarizes the upside and downside of the data mining and statistic 

approaches as described in (Goodman et al., 2008). Thus, additional measures based 

on statistical independence and correlation analysis are needed to ensure that the 

results have a sound statistical basis and are not purely random coincidence.  

 

Table 2.1: Data mining vs. Statistic reproduced from (Goodman et al., 2008) 

Data mining Statistic 

Upside Upside 

Capable of exploiting results for a massive 

volume of data 

Capable of make sense out of data 

Downside Downside 

Results may need to be validate through statistic 

analysis 

Analysis must be rigorously up to the level of 

data volume 

 

2.6 Classification of Interestingness Measures 

Measuring the interestingness of discovered patterns is an active and important area of 

data mining research. Although much work have been done in this area, so far there is 

no well-known agreement on a formal definition of interestingness in this context 

(Geng & Hamilton, 2006). This assertion is related to (Tan et al., 2002), who state that 

there is no measure that is consistently better than others in all cases. Yet, several 

researchers (Geng & Hamilton, 2006; Han & Kamber, 2001; Lavrač et al., 1999) 

agree that conciseness, generality, reliability, peculiarity, diversity, novelty, 

surprisingness, utility, actionability, coverage and accuracy are the eleven criteria 

used to determine whether or not a pattern is interesting. (Geng & Hamilton, 2006) 

also highlight, that the interestingness criteria are sometimes correlated, rather than 

independent of one another. Table 2.2 summarizes the interestingness criteria as 

described in (Geng & Hamilton, 2006; Lavrač et al., 1999) 
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Table 2.2: Summary of Interestingness Criteria (Geng & Hamilton, 2006; Lavrač et al., 1999) 

Criteria Description 

Conciseness A pattern is concise if it contains relatively few attribute-value pairs. It is 

relatively easy to understand and remember. 

Generality A pattern is general if it covers a relatively large subset of a dataset.  

Reliability A pattern is reliable if the relationship described by the pattern occurs in a 

high percentage of applicable cases. 

Peculiarity A pattern is peculiar if it is far away from other discovered patterns 

according to some distance measurement. 

Diversity A pattern is diverse if its elements differ significantly from each other. 

Novelty A pattern is novel to a person if he or she does not know it and is not able to 

infer it from other known patterns 

Surprisingness A pattern is surprising if it contradicts a person’s existing knowledge or 

expectation 

Utility A pattern is of utility if it is used by a person to reach a goal. 

Actionability A pattern is actionable on some domain if it enables decision making about 

future actions in this domain. 

Coverage Measures the fraction of instances covered by the body of a rule. 

Accuracy 

(Error Rate) 

Measures the fraction of predicted positives that are true positives in the case 

of binary classification problems: 

 

(Han & Kamber, 2001; McGarry, 2005) divide interestingness into two classes: 

Objective and Subjective. An objective measurement is based on the structure of the 

discovered patterns and the statistics underlying them. Conversely, subjective 

measurement is based on user beliefs in the data. While (Geng & Hamilton, 2006), 

add another class of interestingness which is Semantic. It is a measure of the pattern’s 

explanatory power. 

 

2.6.1 Objective Measures 

Objective interestingness measures are based on probability theory, statistics and 

information theory. With these measures, additional knowledge from the user or the 

application is not required and the measure is based on the raw data available (Geng 

& Hamilton, 2006). Various objective interestingness criteria have been used to limit 

the nature of rules extracted, as explained in (Geng & Hamilton, 2006). A number of 
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researchers have anticipated an assessment of pattern discovery by applying a 

statistical significance test as discussed in (Hämäläinen & Nykänen, 2008; Kirsch et 

al., 2009; Lallich, Teytaud, & Prudhomme, 2007; Webb, 2003, 2007; Weiß, 2008). In 

what follows, several prominent objective measures are discussed that are based on 

support and confidence framework, statistical measures and information theory, 

which are related to the research undertaken in this thesis. 

 

2.6.1.1 Support and Confidence 

For a classical association framework, a rule is considered interesting if its support 

and confidence exceed some user-defined thresholds. Moreover, these two measures 

can, to a certain extent, demonstrate the usefulness and certainty of discovered rules, 

respectively (Han et al., 2012). (Agrawal & Srikant, 1994) developed the Apriori 

algorithm in two steps within the support and confidence framework in which the user 

needs to fix the minimum support and confidence threshold.  

 

Once the frequent itemsets from a transactional database have been found, it is a 

straightforward matter to generate strong association rules from them. These support 

and confidence measures were the original interestingness measures proposed for 

association rules (Agrawal & Srikant, 1994). Strong rules satisfy the minimum 

support and confidence thresholds. Yet, the strong rules are not essentially interesting 

either from a statistical or expert’s point of view (Lenca et al., 2008). The high 

confidence should not be confused with high correlation, or with the causality 

between the antecedent and the consequent of the rule (Brijs et al., 2003; Brin, 

Motwani, Ullman, & Tsur, 1997; Han & Kamber, 2001).  

 

2.6.1.2 Statistical Measurements 

(Han & Kamber, 2001) argue that, “strong association rules are not necessarily 

interesting”. Even with the application of the minimum support and the minimum 

confidence thresholds, users are swamped with the generation of uninteresting and 

misleading rules. Alternative measures based on correlation analysis have been 

utilized by (Brin, Motwani, & Silverstein, 1997; Han & Kamber, 2001) in finding 

interesting relationships for strong association. This statistical-based test offers a way 
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to determine the closeness of two probability distributions and is capable of accessing 

the statistical significance level of dependence between the antecedent and consequent 

in association rules (Alvarez, 2003). 

 

Statistics have previously addressed the issue of how to separate out the random 

effects to determine whether the measured association (or difference in other areas) is 

significant (Agresti, 2007; Hosmer & Lemeshow, 1989).  However, the statistical 

significance assessment is still poorly understood and remains one of the challenging 

data mining problems to be solved (Kirsch et al., 2009). The three Rule-Interest (RI) 

functions proposed by (Piatetsky-Shapiro, 1991) effectively measure the correlation 

between the antecedents and the consequent of a rule, and is one of the prominent 

works that deal with the statistical independence of rules in data mining. To date, 

works proposed by (Hämäläinen & Nykänen, 2008; Kirsch et al., 2009; Lallich et al., 

2007; Webb, 2003, 2007; Weiß, 2008; Zaki, 2000a) recognize the need for a 

statistically significant pattern.  

 

(Webb, 2003, 2007) demonstrate the capabilities of their approach by performing two 

techniques namely, the holdout and direct adjustment, to check for a productive and 

significant rule. This approach was intended to extend the works done by (Bay & 

Pazzani, 2001; Meggido & Srikant, 1998) to strictly control the false discovery. 

 

Presenting uninteresting and misleading patterns from a false discovery action is an 

important issue that can be addressed with statistical-based measures. False discovery 

is defined as the error of rejecting a null hypothesis, thereby falsely accepting a 

pattern. The initial work on avoiding false discovery was successfully undertaken by 

(Meggido & Srikant, 1998). They built a system which can determine the p-values for 

each association rule being generated. The p-values are then used to remove any 

association rules with sufficiently low p. However, this method is valid only when 

applied to sparse data transactions. The problems of controlling false discovery were 

then solved by Bay and Pazzani (Bay & Pazzani, 2001) with the development of  the 

STUCCO (Search and Testing for Understandable Consistent Contrasts) algorithm 

which they claim is capable of pruning rules which allow efficient mining at low 

support and guaranteed control over false discovery. This involves finding a 
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significant contrast set using the chi-squared test and controlling the search error with 

the Bonferroni corrections. 

  

Other variants of the statistical approach, such as the bootstrap-based method (Lallich, 

et al., 2007), are capable of controlling the multiple risks and avoiding the risk of false 

discovery. Hämäläinen and Nykänen (Hämäläinen & Nykänen, 2008) have 

successfully implemented the StatApriori algorithm which searches statistically 

significant and non-redundant rules. This algorithm was developed to control the 

existence of false negatives and false positives discovered in association rule mining. 

The method of selecting a meaningful support threshold by Kirsch et al. (Kirsch et al., 

2009) is another novel approach to control the false discovery rate in pattern 

discovery. They define the significant itemsets with small false discovery rate as those 

itemsets that deviate substantially from the expected random dataset. Additionally, 

other works based on the minimum support threshold, such as the method proposed 

by Wei et al. (Wei, Yi, & Wang, 2006), are also able to mine valuable rules while 

pruning the low relation rules.  

 

In the datasets where there is a predefined class label (i.e. classification tasks), 

frequent pattern mining can contribute to discovering strong associations between 

occurring attribute and class values (Li, Shen, & Topor, 2002). A combination of a 

frequent-pattern-based framework with a feature selection algorithm, namely the 

Maximal Marginal Relevance Feature Selection (MMRFS) proposed by (Cheng, Yan, 

Han, & Hsu, 2007), is a discriminative frequent-pattern-based classification that is 

capable of overcoming the overfitting in a classification problem and has proven to be 

scalable and highly accurate. The aforementioned framework involves a two-step 

process, firstly to mine the frequent pattern, and secondly, to perform feature selection 

or rule ranking. An improvement of this work that is capable of directly mining the 

discriminative pattern is proposed by (Cheng, Yan, Han, & Yu, 2008). This approach, 

namely the Direct Discriminative Pattern Mining (DDPMine), is capable of 

discovering classification rules by incorporating the feature selection method into the 

mining framework by directly mining the most discriminative patterns, and then 

incrementally eliminating the training instances which are covered by those patterns. 

With respect to the application of closed itemsets for prediction and classification 

problems, some work has already been initiated in (Garriga, Kralj, & Lavrač, 2008). 
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The covering properties of closed sets have successfully increased the accuracy of 

rule-based classifiers, reduced the number of rules from emerging patterns and 

decreased the number of rules to those essential for the classification task. However, 

in terms of usefulness, no comparison has been made between closed sets and 

maximal sets and frequent itemset sets for classification tasks, with respect to their 

classification accuracy, generalization capability and coverage rate, and the 

application of interestingness measures to such patterns.  

 

(Novak, Lavrač, & Webb, 2009) proposed unifying supervised descriptive rule 

discovery framework which combines three data mining areas namely the contrast set 

mining (CSM), emerging pattern mining (EPM) and subgroup discovery (SD). The 

unifying framework provides a proper comparison and commonalities in terms of the 

terminology, definitions, goals, algorithms, heuristics and rules visualization of CSM, 

EPM and SD. It shows that the heuristics used in each of the areas aims at optimizing 

the common trade-off between rule coverage and accuracy. Although the descriptive 

rule discovery offers a systematic comparison and commonalities between each area, 

an appropriate sequence of applying the different heuristics to arrive at an optimal 

rule set has not been discussed.  

 

2.6.1.3 Information Theory 

Another type of objective measures for interesting patterns is based on the 

information theory procedure. Information theory refers to the interpretation of 

information from patterns. A rule is considered interesting when the antecedent 

provides a great deal of information about the consequent (Blanchard, Guillet, Gras, 

& Briand, 2005).  

 

Listed here are several measures that evaluate the rules based on the information 

theory approach. The mutual information as characterized by (Geng & Hamilton, 

2006; Jaroszewicz & Simovici, 2001; Ke et al., 2008) is a measure that describes how 

much information one random variable imparts about another one. (Blanchard et al., 

2005; Geng & Hamilton, 2006) described the Shannon conditional entropy as an 

information theory that calculates the average amount of information of the 

consequent given that the antecedent is true. The J-measure as proposed by Smyth & 
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Goodman (Smyth & Goodman, 1992) is an information measure capable of 

quantifying the information content of a rule or a hypothesis. The Gini index as 

reported in (Blanchard et al., 2005; Jaroszewicz & Simovici, 2001; Bayardo & 

Rakesh, 1999) is a measure based on distribution divergence. Moreover, (Blanchard, 

et al., 2005) presented the Directed Information Ratio (DIR), a new rule 

interestingness measure which is based on information theory. DIR is specially 

designed for association rules, and in particular it differentiates two opposite rules 

ba →  and
−

→ ba . This measure, as asserted by (Blanchard et al., 2005), is capable of 

rejecting both independence and equilibrium; that is, it discards both the rules whose 

antecedent and consequent are negatively correlated, and those rules which have more 

counter-examples than supporting examples.  

 

2.6.2 Subjective Measures 

The data mining model may generate rules that satisfy certain requirements, but the 

question remains whether the rules are correct. (Roiger & Geatz, 2003) argue that this 

question is not easily answered, since the rules generated from any data mining model 

are being developed by a data mining specialist; thus, additional information is 

needed as this will verify the usefulness of the discovered knowledge and the 

applicability of the rules.  

 

The additional information may vary based on the knowledge background of the user, 

the user interest and the evolution of the user’s knowledge. Rules’ measuring which 

involves both user knowledge and data is identified as the subjective measure (Geng 

& Hamilton, 2006). Since the representation of user knowledge may be in various 

forms, it is hard to formulate the subjective measures into simple mathematical 

formulas such as those utilized in the objective measures. Additionally, 

unexpectedness and novelty are the two major criteria used in subjective measures for 

determining the interestingness of rules (Geng & Hamilton, 2006).  

 

Unexpectedness or the novelty of rules can be determined based on three 

distinguished roles. In the first roles, a system will pick unexpected rules to be 

presented to the user based on specific format defined by the user (Liu, Hsu, Mun, & 
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Lee, 1999; Silberschatz & Tuzhilin, 1996). Interactive feedback between the user and 

the system is capable of identifying the unexpectedness of the subjective rules. With 

this approach, the system will remove uninteresting rules based on interaction with 

the user. The final task in determining the unexpectedness is by reducing the data 

mining search spaces which will provide fewer results. This can be done by the 

forming user’s specifications as constraints (Padmanabhan & Tuzhilin, 1998).  

 

An example of a user specification constraint is the belief system (Silberschatz & 

Tuzhilin, 1996). This refers to a subjective measure that can quantify the user belief 

based on either hard or soft belief. The hard belief refers to some constraint that is 

fixed and cannot be changed, while soft belief refers to the willingness of the user to 

make some adjustment if new rules are discovered.  

 

Interaction between the user and the system has been proposed by (Sahar, 1999). With 

this approach, there are no predefined interestingness measures. Patterns’ 

interestingness is measured in three steps: selection of best candidate by the system, 

candidate presentation to the user (involving selection process by the user) and 

finally, retention by the system of the true interesting set of rules.  

 

The reduction of the mining spaces based on user specification is the final task stated 

by (Geng & Hamilton, 2006) in determining the novelty of a rule. Work developed by 

(Padmanabhan & Tuzhilin, 1998) is based on the belief system approach. However, 

rather than mining rules that are in agreement with user beliefs, only contradictive 

rules are mined. This approach is preferred for the discovering of any rules that 

conflict with user knowledge. 

 

Subjective measures are considered to be more useful and valuable for the more 

experienced and with active participation from the users (Geng & Hamilton, 2006). 

However, in most cases, the availability of subjective knowledge/domain knowledge 

cannot always be assumed. Moreover, these measures also exploit information 

gathered from different users’ background knowledge, which consequently may lead 

to different measures and ways to determine rules interestingness (Geng & Hamilton, 

2006). Hence, the focus of the work in this thesis is on ascertaining rules based on 

interestingness measures that do not depend on the availability of domain knowledge. 
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2.6.3 Semantics Measures 

Another rules measurement technique is the semantic measure. This is a 

complementary interestingness measure for evaluating the association rules 

(Maddouri & Gammoudi, 2007). A semantic measure considers the semantics and 

explanations of the patterns. Rules semantics are measured based on their utility and 

actionability (Geng & Hamilton, 2006).  

 

The utility criteria in this semantic measure are a combination of the statistical aspect 

of the data and the utility of the mined rules. A weighted association rule mining is 

one example of a utility-based measure as proposed by (Geng & Hamilton, 2006). 

With this measure, each item is allocated a certain weight representing its level of 

importance. This utility-based measure is an extension of the support measure from a 

standard Apriori algorithm. (Geng & Hamilton, 2006), summarized 11 utility-based 

measures; however, both Geng and Hamilton agree that each application needs a 

different utility measures. Actionability criteria in semantic measurement refer to how 

the user can take advantage of the patterns. Moreover, patterns that are found to be 

actionable will assist the user to take real actions, thereby providing additional 

information for the decision-making process (Cao, 2010). Additionally, (Maddouri & 

Gammoudi, 2007) proposed 12 semantic properties by carefully examining the 

behaviour of sixty interestingness measures. Based on these 12 semantic properties, 

(Maddouri & Gammoudi, 2007) claim that the Zhang measurement technique is an 

important measure that satisfies the majority of the 12 proposed semantic properties.  

 

However, since the semantic measure requires the user to have background 

knowledge, this will lead to similar difficulties as those that apply to the subjective 

measure. (Geng & Hamilton, 2006) agree that the presentation of rules that can reflect 

human interests will remain an active research issue.  

 

2.6.4 Summary of the Main Deficiency in Interestingness Evaluation of 

Association Rules for Relational Data 

As mentioned in our discussion in Section 2.5 and Section 2.6, each of these 

interestingness measures have their own strengths and weaknesses (Hilderman & 

Hamilton, 2001). While (Webb, 2007) has examined the latest developments in the 
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significance of rules discovery. Some areas worth further exploration involve: issues 

concerning the optimal split between the subset of data used for learning and 

evaluation, selection of a suitable statistical test and assessment of the rules with more 

than one itemset in the consequent.  

 

Although there are various criteria for determining the usefulness of rules as 

overviewed in the aforementioned section, the measures usually reflect the usefulness 

of rules only with respect to the specific database being observed (Webb, 2007). It is 

hard to determine whether the rules produced are useful in practice or are valid for 

real-world problems. Applying a data mining algorithm to practical problems may not 

be sufficient because one needs to ensure that the results have a sound statistical basis. 

To conclude, the evaluation of the interestingness of rules is essential in many 

applications. While a substantial number of interestingness and constraint-based 

measures have been proposed and successfully applied, there is still a need to 

understand the roles that these parameters play and the way in which they should be 

utilized. An understanding of the various implications of applying each parameter and 

providing a systematic, sequential procedure will ensure that one will arrive at a more 

reliable and interesting set of rules. Furthermore, with the frequent itemsets, closed 

and maximal mining being an important approach to arrive at the initial set of rules, 

there is still a need to understand the difference and advantages/disadvantages of 

using each of these as a basis for classification tasks with respect to accuracy, rule 

coverage and generalization power. 

 

2.7 Interestingness and Validity of Rules for Semi-Structured Data 

To date, limited work has been done on the rule evaluation phase of semi-structured 

rules. Many of the well developed rule interestingness measures are in relational data 

and they have had great success in evaluating rule interestingness as discussed in (Tan 

et al., 2002). Several works on the evaluation of discovered patterns based on 

statistical significance are those of (Aumann & Lindell, 2003; Meggido & Srikant, 

1998; Webb, 2003, 2007), but these are limited to relational data. The existence of 

vast well-developed measuring techniques to evaluate interestingness of rules from 

relational data, offers great opportunities for adapting these techniques for verifying 

significant subtrees from semi-structured data. The applicability of these 
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interestingness measures needs to be explored in the context of frequent subtree 

mining, where necessary adjustments and extensions need to be made to ascertain the 

validity of the methods given the more complex structured aspects in the data, which 

often need to be preserved in the rules.  

 

One line of work focusing on more interesting subtree patterns aims to reduce the 

patterns and the application of plausible constraints techniques. The problem of 

mining mutually dependent ordered subtrees has been addressed in (Ozaki & Ohkawa, 

2009). The proposed algorithm utilizes the hyperclique method (Xiong, Tan, & 

Kumar, 2006) in the tree mining context so that all the components of a subtree are 

highly correlated together. These hyperclique subtree patterns are discovered using an 

h-confidence measure which is the minimum probability of an item from a pattern in 

one transaction implying the presence of all other items in the same transaction. 

Hence, the extracted hyperclique subtree patterns will satisfy the minimum h-

confidence threshold. The work done in (Bathoorn, Koopman, & Siebes, 2006) uses 

the method proposed for database compression in regards to item set mining in 

(Siebes, Vreeken, & Leeuwen, 2006) to demonstrate how the same minimum 

description length principle can yield good results for sequential and tree-structured 

data. Another notable work presented in (Nakamura & Kudo, 2005) extends the idea 

of the item constraint (Srikant, Vu, & Agrawal, 1997) to that of a node-inclusion 

constraint in subtrees. Furthermore, (Knijf & Feelders, 2005) proposed the use of 

monotone constraints in frequent subtree mining, namely monotone, anti-monotone, 

convertible and succinct constraints. Using these constraints, the frequent subtrees are 

mined using an opportunistic pruning strategy, and the set of frequent subtrees are 

reduced to only those satisfying the specific user pre-defined constraints. An approach 

to mining of frequent subtrees where the distance between the nodes is used as 

additional grouping criterion has been presented in (Hadzic, Tan, & Dillon, 2008). 

However, the usefulness of this distance constraint for generating interesting rules has 

not been explored for the classification task.  

 

Besides the aforementioned constraint-based techniques, to the best of our knowledge, 

there are limited works on verifying the significance of discovered frequent subtrees. 

The frequently-occurring subtrees discovered with the frequent subtree mining are 

often too numerous to be utilized efficiently and effectively for the application at hand 
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(Hadzic, 2011; Hadzic et al., 2011; Ikasari, Hadzic, & Dillon, 2011). (Hashimoto, 

Takigawa, Shiga, Kanehisa, & Mamitsuka, 2008) proposed and developed an 

application of statistical hypothesis testing to re-rank the significant frequent subtrees. 

This approach ranks the significant patterns according to P-values obtained from the 

Fisher’s Exact test of significance. The significant patterns were then used for Glycan 

classifications problems. Recently (Yan, Cheng, Han, & Yu, 2008), proposed a 

mining framework called LEAP (Descending Leap Mine) for checking and mining 

significant frequent subgraphs which helps to discard redundant frequent subgraphs. 

For a predefined class label in XML documents, an efficient XRules classifier has 

been developed by (Zaki & Aggarwal, 2003). This approach offers promising results 

in terms of a structural classifier for semi-structured data, but nevertheless utilizes 

standard measures of interestingness based on support and confidence. 

 

2.7.1 Summary of the Main Deficiency Interestingness Evaluation of 

Association Rules for Semi-Structured Data 

With the limited work that has been done on evaluating the subtrees’ interestingness 

for semi-structured data, a number of the criticisms of pattern interestingness 

measures in relational data also apply to semi-structured data. Such criticisms include 

the fact that, while interesting subtrees may be found from an XML database, by 

meeting certain constraints criteria and satisfying the measure of interestingness, there 

is still a need to understand the roles that these constraints and parameters play and 

the way in which they should be utilized. Furthermore, many misleading, 

uninteresting and insignificant frequent rules may still be produced, as is the case for 

any frequent pattern-based approach (Han & Kamber, 2001). The problem arises 

because some subtrees are discovered due to pure coincidence resulting from certain 

randomness in the particular dataset being analyzed. Moreover, in semi-structured 

data additional challenges exist due to the structural aspects inherent in data, which 

are mostly not accounted for by existing interestingness measures. Thus, as mentioned 

earlier at the end of Section 2.6.4, in order to guarantee the discovery of reliable and 

interesting frequent subtrees, what is needed is an understanding of the various 

implications of applying each parameter and constraint, and a systematic sequence of 

usage. Moreover, an understanding of the differences and advantages/disadvantages 

of basing the association rules on different subtree types (i.e. induced, embedded, 
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disconnected) is needed with respect to resulting rules’ accuracy, coverage and 

generalization power.  

 

2.8 Relationship between Feature Subset Selection and Rule Interestingness  

The feature subset selection as describes in (Han & Kamber, 2001) is a ways to 

minimize the number of features within the dataset by removing irrelevant or 

redundant features/attributes. In general, the objective of feature subset selection as 

defined in (Han & Kamber, 2001) is “to find a minimum set of attributes such that the 

resulting probability distribution of the data classes is as close as possible to the 

original distribution obtained using all attributes”. Han and Kamber in (Han & 

Kamber, 2001) asserted that, domain expertise can be employed in order to pick up 

useful attributes. However, because the data mining task involves a large volume of 

data and unpredictable behaviour of data during data mining, this task is often 

expensive and time consuming.  

 

The test of statistical significance is one of the prominent approaches in evaluating 

attributes/features usefulness. Stepwise forward selection, stepwise backward 

selection and a combination of both are three commonly used heuristic techniques 

utilized in statistical significance tests such as linear regression and logistic regression 

(Han & Kamber, 2001). Moreover, the application of correlation analysis such as the 

chi-squared test is also valuable in identifying redundant variables for features subset 

selection. Another powerful technique for this purpose is the Symmetrical Tau (Zhou 

& Dillon, 1991), which is a statistical-heuristic feature selection criterion. It measures 

the capability of an attribute in predicting the class of another attribute. Additionally, 

information gain is another attributes’ relevance analysis method employed in the 

popular ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993) as reported in (Han & 

Kamber, 2001), for selecting the most prominent class distinguishing attributes as 

split nodes in the decision tree.  

 

While the original purpose of features subset selection is to reduce the number of 

attributes to only those attributes relevant for a certain data mining task, they 

nevertheless can be utilized to measure the interestingness of rules/pattern generated. 

For example, if the rules/pattern themselves consist of irrelevant attributes, the 
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aforementioned measure can also give some indication that the rules/pattern is not 

interesting. Moreover, (Geng & Hamilton, 2006) stated that there are three roles of 

interestingness measures. The first is their ability to discard uninteresting patterns 

during the mining process, thereby narrowing the search space and improving the 

mining efficiency. The second role is to calculate the interestingness scores for each 

pattern, which allows the ranking of patterns according to specific needs. The final 

role is the use of interestingness measures during the post-processing stage to select 

interesting patterns. 

 

In this section, the focus is on the first role of the rules interestingness measures in 

selecting interesting frequent patterns. Interestingness measures such as the chi-

squared test (Brin, Motwani, & Silverstein, 1997), Symmetrical Tau (Zhou & Dillon, 

1991) and Mutual Information (Tan et al., 2002), are capable of measuring the 

interestingness of rules and at the same time identifying useful features for frequent 

patterns.  

 

Since frequent patterns are generated based solely on frequency without considering 

their predictive power, the use of frequent patterns without selecting appropriate 

features will still result in a huge feature space which leads to larger volume and 

complexity of rules. This might not only slow down the model learning process, but 

even worse, the classification accuracy deteriorates (another kind of overfitting issue 

since the features are numerous) (Cheng et al., 2007) 

 

2.9 Conclusion 

This chapter has provided the literature review of the current state of research in the 

problem areas related to the work of this thesis. As mentioned in Chapter 1, the main 

problem area on which this thesis focuses is the evaluation of data mining rules, 

paying particular attention to association rules generated from both relational and 

semi-structured data (focusing on XML and tree-structured data in general). A general 

overview of the basic foundations of topics related to association rule mining and 

frequent pattern mining was first provided. Different ways of mining frequent patterns 

from relational data and semi-structured data were discussed. The strengths and 

weaknesses of the different approaches were indicated.  
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The remainder of the chapter examined the state of the research into specific problems 

of interestingness measures and validity of rules addressed in this thesis. A survey on 

general issues of interestingness and validity of rules is provided, followed by a 

detailed discussion of the classification of interestingness measures based on the 

objective, subjective and semantic measures. In addition, extensive and more detailed 

discussions are focused on statistic-based measures to evaluate the rules’ 

interestingness and validity. A discussion is provided with respect to the rules’ 

interestingness and validity from semi-structured data. In the last part of the chapter, a 

feature subset selection problem is discussed in terms of arriving at more interesting 

sets of rules. 
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CHAPTER 3: GENERAL CONCEPTS, DEFINITIONS AND PROBLEM TO 

BE ADDRESSED 

3.1 Introduction 

This thesis presents a study of the interestingness and validity of rules generated by 

the association rules mining technique. In this chapter, the essential concepts, 

problem definitions, and the problems to be addressed are discussed as the basis for 

the development of subsequent chapters.  

 

Since the problems of rules interestingness and validity will be approached from the 

perspective of relational data and semi-structured data, the general concepts and 

definitions of ‘relational’ and ‘semi-structured’ will be given separately in Section 

3.2 and Section 3.3. Section 3.3 will also discuss the problem of modelling XML 

documents, and the parallelism between XML and tree structure. This clarifies the 

focus within the problem from the semi-structured data perspective, being that of 

XML documents and tree-structured data in general. Nevertheless, the study is 

applicable to any documents/data that can be effectively modelled as a rooted 

ordered labelled tree, as is the case in XML. Section 3.4 and 3.5 provide the concepts 

and the definitions of association rule mining for relational data and tree-structured 

data, respectively. An overview of the problems to be addressed in this thesis is 

given in Section 3.6. Section 3.7 is reserved for the discussion of the methodologies 

chosen in this thesis for approaching the problems described in Section 3.6. Finally, 

this chapter is concluded with a summary in Section 3.8. 

 

3.2 General Concepts and Definitions of Relational Data 

In the thesis, the problems are defined based on two separate data types. This sub-

topic is devoted to defining several important terms relating to the general terms and 

concepts regarding a relational data model. The relational data model was inspired by 

the concept of mathematical relations. Relational data has a structured format where 

the scheme of the data is fixed. (Han & Kamber, 2001) defined the relational data 

model as compromising a set of tables, each of which is assigned a unique name. 

Each table consists of a set of attributes (columns or fields) and usually stores a large 

set of tuples (records or rows). Each tuple in a relational table represents an object 
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identifier by means of a unique key and is described by a set of attribute values.  

Additionally, each record is an ordered list of values, with one value for each field 

(Frawley, Piatetsky-Shapiro, & Matheus, 1992).  

 

3.2.1 Relational Data 

The following definition of a relational data model is taken from (Vossen, 1991). For 

a relational data model: Let X be a set of attributes, { }mAAX ,...,1= , and let each 

attributes XA ∈  have a non-empty domain ( )Adom  with at least two elements; thus, 

every domain permits at least assertions of the form ‘true/false’ or ‘yes/no’. A tuple 

over X is an injective mapping ( )XdomX →:µ , for which the following holds: 

( )XA∈∀  ( ) ( )AdomA ∈µ . For a given set X of attributes, let ( )XTup  denote the set of 

all tuples over X; the injectivity assumption ensures that ( )XTup  is indeed a set. A 

relation r over X is a finite set of tuple over X, that is, ( )XTupr ⊆ ; the set of all 

relations over X is denoted by Rel ( )X . 

 
Table 3.1: Sample table 

 

 

 

 

 

Table 3.1 illustrates that a relation over a set X of attributes can be represented as a 

table, if an ordering is imposed on the elements of X. When representing a relation in 

this form, the attributes will always be included as a ‘headline’; the tuple or elements 

of the relation form the remaining rows of the table.  

 

3.2.2 Data Pre-processing 

The first phase of discovering the rules’ interestingness and validity for the relational 

data is to ensure that only appropriate and clean data are used for the association rule 

mining process.  In this chapter, two issues regarding the pre-processing techniques 

to be utilized in this thesis are defined.  

Callnumber … Author … Title … Publ_Co 
1 … Date  … Data Mining … WA 
2 … Ulman … Intro DBMS … CSP 
3 … Kroenke … DB Process … SRA 
. … … … … … … 
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3.2.2.1 Missing Data and Continuous Data  

Data in the real world are often incomplete, noisy and inconsistent (Han & Kamber, 

2001). The larger the dataset, the more likely that it contains some missing values. 

Malfunctioning measurement equipment, change in experimental design during data 

collection and the collecting of several similar but non-identical datasets are several 

reasons for the occurrence of missing data (Witten & Frank, 2005). In this thesis, the 

missing data in the database is defined as follows:  

 

Suppose the focus is on relating a target variable Y to input attribute X = (x1,..,xp ), 

and there is missing data on a subset of X  for some of the records in the database.  

 

Another aspect of data pre-processing involves effective ways of dealing with 

continuous data. A variable X is said to be continuous if its set of possible values is 

an entire interval of numbers. This will be formally clarified with a definition of a 

continuous function as stated in (Borowski & Borwein, 1989): 

A real function y = f(X) is said to be continuous at a point A iff it is defined at X = A 

and for both X > A and X < A the following condition holds: 

 

      lim f(X) = f(A).  

      X  A        

that is precisely if, 

      for every ε > 0 there exists a δ > 0 such that 

      |f(X) – f(A)| < ε for all X such that |X – A| < δ.  

 

Given the lower bound XL and the upper bound XU of the domain of a continuous 

attribute X, values of X are obtained by a function that is continuous over all the 

points in interval [XL, XU]. In other words, a valid value (xval) for X is any real 

number in the range [XL, XU] (i.e. XL, ≤ xval ≤ XU).  

 

Based on the definition, the number of possible values for continuous attributes is 

infinite. To ensure that a manageable data size is obtained by reducing the number of 

distinct values per attribute, a common approach is to partition the ranges of 

continuous attributes into intervals (Han & Kamber, 2001). This is referred to as 
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binning, and several existing techniques for this include equal-width binning, equal-

frequency binning and clustering-based binning (Han & Kamber, 2001).  

 

In this thesis, for all continuous attributes involved in the relational data analysis, the 

equal-width binning approach method is applied. The equal-width binning approach 

groups the data into several buckets or bins of the same interval size. The equal 

width binning will be implemented based on the following steps (Refaat, 2007); 1) 

Calculate the range of variable to be binned; 2) Using the specified number of bins, 

calculate the boundary (width) of each bin; 3) Using specified boundaries, assign 

each value of the variable to a bin for each record.   

 

Formally, the process can be expressed as follows. Let the domain of possible values 

of a variable X be bounded by range [XL, XU] (where XL < XU), then several bins B1, 

B2, …, Bn, are selected such that width(Bi) = (XU  - XL,) / n, The interval of each bin is 

represented as [BiL, BiU], and hence XL = B1L, B1U < B2L ,…., BnU = XU and hence 

each value xval of X is assigned to a bin Bi, if BiL ≤  xval ≤  BiU. 

 

3.2.2.2 Data Partition 

Sampling is that part of statistical practice concerned with the selection of individual 

observations intended to yield some knowledge about a population of concern, 

especially for the purposes of statistical inference (Cochran, 1963).  A good sample 

must be more or less representative of the population from which it was selected 

(Ehrenberg, 1975). Although there is very little chance that the sample and 

population are identical, both of them are expected to be close. The sampling 

distribution provides a way of measuring the closeness between sample and 

population. It plays a crucial role in the process because an approximate measure will 

enable us to make a statistical inference.  Here, three types of sampling approaches 

are compared (Table 3.2).  
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Table 3.2: Sampling Types reproduced from (Keller & Warrack, 2003) 

Sampling Types Sampling Plan 

Simple Random: 

 

A sample is selected in such a way that every possible sample with the 

same number of observations is equally likely to be chosen. 

Stratified Random  

Sampling 

A sample is selected by separating the population into mutually exclusive 

sets, or strata, and then drawing simple random samples from each 

stratum. 

Cluster Sampling A simple random sample from groups of clusters of elements. 

 

In this thesis, the experimental relational data used is readily available for data 

mining evaluation purposes (Frank & Asuncion, 2010), and a simple random 

sampling type will suffice. The holdout evaluation approach is utilized (Webb, 2007) 

whereby the available dataset is divided into training set and testing set. The former 

is used for association rules generation, statistical analysis, and redundancy and 

contradictive assessment methods; and then the latter is used to verify the accuracy 

and coverage rates of the discovered rules on “unseen data”. 

 

3.3 General Concepts and Definitions of Semi-structured Data 

While relational database systems have been utilized and highly recognized in 

relational data domains, various kinds of new data structures have emerged. The new 

data structures such as spatial data, hypertext and multimedia data, time related data, 

scientific data and World Wide Web data require advanced and efficient methods for 

storing, handling and manipulating such data. Semi-structured data representation 

offers an easy way to express relationships in these new data structures. Structure 

comparison of semi-structured data objects can often reveal valuable information 

(Tan, Hadzic, Dillon, & Chang, 2008). The general definitions of relational, semi-

structured and unstructured data have been discussed in Chapter 1. Table 3.3 

summarizes the differences between relational, semi-structured and unstructured data  
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Table 3.3: Relational, Semi-structured and Unstructured Data 

Type of Data Field Name Field Value 

Relational The Field Name is defined • Format is totally defined and 

prescribed 

• Simple data type 

Semi-

structured 

The Field Name is 

recognized as Tag Name, 

and the Tag Name is 

defined 

• Field value recognized as Tag Value 

• May be in free format text, prescribed 

or un-prescribed format 

• In many cases the field value is un-

prescribed 

Unstructured No Tag Name is defined • No Tag Value is defined 

   

Semi-structured data as defined by (Suciu, 1998) is data that has no absolute schema 

or class fixed in advance, is implicit and irregular, nested and heterogeneous. 

Moreover, (Zhang, Ling, Bruckner, Tjoa, & Liu, 2004) define semi-structured data as 

a heterogeneous collection of ill-structured data that have no rigid structures. The 

following definition is taken from (Suciu, 1998): Semi-structured data is represented 

by a collection of objects. Each object can be atomic or complex. The value of an 

atomic object may consist of several types such as integer, string, image, sound, etc. 

The value of a complex object is a set of (attribute, object) pairs.  

 

In this thesis, the scope with respect to semi-structured data is limited to XML 

documents and tree-structured data in general, rather than including more complex 

data types such as images and graphs. Hence, the respective thesis study is applicable 

to any semi-structured data where the objects are organized in a hierarchical way. 

The information within such data can be effectively represented as a rooted, ordered 

and labelled tree structure (Hadzic, Tan, & Dillon, 2011). Table 3.4 summarizes the 

analogy between the semi-structured data in general and XML as one of its specific 

types, as was illustrated in (Suciu, 1998). 
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Table 3.4: Analogy between Semi-structured Data Model and XML reproduced from 

(Suciu, 1998) 

Semi-Structured Data Model  XML 

Attribute Tag 

Object Element 

Atomic values: string, int, float, video Character data, strings  

 

In the next section, an XML document is utilized as an example to indicate how the 

information from XML documents can be modelled as a tree. The definitions of 

general tree concepts and the frequent subtree mining problem are provided in 

Section 3.5. 

 

3.3.1 Modelling XML Documents 

XML is a popular approach used to represent semi-structured data. Originally, XML 

“Extensible Mark-up Language” was a W3C standard for data exchange in the web. 

In this section, XML concepts and definitions in relation to mining association rules 

are discussed. Figure 3.1 shows an example of an XML fragment from the SIGMOD 

Record database. 

 

<?xml version='1.0' encoding='ISO-8859-1' ?> 
<SigmodRecord> 
   <volume>15</volume> 
   <number>2</number> 
            <article  Code="152006"> 
                 <title>Abstraction in recovery management</title> 
                 <authors> 
                    <author AuthorPosition="01">J Eliot B Moss</author> 
                    <author AuthorPosition="03">Marc H Graham</author> 
                    <author AuthorPosition="02">Nancy D Griffeth</author> 
                 </authors> 
             </article> 
             <article Code="152037"> 
                  <title>A formal view integration method</title> 
                  <authors> 
                    <author AuthorPosition="02">Bernhard Convent</author> 
                    <author AuthorPosition="01">Joachim Biskup</author> 
                  </authors> 
             </article> 
</SigmodRecord> 

Figure 3.1: Example of XML fragment 
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The following sections demonstrate how XML data can be viewed as a tree structure. 

This allows one to approach XML data from the perspective of the tree-structured 

format. 

 

3.3.1.1 XML Nodes 

(Feng, Dillon, Weigand, & Chang, 2003) have differentiated XML nodes into simple 

and complex nodes. Nodes that have no edges emanating from them are considered 

as simple or basic nodes. In a tree structure format, this type of node is called a ‘leaf 

node’. Complex nodes can be identified as internal nodes. There are two important 

relationships that can be constructed from the complex nodes, namely parent-child 

and ancestor-descendant. This relationship is discussed in detail in Section 3.5.1.  

 

From Figure 3.1, representatives of simple nodes are <volume>, <number>, <title>, 

and <author>. These do not have any children and/or descendants. The complex node 

example is <SigmodRecord>, <article> and <authors>.  

 

3.3.1.2 Element-attribute Relationships 

There is a significant value for relationships between element-attribute in XML 

(Hadzic et al., 2011). As the element-attribute relationships are represented as a tree 

structure, these can be depicted as a node with multi-labels and the level of 

relationship among the element-attributes are of equal value and are equally 

important.  

 

3.3.1.3 Element-element Relationships 

In constructing the hierarchical relationships using a tree structure, one needs to 

know the relationship between elements in the XML. Generally, parent-child 

relationships and ancestor-descendant relationships are two types of relationship that 

exist between two elements. A parent-child relationship is one where there are two 

elements connected by one edge. Conversely, two elements that are connected by 

more than one edge are defined as having an ancestor-descendant relationship. In 

defining both types of relationship, these two elements need to be from different 
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levels. For example, from Figure 3.1, the relationship between elements <authors> 

and <author> is that of parent-child, while the relationship between elements 

<article> and <author> is that of ancestor-descendant. If two elements are on the 

same level and belong to the same parent, the relationship between them is a sibling 

relationship (e.g. <volume> and <number> in Figure 3.1). Since there is no edge 

connecting sibling nodes, it is more a virtual relationship. An example of both 

element-element and element-attributes relationships is shown in Figure 3.2 

 

 

Figure 3.2: Illustration of element-element (article-title) and element-attribute (article-code) 

relationships 

 

3.3.1.4 Tree-structured Items 

XML is constructed based on tree-structured items. One can differentiate XML data 

from relational data by the existence of atomic items and a one-to-one relationship 

between items in itemsets (Agrawal & Srikant, 1994; Han & Kamber, 2001). 

Conversely, XML data contains more complicated hierarchical relationships than do 

relational data between tree-structured items. Examples of tree-structured items from 

Figure 3.1 are shown below in Figure 3.3. 

 

 
                                  (a)                                                                (b) 

Figure 3.3: Illustration of tree-structured items with size 4 (a) and with sizes 1 (b) 
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3.3.2 Parallelism between XML and Tree Structure  

XML data can be represented as a tree-like structure, as a tree is an acyclic connected 

graph. The parallelism between XML and tree structure as defined by (Hadzic et al., 

2011) was reproduced and utilized in this thesis. The definition of a rooted tree and 

how it parallels XML data is described first. A rooted tree is a tree in which one of 

the vertices is distinguished from others, and is called the root. The XML data is a 

rooted and well-formed tree as defined by (Feng et al., 2003). In the case of XML 

data, ‘node’ refers to a tag or element. If there is an ordering imposed on the child 

nodes of each node, then it can be considered as a rooted ordered tree. Hence, if there 

are k nodes as children of say node A, a node at the left-most position would be at 

position 0, and the nodes at its right will have an incrementing position numbering up 

to the (k-1)th child. Conversely, a rooted unordered tree has no such ordering imposed 

on children nodes. A labelled tree is one in which each of its nodes is associated with 

a label. Two or more nodes may have the same label.  

 

Based on the aforementioned characteristics, an XML document has a hierarchical 

document structure comprised of certain elements. The XML may contain further 

embedded elements to which a number of attributes can be attached. Moreover, 

elements that form a sibling relationship may have a certain ordering imposed on 

them. Each element of an XML document has a name and value. In certain 

applications, if only the XML structure is to be considered, then only the element 

names need to be utilized (Hadzic et al., 2011).  

 

Hence, it has been demonstrated that there are strong parallelisms between XML data 

and the tree structure. The XML data can be modelled through the abovementioned 

constructs and definitions. Thus, from this point forward, this thesis will concentrate 

on discussing the tree structure. The XML is assumed to be an instance of tree 

structure, so it can be assumed that the techniques developed for the tree structure 

can work similarly for XML.  

 

3.4 Association Rule Mining  

Association rule mining in its most fundamental structure is used to discover 

interesting relationships among items in a given dataset (Han & Kamber, 2001). 
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There are two major processes in association rule mining as defined by (Agrawal, 

Imieliski, & Swami, 1993). The first step is to find all frequent itemsets. The 

occurrences of these itemsets need to meet at least certain pre-determined thresholds. 

Next, a frequent rule is considered interesting and strong if it satisfies certain criteria 

such as the support and confidence thresholds. The first task is a pre-requisite for the 

second and is the more complex task. The general concept of and terms used in 

association rule mining will be described next.  

 

3.4.1 Frequent Itemset Mining from Relational Data 

Let D denote a database of transactions, where each transaction has unique identifier 

(tid) and contains a set of items. Let { }||21 ,...,, DiiiI =  the set of distinct items in D . The 

set of all tids is denoted { }niiiT ,...,, 21= . A set IX ⊆ is called an itemset. An itemset 

with k-items is called a k-itemset. Let ( ) TXt ⊆ , denote the set consisting of all the 

transaction tids which contain X as a subset (referred to as tidset  of X in (Gouda & 

Zaki, 2001)). The support of an itemset X, denoted as ( )Xσ , is the number of 

transactions in which that itemset occurs as a subset. Thus ( ) ( )XtX =σ . The frequent 

itemset mining task can then be defined as: given a database of transactions D, and 

user specified minimum support thresholdσ , find all itemsets X from D where 

σσ ≥)(X .   

 

Note that there are two ways of expressing the support ratio σ : either as an absolute 

value or a percentage. The absolute value reflects the exact number of transactions 

that need to contain an itemset X (as reflected in the definition above), while the 

percentage value is in respect to the percentage of total number of transactions that 

must contain X. Frequent itemset mining the most essential and crucial step in 

mining association rules, and will determine the overall performance of association 

rules mining (Kantardzic, 2002).  

 

3.4.2 Rule Generation 

The second phase in discovering association rules is straightforward. The confidence 

measure is used to determine the strength of the implication of a rule of form yx → . 
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It is based on the conditional probability of a transaction containing a part of the 

frequent itemset identified as the consequent of the rule (y), if the transaction 

contains the part of the itemset identified as antecedent of the rule )(x , and is 

calculated as )( yxconfidence →  = )(/)( xyx σσ → . 
 

The association rule generation definition is extracted from (Han & Kamber, 2001). 

Given the minimum support thresholdσ , the minimum confidence thresholdτ , and 

the set of frequent itemsets },...,,{ ||21 LXXXL =  discovered where 

σσ ≥)( iX |}|,...,1{ Li =∀ , association rules can be generated as follows: 

• For each frequent itemset iX ∈ L , generate all non-empty subsets of iX . 

• For every non-empty subset s of iX , output the rule ( )"" sls −→  if  

( )
( ) ≥
scount
lcount

sup_
sup_ min_conf, where min_conf is the minimum confidence 

threshold. 

 

The rule with low support and high confidence is often considered as an interesting 

rule. In addition to confidence, numerous methods exist for measuring the 

interestingness of rules as was discussed in Chapter 2.  

 

An early solution to this two-phase problem has been proposed by (Agrawal et al., 

1993), namely the Apriori algorithm. The Apriori algorithm has been favoured for 

frequent itemset generation as it offers a good performance on sparse data.  

 

However, since a large number of rules are returned from this type of rule generation 

approach, an additional rules pruning scheme might be needed. The large volume of 

rules may nevertheless impose rule complexity problems. The complexity of rules is 

defined as:   

 

Definition 1: For a transaction that contains n-items, the space complexity is usually 

of the order 2n.  
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These complexity issues have motivated researchers to focus on discovering closed 

and maximal frequent itemsets, as they are much smaller in size and the complete set 

of frequent itemsets can still be obtained. 

 

3.4.3 Maximal and Closed Frequent Itemsets 

A frequent itemset is called maximal if it is not a subset of any other frequent 

itemset, while a frequent itemset is called closed if it has no proper superset with the 

same support. The mining of maximal itemsets (Bayardo, 1998; Burdick, Calimlim, 

Flannick, Gehrke, & Yiu, 2005; Gouda & Zaki, 2001) and closed itemsets (Pasquier, 

Bastide, Taouil, & Lakhal, 1999; Pei, Han, & Mao, 2000; Zaki & Hsiao, 2002) has 

been proposed and implemented to reduce the complexity of the rule generation task.  

This will result mainly in a reduction of the mining computational cost without 

incurring loss of information, as all frequent itemsets can be generated from a set of 

maximal or closed patterns. In addition, for closed patterns, the exact support 

information for each frequent itemset can be worked out. Both the maximal itemset 

mining and the closed itemset mining are preferred frameworks for generating 

association rules from hard and dense datasets.  

 

The majority of the works mentioned earlier tend to focus more on the structural and 

analytical comparative study of the algorithms performance in generating the rules as 

discussed in (Yahia, Hamrouni, & Nguifo, 2006). Even the closed and maximal 

itemsets are known to reduce the rule set size but the question still remains whether 

they thereby lose the coverage rate and have good generalization power. The use of 

closed itemsets for prediction and discrimination as described in Chapter 2 was 

investigated in (Garriga, Kralj, & Lavrač, 2008), but no comparison was done with 

maximal or frequent itemsets, and the incorporation of statistical analysis, 

redundancy and contradictive assessment methods in closed itemsets was not studied. 

Thus, an evaluation of the usefulness of maximal/closed itemsets for the 

classification task, and their generalization power and coverage rate are essential in 

order to produce high quality rules. Formal definitions of frequent itemsets, maximal 

itemset and closed itemset are provided in Table 3.5. 
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Table 3.5: General comparison between Frequent Itemset, Maximal Itemset and Closed 

Itemset characteristics 

Frequent Itemset  Maximal Itemset Closed Itemset 

An itemset X is frequent if its 

support is more than or equal 

to some threshold minimum 

support (min_sup) value, i.e  

if ( ) >Xσ min_sup 

If X is frequent, an 

itemset X is a  Maximal 

itemset if it is not a subset 

of any other frequent 

itemset. 

If X is frequent, an itemset X is a 

Closed itemset if there exists no 

itemset X’ such that X’ is a proper 

superset of X, and every transaction 

containing X also contains X’.  

 

3.5 Frequent Subtree Mining from Tree-structured Data 

Due to the hierarchical document structure, XML documents are frequently modelled 

using a rooted ordered labelled tree. (Feng et al., 2003) proposed an XML-enabled 

association rule framework. It extends the notion of associated items to XML 

fragments to present associations among trees rather than simple-structured items of 

atomic values. Unlike classical association rules where associated items are usually 

denoted using simple structured data from the domains of basic data types, the items 

in XML-enabled association rules can have a hierarchical tree structure. The 

adaptation of association mining to the XML document as shown in (Feng et al., 

2003) results in a more flexible and powerful representation of both simple and 

complex structured association relationships inherent in XML documents. 

 

The main problem in association mining from semi-structured documents such as 

XML, is that of frequent pattern discovery, where a pattern corresponds to a subtree 

in this case, and a transaction to a fragment of the database tree whereby an 

independent instance is described. This problem is more complex than in traditional 

frequent pattern mining from relational data because structural relationships need to 

be taken into account. It is known as the frequent subtree mining problem, and can 

be generally stated as (Hadzic et al., 2011): Given a tree database T and minimum 

support threshold (σ), find all subtrees that occur at least σ times in T. Furthermore, 

depending on the domain of interest and the task that is to be accomplished in a 

particular application, different types of subtrees can be mined using different 

support definitions (Hadzic, Dillon, & Chang, 2008).   
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3.5.1 General Tree Concepts 

To lay the necessary ground for describing the general aspects of the frequent subtree 

mining problem, definitions of related tree concepts are provided in this section. 

These definitions were derived from (Tan et al., 2008). A tree is described as an 

acyclic connected graph with one node defined as the root. It consists of a set of 

nodes (or vertices) that are connected by edges. There are two nodes associated with 

each edge. A path is defined as a finite sequence of edges and in a tree there is a 

single unique path between any two nodes. The length of a path p is the number of 

edges in p. A rooted tree has its top-most node defined as the root that has no 

incoming edges and for every other node, there is path between the root and that 

node. A node u is said to be a parent of node v, if there is a directed edge from u to v. 

Node v is then recognised as a child of node u. Nodes with no children are referred to 

as leaf nodes; otherwise, they are called internal nodes. The sibling nodes are those 

nodes with the same parent. The fan-out/degree of a node is the number of children 

of that node. The ancestors of a node u are the nodes on the path between the root 

and u, excluding u itself. The descendants of a node v can then be defined as those 

nodes that have v as their ancestor. Nodes with a common ancestor that is not a 

parent are referred to as cousins. A tree is ordered if the children of each internal 

node are ordered from left to right. In an ordered tree, the last child of an internal 

node is referred to as the rightmost child. The rightmost path of T is the path 

connecting the rightmost leaf node with the root node. The level/depth of a node is 

the length of the path from root to that node. The Height of a tree is the greatest 

depth of its nodes.  

 

3.5.2 Subtree Types 

Induced and Embedded are two types of subtrees that have consistently been used in 

frequent subtree mining. An induced subtree preserves the parent-child relationship 

on each node of the original tree. Additionally, the embedded subtree preserves both 

the ancestor–descendant relationship over several levels and the parent-child 

relationship. In an ordered tree the children of every internal node are ordered from 

left to right and the ordering descriptor is essential. Examples of induced and 

embedded subtree are given in Figure 3.4. 
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Figure 3.4: Example of induced subtree (T1, T2, T4, T6) and embedded subtrees (T3, T5) of 

tree T 

 

The formal definitions of induced and embedded subtrees are as follows (Tan, 

Dillon, Hadzic, Chang, & Feng, 2006):  

 

Induced Subtree.  A tree T’ = (v’,V’,L’,E’) is an ordered induced subtree of tree T 

= (v,,V,L,E) iff (1) V’ ⊆ V, (2) L’ ⊆ L, and L’(v)=L(v), (3) E’ ⊆ E, (4) VvVv ∈∀∈∀ ,''   

and v’ is not the root node parent(v’) = parent(v), (5) the left to right ordering of 

sibling in T’ should be preserved. Induced tree T’ of T, can be obtained by repeatedly 

removing leaf nodes or the root node if its removal does not create a forest in T.  

 

Embedded Subtree. A tree T’ = (v’,V’,L’,E’) is an ordered embedded subtree of a 

tree T if and only if it satisfies property 1,2,3,5 of induced subtree and it generalizes 

property (4) such that (4) VvVv ∈∀∈∀ ,''   and v’ is not the root node ancestor(v’)= 

ancestor(v). 

 

3.5.3 Support Definition 

Generally, two support definitions have been used to determine the support of a 

subtree t, usually denoted as σ(t) for frequent subtree mining framework.  These are 

the transaction-based support and the occurrence match support (also referred to as 

weighted support) (Chi, Muntz, Nijssen, & Kok, 2005; Tan, Dillon, Hadzic, Chang, 

& Feng, 2005; Zaki, 2005).  The term transaction was originally introduced in the 

data management field in reference to an atomic interaction with a database 

management system. Conversely, in the data mining field, the term ‘transaction’ has 
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adopted a different meaning. To clarify its use in relation to tree mining, the 

following definition is suitable: A transaction is a set of one or more items obtained 

from a finite item domain, and hence a dataset is a collection of transactions 

(Bayardo, Agrawal, & Gunopulos, 2000). Hence, in terms of a tree database, a 

transaction would correspond to a fragment of the database tree whereby an 

independent instance is described.  

 

In this thesis, the application of transaction-based support is utilized. The definition 

of the transaction-based support (TS) is as follows: the transactional support  (σ) of 

a subtree t, denoted as σtr(t) in a tree database Tdb is equal to the number of 

transactions in Tdb that contain at least one occurrence of subtree t.  

 

Definition 2: Let the notation tp k, denote the support of subtree t by transaction k, 

then for TS, tp k = 1 whenever k contains at least one occurrence of t, and 0 

otherwise. Suppose that there are N transactions k1 to kN of tree in Tdb, the σtr(t) in 

Tdb is defined as: 

∑
=

N

i
ikt

1

p
 

 
The support definition in frequent itemset mining from relational data can be 

determined by the existence of an item within a transaction. Thus, in engaging to 

frequent subtree mining from traditional frequent itemset mining, the application of 

transaction support offers a better way of defining the support thresholds. 

Additionally, as a transition from relational data to XML data, mutual properties, 

such an instance in relational data can be described as one transaction in XML data. 

This has made transaction-based support the focus of many tree mining works and it 

is simpler than the occurrence-match support (Tan et al., 2008).   

 

The occurrence-based support (OC) takes into account the repetition of items in a 

transaction and counts the subtree occurrences in the database as a whole. Hence, for 

OC, the support (σ) of a subtree t, denoted as σoc(t) in a tree database Tdb is equal 

to the number of occurrences of t in all transactions in Tdb. 
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Definition 3: Let the function g(t,k) denote the total number of occurrences of 

subtree t  in transaction k. Suppose that there are N transactions k1 to kN  of tree in 

Tdb, σoc(t) in Tdb can be defined as: 

 
 

Due to the nature of the domain being considered and the data used, the focus in this 

thesis is mainly on validating rules obtained by mining ordered induced/embedded 

subtrees under a transaction-based support definition. 

 

3.6 Problems to be addressed  

The problem focused upon and addressed in this thesis is the evaluation of 

association rules generated from both relational and tree-structured data. This 

research is intended to investigate how association rules mining, statistical analysis, 

and redundancy and contradictive assessment methods can be utilized, and to 

develop a proper sequence of use of these techniques to arrive at a more reliable and 

interesting set of association rules based on: 

 

(a) Frequent itemset mining, specifically the Apriori, Maximal and Closed 

approaches discovered from the relational data (details will be given in Chapters 5 

and 6); and 

 

(b) Frequent subtree mining and frequent subtrees generated from structure-

preserving flat format for tree-structured data (details will be given in Chapter 7). 

 

Discovering useful and interesting patterns is one of the main tasks of data mining 

applications. Ideally, a pattern is considered interesting and useful if it is 

comprehensible, valid on test data and new unseen data, potentially useful, 

actionable and novel (Han & Kamber, 2001). However, (Han & Kamber, 2001) 

claim that, while patterns discovered from the data mining approach are considered 

strong, not all of them are interesting. (Lenca, Meyer, Vaillant, & Lallich, 2008) 

assert that there are mainly two problems in dealing with pattern selection, namely 

the quantity and the quality of the rules. The quantity of the rules refers to the 

∑
=

N

i

 
1

g(t,ki)
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problem of generating a large volume of output. The quality issues are concerned 

with the rules potentially reflecting real significant associations in the domain under 

investigation. Some of the rules discovered are due to pure coincidence resulting 

from certain randomness in the particular dataset being analyzed. The rules can be 

either a true discovery or merely an artefact of random association.  

 

Our work in the area of rules interestingness measures is motivated by the objective 

interestingness measures which are based on probability theory, statistics and 

information theory. Various objective interestingness criteria have been used to limit 

the nature of the rules extracted. Generally speaking, interesting rules can be 

interpreted as those rules that have a sound statistical basis and are neither redundant 

nor contradictive. Such an approach requires statistical analysis, and redundancy and 

contradictive assessment methods to verify and evaluate the usefulness and quality of 

the rules discovered. This aim is to filter out the redundant, misleading, random and 

coincidentally occurring rules, while at the same time sustaining the accuracy of the 

rule set and retaining valuable rules.  

 

Many interestingness- and constraint-based measures have been successfully utilized 

in previous works. However, there is still a need to understand the roles of these 

parameters and the way in which they should be utilized. Thus, in this thesis, the 

problem of developing systematic ways to verify the usefulness of rules obtained 

from association rule mining will be addressed (Shaharanee, Hadzic, & Dillon, 2009; 

Shaharanee, Hadzic, & Dillon, 2011). These problems include, understanding the 

role which different parameters play, the way in which different statistical measures 

can be utilized and the sequence of their use. A unified framework, that combines 

several techniques to assess the quality and remove any redundant and unnecessary 

rules, is proposed. This framework will create a means whereby interestingness- and 

constraint-based parameters can be utilized and sequenced.  

 

The problems and the implication of different confidence values and the time at 

which the constraint is applied will also be addressed. In addition, while confidence 

measures are often used to reduce the rule set size to only those reflecting highly 

confident association, no study has been performed on the implication of using 

different confidence values and the differences of applying this constraint at various 
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stages of the rule verification process. Thus, this thesis also focuses on the problems 

of evaluating the impact on classification accuracy, generalization power, and rule 

coverage rate, when rules are generated using: frequent, closed and maximal itemset 

mining algorithms for relational data; frequent subtree mining and frequent subtrees 

generated from flat data table based on database structure model (DSM)(Hadzic, 

2011) approach from tree-structured data; and, when different confidence measures 

are used and applied at different stages of the verification process.  

  

3.6.1 Classification and Prediction Problems for Evaluating the Frequent 

Patterns 

The number of patterns/association rules generated through frequent itemsets mining 

and frequent subtree mining can be quite large, while usefulness of each rule for the 

classification/prediction task may be limited. As a large volume of rules will be 

removed based on the statistical analysis, and redundancy and contradictive 

assessment method, another crucial issue arises: whether the quality of the rules 

obtained from the proposed framework has been compromised. Here, the quality of 

rules is demonstrated based on their accuracy and coverage values. Accuracy rate 

(AR) is typically defined as the number of correctly classified instances, while the 

number of incorrectly classified instances is referred to as a misclassification rate 

(MR). Additionally, coverage rate (CR) refers to the percentage of captured/covered 

instances from the database. Thus, our aim is to evaluate these extracted rules in 

terms of correctly predicting the class value from the training datasets (known as 

classification accuracy), and correctly predicting the class value from the 

testing/unseen dataset (known as predictive accuracy). They are also evaluated for 

their coverage rate on both training and testing datasets.  

 

In our framework, the rule set is reduced by applying the features subset selection, 

statistical analysis, redundancy and contradictive assessment method. Simple rules 

are preferred as they are easier to comprehend and are expected to perform better on 

unseen data since they are more general and increased the generalization ability (i.e., 

typically rule set that contains redundant rules is more specialized). The trade-off is 

measured between the accuracy rate (AR) and coverage rate (CR) of the rule sets. 
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When reducing the rule set, both the AR and CR should be maximized. One can 

simplify the rules by reducing the overall rule set size and the number of attribute 

constraints in the rule. Decreasing the number of rules usually leads to the increase in 

AR of that rule but at the cost of a decrease in CR of that rule. Conversely, if the 

number of rules is too large, they may lack the specificity to distinguish some 

domain characteristics, and hence the AR would decrease. Generally speaking, an 

optimized rule set should be either more accurate than the original rule set and/or the 

balance between the trade-off factors should be much greater. For example, if there 

are many rules with small CR but very high AR, a rule set with a significantly smaller 

number of rules may be preferred even at the cost of a decreased AR. 

 

In this thesis, the rule accuracy and coverage will be measured at every stage and for 

each sequence of filtering involved. This measure is crucial as it can determine the 

quality of the discovered rules. Additionally, this analysis also exhibits the 

balancing/optimization issues with regards to the trade-off between accuracy rate and 

coverage rate. Consequently, the task of choosing optimal stopping criteria based on 

a minimum confidence threshold will be discussed and presented to ensure that an 

acceptable level of accuracy and coverage rates can be achieved. The detailed 

analysis and explanation of the rules quality and optimization issues will be outlined 

in Chapters 5, 6 and 7. 

 

In reference to the problems to be addressed, the frequent patterns from both 

relational and tree-structured data are considered in the evaluation process; hence, 

the following are the definitions for both types of frequent patterns evaluated in this 

thesis. 

 

Relational Data: Let us denote the set of frequent k–itemsets as Fk , and the set of all 

frequent itemsets as FI . A frequent itemset is called maximal if it is not a subset of 

any other frequent itemset from FI. The set of all maximal itemsets is denoted as 

MFI. A frequent itemset is called closed if it has no proper superset in FI with the 

same support. The set of all frequent closed itemsets is denoted as CFI.  

 

In terms of the relational data, the focus is on evaluating the rules discovered using 

the Apriori, Maximal and Closed approaches and that satisfy the minimum support 
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thresholds. The set of the frequent patterns generated by each aforementioned 

approach is denoted as FI , MFI  and CFI . The datasets with predefined class label 

are utilized, where one of the attributes from the dataset is considered as a class to be 

predicted.  Thus, only the patterns/rules from FI , MFI  and CFI  that contain this 

class attribute are considered.  

 

Let the frequent itemsets from Apriori, Maximal and Closed that have a class label 

(value) be denoted as FIC , MFIC  andCFIC , respectively. Let the accuracy of these 

be denoted as ac(FIC), ac(MFIC) and ac(CFIC), and coverage rate as cr(FIC), 

cr(MFIC) and cr(CFIC). The general aims of removing low quality (e.g. not 

interesting, redundant) rules with respect to the accuracy and coverage rate of both 

training and testing dataset can be defined as follows:  

 

Aim 1. Given FIC  with accuracy ac(FIC), obtain 
~

FIC , such that FICFIC ⊃
~

, 

))(()(
~

ε−≥ FICacFICac and  ))(()(
~

ε−≥ FICcrFICcr  

 

Aim 2. Given MFIC  with accuracy ac(MFIC), respectively, obtain 
~

MFIC  such that 

MFICMFIC ⊃
~

, ac(
~

MFIC ) ≥ (ac( MFIC )-ε ) and cr(
~

MFIC ) ≥ cr( MFIC )-ε ) 

 

Aim 3. Given CFIC  with accuracy ac(CFIC), respectively, obtain 
~

CFIC  such that 

CFICCFIC ⊃
~

, ac(
~

CFIC ) ≥ (ac(CFIC )-ε )  and cr(
~

CFIC ) ≥ (cr(CFIC )-ε )  

 

Note that in the above definitionε  is an arbitrary user defined small value and ε  is 

used to reflect the noise that is often present in real-world data. 

 

Tree-structured Data: Let the set of frequent subtree patterns extracted from tree-

structured data be denoted as SF. Please note that for the first problem setting the 

patterns from SF have not been assigned a particular class label to be used for a 

prediction/classification task, and as such, simply reflect the frequently occurring 

associations that may not necessarily have a sound statistical basis.  
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Hence, in the first problem setting for deriving frequent subtrees from tree-structured 

data, the aim is to reduce the SF by filtering out the patterns that are not statistically 

significant with respect to the statistical measures used.  

 

In the second problem setting, the discovered frequent subtrees are defined as a 

subtree which consists of a certain preferred node. One of the attributes of the data is 

considered as a class to be predicted for classification task purposes. Hence, only 

those patterns from SF that contain this class attribute are considered, as they will 

represent the set of values that frequently occur together when a particular class 

value is present.  

 

For tree-structured data, the focus is on evaluating frequent subtrees, and rules based 

on embedded and induced subtrees that satisfy minimum support and confidence 

thresholds. Let us denote the subtree patterns from the frequent subtree set SF that 

has a class label (value), as SFC, their accuracy as ac(SFC) and coverage rate as 

cr(SFC). The aim of removing low quality rules (based on frequent subtree patterns) 

with respect to the accuracy and coverage rate of both training and testing dataset can 

be defined as follows: 

 

Aim 4. Given SFC with accuracy ac(SFC), obtain SFCSFC ⊃' , such that 

ac(
~

'SFC ) ≥ (ac( SFC )-ε )  and cr( 'SFC ) ≥ (cr( SFC )-ε ) (ε  is an arbitrary user 

defined small value used to reflect the noise that is often present in real-world data). 

 

In this thesis, the aim is to investigate the use of statistical analysis, and the 

redundancy and contradictive assessment methods for the above problems, and to 

determine how the existing interestingness measures and parameters can be utilized 

effectively and in the correct sequence. 

 

3.6.2 Feature Subset Selection to Determine Relevant Attributes 

As the focus of this thesis is on evaluating the frequent patterns, one important 

property of the frequent pattern-based classifier is that it generates frequent patterns 

without considering their predictive power (Cheng, Yan, Han, & Hsu, 2007). This 

property will result in a huge feature space for possible frequent patterns.  
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Feature subset selection is one of the steps performed in the pre-processing stage of 

the data mining process to remove any irrelevant attributes. If the whole dataset were 

used as input, this would produce a large number of rules, many of which are created 

or made unnecessarily complex by the presence of irrelevant and/or redundant 

attributes. Determining the relevant and irrelevant attributes poses a great challenge 

to many data mining algorithms (Roiger & Geatz, 2003). If the irrelevant attributes 

are left in the dataset, they can interfere with the data mining process and the quality 

of the discovered patterns may deteriorate, creating problems such as overfitting 

(Cheng et al., 2007). Furthermore, if a large volume of attributes is present in a 

dataset, this will slow down the data mining process. To overcome these problems, it 

is important to find the necessary and sufficient subset of features so that the 

application of association rules mining will be optimal and no irrelevant features will 

be present within the discovered rules. This would prevent the generation of rules 

that include any irrelevant and/or redundant attributes.  

 

The feature subset selection problem to be addressed in this thesis can be more 

formally described as:  

Given a relational database ,D  { }ATatatatAT ,...,, 21=  the set of input attributes in 

D , and { }||21 ,...,, YyyyY =  the class attribute with a set of class labels in D . Let an 

association rule mining algorithm be denoted as ARAL, the set of association rules for 

predicting the value of a class attribute Y from D extracted using ARAL as AR(D), and 

accuracy of AR(D) as ac(AR(D)).  The problem of feature subset selection is to 

reduce D into D’ such that AT’ ⊆ AT and ac(AR(D’) ≥ ac(AR(D’) – ε, where ε is an 

arbitrary user defined small value to reflect noise present in real-world data. In other 

words, the task is to find the optimal set of attributes, ATOPT ⊆ AT, such that the 

accuracy of the association rule set using ARAL is maximized. 

 

3.7 Chosen Methodologies 

The purpose of this section is to give a brief overview of some common 

methodologies for approaching the problems discussed in this chapter, and to 

indicate the direction taken in the work performed in this thesis. More details about 
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the characteristics of the particular methodology adopted in this thesis will be 

provided in the proposed framework overview in Chapter 4. 

 

3.7.1 Feature Subset Selection 

Feature subset selection is an important pre-processing step in the data mining 

process. The feature subset selection task is utilized in this thesis purposely to 

determine irrelevant attributes in predicting the class variable. The removal of these 

attributes will result in a much smaller dataset, thereby reducing the number of rules 

that need to be generated from the association rule mining algorithm, while closely 

maintaining the integrity of the original data (Han, Kamber, & Pei, 2012). 

Additionally, rules described with fewer attributes are also expected to perform 

better when classifying future cases; hence, they will have better generalization 

power than do the more specific rules that take many attributes into account. Besides, 

the patterns extracted will also be simpler and easier to analyse and understand. 

(Zhou & Dillon, 1991) initiated a statistical–heuristic feature selection recognized as 

Symmetrical Tau. This measure was derived from the Goodman and Kruskal 

Asymmetrical Tau measure of association, for cross-classification task in the 

statistical area. The Symmetrical Tau measure has proven to be useful for feature 

subset selection problems in decision tree learning.  

 

The Symmetrical Tau statistical-heuristic feature relevance measure will be utilized 

in this thesis to provide the relative usefulness of attributes in predicting the value of 

the class attribute, and discard any of the attributes whose relevance value is fairly 

low. This prevents the generation of rules which then would need to be discarded 

anyway once it was found that they contain some irrelevant attributes. The common 

properties and advantages of using the Symmetrical Tau measure for feature subset 

selection problems will be discussed in detail in the next chapter. 

 

3.7.2 Frequent Pattern Mining 

Frequent pattern mining algorithms are utilized here to mine the association rules 

from both relational and tree-structured data. Within relational data, three 

algorithms are employed to systematically generate candidate rules, namely, the 
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Apriori, Maximal and Closed. Each of the algorithms is capable of generating 

frequent rules according to its detailed characteristics as mentioned in Section 3.4. 

While for tree-structured data, this involves frequent subtrees, and rules based on 

embedded and induced subtrees as described earlier in Section 3.5. This will offer a 

variation of characteristics of rules to be measured based on their interestingness and 

validity.  

 

3.7.3 Rules Evaluation based on Statistical Analysis, Redundancy and 

Contradictive Assessment Methods 

When a set of rules is generated from both relational and tree-structured data, it 

needs to be verified with proper statistical analysis. Thus, a proper statistical test is 

developed to verify each set of rules respectively. (Agresti, 1996; Hosmer & 

Lemeshow, 1989) establish and summarise statistical methods, such as the chi-

squared test for correlation and measures of association, that have long played a 

prominent role, and they also emphasise the logistic regression modelling techniques.  

 

3.7.3.1 Hypothesis Testing 

Statistical inference is the process of inferring information about a population from a 

sample. Statistical inference can be utilized to obtain an estimate if one is willing to 

accept less than 100% accuracy. Because information about populations can usually 

be described by parameters, the statistical technique used generally deals with 

drawing inferences about population parameters from sample statistics. In reality, 

calculating the parameters for a population is virtually impossible because 

populations tend to be very large. Most parameters are not only unknown but also 

unknowable. Hypothesis testing is a most important tool when applying statistics to 

real-life problems. Most often, decisions are required to be made concerning 

populations on the basis of sample information. Statistical tests are used in arriving at 

these decisions.  

 

There are two types of hypotheses: null hypothesis and alternative hypothesis. The 

testing procedure begins with the assumption that the null hypothesis is true. The 

goal is to determine whether there is enough evidence to infer that the alternative 

hypothesis is true. There are two possible choices: 
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• Conclude that there is enough evidence to support the alternative hypothesis 

• Conclude that there is not enough evidence to support the alternative hypothesis 

and two possible errors: 

• Type I error = α , reject a true null hypothesis 

• Type II error = β , do not reject a false null hypothesis 

(Keller & Warrack, 2003) define testing the hypothesis approaches as: 

Rejection region: If the test statistics fall with that range, the decision is to reject the 

null hypothesis in favour of the alternative hypothesis. 

P-Value: test of probability of observing a test statistic at least as extreme as the one 

computed given that the null hypothesis is true. 

 

3.7.3.2 Correlation Analysis 

A strong association rule is defined as a rule that satisfies the minimum support and 

minimum confidence values. However, the support-confidence framework can be 

misleading in that it may identify a rule BA →  as interesting when, in fact, the 

occurrence of A  does not imply the occurrence of B (Han & Kamber, 2001).  

 

The definition given by (Han & Kamber, 2001) is reproduced in describing the 

problem of ’misleading’ strong association rules.  The occurrence of itemset A  is 

independent of the occurrence of itemset B  if ( ) ( ) ( )BPAPBAP =∪ ; otherwise, 

itemsets A  and B  are dependent and correlated as events. The correlation between 

the occurrence of Aand B  can be measured by computing 

 

 

   

 

If the resulting value in Equation 1 is less than 1, then the occurrence of A  is 

negatively correlated with the occurrence of B . If the resulting value is greater than 

1, then A  and B  are positively correlated, meaning the occurrence of one implies the 

occurrence of the other. If the resulting value is equal to 1, then A  and B  are 

independent and there is no correlation between them. Given the correlation in 

)()(
)(),(

yPxP
yxPyxcorr ∪

=  
(1) 
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Equation 3, the chi-squared statistic can be used to determine whether the correlation 

is statistically significant. 

 

3.7.3.3 Regression Analysis 

Regression methods have become an integral component of any data analysis process 

concerned with describing the relationship between a response variable and / or a 

more explanatory variable. It is often the case that the outcome variable is discrete, 

taking on two or more possible values. The purpose of developing regression models 

is to find the best fitting and most parsimonious and reasonable model to describe the 

relationship between an outcome (dependent/ response/input) variable and set of 

independent (predictor/explanatory/output) variables.  

 

Here, the focus is on the development of the logistic regression model which is a 

regression model used when the dependent variable is dichotomous/binary/binomial 

(binary logistic regression) or has more than two levels (multinomial logistic 

regression) and the independents are of any type. As mentioned earlier, the goal of 

regression modelling is to select the dependent/input variables that produce the ‘best’ 

model within the context of the particular problem. This involves two primary tasks 

as asserted by (Hosmer & Lemeshow, 1989) which are: “1) a basic plan for selecting 

thee variables for the model and 2) set of methods for accessing the adequacy of the 

model both in term of its individual variables and its overall fit”.  

 

The application of logistic regression can be divided into five important tasks which 

are: to predict a categorical dependent variable on the basis of continuous and/or 

categorical independents; to determine the effect size of the independent variables on 

the dependent; to rank the relative importance of independent; to access the 

interaction effects and to understand the impact of covariate control variables.  

 

In the context of this thesis, a logistic regression model is selected based on the most 

parsimonious model that explains the data. This can be achieved by minimizing the 

number of variables, which will result in a more generalized model. A model that 

consists of a large volume of variables will generate a large estimated standard error 

and becomes more dependent on the observed data (Hosmer & Lemeshow, 1989). 
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The development of the logistic regression model and the variable selection will be 

described in detail in Chapters 4 and 5. 

 

3.7.3.3 Redundancy and Contradictive Removal 

Frequent patterns in a data set are often redundant and unrelated (Wei, Yi, & Wang, 

2006). In Chapter 2, it is shown that the weakness of the traditional association rule 

mining framework is that it produces many redundant rules (Zaki, 2000). While 

statistical tests such as correlation and regression analysis are able to discard non 

significant rules, the redundant rules still exist. Redundant rules as defined by 

(Webb, 2007) are those rules that include items in the antecedent that are entailed by 

the other elements of the antecedents. 

 

Thus, in order to prevent the generation of redundant rules, the definition of 

Productive rules (Webb, 2007) is utilized which concern the minimum improvement 

constraints with improvement greater than zero.  The improvement of rule yx →  is 

defined as improvement =→ )( yx confidence (max)(
xz

yx
⊂

−→ confidence ))( yx →  

(Bayardo et al., 2000). 

 

Initial work on discovering contradictive rules such as that of (Padmanabhan & 

Tuzhilin, 1998) utilized the belief system in discovering any rules that conflict with 

user knowledge. This approach utilized the subjective-based measure to reduce the 

number of discovered association rules. Contradictive assessment are utilized in this 

thesis to identify and to remove any two or more rules that have the same pre-

condition (i.e. antecedents) and imply different class values (consequents). The 

discussion on selecting a relevant data source for the data mining process from 

(Zhang & Zhang, 2001) is followed when defining contradictive problems.  

 

The problem of contradictive rules can be defined as follows: Let )(XF = {fX1, fX2, 

…, fX|F(X)|}be a set of class labelled rules from dataset D. Any two or more rules 

from )(XF , )(, XFfXfX kj ∈ , are contradictive rules if xfX j = y→  and 

xfX k = y¬→ , where ( )( )XFkj ,...,1, =   and kj ≠ .  
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3.8 Conclusion 

This chapter has presented essential concepts, definitions and problem definitions 

necessary for understanding the problems that will be approached in this thesis. The 

problem areas can be generally split into: association mining, feature subset 

selection, rules interestingness and validity. For each general area, the specific 

problem that will be addressed in this thesis was defined.  
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CHAPTER 4 OVERVIEW OF THE PROPOSED FRAMEWORK 

4.1 Introduction  

This chapter provides a high level overview of the framework, details of which will 

be provided in the subsequent chapters. Generally, as clarified in Chapter 3, the work 

in this thesis is focused on evaluating association rules generated from both relational 

and tree-structured data. The aims are to investigate how data mining and statistical 

measurement techniques can be utilized in combination and to develop a method 

detailing a proper sequence of use of these techniques. Achieving these aims will 

ensure a more reliable and interesting set of rules. In Section 4.2, the overview of the 

proposed framework to tackle the problem of evaluating association rules from 

relational data is given. The extension of the framework in order to evaluate 

association rules from tree-structured data is discussed in Section 4.3. Finally, a 

summary of the chapter is provided in Section 4.4. 

 

4.2 Conceptual Model and Framework for Relational Data Problems  

With respect to the association rule mining from relational data, the first part of the 

work in this thesis is focused on the problems of evaluating the frequent itemsets, 

which, as previously discussed, is the essential problem caused by the large volume 

of discovered rules and patterns. 

 

Figure 4.1 shows Framework A. Firstly, any necessary pre-processing is applied to 

the selected data, to ensure clean and consistent data. The dataset is then divided into 

two subsets. The first subset is used for the feature subset selection task, frequent 

itemsets generation, statistical analysis, redundancy and contradictive assessment, 

and rules filtering based on a confidence threshold. The second subset is treated as 

“unseen data” and is used for testing the final optimized rule set. This testing dataset 

acts as sample data used to verify the accuracy and coverage rate of the discovered 

rules. The relevance of the input attributes in predicting the class attributes is 

calculated using the Symmetrical Tau (ST) technique (Zhou & Dillon, 1991). The 

rules are then generated using three frequent itemset mining algorithms, as another 

aim is to investigate the difference in utilizing the different patterns for the 

classification task. The discovered rules are then evaluated using statistical analysis. 
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Furthermore, redundancy and contradictive assessment methods are employed to 

discard redundant and contradictive rules.  

 

As previously discussed in Chapter 3, this thesis focuses on establishing a systematic 

way to evaluate association rules, in which the feature subset selection method, 

statistical analysis, redundancy and contradictive assessment methods, and 

confidence-based filtering can be effectively utilized. The thesis also provides a 

framework for defining the sequence of the use of these techniques. Within this 

framework, discarding the attributes using feature subset selection application before 

generating the rules will ensure that only relevant attributes and attributes capable of 

predicting the class variable are preserved in the dataset. Moreover, this will reduce 

the size of the dataset, which consequently reduces the number of rules to be 

accessed. Otherwise, the association rules mining process will end up with too many 

rules which then would need to be post-pruned once it was found that they include 

irrelevant attributes. This task is important as it will remove a number of random 

associations that may be generated based on the irrelevant attributes. By reducing the 

number of rules which arise from random associations, it makes the later statistical 

analysis, redundancy and contradictive assessment methods, and confidence-based 

filtering task more manageable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Framework A for Relational Data for Rules Interestingness Analysis 
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4.2.1 Pre-processing 

Pre-processing is an important task in data mining to ensure only correct, clean and 

consistent data are mustered into the data mining process. Here, the pre-processing is 

applied to each attribute/s in the training dataset in order to obtain clean and 

consistent data. The pre-processing technique includes the removal of missing values 

and discretization of attributes with continuous values. 

 

4.2.1.1 Missing Data and Data Transformation 

Loss of information may occur when data is missing in data mining analysis. A 

missing value may indicate that either the data item exists but is unaccounted for, or 

it may contain no values at all. Data transformation is another important step in data 

pre-processing techniques. A common data transformation technique is to change the 

continuous values into specific ranges or classes, often known as the ‘binning 

methods’. The binning method smoothes a sorted data value by consulting all the 

values around it (Han & Kamber, 2001). A detailed explanation of data 

transformation and missing data handling techniques used in the framework will be 

given in the next chapter. 

 

4.2.1.2 Data Partition 

The partitioning of data into the training dataset and the testing dataset plays an 

important role in evaluating the data mining model. The training dataset is often 

larger than the testing dataset. Data selected for each set are randomly selected, 

giving each instance an equal chance of being included in either the training or the 

testing dataset. The training dataset is used for frequent itemset generation, statistical 

analysis, and redundancy and contradictive assessments; while the testing dataset 

comprises sample data not previously considered during the rule determination stage 

and is used to verify the accuracy and coverage rate of the discovered rules.  

 

4.2.2 Symmetrical Tau for Feature Subset Selection 

Typically, a statistical-heuristic measure can be utilized to determine the relevance of 

input attributes by determining their importance in predicting the class label in the 
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training dataset. Consequently, any irrelevant attributes are removed from the 

dataset.  

 

4.2.2.1 Asymmetrical Tau 

Goodman and Kruskal proposed their measure of association, namely the 

Asymmetrical Tau, for cross-classification tasks in the statistical area (Sestito & 

Dillon, 1994). The Asymmetrical Tau is a measure of the relative usefulness of one 

variable in improving the ability to predict the classifications of members of the 

population with respect to a second variable (Goodman & Kruskal, 1954). 

 

The category of variable B can be predicted from the category variable A by 

assuming B is statistically independent of A or assuming B is a function A. Thus, the 

degree of association is defined as the relative improvement in predicting the B 

category obtained when the A category is known, as opposed to when the A category 

is not known (Sestito & Dillon, 1994). The information contained in a contingency 

table is used. Typically a contingency table classifies a number of samples according 

to two criteria, i.e. it provides a two-way classification. If one criterion has I values 

and the other has J, then an I * J contingency table is created. 

Let: 

• there be I rows and J columns in a contingency table, for two attributes A and 

B, respectively; 

• P(ij) denotes the probability that an individual belongs to both row category I 

and column category j; 

• P (i+) and P (j+) the marginal probability in row category I and column 

category j, respectively. 

 

The Asymmetrical Tau measure for predicting the class of attribute B from attribute 

A is defined as (Zhou & Dillon, 1991): 
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The Asymmetrical Tau measure for predicting the class of attribute A from attribute 

B is defined as (Zhou & Dillon, 1991): 
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However, as proven by (Zhou & Dillon, 1991), this measure is less impressive when 

utilized for feature selection problems for decision trees, as it tends to favor features 

with more values. Hence, they proposed a new approach which combines two 

asymmetrical measures in order to obtain a balanced feature selection criterion. This 

measure will be discussed in the next section.  

 

4.2.2.2 Symmetrical Tau 

The Symmetrical Tau feature selection technique will be utilized in the proposed 

approach to ascertain the relative usefulness of attributes in predicting the value of 

the class attribute, and discard any of the attributes whose relevance value is fairly 

low. This would prevent the generation of rules which then would need to be 

discarded anyway once it was found that they include irrelevant attributes.  

 

In this thesis, Symmetrical Tau (Zhou & Dillon, 1991) is utilized for feature subset 

selection purposes. The Symmetrical Tau (Zhou & Dillon, 1991) is a statistical-

heuristic feature selection criterion. It measures the capability of an attribute to 

predict the class of another attribute. Let there be R rows and C columns in the 

contingency table for two attributes x  and y. The probability that an individual 

belongs to row category r and column category c is represented as ( )rcP , and ( )+rP  

and ( )cP +  are the marginal probabilities in row category r and column category c 

respectively. The measure is based on the probabilities of one attribute value 

occurring together with the value of the second attribute. In this sense, the y attribute 

can be seen as a representative of the class attribute, and the Symmetrical Tau 

measure for the capability of input attribute in predicting the class attribute is defined 

as (Zhou & Dillon, 1991).  
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The higher values of the Symmetrical Tau measure would indicate better 

discriminating criteria (features) for the class that is to be predicted in the domain. 

The Symmetrical Tau has many more desirable properties in comparison with other 

feature subset selection techniques as reported by (Zhou & Dillon, 1991). It is 

capable of handling noise with the built-in statistical tools; dynamic error estimation 

conveys potential uncertainties in classification; it handles multi-valued attributes 

fairly; it is not proportional to the sample size; its proportional-reduction-in-error 

nature allows for an overall measure of a particular attribute’s sequential variation in 

predictive ability, thereby determining which attributes have become less useful for 

prediction and should be deleted; and, it is capable of handling a Boolean 

combination of logical features.  

 

In this thesis, the aim is to utilize the Symmetrical Tau criterion feature to address 

the feature subset selection problem. This will act as a filtering tool whereby 

irrelevant attributes are detected and removed prior to the association rules mining 

process. The process involves the ranking of attributes based on the decreasing value 

of Symmetrical Tau and a cut-off point is established below which all attributes are 

considered irrelevant and are removed from the dataset prior to mining for 

association rule generation. A further detailed discussion of its use will be provided 

in Chapter 5. 

 

4.2.3 Rules Generation  

Rules generation is mainly concerned with the discovery of rules using the Apriori, 

Maximal and Closed association rule mining approaches. Here, an overview of 

Apriori, Maximal and Closed rules is given. In this thesis, the main focus is on 

investigating the usefulness of patterns from closed sets compared with maximal sets 

and frequent itemsets for classification tasks, with respect to their classification 

accuracy, generalization capability and coverage rate, and the incorporation of 

interestingness measures in such patterns.  
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4.2.3.1 Apriori Algorithm 

Association rule discovery finds all rules that satisfy specific constraints such as the 

minimum support and confidence threshold, as is the case with the Apriori algorithm 

(Agrawal, Imieliski, & Swami, 1993). It consists of two main phases: frequent 

itemsets discovery and association rule generation, of which the former task is more 

complex. The Apriori-based algorithm has been useful for frequent itemsets 

generation as it performs well on sparse data in discovering frequent patterns that are 

comprised of rather smaller itemsets. As mentioned earlier, the generation of 

frequent rules can be constrained by support and confidence threshold values. 

Consequently, in this thesis, two variants of frequent itemset discovery will be 

utilized: the first variant is constrained by both minimum support and confidence 

values and the second variant is constrained by only minimum support value. The 

reason behind the development of two Apriori variants is to investigate the 

implication of using the confidence measure as a constraint at different phases of the 

rule filtering process. 

 

4.2.3.2 Maximal and Closed Algorithms 

With the emergence of dense data which often results in frequent patterns containing 

larger itemsets, the performances of the Apriori algorithm tends to degrade as 

explained in (Zaki & Hsiao, 2002). Maximal and Closed algorithms are known for 

their capabilities in reducing the number of frequent itemset candidates that need to 

be enumerated. Even with a reduction of the complexity of rules, no information is 

lost since the complete set of frequent items can be obtained from both closed and 

frequent itemsets, and closed frequency values can also be worked out. In this study, 

the focus is on evaluating the usefulness of maximal/closed itemsets for the task of 

classification and for their classification/predictive accuracy and coverage rate.  

 

4.2.4 Rule Evaluation 

In this thesis, interesting rules are considered to be those rules that have a sound 

statistical basis and are neither redundant nor contradictive. Such an approach 

requires additional measures based on statistical independence and correlation 

analysis techniques to verify and evaluate the usefulness and quality of the rules 
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discovered. This will filter out the redundant, misleading, random and coincidentally-

occurring rules, while at the same time sustaining the accuracy of the rule set and 

retaining valuable rules. Here, an overview of each measure involved is given, while 

the details pertaining to the utilization of the selected measures will be provided in 

Chapter 5.  

 

4.2.4.1 Chi-squared Test for Correlation 

When using the association rule mining method, rules discovered from Apriori, 

Maximal and Closed approaches may be very large and despite having constraint 

parameters such as support and confidence, they might still be misleading. Thus, as 

demonstrated by (Han & Kamber, 2001), correlation measures can be used to address 

these issues. Here, the chi-squared 2χ statistic value will be applied to determine if 

the correlation between items is statistically significant. The chi-squared test was 

proposed in 1900 by Karl Pearson (Agresti, 1996) and is used for hypothesis testing 

of independence. The chi-square value is calculated as: 

 

( )∑ −
=

i

ii

E
EO 2

2χ  

Where; iE is the expected and iO is the observed frequency.    

 

The properties of a contingency table were described in Section 4.2.2.1, on which the 

chi-squared calculation is based. To compute the 2χ
 
value, the squared difference 

between the observed and expected value from I and J in the contingency table is 

divided by the expected values. The contingency table can now be used to test 

whether the two criteria are independent. A low value means that the observed value 

and expected frequencies are in close agreement; while a high value means that there 

is greater discrepancy between the observed and expected frequencies (Chapter 5 

provides a detailed explanation of the chi-squared test for correlation). 

 

Within this thesis, the chi-squared test will be used to discover the properties of data 

attributes, principally in terms of data dependency. The inclusion of attributes that 

failed the chi-squared test in the association rules may indicate misleading, irrelevant 
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and insignificant rules since the attributes are considered as redundant, replicated and 

highly dependent on each other (Han & Kamber, 2001). 

 

4.2.4.2 Logistic Regression analysis for Classification  

Another statistical analysis that will be employed in this framework is logistic 

regression analysis. Generally, as described in (Roiger & Geatz, 2003), statistical 

regression is a supervised learning technique that generalizes a set of numeric data by 

creating a mathematical equation which relates one or more input attributes to a 

single numeric output attribute. However, as the focus of this thesis is limited to 

association rules with certain class attributes, a prominent regression approach, 

namely logistic regression, will be developed. Logistic regression as defined by 

(Roiger & Geatz, 2003) is a nonlinear regression technique that associates a 

conditional probability score with each data instance. Logistic regression is used to 

estimate the probability that a particular outcome will occur. The dependent variable 

in logistic regression is the odd ratio, while the outcome variable is binary or 

dichotomous. In some cases, the class variable may take on two or more possible 

values (Hosmer & Lemeshow, 1989). 

 

In this thesis, logistic regression analysis will be utilized in the framework to 

describe the relationship between the target/class variable and the set of input 

variables (often in statistical terms recognized as covariates) (Hosmer & Lemeshow, 

1989). Logistic regression involves; 

(i) Determination of the logistic regression model by fitting the data; and  

(ii) Testing for significance of the coefficients. 

Equation 1 defines the logistic regression model. (A detailed discussion of the 

logistic regression model with reference to a dataset will be provided in the next 

chapter). 

 

• Logistic Regression Model:  

εββββ +++++= kk xxxy ...)ln( 22110 , 

where; 

y = Natural logarithm of the odds ratio, 

(1) 
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kβββ ,...,, 10  = Coefficients of the input attributes, 

ε = Error variable, 

Y = Dichotomous class attribute, 

kxxx ...,, 21 =  Input attributes 

 

The coefficients are estimated using a statistical technique called maximum 

likelihood estimation. In this work, the SAS@ software will be used to develop the 

logistic regression models.  

 

After estimating the coefficients and fitting the model, the next task is to conduct an 

assessment of the significance of the variables in the model. This will determine 

whether the input variables in the model are ‘significantly’ related to the class 

variable. Here, several models are developed. The best model will be selected based 

on the best fitting and most parsimonious and reasonable model to describe the 

relationship between the class variable and input variables.  

 

To conclude, the application of logistic regression provides an additional measure of 

the classification power between the input and target attributes. The logistic 

regression models will be developed and fitted with the data; and the significance of 

the coefficients will be tested. This will ensure that irrelevant, random and 

insignificant attributes that failed the statistical analysis are removed. Association 

rules that consist of any insignificant input variables based on the logistic regression 

model are discarded and removed.  

 

4.2.4.3 Productive Rules for Redundancy Removal 

Redundancy removal plays an important role in this framework as a means of 

reducing the number of redundant rules produced by association rule mining 

algorithms. As described earlier in Chapter 3, the term productive as proposed by 

(Webb, 2007) will be utilized in performing the redundancy removal.  

 

With the application of productive rules, the rules improvement values are calculated. 

If the values are less than or equal to zero, the rules are considered redundant and 

will be removed from further analysis. Additionally, a productive rule is capable of 
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identifying items that have been included in the antecedent and are actually 

independent of the consequence (Webb, 2007). 

 

4.2.4.4 Contradictive Rule Removal 

While redundancy removal offers a means of reducing the number of rules, another 

essential task involved in this framework is the contradictive rule removal. 

Contradictive rules as defined in Chapter 3 refer to rules that contradict each other. 

Contradictive rules and redundant rules may occur because of an initial low setting of 

the minimum support thresholds.  

 

The purpose of the contradictive rule removal is to identify and to remove any 

occurrence of two or more rules that have the same pre-condition (i.e. antecedents) 

and imply different class values (consequents). As will be demonstrated in later 

experiments, the accuracy rate for rule sets without the contradictive rules is 

relatively higher compared with that of rule sets contaminated by contradictive rules.  

 

4.2.4.5 Rules Accuracy and Rules Coverage 

When a large volume of rules is removed using the above statistical analysis, and 

redundancy and contradictive assessment methods, another crucial issue arises: 

whether the quality of the rules obtained from the proposed framework has been 

compromised. Here, the quality of rules is demonstrated in terms of their accuracy 

and coverage values. Earlier in Chapter 3, the definition of the problem of rules 

accuracy and rules coverage was outlined. 

 

Within this task, the values for rule accuracy and coverage will be measured at every 

stage and sequence involved. This measure is crucial as this can determine the 

quality of the discovered rules. Additionally, this analysis also reveals the 

balancing/optimization issues with regards to the trade-off between accuracy rate and 

coverage rate. Consequently, the task of choosing optimal stopping criteria based on 

a minimum confidence threshold will be discussed and presented to ensure that an 

acceptable level of accuracy and coverage rate can be achieved. A detailed analysis 
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and explanation of the quality of rules and optimization issues will be presented in 

Chapter 5 and Chapter 6. 

 

4.3 Conceptual Model and Framework for Tree-structured Data Problems  

Refer to the problem to be addressed in Chapter 3 in evaluating the interestingness of 

association rules from tree-structured data. The frequent subtrees generated can be 

based on a standard frequent subtree mining algorithm or on frequent subtrees 

obtained from a structure-preserving flat format for tree-structured data. Therefore, 

two experimental setting are provided as follows; in the first experimental setting, a 

standard frequent subtree mining algorithm is used to discover the frequent subtrees 

(i.e. IMB3-Miner (Tan, Dillon, Hadzic, Chang, & Feng, 2006)). Hence, the 

evaluation process is very similar to the Framework A as shown in Figure 4.1 except 

that the association rules are based on frequent subtrees rather than on the frequent 

itemsets mining algorithm. Therefore, it is not necessary to replicate the steps 

involved here, and the focus is on the conceptual model for the second experimental 

setting.  

 

In the second experimental setting, Framework B as depicted in Figure 4.2 is used to 

evaluate the interestingness of subtree patterns generated from the structure-

preserving flat format for tree-structured data. The overview of the process of 

Framework B is as follows: While the majority of the tasks involved in Framework B 

is similar to those in Framework A, the major difference is the application of a 

Database Structure Model (DSM) (Hadzic, 2011) to obtain a structure-preserving flat 

data format (FDT) for tree-structured data (shown in Figure 4.2 with the square dash 

line region).  

 

The DSM is extracted from the tree-structured data to preserve the structural 

characteristics of the data. The extracted DSM is used to create the flat representation 

of the tree structured data. An example of the conversion process will be given in 

Chapter 7. Once the tree-structured data has been converted to a flat table format 

(FDT), the exact sequence of feature subset selection, frequent pattern mining and 

rule filtering process as given and justified in Section 4.2 (Framework A) for 

relational data, is also applied to tree-structured data in Framework B. The 
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association rule mining algorithm is utilized to discover frequent rules from the FDT. 

The extracted frequent rules are mapped onto the DSM to re-generate the pre-order 

string encoding of subtrees, thereby representing them as subtrees of the tree 

database.  

 

These frequent rules may contain both valid and invalid rules (disconnected subtree) 

identified as FullTree. In addition to that, the rules based on embedded subtrees and 

the rules based on induced subtrees (the rule set that excludes invalid/disconnected 

subtrees) have also been revealed within the extracted frequent rules. These three 

frequent rule sets are then evaluated using statistical analysis, and the redundancy 

and contradictive assessment methods as described in Framework A. The 

combination of these rule evaluation strategies will help to determine the accurate 

and high quality rules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Framework B for Tree-structured Data for Rules Interestingness Analysis 

 

4.3.1 Modeling XML and Tree-structured Data 

As stated earlier in Chapter 3, the focus of this thesis is restricted to the evaluation of 

the association rules discovered from XML documents and tree-structured data, thus 

modeling issues on how to represent the XML document into tree format that later 

can be used for frequent subtree mining, was discussed in Chapter 3. These include 
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the definition of tree-related concepts, and definitions of and the parallelism between 

XML and tree-structured data. XML documents are commonly modeled as rooted 

ordered labeled trees (Hadzic, Tan, & Dillon, 2011). In the field of frequent subtree 

mining, the pre-ordered string encoding (Zaki, 2005) has become a well accepted 

format when modeling tree-structured data. A specific example of modeling tree-

structured data will be given in Chapter 7.  

 

4.3.2 Frequent Subtrees Generation 

Generally, the problem of frequent subtree mining can be stated as the task of finding 

all subtrees that occur in a tree database at least as many times as the user-specified 

minimum support threshold as formally defined in Chapter 3. There has been great 

development in frequent subtree mining algorithms as reported in (Chi, Muntz, 

Nijssen, & Kok, 2005) with each algorithm being tailored for a specific application.  

 

However, similar to traditional association rule mining, the frequent subtree patterns 

may be unable to recognize relevant and interesting patterns due to the huge volume 

of patterns generated. Thus, as mentioned in Section 4.1, with respect to the problem 

of frequent subtree mining, in this work the aim is to develop a proper sequence of 

use of statistical techniques, together with redundancy and contradictive assessment 

methods to arrive at a more reliable and interesting set of subtree patterns. The 

development/refinement of frequent subtree mining algorithms is outside the scope 

of this thesis. 

 

4.3.3 Tree-structured Data Format Conversion 

For given tree-structured data, the enumeration of all possible subtrees in a complete, 

non-redundant and efficient way is the major problem one needs to tackle (Tan, 

Hadzic, Dillon, Chang, & Feng, 2008). At a lower support threshold, one may 

experience a significant delay in the subtree patterns analysis and interpretation 

process. Additionally, as a large number of frequent subtree patterns may be 

discovered, many of which may not be useful, one needs to filter out many of the 

irrelevant/uninteresting patterns.  
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The flat data format (relational or vectorial data) was proven to be acceptable and 

successful when utilized with many well-established data mining techniques. Thus, 

an effective way proposed by (Hadzic, 2011) knows as Database Structure Model 

(DSM) is utilized in this thesis to represent tree-structured data in a structure-

preserving flat data format. This approach offers a way of preserving tree-structured 

and attribute-value information. With the application of DSM, the structural 

characteristics are preserved during the data mining process. The extracted rules 

from the data mining application can be mapped onto the DSM to re-generate the 

pre-order string encoding of subtrees. This conversion tool created the means and 

opportunity for analyzing tree-structured data which will broaden the current data 

mining/analysis techniques (Hadzic, Hacker, & Tagarelli, 2011; Hadzic & Hecker, 

2011). Details of the conversion process will be discussed in Chapter 7. 

 

4.3.4 Subtrees Evaluation 

IMB3-Miner (Tan et al., 2006) will be used to generate frequent subtree patterns 

(details of the experiment will be provided in Chapter 7) in the first experimental 

setting. The subtree patterns discovered by the IMB3 algorithm can aid in 

discovering potentially useful pattern structures in XML documents, which makes it 

useful and handy in discovering interesting similarities and differences. However, 

with the more complex data used in the later experiments, the evaluation process 

became infeasible, the applicability of the proposed framework to evaluate the 

frequent subtrees from the traditional frequent-subtree-mining-based approach 

deteriorated. Thus in the later experiments, the DSM approach is utilized in order to 

convert the tree-structured data to a flat data format.  

 

As frequent subtrees have been discovered with either IMB3-Miner or Flat Data 

Format (FDT) based on the DSM approach, the question still remains whether these 

patterns have been discovered due to pure coincidence resulting from certain 

randomness in the particular dataset being analyzed. Furthermore, they are often 

quite large in number, which can be detrimental to the analysis procedures. 

Interesting rules, as defined in Section 4.2.4, are those rules that have a sound 

statistical basis and are neither redundant nor contradictive. Statistical analysis, and 

redundancy and contradictive-based assessment methods, will be utilized to verify 
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and evaluate the usefulness and quality of the rules discovered. Thus, similar 

methods and approaches discussed in Section 4.2.4 will be utilized to evaluate the 

frequent subtree patterns. This will filter out the redundant, misleading, random and 

coincidentally-occurring rules, while at the same time maintaining the accuracy of 

the rule set and retaining valuable rules.  

 

4.3.4.1 Rules Accuracy and Rules Coverage  

Referring to the similar problem of evaluating the interestingness of rules from 

relational data, an important issue that needs to be addressed is whether the quality of 

the rules obtained from the proposed framework have been compromised. A measure 

needs to be applied to verify whether the removal of a large volume of rules based on 

statistical analysis, and redundancy and contradictive assessment methods, will 

enable the discovery of all the interesting and significant subtree patterns.  

 

As such, the quality of the subtree pattern will be demonstrated based on their 

accuracy and coverage values. The formal definition of subtree patterns accuracy and 

optimization for tree-structured data are discussed in Chapter 3. Additionally, 

experimental evaluation will be performed in Chapter 7 in demonstrating the detailed 

analysis and explanation of the subtree patterns’ quality and optimization issues.  

 

The values for rule accuracy and coverage will be measured at every stage and 

sequence of this task. This measure is crucial as it can determine the quality of the 

discovered rules. Additionally, this analysis will reveal the balancing/optimization 

issues with regards to the trade-off between accuracy rate and coverage rate.  

 

4.4 Conclusion 

This chapter has provided a brief overview of the way in which the problems in 

Chapter 3 will be addressed. Such discussions serve the purpose of outlining the 

direction which will be taken by the proposed solutions to the defined problems. The 

developed frameworks can be divided into two main categories evaluating 

interestingness of association rules from relational and tree-structured data.  
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The work in this thesis is focused on the development of a framework for evaluating 

the interestingness of frequent patterns. The approach to frequent pattern mining is 

further subdivided depending on whether relational data or tree-structured data is 

involved. Within the relational data, the focus is on evaluating the frequent pattern 

generated from Apriori, Maximal and Closed patterns. Extracting frequent patterns 

from tree-structured data is a moderately new research field. The initial frequent 

subtree patterns evaluated in this thesis are generated from the traditional frequent 

subtree mining algorithm, namely the IMB3-Miner, but in the later experiment, the 

DSM approach is utilized. Consequently, the rule evaluation processes are also 

employed for the frequent rules, rules based on embedded, induced and disconnected 

subtrees generated from flat data format (FDT) using the DSM approach.  

 

With respect to the evaluation of both patterns from relational and tree-structured 

data, this chapter indicated the proposed solution to the problem of feature subset 

selection, statistical analysis, redundancy and contradictive assessment, and rules 

accuracy and coverage. The feature subset selection problem will be approached 

through the use of Symmetrical Tau (Zhou & Dillon, 1991) measure. The chi-

squared test and logistic regression will be employed for statistical analysis. The 

redundancy and contradictive assessment methods will be utilized to remove 

redundant and contradictive rules. The quality of patterns will be measured according 

to their accuracy and coverage.  

 

Within this framework, a proper sequence for the use of these techniques is 

developed so as to arrive at a more reliable and interesting set of rules generated 

from: (a) association rule algorithms, specifically the Apriori, Maximal and Closed 

approaches discovered from relational data, and (b) frequent subtrees using the 

IMB3-Miner algorithm and frequent subtrees based on the DSM approach discovered 

from tree-structured data. 
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CHAPTER 5: DETAILED SOLUTIONS TO VERIFY THE ASSOCIATION 

RULE FROM RELATIONAL DATA 

5.1 Introduction 

This chapter describes the framework developed for evaluating association rules 

derived from relational data. The motivation behind our proposed method is to 

investigate how association rules mining, statistical analysis, redundancy and 

contradictive assessment methods can be utilized, and to develop a proper sequence 

of use of these techniques to arrive at a more reliable and interesting set of rules 

generated by association rule algorithms, specifically the Apriori, Maximal and 

Closed approaches.  

 

One of the aims of the work is to investigate the implication of using different 

confidence values and the time at which the constraint is applied. The confidence 

measures play a significant role in limiting the number of rules from frequent 

itemsets mining. This may discard some of the rules that cover a smaller subset of 

data objects from the domain at hand. The rules covering a smaller subset of data 

may be necessary to detect contradictions in the formed associations and to discard 

those contradictive rules. Thus, to study these effects, two variants of frequent 

itemset discovery have been applied: the first variant is the Apriori framework that 

consists of both minimum support and minimum confidence thresholds, and the 

second variant is the Apriori framework with only a minimum support threshold 

(defined in Section 5.7.1) (where the confidence measure is applied at a later stage 

after contradictive rules have been removed). 

 

Maximal and Closed frequent itemset mining is known to reduce the rule set size, but 

the question still remains whether, by doing so, their coverage rate, accuracy and 

generalization power has decreased. The majority of the Maximal and Closed works 

mentioned in Chapter 2 tend to focus more on the structural and analytical 

comparative study of the algorithms’ performance in generating the rules. In this 

study, the focus is on evaluating the usefulness of maximal/closed approaches for the 

classification task and their generalization power and coverage rate. The aim is to 

study the differences in these aspects with respect to extracting frequent 

itemset/closed/maximal patterns. 
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The changes in confidence values have a direct impact on the size, accuracy and 

coverage rate of the rule set. The use of high confidence thresholds, typically results 

in a reduced number of rules with high accuracy but smaller coverage rate. On the 

other hand, with a low confidence threshold, a larger coverage rate is achieved but at 

the cost of a reduction in accuracy. In addition, smaller sets of rules are preferred as 

they typically have better generalization power. Thus, given this trade-off between 

the rule accuracy and rule coverage, the choice of an optimal confidence value is of 

great importance.  

 

The relevant task in the proposed framework starts with the data pre-processing task, 

the determination of relevant attributes, the generation of frequent item rules, the 

rules interestingness and constraint measurement, and the rules’ accuracy and 

coverage rate determination. The task is necessary as, in general, interesting rules can 

be interpreted as those rules that have a sound statistical basis and are neither 

redundant nor contradictive This statistics-based approach requires sampling process, 

hypothesis development, model building and finally evaluation of the usefulness and 

quality of the rules discovered. This will filter out the redundant, contradictive, 

misleading, random and coincidentally-occurring rules, while at the same time 

maintain the accuracy and coverage rate of the rule set. In the next section, a detailed 

explanation of the steps involved and the formal definition of the conceptual 

Framework A is provided. 

 

5.2 Relational Data  

The association rule mining, as explained in Chapter 3, is capable of discovering 

interesting relationships between items in a given dataset. Thus, the definition of the 

relational dataset format that is used in the framework is as follows:  

 

Definition 1 Given a relational database ,D  { }||21 ,...,, DiiiI =  the set of distinct items in 

D ,  { }ATatatatAT ,...,, 21=  the set of input attributes in D , and { }||21 ,...,, YyyyY =  the 

class attribute with a set of class labels in D . Assume that D  contains a set of n  

records { } ,, 1
n
rrr yxD ==  where Ixr ⊆  is an item or a set of items and Yyr ∈ is a class 
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label, then |xr| = |AT| and xr = {at1valr, at2valr, …, at|AT|valr} contains the attribute 

names and corresponding values for record r in D for each attribute at in AT. 

 

Here, the relational data is arranged in a row and column format. Each column is 

designated for attributes with their values, while the final column contains the class 

attributes with a set of possible class labels. Each row is reserved for the items and 

represents one record often referred to as an ‘instance’. Figure 5.1 shows an example 

subset from the Wine dataset based on Definition 1. 

 

Figure 5.1: Relational data example for (subset of) Wine dataset 

 

5.3 Pre-processing 

Pre-processing is utilized in this thesis to ensure that only appropriate data in suitable 

format is made available to the association rule mining process. In this framework, 

two problems arise with respect to the selected datasets. The first problem is the 

existence of missing data and the second problem is the need for data transformation 

from continuous data type into categorical data type. Thus, the general pre-

processing steps are formalized as follows: 

  

STEP 1: The pre-processing is applied to each iat  in ,D  where 

)),...,1((, ATiATati =∈  in order to obtain clean and consistent data. These pre-

processing techniques include the removal of missing values and discretization of 

attributes with continuous values. 
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5.3.1 Missing Data Handler 

In dealing with the missing data, the delete selected cases or variables and data 

imputation methods are utilized as proposed by Brown and Kros in (Wang, 2003). 

Thus in this thesis, the cases deletion method in SAS Enterprise Miner@ software is 

utilized. By using only a complete records/transaction in the database, this will 

ensure that the association rules mining process discovers rules that are based on the 

actual data rather than surmised data in the records/transactions (Refaat, 2007). 

 

The second method of handling missing data is by data imputation (Lakshminarayan, 

Harp, & Samad, 1999). With this technique, the missing data regarding certain 

observations is estimated based on the valid values of other variables (Wang, 2003). 

Table 5.1 shows the specific approaches utilized in this thesis for handling missing 

data in the different relational datasets used. Note that for Wine and Iris, there were 

no missing values in the dataset. 

 

Table 5.1: Missing data handling done for different datasets 

Dataset Missing Data Type of Missing Data Handler 
Wine No - 
Adult Yes Delete Cases 
Mushroom Yes Data imputation - Distribution based missing value approach  
Iris No - 
 

In the Adult dataset, 3620 records out of 48842 with unknown values are removed. 

While, for the Mushroom dataset, there are 2480 records with missing values 

denoted as “?”. The distribution-based missing value method is utilized. In this 

approach, the replacement values are calculated based on the random percentiles of 

the distribution of variables (Refer to Table 5.2). This preserves the empirical 

distribution of the data. 
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Table 5.2: Missing data in Mushroom Dataset 

Before Imputation  After Imputation 

 

 

 
 

5.3.2 Data Transformation 

The measurement level of input variables for each of the datasets used for generating 

the association rules from relational data are as follows: all input attributes in ‘Wine’ 

and ‘Iris’ datasets are continuous type; all input attributes in ‘Mushroom’ dataset are 

categorical type; while in ‘Adult’ datasets, there is a mixture of continuous and 

categorical attributes. A continuous measurement level often provides an in-depth 

analysis; however, this may create a large number of distinct values per input 

attribute (Dillon, Hossain, Bloomer, & Witten, 1998; Han & Kamber, 2001). An 

equal width binning approach is utilized for each continuous attribute in the Wine, 

Adult and Iris datasets. There are different types of binning methods available for 

data transformation. However, these might require more pre-processing in order to 

understand the quality of the bins (Dillon et al., 1998) rather than to determine the 

interestingness of the rules. Since the interestingness of the rules is the primary focus 

of this thesis, we will utilize the equal width binning approach. 

 

The data for each attribute are sorted and then smoothed by consulting its nearest 

boundary (Han & Kamber, 2001). Figure 5.2 demonstrated the 5 equal bins 

application on Alcohol attribute. The 5 equal bins are created by dividing the data 

values into 5 equally-spaced intervals based on the difference between the minimum 

and maximum values; thus, the number of records in each bin is typically unequal. 

Table 5.3 shows an example of the original continuous values (before binning) for 

attributes Alcohol with respect to their new bin (after binning). (i.e. Alcohol with 
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continuous values of 14.23 is now included into bin (14.07-high) representing the 

range of value between 14.07 and the maximum value in Alcohol attribute). 

 

 

Figure 5.2: 5 Equal Bins for Alcohol attribute in Wine dataset 

 
Table 5.3: Binning in Wine Dataset 

Alcohol 
Before Binning After Binning 

14.23 (14.07-high) 
11.03 (low-11.79) 
13.16 (12.55 - 13.31) 
12.16 (11.79 - 12.55) 
13.67 (13.31-14.07) 
14.20 (14.07-high) 
14.39 (14.07-high) 

 

5.4 Data Partition 

Partitioning the dataset into training and testing sets allows one to generate a pattern 

from the training sample and validate it with a testing dataset. Records in the training 

dataset are selected using simple random sampling. This approach offers all data an 

equal chance of being included in the training sample. The SAS Enterprise Miner@ 

software is utilized to partition the data into the training and testing sets.  
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STEP 2: Data Partitioning. The training dataset is denoted as DDtr ⊆  and the 

testing dataset as DDts ⊆ .  

 

5.5 Feature Subset Selection 

The feature subset selection problem was discussed and defined in Chapter 3; 

moreover, the Symmetrical Tau features selection techniques were overviewed in 

Chapter 4. Here, the focus is on describing the feature subset selection process by 

applying the Symmetrical Tau and comparing its results with those obtained by the 

Mutual Information approaches. A detailed evaluation and comparison of both 

techniques will be presented in Chapter 6. Based on the proposed framework, this 

feature subset selection is needed in order to determine the relevance of attributes by 

classifying their importance to characterize an association. Both techniques are 

capable of measuring the capability of an input attribute in predicting the class of 

another attribute. This step is defined as: 

 

STEP 3: Determine the relevance of each iat  by determining its importance in 

predicting the value of the class attribute Y  in ,trD  where )),...,1((, ATiATati =∈  

using a statistical-heuristic measure. Any irrelevant attributes are removed from the 

dataset, and are represented in the filtered database as
~

trD , II ⊆
~

. 

 

5.5.1 Symmetrical Tau Utilization  

Let there be R rows and C columns in the contingency table for attributes iat  and .Y  

The probability that an individual belongs to row category r and column category c is 

represented as ( )rcP , and ( )+rP  and ( )cP +  are the marginal probabilities in row 

category r and column category c respectively. The measure is based on the 

probability of one attribute value occurring together with the value of the second 

attribute. In this sense, the Y  attribute can be seen as a representative of the class 

attribute, and the Symmetrical Tau measure for the capability of input attribute iat  in 

predicting the class attribute Y  is defined by (Zhou & Dillon, 1991) as follows: 
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Higher values of the Symmetrical Tau measure would indicate better discriminating 

criteria (feature) for the class that is to be predicted in the domain. Symmetrical Tau 

has many more desirable properties in comparison to other feature subset selection 

techniques, as was reported in (Zhou & Dillon, 1991). It is utilized here to indicate 

the relative usefulness of attributes in predicting the value of the class attribute, and 

to discard any of the attributes whose relevance value is fairly low. This would 

prevent the generation of rules which then would need to be discarded anyway once 

it was found that they include irrelevant attributes. 

 

5.5.2 Mutual Information 

In this thesis, the capabilities of Symmetrical Tau as the determinant of the relevance 

of attributes are evaluated by comparing it with an information-theoretic measure, 

namely the Mutual Information. The definition of Mutual Information was given in 

Chapter 2. 

 

The information-theoretic measures are principally comprehensible and useful since 

they can be interpreted in terms of information. For a rule interestingness measure, 

the relation is interesting when the antecedent provides a great deal of information 

about the consequent (Blanchard, Guillet, Gras, & Briand, 2005). Although several 

information-theoretic measures exist, the Symmetrical Tau is only compared with the 

Mutual Information measurement technique which is the most well-known of the 

techniques. The Mutual Information measure is calculated based on (Ke, Cheng, & 

Ng, 2008; Tan, Kumar, & Srivastava, 2002):  
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The information that iat  gives us about Y  is the reduction in uncertainty about Y 

due to knowledge of iat  and similarly for the information that Y  tells about iat  (Ke, 

et al., 2008). The greater the values of M, the more information iat  and Y contain 

about each other (Ke et al., 2008).  

 

5.6 Data Format for Frequent Item Mining 

5.6.1 Data Format for Apriori Algorithm 

The relational data format for the Wine dataset after the pre-processing (i.e. data 

transformation is displayed in Figure 5.3.  

 

Figure 5.3: Example of data format for Wine dataset 

 

Figure 5.4 presents the data format used by the Apriori algorithm to generate the 

frequent itemsets. On the left of the table the record identifier is shown, often 

referred to as the transaction ID (tid). On the right of the table in Figure 5.4, attribute 

value-name (starting with capital) pair is shown respective to the tid where it 

occurred. This data format for association rule analysis is commonly referred to as 

the transactional data. 
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Figure 5.4: Data format (Wine) for Apriori algorithm 

 

5.6.2 Data Format for the Maximal and the Closed Algorithms 

The Charm (Zaki & Hsiao, 2002) and GenMax (Gouda & Zaki, 2001) algorithms 

employ the integer-based format for faster processing to generate the Closed and 

Maximal itemsets, respectively. As such, each attribute value-name pair is mapped to 

a unique integer. An example of an integer-string mapping table for a Wine dataset is 

shown in Table 5.4. Figure 5.5 illustrates the example of an integer-based format 

suited to the application of Charm and GenMax algorithms. 
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Table 5.4:  An example of attribute value-name pair mapped to a unique integer for Wine 

dataset (for the first record) 

attribute-value-name integer 
highAlcohol 4
lowMalidAcid 10
cAsh 11
bAlcalinity 16
dMagnesium 23
dPhenol 27
cFlavanoids 30
bNonflavanoids 35
cProanthocyanins 41
bColor 45
cHue 51
highDiluted 58
cProline 61
lowClass 66
… …
N …
 

 

 

 

 
 
 
 

Figure 5.5: Example of Wine dataset after mapping with integer values formatted as used in  

Charm (Zaki & Hsiao, 2002), and GenMax (Gouda & Zaki, 2001). Tid: transaction-id; cid: 

omitted (i.e., equal to tid); S: size of string 

 

5.7 Frequent Itemsets Mining 

As discussed in Section 5.5, only relevant attributes are used in discovering a set of 

frequent items. Hence, the filtered training dataset
~

trD , II ⊆
~

 (i.e., irrelevant 

attributes removed) is utilized for the generation of frequent itemsets. In the 

definitions that follow, the frequent patterns/association rules discussed correspond 

to those that have a class label. There are four types of rule sets discovered from each 

dataset, namely the Apriori rules (two variants), Maximal rules and Closed rules. 

Each of the rules is defined as follows: 

 

 
 
 
0 0 14 4 10 11 16 23 27 30 35 41 45 51 58 61 66 

1 1 … … … … … … … … … … … … … … … 

… … … … … … … … … … … … … … … … … 

N N … … … … … … … … … … … … … … … 

tid cid S 



 109

5.7.1 Apriori Algorithm 

STEP 4a: Apriori (support and confidence). For a given 
~

trD , the association rules 

were generated using the Apriori framework using minimum support (min_sup) and 

minimum confidence (min_conf) thresholds, and the set of obtained association rules 

is denoted by ).(AF  

 

Definition 2 Association rule is denoted as yxfA →= , where x  is the antecedent 

(item or a set of items) and y  the consequent (class value), 

{ } }{ rATrrrrtrrr valatvalatvalatxxxDyx ||21

~
,...,,,,, =⊆∈∃  and Yyy r ∈=  is a class 

label, and |)))(|,...,1((),( AFkAFfAk =∈∀ , and kfA  satisfies the min_sup and 

min_conf thresholds. 

 

STEP 4b: Apriori (support). For a given 
~

trD , the association rules were 

generated using the Apriori framework with only the min_sup threshold, and the set 

of obtained association rules is denoted by ).(BF  

 

Definition 3 Association rule is denoted as yxfB →= , where x  is the antecedent 

(item or a set of items) and y  the consequent (class value), 

{ } }{ rATrrrrtrrr valatvalatvalatxxxDyx ||21

~
,...,,,,, =⊆∈∃  and Yyy r ∈=  is a class 

label, and |)))(|,...,1((),( BFkBFfBk =∈∀ , and kfB  satisfies the min_sup threshold. 

 

Figure 5.6 gives an example of association rules generated from the Wine dataset 

using the Apriori algorithm without setting any class to be predicted, while Figure 

5.7 displays the frequent patterns with a class label being selected. 
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Figure 5.6: Example Association rules for Wine dataset without specify any Class Labels 

 

 

Figure 5.7: Example association rules for Wine dataset with Class Labels 

 



 111

5.7.2 Maximal Itemset Mining Algorithm 

STEP 4c: Maximal. For a given 
~

trD , the Maximal frequent patterns were produced 

using the GenMax algorithm (Gouda & Zaki, 2001), and the set of obtained patterns 

is denoted as ).(MF  As explained earlier, only the patterns/rules with a class label 

are taken into account, and hence the definitions that follow are based on such 

patterns 

 

Definition 4 Maximal Frequent Pattern is denoted as yxfM →= , where x  is 

the antecedent (item or a set of items) and y  the consequent (class value), 

{ } }{ rATrrrrtrrr valatvalatvalatxxxDyx ||21

~
,...,,,,, =⊆∈∃  and Yyy r ∈=  is a class 

label, and |)))(|,...,1((),( MFkMFfMk =∈∀ , kfM satisfies the min_sup threshold 

and is not a subset of any other frequent pattern. 

 

5.7.3 Closed Itemset Mining Algorithm 

STEP 4d: Closed. For a given 
~

trD , the Closed frequent patterns were produced 

using the CHARM algorithm (Zaki & Hsiao, 2002), and the set of obtained patterns is 

denoted as ).(CF  

 

Definition 5 Closed Frequent Pattern is denoted as yxfC →= , where x  is the 

antecedent (item or a set of items) and y  the consequent (class value), 

{ } }{ rATrrrrtrrr valatvalatvalatxxxDyx ||21

~
,...,,,,, =⊆∈∃  and Yyy r ∈=  is a class 

label, and |)))(|,...,1((),( CFkCFfCk =∈∀ , and kfC satisfies the min_sup threshold 

and it has no superset with the same frequency. As the formats for both the Maximal 

rules and the Closed rules are identical, Figure 5.8 shows an example of Closed rules, 

as outputted by the Charm algorithm (Zaki & Hsiao, 2002), before mapping the 

number into specific attributes’ name values and Figure 5.9 shows the Closed rules 

after the mapping process. 

 



 112

 

Figure 5.8: Frequent patterns for Wine dataset using Closed algorithm (before Mapping 

Process) 

 

 

Figure 5.9: Frequent patterns for Wine dataset using Closed algorithm (after Mapping 

Process) 
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5.7.4 Minimum Support and Minimum Confidence Thresholds 

The determination of optimal minimum support and minimum confidence thresholds 

in a data mining system are flexible and can be done interactively by the users (Han 

& Kamber, 2001). This includes allowing the user to test and modify the 

interestingness measures and their respective thresholds.  

 

Thus, in this thesis, the focus is on investigating the role that the confidence measure 

plays in the rules evaluation process by studying the implications of using high/or 

low confidence measures and applying confidence-based filtering later during the 

rule optimization process. Setting a low minimum support threshold is preferred as 

this will ensure the discovery of low frequency itemsets, even though this will 

generate a larger volume of patterns. (Roiger & Geatz, 2003) assert that if more rules 

are desired, the coverage criterion can be lowered. As mentioned earlier in Chapter 3, 

the application of feature subset selection in the proposed framework will facilitate 

the removal of a large volume of patterns that have been derived from low minimum 

support thresholds. In addition, during the rule evaluation phase (explained next), 

many unnecessary rules will be removed, and hence it is preferable to set the 

minimum support threshold fairly low to avoid the possibility of missing any rare yet 

significant associations.   

 

5.8 Rule Evaluation 

5.8.1 Statistical Analysis 

The statistical analysis is applied to the training dataset in order to identify the 

significant attributes to be used for the rules evaluation process. These involve two 

steps, the first step is based on chi-squared test and the second step is the logistic 

regression analysis. Both of these measures are used to identify the set of irrelevant 

features which in the framework will be utilized to identify rules that contain those 

features and are likely to be unnecessary and should be removed.  

 

However, note that, for the Maximal rule set, discarding the rules that contain non-

significant variables would reduce the number of rules significantly. This is due to 

the fact that, by definition, the Maximal rule set will not contain subsets of a frequent 
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pattern, and the preference is for longer patterns. Hence, if a maximal pattern 

contains an irrelevant attribute, and that pattern/rule is removed, the association 

between other relevant attributes in the pattern would not be present elsewhere in the 

rule sets and hence would be lost.  

 

In Closed and especially Apriori, this would not be a problem as they can contain 

subsets of rules (as is always the case in Apriori), and hence another rule capturing 

the association, without the irrelevant attribute is likely to exist. Thus, for Maximal 

rules, rather than discarding a rule, only non-significant variables within the rules are 

removed, which will be reflected in the formulizations that follow. However, some 

rules may still be removed as a result of the process, as if all attributes within the 

precedent of a rule are detected as insignificant, the rule is removed. Removing one 

or more non-significant input attributes from a Maximal rule results in more 

simplified rules (less attributes in the precedent of a rule) in the rule sets. This can 

cause these simplified rules to already have a representative in the rule set, and in 

this case, only one rule is preserved.  

 

5.8.1.1 Chi-Squared Test 

A natural way to express the dependence between antecedent and the consequence of 

an association rule yx →  is the correlation based on the chi-squared test for 

independence (Brijs, Vanhoof, & Wets, 2003). Thus, the step in chi-squared test is 

defined as follows: 

 

STEP 5a: Chi-squared test. For a given 
~

trD , the occurrence of iat  where 

)),...,1((, ATiATati =∈  is independent of the occurrence of Y  if 

)()()( YPatPYatP ii =∪ ; otherwise iat  and Y  are dependent and correlated (Han & 

Kamber, 2001). The correlation between iat  and Y  is measured using Equation 3 as 

follows: 

)()(
)(

),(
YPatP
YatP

Yatcorr
i

i
i

∪
=  

(3) 
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For a given correlation value based on Equation 3, the chi-squared 2χ statistic value 

was utilized to determine whether the correlation is statistically significant.  

 

Hence, the chi-squared test discards any )(AFfAk ∈ , )(BFfBk ∈   and )(CFfCk ∈  

for which iat∃  contained in x  of yx → , the 2χ  value is not significant for Y  (class 

attribute) (correlation analysis in Equation 3).  

 

For Maximal frequent patterns, the chi-squared test simplifies any 

)(MFfMk ∈ where iat∃  contained in x  of yx → , the 2χ  value is not significant 

for Y  (class attribute) (correlation analysis in Equation 3) in the following way: If 

iat x∈  in yx →  then the rule )(MFfMk ∈  is simplified to yx →' , where 

'x = iatx \ . 

 

5.8.1.2 Logistic Regression 

Another form of statistical analysis that was applied was the logistic regression. The 

relationship between the antecedent and consequent in association rule mining can be 

presented as a relationship between a target variable and the input variables in 

logistic regression. The following is the definition of the logistic regression model 

involved in the framework. 

 

STEP 5b: Logistic regression analysis. For a given 
~

trD , several logistic regression 

models were developed based on Equation 4.  

εββββ +++++= ATAT atatatY ...)ln( 22110 , 

where; 

)ln(Y = Natural logarithm of the odds ratio, 

ATβββ ,...,, 10  = Coefficients of the input attributes, 

ε = Error variable, 

Y = Dichotomous class attribute, 

ATatatat ...,, 21 =  Input attributes 

(4) 
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The co-efficient β  of an input attribute iat  where )),...,1((, ATiATati =∈ , i.e. 

ii atβ  from Equation 4 is determined based on the log likelihood value given in 

Equation 5 (note that as per Definition 1 the value of attribute iat  occurring in 

record r is denoted as ri valat ). The statistical hypothesis is then used to determine 

whether the input attributes are significantly related to the class attribute.  

[ ] ( ) ( )[ ]{ }∑
=

−−+=
n

r
rirririi valatyvalatyat

1

1ln1)(ln ππβ  
(5) 

 

As mentioned in Chapter 4, a number of models can be developed from logistic 

regression analysis. Each model produces a different selection of variables. Such a 

result is possible because different variables may contain different/complementary 

information that contributes to the prediction of the value of the target variable. Thus, 

each model needs to be evaluated and the one which is the most parsimonious, fits 

the data well, and has the highest predictive capability, is selected. The selected 

model is denoted as .)(ln
~
Y  

 

Hence, logistic regression 
~

)ln(Y  discards any )(AFfAk ∈ , )(BFfBk ∈  and 

)(CFfCk ∈  for which iat∃ contained in x  of yx → , the ii atβ  value is not 

significant towards the class attribute Y  (logistic regression analysis in Equation 4). 

 

For Maximal frequent patterns, logistic regression 
~

)ln(Y  simplifies any rule, 

)(MFfMk ∈  where iat∃ contained in x  of yx → , the ii atβ  value is not significant 

for the class attribute Y  (logistic regression analysis in Equation 4), in the following 

way: If iat x∈ in yx →  then the rule )(MFfMk ∈  is simplified to yx →' , where 

'x = iatx \ . 

 

From the set of frequent rules )(AF , )(BF , )(MF  and )(CF , the resulting sets that 

have been reduced according to the statistical analysis in steps 5a and 5b are denoted 

as { })(21 ,...,,)( AFSfsAfsAfsAAFS = , { })(21 ,...,,)( BFSfsBfsBfsBBFS = , 
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{ })(21 ,...,,)( MFSfsMfsMfsMMFS =  and { })(21 ,...,,)( CFSfsCfsCfsCCFS = , 

respectively.   

 

5.8.2 Redundancy and Contradictive Removal 

The existence of the redundant and the contradictive rules is still a significant issue 

in presenting statistically valid patterns. A discussion of the problem of redundant 

and contradictive rules was presented in Chapter 3. Here, the details of the 

development of redundancy and contradictive rule removal are given. 

 

STEP 6: Productive rules based on minimum improvement redundant rule constraint 

(Bayardo, Agrawal, & Gunopulos, 2000), discards 

any )(AFSfsAk ∈ , )(BFSfsBk ∈ , )(MFSfsM k ∈  and )(CFSfsCk ∈  if confidence 

(max)(
xz

yx
⊂

≤→ confidence ))( yz → .  

In other words, a rule yx →  with confidence value c1 is considered as redundant if 

there exists another rule yz →  with confidence value c2, where xz ⊂ and c1  ≤  c2. 

 

 From the set of statistically reduced frequent rules, )(AFS , )(BFS , )(MFS  and 

)(CFS  the resulting sets that have been reduced according to the minimum 

improvement redundant rule assessment in step 6 are denoted as 

{ })(21 ,...,,)( AFRfrAfrAfrAAFR = , { })(21 ,...,,)( BFRfrBfrBfrBBFR = , 

{ })(21 ,...,,)( MFRfrMfrMfrMMFR =  and { })(21 ,...,,)( CFRfrCfrCfrCCFR = ,  

respectively.  

 

STEP 7: Contradictive rule constraint (Zhang & Zhang, 2001) discards any two rules 

)(, XFRfrXfrX kj ∈  if xfrX j = y→  and xfrX k = y¬→ , where 

( )( )XFRkj ,...,1, = , ( )CMBAX ,,,=  and kj ≠ .  

 

Please note that in the above formulation, the focus is on two rules for the sake of 

simplicity; the contradictive rule constraint will discard two or more contradictive 

rules as long as they all imply a different class value. 
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From the rule sets, )(AFR , )(BFR , )(MFR  and )(CFR  the resulting sets that have 

been reduced according to contradictive rule removal in step 7 are denoted as 

{ })(21 ,...,,)( AFCfcAfcAfcAAFC = , { })(21 ,...,,)( BFCfcBfcBfcBBFC = , 

{ })(21 ,...,,)( MFCfcMfcMfcMMFC =  and { })(21 ,...,,)( CFCfcCfcCfcCCFC = ,  

respectively.  

 

5.8.3 Filtering Rules Based on Confidence Threshold 

In the later experiment in Chapter 6, as the rules are progressively reduced based on 

the minimum confidence threshold, an optimal stopping criteria based on a 

confidence threshold needs to be chosen to ensure that the accuracy rates (AR) and 

coverage rates (CR) are at an acceptable level.  

 

STEP 8: Confidence Based Filtering. From the rule sets, )(AFC , )(BFC , )(MFC  

and )(CFC , the rule set that have been progressively filtered based on the 

confidence threshold are denoted as { })(21 ,...,,)( AFCFfcffcfAfcfAAFCF = , 

{ })(21 ,...,,)( BFCFfcfBfcfBfcfBBFCF = , { })(21 ,...,,)( MFCFfcfMfcfMfcfMMFCF =  

and { })(21 ,...,,)( CFCFfcfCfcfCfcfCCFCF = ,  respectively.  

 

5.9 Rules Accuracy and Rules Coverage  

The combination of statistical analysis, redundancy and contradictive assessment 

methods provide an appropriate means of discarding non-significant rules. However, 

the question still remains whether this great reduction of rules is at cost of a 

significant reduction in the rules’ accuracy and rules’ coverage. Hence, the rule 

coverage, classification and predictive accuracy of the different sets of rules obtained 

by this process are evaluated. This step can be defined as follows: 

 

STEP 9: Determining the accuracy and coverage rate of rule sets. For each of the 

resulting rule sets, namely the rule sets ( )(AF , )(BF , )(MF  and ))(CF , rule sets 

after statistical analysis ( )(AFS , )(BFS , )(MFS  and ))(CFS , rule sets after 
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redundancy removal ( )(AFR , )(BFR , )(MFR  and ))(CFR , the rule sets after 

contradictive removal ( )(AFC , )(BFC , )(MFC  and )(CFC ) and rule set based on 

the confidence based filtering (FCF(A), FCF(B), FCF(M) and FCF(C)), calculate the 

classification accuracy by determining the percentage of correctly classified 

instances in trD , the predictive accuracy determining the percentage of correctly 

classified instances in tsD , and the coverage rate (number of captured instances) in 

both trD  and tsD . The combination of these rule evaluation strategies will enable the 

association rule mining framework to determine the level of correctness and quality 

of rules. These rules will have a sound statistical basis and one can be more confident 

that they reflect the real-world situation.  

 

5.9.1 Pseudo code for the Rules Accuracy and Rule Coverage 

The algorithm that specifies the rules’ accuracy and rules’ optimization process is 

outlined in Figure 5.10. This algorithm is used to determine the accuracy (AR) and 

coverage rate (CR) of the selected rule sets for each algorithm.  

 
Input: A sets of rule (F(A), F(B), F(M)  and F(C)), a sets of statistical reduced set of rule 
(FS(A), FS(B), FS(M) and FS(C)); a sets of rule after redundancy removal (FR(A), FR(B), 
FR(M) and FR(C)); a sets of rule after contractive removal (FC(A), FC(B), FC(M) and 
FC(C)); a set of rules after confidence based filtering (FCF(A), FCF(B), FCF(M) and 
FCF(C)); Training and Testing dataset 
Output: Accuracy (AR) and coverage rate (CR) of the rule set  
 For each rule, scan the training and testing dataset 
  Check whether rules classifies all the instances in dataset 
  Calculate Misclassification Rate (MR) for each rule 
 AR = (1- sum of all MRs )* 100 
 CR = (1 – (Number of Uncovered Instances /Total Number of Instances)) * 100 

return AR and CR 

Figure 5.10: Pseudo code for the Rules Accuracy and Rules Coverage 

 

5.10 Conclusion 

This chapter has provided a detailed description of the way that the association rules 

derived from relational data are evaluated using the proposed framework. Pre-

processing is undertaken so that only clean data and a suitable data format are used in 

the association rule mining process. The dataset is then divided into two partitions. 

The first partition is used for the feature subset selection method, association rule 
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generation, statistical analysis, and redundancy and contradictive assessment; while 

the second partition acts as sample data drawn from the database, used to verify the 

accuracy and coverage of the discovered rules. The selection of significant attributes 

is an important aspect of the association rule mining process. This will ensure that 

less frequent patterns are enumerated, and in most cases, it was utilized here to 

provide the relative usefulness of attributes in predicting the value of the class 

attribute, and discard any of the attributes whose relevance value is fairly low. This 

would prevent the generation of rules which then would need to be discarded anyway 

if they are found to include irrelevant attributes. The Apriori association algorithm is 

then utilized to generate the frequent itemsets including the maximal and closed 

frequent itemsets. The discovered rules are then evaluated using statistical analysis, 

and any rules determined to be statistically insignificant are discarded. The chi-

squared test is used to discover the properties of data attributes; principally regarding 

the data dependency. The logistic regression analysis is then employed to provide the 

classification power of the data. The development of logistic regression modeling 

involves the model building strategies. Additionally, redundancy and contradictive 

assessment methods are employed to discard redundant and contradictive rules. 

Within this chapter, the way that the rules are evaluated based on the aforementioned 

steps is formalized. At the end of this chapter, the accuracy and coverage rate of 

reducing the number of rules based on the statistical analysis, redundancy and 

contradictive assessment, and filtering based on confidence threshold, are described. 

The whole process is illustrated in Figure 5.11 and the steps involved are 

summarized in the pseudo code in Figure 5.12. The experiments used to evaluate the 

developed framework are provided in the following chapter. 
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)( trD )( tsD

)(
~

trD

 
(*) = The removal/simplification of rule/s based on statistical analysis is done in the following 

sequence: i) First, rule/s that contains non-significant attribute/s based on STEP 5a is 

removed/simplified; ii) Second, rule/s that contains non-significant attribute/s based on STEP 5b is 

removed/simplified. 

Figure 5.11: Rules Evaluation Process 

 
 
Input: database D  with class attribute  
Output: Accuracy Rate (AR) and Coverage Rate (CR) for each of rule set (F(A), F(B), F(M)  
and F(C)); (FS(A), FS(B), FS(M) and FS(C)); (FR(A), FR(B), FR(M) and FR(C)); (FC(A), 
FC(B), FC(M) and FC(C)); and  (FCF(A), FCF(B), FCF(M) and FCF(C)). 
1. Apply the pre-processing technique towards each iat  in ,D  where 

)),...,1((, ATiATati =∈ , 
2. Divide the database D  into trD and tsD , 
3. Calculate Symmetrical τ  of input attributes iat  in ,trD  where )),...,1((, ATiATati =∈   
    in predicting the value of the class attribute .trDY ∈  Discard irrelevant iat  and denote the  
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    filtered database as .
~

trD  

4. Generate a frequent set of rules F(A), F(B), F(M)  and F(C) from 
~

trD . 

5. Identify the non-significant  attributes iat  in 
~

trD  where )),...,1((, ATiATati =∈  based  
    on statistical analysis, 
 5.1. Chi-squared test; 

       Calculate the 2χ  values from ),( Yatcorr i and identify iat  which are not  
       significantly correlated with Y (class attribute),  

  
for each 

~
,),( tri DYatcorr ∈  where )),...,1((, ATiATati =∈  

   if 2χ is not significant then discard any )(AFfAk ∈ , )(BFfBk ∈ and 
)(CFfCk ∈  that contains iat  in x  of yx →  

(For Maximal patterns); 
if 2χ is not significant, then simplify any )(MFfM k ∈ that contain iat  in x  
of yx →  to yx →' , where 'x = iatx \ . 

 5.2. Logistic Regression; 

       (Determination of Logistic Regression Model by Fitting the Data and Testing for  

       Significance of the Coefficient) 

       Develop and fit several Logistic Regression models from
~

trD . Choose a model that   

      Fits the data with the highest predictive capabilities, denoted as (
~

)ln(Y ). Estimate  

      the coefficient of iat , iiatβ  in 
~

)ln(Y and identify iat  which are not significantly   
      correlated to Y (class attribute), 

  
for each iiatβ values in 

~
)ln(Y where )),...,1((, ATiATati =∈  

  if  iiatβ  is not significant then discard any )(AFfAk ∈ , )(BFfBk ∈ and 
)(CFfCk ∈  that contains iat  in x  of yx →  

(For Maximal patterns), 
if iiatβ is not significant, then simplify any )(MFfM k ∈ that contain iat  in 
x  of yx →  to yx →' , where 'x = iatx \ . 

 Denote the statistically reduced/simplified set of rules as FS(A), FS(B), FS(M) and FS(C).  
6. Apply Minimum Improvement Redundancy Removal to reduce FS(A), FS(B), FS(M) and  
    FS(C) into FR(A), FR(B), FR(M) and FR(C), respectively.  
7. Apply Contradictive Rule Constraints Removal to reduce FR(A), FR(B), FR(M) and  
    FR(C) into FC(A), FC(B), FC(M) and FC(C), respectively. 
8. Progressively filter FC(A), FC(B), FC(M) and FC(C) based on confidence threshold into  
    FCF(A), FCF(B), FCF(M) and FCF(C). 
9. Calculate the AR and CR for each rule set (F(A), F(B), F(M)  and F(C)), (FS(A), FS(B),  
    FS(M) and FS(C)), (FR(A), FR(B), FR(M) and FR(C)), (FC(A), FC(B), FC(M) and FC(C)) 
    and  (FCF(A), FCF(B), FCF(M) and FCF(C)) towards the trD and tsD . 
return AR and CR for each of rule set (F(A), F(B), F(M)  and F(C)); (FS(A), FS(B), FS(M) 
and FS(C)); (FR(A), FR(B), FR(M) and FR(C)); (FC(A), FC(B), FC(M) and FC(C)); and  
(FCF(A), FCF(B), FCF(M) and FCF(C)). 

Figure 5.12: Pseudo code of the rules evaluation framework 
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CHAPTER 6 EVALUATION OF FRAMEWORK FOR RELATIONAL DATA 

6.1 Introduction 

This chapter describes several experiments performed in order to evaluate the 

developed framework for relational data. It also serves the other purpose of 

demonstrating several important issues mentioned throughout the thesis with respect 

to evaluating the interestingness of rules derived from relational data. This includes 

an experiment of selecting an appropriate and useful feature subset selection 

application and the applications of chi-squared test and logistic regression analysis. 

The existing frequent itemsets mining approaches include the Apriori, Maximal and 

Closed. In the developed framework, the frequent itemsets are first generated from 

the Apriori algorithm. Two variants of this algorithm are utilized in order to study the 

effect of applying the confidence threshold at different stages. Furthermore, the 

developed framework has been utilized to evaluate the rules from Maximal and 

Closed algorithms. In a later experiment, the observations are made in order to 

understand the implication and effect of difference confidence usage for each 

Apriori, Maximal and Closed approach in the developed framework.  

 

6.2 Evaluation of Framework for Relational Data 

The evaluation of the proposed unified framework is performed using the Wine, 

Mushroom, Iris and Adult datasets, which are real-world datasets of varying 

complexity obtained from the UCI Machine Learning Repository (Frank & 

Asuncion, 2010). All the datasets used here reflect classification problems in which, 

for supervised learning, the target variables have been chosen to be the right hand 

side/consequence of the association rules discovered during association rule mining 

analysis. The equal sized binning method is utilized for all continuous attributes in 

the Adult, Iris and Wine datasets and this will ensure that the data sizes are 

manageable by reducing the number of distinct values per attribute (Han & Kamber, 

2001). Other discrete attributes in the Adult and Mushroom datasets were preserved 

in their original state.  

 

In Section 6.2.1, the characteristics of the datasets used for generating the association 

rule and the initial number of rules discovered with each approach are presented (the 
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initial rules refer to the rules obtained by just simply applying the association rule 

mining without utilizing any of the steps defined within the proposed framework). 

Section 6.2.2 is devoted to feature subset selection experiments while Section 6.2.3 

and Section 6.2.4 provide the experiments for chi-squared test and logistic regression 

analysis, respectively. The comparison between the rules discovered from the Apriori 

framework that consist of both minimum support and minimum confidence 

thresholds and the Apriori framework with only a minimum support threshold are 

shown in Section 6.2.5. The rules are then progressively verified based on statistical 

analysis, namely logistic regression and chi-squared test, redundancy and 

contradictive assessment methods. The comparison of the quality of the rule sets 

discovered from the Apriori, Maximal and Closed algorithms is presented in Section 

6.2.6. In Section 6.2.7, a comparison is carried out to ascertain the effect of altering 

the minimum confidence values of the evaluation process for each algorithm.  

 

6.2.1 Dataset Characteristics 

Table 6.1 indicates the characteristics of the aforementioned datasets used in our 

evaluation. It shows the number of records, the number of attributes, and the number 

of selected attributes based on Symmetrical Tau (ST) features selection in each 

dataset.  

 

Table 6.1: Dataset Characteristics 

# of Rules with Target Variable Dataset # 
Records 

# 
Attr.*

# Selected 
Attr. 
(Sym. Tau) 

Apriori (min_sup 
& min_conf) 

Apriori 
(min_sup) 

Maximal Closed 

Wine 178 14 12 234 272 103 242
Adult 45222 15 10 1680 2192 129 1866
Mushroom 8124 23 11 75237 77815 255 3009
Iris 150 5 4 51 58 13 41
(*): including the Class variable 

 
The table also shows the number of initial rules generated by the Apriori, Maximal 

and Closed algorithms. The first Apriori algorithm (in Column 5) will act as the 

initial benchmark having both the minimum support and the minimum confidence in 

generating the rule set. The second variant (in Column 6) will discover only the rules 

based on the minimum support value. One reason for having only a minimum 

support in the second variant is to give a fair evaluation between the Apriori, 
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Maximal and Closed algorithms as both rule sets generated from the Maximal and 

Closed algorithms are constrained only by a minimum support threshold. Another 

reason is to evaluate the effect of applying the confidence measure for filtering after 

statistical and redundant and contradictive based filtering has been applied (rational 

of which as discussed in Chapter 5 (Section 5.1).  

 

The selected attributes based on ST in Column 4 in Table 6.1 are measured according 

to their capabilities in predicting the values of attribute class in each dataset such as 

‘Adult : Income’ (<=50K and >50K), ‘Wine : Classes’ (Low, Middle and High), 

‘Mushroom : Classes’ (Edible and Poisonous) and ‘Iris : Classes’ (Setosa, 

Versicolour and Virginica). Columns 5 and 6 contain the number of rules discovered 

by each association rule mining technique for each dataset. In Table 6.1, there are 

two variants of Apriori utilized in this thesis. The first variant refers to the Apriori 

framework with a minimum support of 10% and a minimum confidence of 60%, 

while the second variant represents the Apriori framework using only a predefined 

minimum support of 10%. Columns 7 and 8 refer to the Maximal and Closed 

algorithms respectively in generating frequent itemsets with a minimum support of 

10%.  

 

6.2.2 Feature Subset Selection Process and Comparison of Symmetrical Tau 

(ST) and Mutual Information (MI) 

Using the whole dataset as input would produce a large number of rules, many of 

which are created by the presence of irrelevant attributes. ST and MI are capable of 

measuring the relevance of attributes in predicting a class value, but they are 

different from each other in terms of their approach as aforementioned in Chapter 5. 

They can both be used as a means of selecting a feature subset to be used for rule 

generation, and in this section the two approaches are compared in terms of their 

general properties, and utilization for the feature subset selection process. At the end 

of the section, the feature subsets used for each of the datasets considered in the 

experimental evaluation is indicated. 

 
The ST and MI measures for all the attributes in the Mushroom, Adult, Wine and Iris 

datasets are shown in Table 6.2, 6.3 6.4 and 6.5, respectively. The attributes were 
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ranked according to their decreasing ST and MI values. Based on the experiment 

with the Adult dataset, the MI approach seems to favor variables with more values. 

This can be observed in Table 6.2 for the Adult dataset as variables with more values 

have all been ranked in the top 7 based on the MI measure (i.e. Education(16), 

Occupation(14), Education Number(8), Age(10) and Hour PerWeek(10)), while each 

one of these is ranked lower based on ST, with attribute Capital Gain(6) occurring 

higher than all these attributes with more values.. Similarly, for the Mushroom 

dataset, variables with more values such as Gcolor(12), Scabovering(9), 

Scbelowring(9), are all ranked higher based on MI in contrast to ST ranking. For 

example, the ST measure has ranked the attribute Gsize with only 2 values as third in 

the ranking, higher than all these multi-valued attributes, whereas in the MI ranking 

the Gsize is seventh in the ranking after all those multi-valued attributes.   

 

This observation of MI preference for multi-valued attributes is in accord with that of 

(Blanchard, Guillet, Gras, & Briand, 2005). In contrast, the procedure based on ST 

produces a more stable selection of variables which does not favor the multi-valued 

nature of attributes. This is in agreement with the claim by (Zhou & Dillon, 1991) 

that ST is fair in handling multi-valued variables. However, the question still remains 

of how the ST and MI methods compare when used for the purpose of feature subset 

selection. 

 
Table 6.2:  Comparison between ST and MI for Adult Dataset 

# of 
Values 

Variables ST 
Values 

# of 
Values 

Variables MI 
Values 

7 Marital Status 0.1448 6 Relationships 0.1662
6 Relationship  0.1206 7 Marital Status 0.1575
6 Capital Gain  0.0706 16 Education 0.0934
8 Education Number 0.0688 14 Occupation 0.0932

16 Education  0.0528 8 Education Number 0.0900
2 Sex   0.0470 10 Age 0.0894

14 Occupation   0.0469 10 Hours Per Week 0.0545
10 Age  0.0432 6 Capital Gain 0.0475 

5 Capital Loss   0.0361 2 Sex 0.0374
10 Hours Per Week  0.0354 5 Capital Loss 0.0238

7 Work Class  0.0166 7 Work Class 0.0171
5 Race  0.0085 41 Native Country 0.0093

41 Native Country  0.0077 5 Race 0.0083
10 FNLWGT  0.0002 10 FNLWGT 0.0002 
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Table 6.3:  Comparison between ST and MI for Mushroom Dataset 

Feature Subset Selection Based on ST Feature Subset Selection Based o MI 
# of 
Values 

Variables ST Values # of 
Values 

Variables MI Values 

9 Odor 0.5872 9 Odor 0.9127 
9 SporePrintColor 0.3246 9 SporePrintColor 0.4812  
2 Gsize 0.2866 12 Gcolor 0.4078  
5 Ringtype 0.2585 5 Ringtype 0.3172  
2 Bruises 0.2487 9 Scabovering 0.251  

12 Gcolor 0.2172 9 Scbelowring 0.2404  
9 Scabovering 0.1462 2 Gsize 0.2271  
6 Pop 0.1454 6 Pop 0.197  
9 Scbelowring 0.1405 2 Bruises 0.1897  
2 Gspacing 0.1298 7 Habitat 0.1578  
7 Habitat 0.0980 2 Gspacing 0.1088  
3 Ringnumber 0.0460 6 Cshape 0.0487  
4 Sroot 0.0439 3 Ringnumber 0.0409  
6 Cshape 0.0299 4 Sroot 0.0402  
4 Csurface 0.0234 10 Ccolor 0.0356  

10 Ccolor 0.0227 4 Csurface 0.0249  
4 Veilcolor 0.0214 4 Veilcolor 0.0222  
4 Ssabovering 0.0169 4 Ssbelowring 0.0166  
4 Ssbelowring 0.0150 4 Ssabovering 0.0163  
2 Sshape 0.0150 2 Gattachment 0.0122  
2 Gattachment 0.0146 2 Sshape 0.0108  
1 Veiltype 0.0000 1 Veiltype 0.0000

 

 
Table 6.4: Comparison between ST and MI for Wine Dataset 

# of 
Values 

Variables ST 
Values 

# of 
Values 

Variables MI 
Values 

5 Flavanoids 0.4810 5 Flavanoids 0.8796  
5 Color 0.4226 5 Diluted 0.8476  
5 Diluted 0.3610 5 Color 0.7914  
5 Proline 0.3543 5 Proline 0.7422  
5 Hue 0.3019 5 Hue 0.6242  
5 Alcohol 0.2367 5 Phenols 0.5591  
5 Phenols 0.2312 5 Alcohol 0.5275  
5 Magnesium 0.1840 5 Magnesium 0.3717  
5 Alcalinity 0.1680 5 Proanthocyanins 0.3275  
5 Proanthocyanins 0.1525 5 Alcalinity 0.3143  
5 Malidacid 0.1403 5 Malidacid 0.2821  
5 Nonflavanoids 0.1313 5 Nonflavanoids 0.2730  
5 Ash 0.0499 5 Ash 0.0996  
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Table 6.5: Comparison between ST and MI for Iris Dataset 

# of Values Variables ST 
Values 

# of Values Variables MI 
Values 

5 Petal Width 0.6738 5 Petal Width 1.311
5 Petal  Length 0.6355 5 Petal  Length 1.226
5 Sepal Length 0.2724 5 Sepal Length 0.618
5 Sepal Width 0.2301 5 Sepal Width 0.508

 

When using an attribute relevance measure for the feature subset selection problem, 

commonly a relevance cut-off point is chosen below which all attributes are 

removed. Hence, in the ranking of attributes according to their decreasing ST and MI 

values in Tables 6.2-6.5, a relevance cut-off needs to be set. Here, the cut-off point 

was selected based on the significant difference between the ST/MI values in 

decreasing order. The significant difference was considered to occur in the ranking at 

the position where that attribute’s ST/MI value is less than half of the previous 

attribute’s ST/MI value in the ranking, respectively. At this point and below in the 

ranking, all attributes are considered as irrelevant. In Tables 6.2-6.5, all the attributes 

that are considered as irrelevant based on this way of determining the cut-off value, 

are shaded gray. As one can see, the way in which feature subsets would be selected 

based on ST and MI measures, differs for the Adult dataset only. Hence, the 

performance of these two subsets when used for generating association rules for 

classification purposes will be evaluated next. Additionally, in the Iris dataset (Table 

6.5), all input variables were considered in the experiments, as Iris dataset consists of 

only 4 attributes, and complexity problems would not occur. 

 

For the Adult dataset, by ranking the attributes based on ST values, 10 input 

attributes are selected based on the aforementioned way of determining the cut-off 

value, while 13 input attributes are favored based on MI ranking. The cut-off point at 

and below which all attributes are considered as irrelevant, is shown in Table 6.2, 

where cells of attributes removed are shaded gray. Rules are then generated based on 

these 10 and 13 input variables and evaluated for their classification/predictive 

accuracy and coverage rate. As depicted in Table 6.6, for this dataset, the selection of 

10 input attributes that were ranked based on ST resulted in 303 rules in comparison 

to 1726 rules when they were ranked by MI. This was not at the cost of a reduction in 

coverage rate; moreover, accuracy was slightly better for both the training and testing 

datasets.  
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Table 6.6:  Rules Evaluation between attributes selected based on ST and MI for Adult 

dataset 

 

As shown in the previous experiment for the Adult dataset, the ST has more 

advantageous properties in comparison with MI, as the feature subset selected 

according to the ST measure, resulted in many less rules which at the same time had 

a slightly higher accuracy and the same coverage rate of 100%. In addition, from the 

ranking of the different attributes relevance measures (i.e. Tables 6.2-6.5), it was 

shown that MI tends to favor multi-valued attributes in comparison to ST. Given 

these observation as well as others’ claims (Zhou & Dillon, 1991) in regards to the 

advantageous properties of ST over other existing measures, the ST feature selection 

criterion was used within the framework as the first step in order to remove any 

irrelevant attributes. This would prevent the generation of rules that include any 

irrelevant attributes. Hence, in the experiments it is not necessary to use ST to further 

verify the rules as the rules were created from the attribute subset considered as 

relevant according to the measure, as was done in (Shaharanee, Hadzic, & Dillon, 

2009; Shaharanee, Hadzic, & Dillon, 2011). 

 

For example, the comparison results for the Adult dataset are shown in Table 6.2, 

where the capabilities of attributes in predicting the values of attribute ‘Income’ 

(<=50K and >50K) are measured. For the Adult dataset results presented in Table 

6.2, the relevance cut-off value is 0.0166. This is due to the ST value of attribute 

‘Hours per week’ being more than double the ST value for attribute ‘Work class’. 

Thus, the subset of data now consists of 10 attributes: Marital status, Relationship, 

Capital gain, Education number, Education, Sex, Occupation, Age, Capital loss and 

Hours per week. Similarly for the Mushroom dataset in Table 6.3, the subset of data 

after the feature subsets selection process consists of 11 attributes: Odor, Spore Print 

Color, Gill Size, Ring Type, Bruises, Gill Color, Population, Stalk Color Above 

Ring, Stalk Color Below Ring, Gill Spacing and Habitat. For the Wine dataset (Table 

Symmetrical Tau Mutual Information  Data  
Partition # Of 

Rules 
AR % CR% # Of 

Rules 
AR % CR % 

Training  68.98 100.00 68.98 100.00Initial 
# of Rules  Testing 

2192
69.05 100.00

2192
69.05 100.00

Training  67.46 100.00 67.36 100.00Rule # from 
feature subset Testing 

303
67.45 100.00

1726
67.38 100.00
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6.4), only the Ash input variable has been discarded from further analysis. The next 

section discusses the verification of the extracted rules through statistical analysis. 

 

6.2.3 Chi-Squared Test 

A natural way to express the dependence between antecedent and the consequence of 

an association rule yx →  is the correlation based on the chi-squared test for 

independence (Brijs, Vanhoof, & Wets, 2003). The chi-squared test results for the 

Mushroom, Iris and Wine datasets show that all variables passed the chi-squared 

basic requirement. The requirements are that all cells in the contingency table have 

expected values greater than 1 and at least 80% of the cells have expected values 

greater than 5. 

 

However, for the Adult dataset, of the two categorical variables combination, one 

input variable namely CapitalGain has been discarded as the variable failed the basic 

chi-squared requirements. The variable is independent of the target variable Income 

and is considered not significant. 

 

Thus, any rules that consist of the Capital Gain variable can be removed.  Table 6.7 

shows examples of rules that have been removed based on the chi-squared test for the 

Adult dataset. (A total of 151 numbers of rules are removed.) 

 

Table 6.7: Example of a pruned rule based on Chi-squared test for the Adult data 

Set Size Confidence (%) Support (%) Rules 
2 76.94 75.07  lowCgain ==> lowIncome 
3 78.40 72.86 lowCloss & lowCgain ==> 

lowIncome 

 

6.2.4 Logistic Regression Analysis 

The relationship between the antecedent and consequent in association rule mining 

can be presented as a relationship between a target variable and the input variables in 

logistic regression. As mentioned in Section 3.7.3.3 (Chapter 3), from logistic 

regression a number of models can be discovered. This result is possible because 

different variables may contain different/complementary information that contributes 
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to the prediction of the value of the target variable. Each model (second column of 

the assessment tool figures) will have a set of attributes with a specific 

misclassification rate. The model with the lowest misclassification rate (last column 

of the assessment tool figures) and the most parsimonious is selected. Figures 6.1 to 

6.4 depict the assessment for each of the dataset.   

 

Figure 6.1: Assessment for logistic regression model for Mushroom data 

 

As for the Mushroom dataset, using the selected logistic regression model (i.e. 

Forward Selection Method variant), any rules that contain Bruises, Gill Color, 

Population, Ring Type, Habitat, Stalk Color Below Ring and Stalk Color Above Ring 

can be discarded, since they are not significant contributors. Table 6.8 depicts the 

example of pruned rules for Mushroom dataset. 

 

Table 6.8: Example of prunes rules based on logistic regression analysis for Mushroom data 

Set Size Confidence Support Rules 
7 100 % 12.55 % whiteSCBelowRing & whiteSCAboveRing & 

noneOdor & noBruises & crowdedGspacing & 
broadGSize => edibleClasses 

8 100 % 10.80 % 
whiteSporePrintColor & severalPop & 
pinkSCAboveRing & noBruises & narrowGSize & 
evanescentRingType & closeGspacing=> 
poisonousClasses 
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Figure 6.2: Assessment for logistic regression model for Adult data 

 

Figure 6.3: Assessment for logistic regression model for Wine data 

 
For the Adult dataset, a logistic regression model (i.e. Backward Selection Method 

variant) is selected; any rules that contain Education Number have been removed. 

Finally, for the Wine dataset, a logistic regression model (i.e. Forward Selection 

Method variant) is selected, any rules that include variables Diluted, Proline, Hue, 

Alcohol, Phenols, Alcalinity, Proanthocyanins, Malid Acid and Nonflavanoids have 
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been removed. Tables 6.9 and 6.10 reveal the example of pruned rules from Adult 

and Wine datasets, respectively.  

Table 6.9: Example of prunes rules based on logistic regression analysis for Adult data 

Set Size Confidence Support Rules 
3 83.82 % 26.47 % eEdunum & dHour ==> lowIncome 
4 83.84 % 43.67 % lowCloss & lowCgain & eEdunum ==> 

lowIncome 
 

Table 6.10: Example of prunes rules based on logistic regression analysis for Wine data 

Set Size Confidence Support Rules 
3 100.00 % 16.82 % lowHue & lowDiluted ==> highClass 
4 100.00 % 4.67 % lowProline & lowPhenols & lowHue ==> 

highClass 
 

None of the input attributes in the Iris dataset were discarded based on the statistical 

analysis approach either by the chi-squared or logistic regression. All inputs’ 

attributes in the Iris dataset were statistically significant in predicting the target 

attributes. 

 

 

Figure 6.4: Assessment for logistic regression model for Iris data 

 
 



 135

The use of statistical analysis helps to determine the usefulness and significance of 

input variables in predicting the target variables. Hence, this is an appropriate means 

of identifying and discarding rules that are not significant. 

 

In this section, several examples of the application of statistical analysis were 

provided together with examples of rules being removed. Henceforth, the discussion 

will focus on comparing the difference between the various utilized approaches, and 

the quality of their resulting rules, and rules at different steps in the rule verification 

process. Hence, in the next section, an example of redundant/contradictive rules 

being removed throughout the process will be provided and the relationship between 

confidence measure and contradictive rule removal will be discussed. 

 

6.2.5 Apriori (Min_Sup & Min_Conf) vs. Apriori (Min_Sup) 

Apriori algorithms have demonstrated a good performance in generating frequent 

patterns (Zaki & Hsiao, 2002). However, the patterns generated need to be evaluated 

in order to arrive at significant and useful patterns. A unification framework for 

evaluating the interestingness of frequent itemsets obtained by the Apriori algorithm 

was previously developed in this thesis and reported in (Shaharanee et al., 2009; 

Shaharanee et al., 2011). It was found that the rules generated from the Apriori 

algorithm were large and contaminated with useless patterns. With appropriate 

statistical analysis, and redundancy and contradictive assessment methods, the 

unification framework managed to discard a large number of rules while still 

preserving high accuracy and coverage rate of the final reduced rule set. 

 

In this section, the usefulness of the rules generated from both variants is compared. 

Table 6.11 reveals the progressive difference in the number of rules, the Accuracy 

Rate (AR) and the Coverage Rate (CR) values as the ST feature selection 

application, statistical analysis, redundancy and contradictive assessment methods 

are utilized.  

 

For most of the discovered rules in Table 6.11, the AR in the training set (i.e. 

classification accuracy) was consistently higher than the testing set (predictive 

accuracy). This is due to the fact that the discovered rules were generated from the 
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training set, and as a consequence, the rules mostly fit well the characteristics of the 

data objects that exist predominantly in the training set. 

 

Table 6.11:  Comparison between Apriori (Min_Sup & Min Conf) and Apriori (Min_Sup) in 

Wine Dataset 

 

The initial number of rules from Apriori constrained with min_sup is larger 

compared to the initial number of rules in Apriori constrained with both min_sup and 

min_conf due to the removal of the minimum confidence threshold. As application of 

the Symmetrical Tau, statistical analysis and redundancy assessment were 

progressively applied to the initial set of rules; at least 90% of the rules in the rule set 

have been discarded. Both AR values for the testing dataset in Apriori (with min_sup 

and min_conf) and Apriori (with min_sup) increased while the CR of the rules was 

still preserved at 100%. The rule sets at this stage are shown in Table 6.12. 

 

 

 

 

 

 

 

 

 

Apriori (Min_Sup & Min Conf) Apriori (Min_Sup) Type  
of  
analysis 

Data  
Partition # Of 

Rules 
AR % CR% # Of 

Rules 
AR % CR % 

Training  87.58 100.00 76.83 100.00Initial 
# of Rules  Testing 

234
79.84 100.00

272 
69.68 100.00

Training  87.53 100.00 74.26 100.00# of Rules  
after ST Testing 

195
79.44 100.00

217 
68.00 100.00

Training  85.07 100.00 64.16 100.00Statistics 
Analysis Testing 

17
81.98 100.00

24 
60.46 100.00

Training  85.07 100.00 63.52 100.00Redundant 
Removal Testing 

16
81.98 100.00

23 
60.05 100.00

Training 85.07 100.00 85.63 100.00Contradictive 
Removal Testing 

16
81.98 100.00

16 
81.94 100.00

Training  87.84 100.00Conf. 60% 
Testing 

 15 
84.77 100.00
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Table 6.12:  Apriori (Min_Sup & Min Conf) and Apriori (Min_Sup) rules for Wine dataset 

after filtering according to statistical analysis and redundancy assessment 

Apriori (Min_Sup & Min Conf) – 16 # of Rules Apriori (Min_Sup) – 23 # of Rules 
Conf. 
(%) 

Sup. 
(%) 

Rules Conf. 
(%) 

Sup. 
(%) 

Rules 

92.31 11.21 Flavanoids(3.18 - 4.13) ==> 
Class(Low) 

97.06 30.84 ColorIntensity(low - 3.62) 
==> Class(Middle) 

97.06 30.84 ColorIntensity(low - 3.62) ==> 
Class(Middle) 

87.88 27.10 Flavanoids(low - 1.29) ==> 
Class(High) 

65 12.15 ColorIntensity(5.97 - 8.31) ==> 
Class(Low) 

64.10 23.36 Flavanoids(2.24 - 3.18)==> 
Class(Low) 

86.36 17.76 Flavanoids(1.29 - 2.24) ==> 
Class(Middle) 

57.50 21.50 ColorIntensity(3.62 - 5.97) 
==> Class(Low) 

87.88 27.1 Flavanoids(low - 1.29) ==> 
Class(High) 

78.57 20.56 Magnesium(low - 88.4) ==> 
Class(Middle) 

78.57 20.56 Magnesium(low - 88.4) ==> 
Class(Middle) 

86.36 17.76 Flavanoids(1.29 - 2.24) ==> 
Class(Middle) 

64.1 23.36 Flavanoids(2.24 - 3.18)==> 
Class(Low) 

38.78 17.76 Magnesium(88.4 - 106.8) ==> 
Class(Low) 

64 14.95 Magnesium(106.8- 125.2) ==> 
Class(Low) 

34.69 15.89 Magnesium(88.4 - 106.8) ==> 
Class(High) 

100 17.76 Magnesium(low - 88.4) & 
ColorIntensity(low - 3.62) ==> 
Class(Middle) 

64.00 14.95 Magnesium(106.8- 125.2) ==> 
Class(Low) 

100 15.89 Flavanoids(low - 1.29) & 
Magnesium(88.4 - 106.8) ==> 
Class(High) 

35.90 13.08 Flavanoids(2.24 - 3.18)==> 
Class(Middle) 

100 10.28 Magnesium(106.8- 125.2) & 
Flavanoids(2.24 - 3.18)==> 
Class(Low) 

26.53 12.15 Magnesium(88.4 - 106.8) ==> 
Class(Middle) 

100 14.95 ColorIntensity(low - 3.62) & 
Flavanoids(1.29 - 2.24) ==> 
Class(Middle) 

65.00 12.15 ColorIntensity(5.97 - 8.31) 
==> Class(Low) 

100 10.28 ColorIntensity(low - 3.62) & 
Magnesium(88.4 - 106.8) ==> 
Class(Middle) 

92.31 11.21 Flavanoids(3.18-4.13) ==> 
Class(Low) 

95 17.76 Flavanoids(2.24 - 3.18)& 
ColorIntensity(3.62 - 5.97) ==> 
Class(Low) 

30.00 11.21 ColorIntensity(3.62 - 5.97) 
==> Class(High) 

73.33 10.28 Flavanoids(2.24 - 3.18)& 
Magnesium(88.4 - 106.8) ==> 
Class(Low) 

100 17.76 Magnesium(low - 88.4) & 
ColorIntensity(low - 3.62) 
==> Class(Middle) 

100 11.21 Flavanoids(low - 1.29) & 
ColorIntensity(3.62 - 5.97) ==> 
Class(High) 

95.00 17.76 Flavanoids(2.24 - 3.18)& 
ColorIntensity(3.62 - 5.97) 
==> Class(Low) 

100 15.89 Flavanoids(low - 1.29) & 
Magnesium(88.4 - 106.8) ==> 
Class(High) 

100 14.95 ColorIntensity(low - 3.62) & 
Flavanoids(1.29 - 2.24) ==> 
Class(Middle) 

 

58.33 13.08 Magnesium(88.4 - 106.8) & 
ColorIntensity(3.62 - 5.97) 



 138

==> Class(Low) 
100 11.21 Flavanoids(low - 1.29) & 

ColorIntensity(3.62 - 5.97) 
==> Class(High) 

100 10.28 ColorIntensity(low - 3.62) & 
Magnesium(88.4 - 106.8) ==> 
Class(Middle) 

100 10.28 Magnesium(106.8- 125.2) & 
Flavanoids(2.24 - 3.18)==> 
Class(Low) 

73.33 10.28 Flavanoids(2.24 - 3.18)& 
Magnesium(88.4 - 106.8) ==> 
Class(Low) 

 

As an extension of our previous work in (Shaharanee, Dillon, & Hadzic, 2009), 

another method of analysis to discard contradictive rules (Zhang & Zhang, 2001) was 

included. Contradictive rules exist in Apriori (with min_sup) because they are 

constrained by only a minimum support threshold, because at the set confidence 

threshold of 60% in Apriori (with min_sup & min_conf), they do not exist. However, 

this also points to the important difference. The rules with confidence higher than 

60% that are contradictive to other frequent rules in the data, which cannot be present 

in the rule set as they cannot have 60% confidence at the same time, will remain in 

the rule set, but will have a higher misclassification rate. Hence, their contradictive 

nature would not be captured, which essentially would negatively affect the accuracy 

of the rule set as a whole. An example of this scenario is provided later.  The 

contradictive rules detected in Apriori (with min_sup) rule set are shown in Table 

6.13. 

 

Table 6.13:  List of contradictive rules in Wine dataset for Apriori (Min_Sup) 

Conf. (%) Sup. (%) Rules 
64.10 23.36 Flavanoids(2.24 - 3.18) ==> Class(Low) 
35.90 13.08 Flavanoids(2.24 - 3.18) ==> Class(Middle) 
57.50 21.50 ColorIntensity(3.62 - 5.97) ==> Class(Low) 
30.00 11.21 ColorIntensity(3.62 - 5.97) ==> Class(High) 
38.78 17.76 Magnesium(88.4 - 106.8) ==> Class(Low) 
34.69 15.89 Magnesium(88.4 - 106.8) ==> Class(High) 
26.53 12.15 Magnesium(88.4 - 106.8) ==> Class(Middle) 
 
 

With the removal of the contradictive rules in Apriori (with min_sup), both 

approaches now contain the same number of rules (16) with only a modest difference 

in AR% as shown in Table 6.11. Even though both contain the same number of rules, 
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there are still differences as shown in Figure 6.5. These differences are due to the 

sequence of the evaluation process in both approaches. Rule (b) does not appear in 

Apriori (with min_sup & min_conf) due to the confidence value being lower than the 

minimum threshold of 60%, while rule (a) does not exist in Apriori (with min_sup) 

because the rule contradicts another rule (see Table 6.13 row 3). 

 

 
 
Apriori (with min_sup & min_conf)                                               Apriori(with min_sup) 
 
 
                                                                                                     
                                                                                                        b 
 
 
 
 
 
 

 Conf. (%) Sup. (%) Rules 
a 64.10 23.36 Flavanoids(2.24 - 3.18) ==> Class(Low) 
b 58.33 13.08 Magnesium(88.4 - 106.8) & ColorIntensity(3.62 - 5.97) 

==> Class(Low)  

Figure 6.5: Rule differences between Apriori (Min_Sup & Min Conf) and Apriori (Min_Sup) 

after contradictive rule removal  

 
Finally, the minimum confidence constraint was utilized on the Apriori (with 

min_sup) rule set and 15 rules were obtained as our final significant rule set (i.e. Rule 

(b) from Figure 6.5 was removed). As for the final 15 rules, the AR value in Apriori 

(with min_sup) is higher than Apriori (with min_sup & min_conf), while the CR 

value remained the same (see Table 6.11). When the individual accuracy of each rule 

was checked, it was exactly the rules (a) and (b) (Figure 6.5) causing lower AR in the 

rules from Apriori (with min_sup & min_conf) and Apriori (with min_sup), 

respectively. The rule (a) was discarded in Apriori (with min_sup) because it 

contradicted another rule as shown in Table 6.13.  

 

This knowledge of the rule (a) being contradictive to another rule (frequent 

association to another class value) was not available in Apriori (with min_sup & 

min_conf) because the minimum confidence constraint was applied at the start. This 

approach missed the fact that association “Flavanoids(2.24 - 3.18) ==> 

Class(Middle)” occurred frequently enough to know that the rule “Flavanoids(2.24 - 

 
a                        15 rules                
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3.18) ==> Class(Low)” is not reliable enough to be used for prediction. This is 

supported by the fact that the AR of the final 15 rules is higher than the AR of the 16 

rules from Apriori (with min_sup & min_conf) containing the contradictive rule. In 

Apriori (with min_sup & min_conf), the contradictive rule “Flavanoids(2.24 - 3.18) 

==> Class(Low)” has misclassified 14 instances from the training set and 10 

instances from the testing set. By removing this rule, a portion of the misclassified 

instances is captured by other rule(s) that are based on different attribute constraints, 

and there is an increase in accuracy as seen in Table 6.11.  

 

These results suggest that it may be advantageous to not apply the confidence 

constraints at the start of the process but rather at the end or after any contradictive 

frequent rules/patterns have been removed. Another option would be to start with a 

lower confidence threshold to still discard those patterns where the confidence is not 

high enough for them to be considered as a significant contradiction to another rule 

with much higher confidence. One can then increase the threshold, and the effects of 

progressively increasing the confidence threshold are shown in Section 6.2.6. This 

relationship between contradictive rules and the application of a confidence threshold 

was not discussed in (Zhang & Zhang, 2001) where the contradictive assessment was 

introduced. 

 

The comparison of the rules generated from the Apriori (with min_sup & min_conf) 

and Apriori (with min_sup) of the Iris, Mushroom and Adult datasets is fairly similar 

to the rules extracted from the Wine dataset. The initial rule set from the Apriori 

(with min_sup) algorithm is naturally always larger than the rule set of the Apriori 

(with min_sup & min_conf) algorithm as depicted in Tables 6.14, 6.15 and 6.16. The 

ST application, statistical analysis, redundancy and contradictive assessment 

methods, and a specific minimum confidence threshold (for Apriori (with min_sup)) 

are progressively applied to each rule set. As the number of rules for each dataset and 

each variant was reduced dramatically, the AR for the training and the testing dataset 

increased gradually except for the rule set from Apriori (with min_sup & min_conf) 

for Iris and Mushroom dataset as there are slight decreases in their AR. While the CR 

for each of the Mushroom and Iris datasets was well preserved at 100%, the CR in 

Adult marginally decreased. The Adult dataset is characterized by imbalanced target 

data, as discussed in (Liu, Ma, & Wong, 2000; Shaharanee et al., 2011), and many 
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rules were discarded so there were no rules left to cover the rarely occurring class 

value ‘>50K’. 

 

The differences between the final number of rules for both Apriori (with min_sup & 

min_conf) and Apriori (with min_sup), in each of the Iris, Mushroom and Adult 

datasets are due to the sequence of the evaluation process as mentioned earlier. For 

the final rule sets obtained from the Iris, Mushroom and Adult datasets, the Apriori 

(with min_sup) approach achieved higher accuracy, which again confirms our earlier 

suggestion to apply the confidence constraint after the contradictive rules have been 

removed. In all cases, the Apriori (with min_sup) approach removed a contradictive 

rule that remained in Apriori (with min_sup & min_conf). In the Iris dataset the 

contradictive rule removed by Apriori (with min_sup) during the contradictive 

assessment was “Petal_length(4.54 - 5.72) ==> Class(Virginica)” (confidence: 70%,  

support: 23.33%), because it contradicted another rule “Petal_length(4.54 - 5.72) 

==> Class(Versicolour)” (confidence: 30%, support: 10%). In the Apriori (with 

min_sup & min_conf) approach the contradictive rule “Petal_length(4.54 - 5.72) ==> 

Class(Virginica)” has a classification accuracy of 70% and misclassifies 9 instances 

from the training set, while it has a predictive accuracy of 70.59% and misclassifies 5 

instances from the testing set. 

 

Similarly, in the Mushroom dataset the contradictive rule removed by Apriori (with 

min_sup) was “Gillsize(Broad) ==> Class(Edible)” (confidence: 69.16%, support: 

48.07%), because it contradicted another rule “Gillsize(Broad) ==> 

Class(Poisonous)” (confidence: 30.84%, support: 21.44%). In the Apriori (with 

min_sup & min_conf) approach the contradictive rule “Gillsize(Broad) ==> 

Class(Edible)” has a classification accuracy of 69.16% and misclassifies 1045 

instances from the training set, while it has a predictive accuracy of 70.91% and 

misclassifies 647 instances from the testing set.  

 

For the Adult dataset, there are 3 extra rules in the final rule set for Apriori (with 

min_sup & min_conf) compared to the final rule set for Apriori (with min_sup). 

These 3 rules have been discarded in Apriori (with min_sup) due to the contradictive 

assessment conducted. For example; the contradictive rule “Sex(Male) ==> 

Class(Income<=50K)” (confidence: 68.62%, support: 46.32%), has been removed 
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from Apriori (with min_sup) because it contradicted another rule “Sex(Male) ==> 

Class(Income>50K): (confidence: 31.38%, support: 21.21%).  In the Apriori (with 

min_sup & min_conf) approach, the contradictive rule “Sex(Male) ==> 

Class(Income<=50K)” has a classification accuracy of 68.62% and misclassifies 

6396 instances from the training set, while it has a predictive accuracy of 69.03% 

and misclassifies 3134 instances from the testing set. 

 

Table 6.14:  Comparison between Apriori (Min_Sup & Min Conf) and Apriori (Min_Sup) in 

Iris Dataset 

 

Table 6.15:  Comparison between Apriori (Min_Sup & Min Conf) and Apriori (Min_Sup) in 

Mushroom Dataset 

 

Apriori (Min_Sup & Min Conf) Apriori (Min_Sup) Type  
of  
analysis 

Data  
Partition # Of 

Rules 
AR % CR% # Of 

Rules 
AR % CR % 

Training  92.86 100.00 81.77 100.00Initial 
# of Rules  Testing 

51
90.99 100.00

58 
78.46 100.00

Training  92.86 100.00 81.77 100.00# of Rules  
after ST Testing 

51
90.99 100.00

58 
78.46 100.00

Training  88.15 100.00 71.60 100.00Statistics 
Analysis Testing 

22
85.29 100.00

29 
68.07 100.00

Training  88.15 100.00 71.60 100.00Redundancy 
Removal Testing 

22
85.29 100.00

29 
68.07 100.00

Training  88.15 100.00 89.79 100.00Contradictive 
Removal Testing 

22
85.29 100.00

21 
86.43 100.00

Training  89.79 100.00Conf. 60% 
Testing 

 21 
86.43 100.00

Apriori (Min_Sup & Min Conf) Apriori (Min_Sup) Type  
of  
analysis 

Data  
Partition # Of 

Rules 
AR % CR% # Of 

Rules 
AR % CR % 

Training  94.27 100.00 91.79 100.00Initial 
# of Rules  Testing 

75237
94.34 100.00

77815 
 83.20 100.00

Training  91.63 100.00 89.97 100.00# of Rules  
after ST Testing 

653
91.75 100.00

669 
90.08 100.00

Training  92.43 100.00 81.20 100.00Statistics 
Analysis Testing 

44
92.51 100.00

48 
81.06 100.00

Training  91.33 100.00 76.97 100.00Redundancy 
Removal Testing 

21
91.28 100.00

24 
76.88 100.00

Training  91.33 100.00 94.62 100.00Contradictive 
Removal Testing 

21
91.28 100.00

20 
94.24 100.00

Training  94.62 100.00Conf. 60% 
Testing 

20 
94.24 100.00
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Table 6.16:  Comparison between Apriori (Min_Sup & Min Conf) and Apriori (Min_Sup) in 

Adult Dataset 

 

6.2.6 Apriori vs. Maximal vs. Closed 

From the previous section, the Apriori with min_sup constraint approach 

demonstrated that, in general, it achieves a better rule set than Apriori with both 

min_sup and min_conf constraint because it applies a confidence constraint after any 

contradictive rules have been removed. Thus, here and in later sections, the term 

‘Apriori’ is used when referring to the Apriori with min_sup. In this section, the 

Apriori approach is compared with the results obtained using the Closed and 

Maximal frequent pattern mining algorithms. As discussed earlier, the closed 

patterns are those for which no other super-pattern has the same support, while a 

maximal pattern has no super-pattern that is frequent. Hence, the Closed and 

Maximal rule sets obtained are a subset of rule sets obtained from Apriori, while the 

Maximal rule set is a subset of the Closed rule set, i.e. Maximal ⊆ Closed ⊆ Apriori. 

Hence, in terms of the characteristics of the rule sets as a whole, Apriori rule set will 

be most specific, followed by Closed and then Maximal. However, at the individual 

rule level, another important difference between the rule sets corresponds to the 

method’s preference for longer/shorter rules. A longer rule will consist of more 

constraints in the precedent of a rule, and in this context we will refer to it as being 

more specific, while a shorter rule (fewer constraints in precedent) is then considered 

more general. The Apriori approach contains a complete set of possible rules, i.e., 

both general and more specific rules, while both Closed and Maximal, will by 

Apriori (Min_Sup & Min Conf) Apriori (Min_Sup) Type  
of  
analysis 

Data  
Partition # Of 

Rules 
AR % CR% # Of 

Rules 
AR % CR % 

Training  81.23 100.00 68.98 100.00Initial 
# of Rules  Testing 

1680
81.35 100.00

2192 
69.05 100.00

Training  80.46 100.00 67.46 100.00# of Rules  
after ST Testing 

233
80.50 100.00

303 
67.45 100.00

Training  81.49 100.00 63.83 100.00Statistics 
Analysis Testing 

71
81.65 100.00

107 
63.87 100.00

Training  85.46 100.00 69.65 100.00Redundancy 
Removal Testing 

46
85.61 100.00

58 
69.72 100.00

Training  85.46 100.00 81.79 99.98Contradictive 
Removal Testing 

46
85.61 100.00

48 
81.91 99.95

Training  88.31 96.38Conf. 60% 
Testing 

43 
88.41 96.12
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definition contain fewer general (shorter) rules in comparison to Apriori. One would 

expect that the difference between the Maximal and Closed patterns, when used for 

classification tasks, is that because of their characteristics, the Maximal rule set will 

also contain fewer general rules in comparison to the Closed rule set which may 

contain more subsets of the maximal pattern based rules as long as they have a 

different support value.  

 

However, as previously mentioned, the large volume of rules initially detected by all 

of the three approaches can still be insignificant and uninteresting. With the 

application of feature subset selection application, a proper statistical evaluation, and 

redundancy and contradictive assessment methods, this large volume of rules can be 

reduced and at the same time the quality of the reduced rule set is preserved well. 

Table 6.17 shows the comparison between the three association rule mining 

algorithms using the Wine dataset. The comparisons are based on the evaluation 

process of the rules with the applications of Symmetrical Tau, statistical analysis, 

redundant and contradictive assessment methods; and a specific minimum confidence 

threshold. The AR and CR values are revealed to evaluate the performance of the 

reduced rule sets (reflecting significant rules in the proposed framework).  

 

Table 6.17:  Comparison between Apriori, Maximal and Closed for Wine dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Apriori Maximal  Closed  Type  
of  
analysis 

Data  
Partition # 

Rules 
AR % CR % #  

Rules 
AR % CR % #  

Rules 
AR % CR % 

Training  76.83 100.00 81.09 100.00 73.59 100.00Initial 
# of Rules  Testing 

272 
69.68 100.00

103 
76.85 100.00 

242 
68.16 100.00

Training  74.26 100.00 83.39 100.00 75.21 100.00# of Rules  
after ST Testing 

217 
68.00 100.00

84 
79.14 100.00 

196 
69.54 100.00

Training  64.16 100.00 76.62 100.00 69.16 100.00Statistics 
Analysis Testing 

24 
60.46 100.00

20 
72.12 100.00 

21 
65.18 100.00

Training  63.52 100.00 76.12 100.00 68.52 100.00Redundancy 
Removal Testing 

23 
60.05 100.00

19 
71.80 100.00 

20 
64.77 100.00

Training  85.63 100.00 76.12 100.00 82.90 100.00Contradictive 
Removal Testing 

16 
81.94 100.00

19 
71.80 100.00 

16 
77.35 100.00

Training  87.84 100.00 85.07 100.00 88.61 100.00Conf. 60% 
Testing 

15 
84.77 100.00

16 
81.98 100.00 

14 
84.86 100.00
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Let us compare the progressive rules reduction for the different algorithms with their 

AR and CR values. The Maximal algorithm offers a smaller volume in the initial rule 

set to be evaluated. This situation occurs because the algorithm itself eliminates a 

non-maximal itemset. The Apriori algorithm produced the largest volume of rules to 

be evaluated. This is due to the enumeration of every single frequent itemset 

.  

The experiment in Section 6.2.5 (refer to Table 6.11 for Wine dataset) demonstrated 

that the final 15 rules from Apriori with min_sup are the significant rules based on 

the highest AR and CR. However, as the Maximal and Closed frequent itemsets 

(refer to Table 6.17) were included in the experiment, the results reveal that the AR 

value for the Closed rule set is higher than the Apriori rule set, while at the same 

time the CR value settled at 100% and the rule set reduced from 15 to 14 rules.   

 

On the final 15 rules derived from the Apriori algorithm and 16 rules from the 

Maximal algorithm in Table 6.17, it was found that 14 of the rules are the same to the 

final rules in the Closed rule set. Table 6.18 exhibits one rule that appeared in the 

Apriori and Maximal rule sets but not in the Closed rule set. The rule in Table 6.18 

did not appear in the Closed rule set because initially there exists a superset rule that 

has the same frequency of 10.28%, i.e. “Flavanoids(2.24 - 3.18) & 

Nonflavanoids(0.24 – 3.18) & Magnesium(88.4 - 106.8) ==> Class(Low)” 

(confidence = 84.6%). However, this superset rule has been removed from the Closed 

rule set after the statistical analysis was applied, because the ‘Nonflavanoids’ 

attribute was determined as insignificant. This explains the slightly higher AR for the 

final Closed rule set in comparison to the Apriori and Maximal rule sets, since the 

rule from Table 6.18 has a classification accuracy of 64.10% as it misclassifies 14 

instances in the training dataset and has a predictive accuracy of 60% as it 

misclassifies 10 instances from the testing dataset. 

 

Table 6.18:  Rule Discovered in Apriori and Maximal but Not in Closed 

Conf. Support Rule 
73.33 % 10.28 % Flavanoids(2.24 - 3.18) & Magnesium(88.4 - 106.8) ==> Class(Low) 

 

Additionally, another rule (see Table 6.19) that remained in Maximal rule set is 

discarded from the Closed rule set because the rule failed the contradictive 
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assessment in the Closed rule set, as it contradicted another rule “Flavanoids(2.24 - 

3.18) ==> Class(Middle)” (confidence: 35.90, support: 13.08). These are the same 

contradictive rules that were discarded by the Apriori (min_sup) approach but not the 

Apriori (min_sup &min_conf) approach because it did not have the rule with smaller 

confidence, as discussed in the previous section. All of the approaches compared in 

this section do not initially utilize the confidence constraint.  

 

It is because of the properties of the Maximal patterns that the rule “Flavanoids(2.24 

- 3.18) ==> Class(Middle)” did not appear in the Maximal rule set for the 

contradiction to be detected. The initial rule set detected by the Maximal approach 

contained the superset of this rule, namely “Flavanoids(2.24 - 3.18) & 

ColorIntensity(low - 3.62) ==> Class(Middle)” (confidence: 92.86%, support: 

12.15%). This rule “Flavanoids(2.24 - 3.18) & ColorIntensity(low - 3.62) ==> 

Class(Middle)” has been removed from the Maximal rule set after the redundancy 

assessment as another subset of the rule had a higher confidence value, i.e. 

“ColorIntensity(low - 3.62) ==> Class(Middle)” (confidence: 97.06%, support: 

30.84%). Note that one would not expect that both “Flavanoids(2.24 - 3.18) & 

ColorIntensity(low - 3.62) ==> Class(Middle)” and. “ColorIntensity(low - 3.62) ==> 

Class(Middle)” rules exist together within the Maximal pattern, as the second rule is 

the subset of the first. However, this was not initially the case as the second rule 

“ColorIntensity(low - 3.62) ==> Class(Middle)” is a simplified form of the initial 

rule “Hue(0.86 – 1.25) & ColorIntensity(low - 3.62) ==> Class(Middle)” as the 

variable (Hue) was detected insignificant based on the statistical analysis and 

removed from the precedent of the rule.  

 

Table 6.19:  Rule Discovered in Maximal but Not in Closed and Apriori 

Conf. Support Rule 
64.10 % 23.36 % Flavanoids(2.24 - 3.18)==> Class(Low) 

 

Given the unique criteria for each algorithm and based on the unification techniques 

in evaluating the rules, the results show that the rule set from the Maximal algorithm 

contains only the most specific rules (i.e. contain more attribute constraints as they 

prefer longest (Maximal) patterns) while it does not have the more general rules (i.e. 

subsets of longer rules with less attribute constraints) as do the rule sets from Closed 
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and Apriori algorithms. Consequently, the AR values in the Maximal rule set are 

lower compared to those of both the Apriori and Closed rule sets, (except for 

Mushroom dataset where the accuracy is slightly higher in comparison to Closed). 

This is especially the case for the testing set as less specific (contains fewer attribute 

constraints) rules usually perform better on unseen data than do the more specific 

rules. 

 

As previously mentioned, the large volume of rules in the Wine dataset initially 

detected by all of the three approaches can still be insignificant and uninteresting. As 

seen from the results, with a proper feature subset selection application, statistical 

evaluation, and redundancy and contradictive assessment methods, this large volume 

of rules can be reduced and at the same time the quality of the reduced rule set is 

well preserved. Thus finally, an optimal rule set of 15, 16 and 14 are discovered 

using the Apriori, Maximal and Closed algorithms, respectively as shown in Table 

6.20. 

Table 6.20:  Rules for Wine dataset based Apriori, Maximal and Closed 

Apriori Maximal Closed 
Flavanoids(low - 1.29) ==> 
Class(High) 

ColorIntensity(low - 3.62) ==> 
Class(Middle) 

Flavanoids(3.18-4.13) ==> 
Class(Low) 

Magnesium(106.8- 125.2) ==> 
Class(Low) 

Flavanoids(3.18-4.13) ==> 
Class(Low) 

ColorIntensity(5.97 - 8.31) 
==> Class(Low) 

ColorIntensity(5.97 - 8.31) ==> 
Class(Low) 

Flavanoids(low - 1.29) ==> 
Class(High) 

ColorIntensity(low - 3.62) 
==> Class(Middle) 

Flavanoids(3.18-4.13) ==> 
Class(Low) 

Flavanoids(1.29 - 2.24) ==> 
Class(middle) 

Flavanoids(low - 1.29) ==> 
Class(High) 

ColorIntensity(low - 3.62) ==> 
Class(Middle) 

Magnesium(low - 88.4) ==> 
Class(Middle) 

Flavanoids(1.29 - 2.24) ==> 
Class(Middle) 

Magnesium(low - 88.4) ==> 
Class(Middle) 

ColorIntensity(5.97 - 8.31) ==> 
Class(Low) 

Magnesium(low - 88.4) ==> 
Class(Middle) 

Flavanoids(1.29 - 2.24) ==> 
Class(Middle) 

Flavanoids(2.24 - 3.18)==> 
Class(Low) 

Magnesium(106.8- 125.2) 
==> Class(Low) 

Flavanoids(low - 1.29) & 
Magnesium(88.4 - 106.8) ==> 
Class(High) 

Magnesium(106.8- 125.2) ==> 
Class(Low) 

Magnesium(106.8- 125.2) & 
Flavanoids(2.24 - 3.18)==> 
Class(Low) 

Flavanoids(low - 1.29) & 
ColorIntensity(3.62 - 5.97) ==> 
Class(High) 

Magnesium(106.8- 125.2) & 
Flavanoids(2.24 - 3.18)==> 
Class(Low) 

Flavanoids(2.24 - 3.18)& 
ColorIntensity(3.62 - 5.97) 
==> Class(Low) 

Flavanoids(2.24 - 3.18)& 
ColorIntensity(3.62 - 5.97) ==> 
Class(Low) 

Flavanoids(low - 1.29) & 
Magnesium(88.4 - 106.8) ==> 
Class(High) 

ColorIntensity(low - 3.62) & 
Flavanoids(1.29 - 2.24) ==> 
Class(Middle) 

Magnesium(106.8- 125.2) & 
Flavanoids(2.24 - 3.18)==> 
Class(Low) 

ColorIntensity(low - 3.62) & 
Flavanoids(1.29 - 2.24) ==> 
Class(Middle) 

Magnesium(low - 88.4) & 
ColorIntensity(low - 3.62) 
==> Class(Middle) 

Flavanoids(2.24 - 3.18)& Magnesium(low - 88.4) & ColorIntensity(low - 3.62) & 
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Magnesium(88.4 - 106.8) ==> 
Class(Low) 

ColorIntensity(low - 3.62) ==> 
Class(Middle) 

Magnesium(88.4 - 106.8) ==> 
Class(Middle) 

Magnesium(low - 88.4) & 
ColorIntensity(low - 3.62) ==> 
Class(Middle) 

ColorIntensity(low - 3.62) & 
Magnesium(88.4 - 106.8) ==> 
Class(Middle) 

Flavanoids(low - 1.29) & 
ColorIntensity(3.62 - 5.97) 
==> Class(High) 

ColorIntensity(low - 3.62) & 
Flavanoids(1.29 - 2.24) ==> 
Class(Middle) 

Flavanoids(low - 1.29) & 
ColorIntensity(3.62 - 5.97) ==> 
Class(High) 

Flavanoids(low - 1.29) & 
Magnesium(88.4 - 106.8) ==> 
Class(High) 

ColorIntensity(low - 3.62) & 
Magnesium(88.4 - 106.8) ==> 
Class(Middle) 

Flavanoids(2.24 - 3.18)& 
ColorIntensity(3.62 - 5.97) ==> 
Class(Low) 

 Flavanoids(2.24 - 3.18)& 
Magnesium(88.4 - 106.8) ==> 
Class(Low) 

 

 

The overall comparison between the Apriori, Maximal and Closed algorithms using 

the Iris, Mushroom and Adult datasets are shown in Tables 6.21 to 6.23. With a 

proper combination of the evaluation process on rules discovered from the Apriori, 

Maximal and Closed algorithms for each datasets, an average of 89% in the number 

of rules have been discarded. While reducing the rules, the increase in the AR ranged 

from 7% to 20% in the Apriori rule set, from 1.6% to 20% in the Maximal rule set 

and from 10% to 22% in the Closed rule set (on both the training and the testing 

sets). As for the CR, the result reveals that the final set of rules covered almost all the 

instances in the dataset for each algorithm with the highest CR of 100% and the 

lowest CR of 76% in both the training and the testing sets. 

 

From these results, one can see that the Closed algorithm achieves better AR values 

compared to Apriori and Maximal for the final rule set, for the Wine, Iris and Adult 

datasets. Moreover, in comparing the AR values for the final rule sets for the 

aforementioned datasets between Maximal and Closed, the result revealed that the 

AR from the final Maximal rule set are lower compared to the final Closed rule sets. 

For the Mushroom dataset, the Apriori approach achieves the best results followed 

by the Maximal approach. However, for the Maximal approach, the CR is not 100% 

and this can be explained by the fact that several more general rules with fewer 

attribute constraints are typically removed in the Maximal approach, when they are a 

subset of a more specific rule. The Closed approach still achieves 100% CR in its 

final rule set but has a smaller AR. The Apriori approach has 20 rules in its final rule 

set and the additional rules are what achieves the better AR overall.  
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From these results, one cannot draw a firm conclusion about using closed patterns for 

classification, as even though they performed better in three datasets, the Apriori 

approach which discovered all patterns had a better accuracy for the Mushroom 

dataset. However, one could infer that the Closed approach is a better approach than 

the Maximal algorithm for classification tasks because even when the Maximal 

approach achieved a slightly better accuracy for the Mushroom dataset, it was at the 

cost of a small reduction in the CR. While the Maximal approach removes a pattern 

if a frequent superset of that pattern exists, the Closed approach patterns will retain a 

pattern as long as it has a different support to that of another super-pattern. In the 

statistical analysis, redundancy and contradictive assessment methods approaches for 

evaluating the significance of rules, having these additional patterns can be 

preferable as, for example, a contradictive rule will be detected. This was the case for 

the rule in Table 6.19 which remained in the final rule set of the Maximal approach, 

but was detected as contradictive by both the Apriori and Closed approaches.  

 

Table 6.21:  Comparison between Apriori, Maximal and Closed for Iris dataset 

 
 
 
 
 
 
 
 
 
 
 

Apriori  Maximal  Closed  Type  
of  
analysis 

Data  
Partition # 

Rules 
AR % CR % #  

Rules 
AR % CR % # 

Rules 
AR % CR % 

Training  81.77 100.00 79.63 86.67 80.24 97.78Initial 
# of Rules  Testing 

58 
78.46 100.00

13 
73.75 76.67 

41 
76.21 100.00

Training  81.77 100.00 79.63 86.67 80.24 97.78# of Rules  
after ST Testing 

58 
78.46 100.00

13 
73.75 76.67 

41 
76.21 100.00

Training  71.60 100.00 79.63 86.67 75.40 97.78Statistics 
Analysis Testing 

29 
68.07 100.00

13 
73.75 76.67 

28 
71.03 100.00

Training  89.79 100.00 79.63 86.67 83.16 97.78Redundancy 
Removal Testing 

21 
86.43 100.00

13 
73.75 76.67 

24 
77.08 100.00

Training  89.79 100.00 90.91 86.67 90.97 97.78Contradictive 
Removal Testing 

21 
86.43 100.00

12 
85.71 76.67 

22 
86.54 100.00

Training  89.79 100.00 90.91 86.67 90.97 97.78Conf. 60% 
Testing 

21 
86.43 100.00

12 
85.71 76.67 

22 
86.54 100.00
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Table 6.22:  Comparison between Apriori, Maximal and Closed for Mushroom dataset 

 

Table 6.23:  Comparison between Apriori, Maximal and Closed for Adult dataset 

 

6.2.7 Minimum Confidence Effects 

This section presents a set of experiments conducted to show that the performance of 

the AR and CR can vary by altering the value of minimum confidence. This was 

done for the three different algorithms on the Wine dataset (Refer to Table 6.24). By 

increasing the minimum confidence from 60% to 70%, the remainder of the rules in 

the Apriori and Maximal rule sets were 13 identical rules. The CR values in the 

training set remained stable at 100%, while the AR increased to 92.03. For the testing 

dataset, while there was an increase in the AR, the CR values decreased. This occurs 

because the 13 rules in the Apriori and Maximal rule sets failed to capture all of the 

Apriori  Maximal  Closed  Type  
of  
analysis 

Data  
Partition # 

Rules 
AR % CR % #  

Rules 
AR % CR % # 

Rules 
AR % CR % 

Training  91.79 100.00 80.56 100.00 75.00 100.00Initial 
# of Rules  Testing 

77815 
 83.20 100.00

255 
80.37 99.94 

3009 
75.30 100.00

Training  89.97 100.00 88.94 98.26 79.61 100.00# of Rules  
after ST Testing 

669 
 90.08 100.00

31 
 88.56 98.12 

260 
79.69 100.00

Training  81.20 100.00 88.42 98.89 77.48 100.00Statistics 
Analysis Testing 

48 
81.06 100.00

16 
89.02 98.71 

24 
77.54 100.00

Training  76.97 100.00 91.61 98.89 78.21 100.00Redundancy 
Removal Testing 

24 
76.88 100.00

13 
91.85 98.71 

16 
78.34 100.00

Training  94.62 100.00 91.61 98.89 89.79 100.00Contradictive 
Removal Testing 

20 
94.24 100.00

13 
91.85 98.71 

14 
89.88 100.00

Training  94.62 100.00 91.61 98.89 89.79 100.00Conf. 60% 
Testing 

20 
94.24 100.00

13 
91.85 98.71 

14 
89.88 100.00

Apriori  Maximal  Closed  Type  
of  
analysis 

Data  
Partition # 

Rules 
AR % CR % # 

Rules 
AR % CR % #  

Rules 
AR % CR % 

Training  68.98 100.00 62.98 99.87 68.54 100.00Initial 
# of Rules  Testing 

2192 
69.05 100.00

129 
63.05 99.87 

1866 
68.60 100.00

Training  67.46 100.00 67.23 98.34 67.06 100.00# of Rules  
after ST Testing 

303 
67.45 100.00

34 
67.18 98.25 

257 
 67.02 100.00

Training  63.83 100.00 81.88 97.39 61.57 100.00Statistics 
Analysis Testing 

107 
63.87 100.00

24 
82.18 97.28 

77 
61.57 100.00

Training  69.65 100.00 80.92 97.39 67.45 100.00Redundancy 
Removal Testing 

58 
69.72 100.00

21 
81.16 97.28 

41 
67.51 100.00

Training  81.79 99.98 80.92 97.39 79.29 99.99Contradictive 
Removal Testing 

48 
81.91 99.95

21 
81.16 97.28 

33 
79.42 99.97

Training  88.31 96.38 87.28 96.37 89.09 98.01Conf. 60% 
Testing 

43 
88.41 96.12

19 
87.48 96.10 

27 
89.25 98.08
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instances in this dataset. For the Closed algorithm, another 2 rules were discarded 

from the 14 rules by increasing the minimum confidence to 70%. As the AR values 

in the training and testing sets increased, the CR values in both partitions decreased 

by about 1% and 3 % respectively. As the confidence thresholds gradually increased 

to 70%, 80%, 90% and 100%, the number of rules in the rule sets became smaller 

and identical, which led to the increase in AR but at the cost of decreasing the 

number of instances covered by the rules.  

 

The changes in confidence values have a direct impact on the size of the rule set, AR 

and CR values. For example, the initial rules in Table 6.17 (Refer to Section 6.2.6) 

were too general and large, and may lack specificity. Hence the AR was low, but as 

they were reduced to only those rules in Table 6.20, the AR improved and the CR 

remained at 100%. Progressively increasing the minimum confidence threshold 

results in an even smaller set of rules which are more accurate but the CR suffers 

(Table 6.24). Thus, it is essential to determine the trade-off between finding a rule set 

with optimal values of AR and CR. This agrees with (Wang, Dillon, & Chang, 2002) 

who assert the need for balancing these conflicting regularization parameters.  

 

Table 6.24: Minimum Confidence Effect on Rule Discovered in Apriori, Maximal and 

Closed for Wine dataset 

 

Tables 6.25 to 6.27 show the effect of altering the minimum confidence of rules 

obtained from other datasets. Such results are in agreement with those of (Do, Hui, & 

Fong, 2005) who stated that a rule with a high confidence value implies an accurate 

prediction. However, as shown in Tables 6.24 to 6.27, even though the AR increased 

Apriori  Maximal Closed  Type  
of  
analysis 

Data  
Partition # 

Rules 
AR % CR % #  

Rules 
AR % CR % #  

Rules 
AR % CR % 

Training  87.84 100.00 85.07 100.00 88.61 100.00Conf.  
60% Testing 

15 
84.77 100.00

16 
81.98 100.00 

14 
84.86 100.00

Training  92.03 100.00 92.03 100.00 93.22 99.07Conf.  
70% Testing 

13 
89.60 98.59

13 
89.60 98.59 

12 
90.06 97.18

Training  95.19 99.07 95.19 99.07 95.19 99.07Conf.  
80% Testing 

11 
90.14 97.18

11 
90.14 97.18 

11 
90.14 97.18

Training  98.04 85.98 98.04 85.98 98.04 85.98Conf.  
90% Testing 

9 
91.26 83.10

9 
91.26 83.10 

9 
91.26 83.10

Training  100.00 58.88 100.00 58.88 100.00 58.88Conf.  
100% Testing 

6 
92.98 53.52

6 
92.98 53.52 

6 
92.98 53.52
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simultaneously with the increment of minimum confidence values, the CR values 

decreased as a result. This depicted the trade-off in choosing the suitable minimum 

confidence threshold for each dataset or domain considered. For example, in the 

Mushroom dataset (see Table 6.26), it appears that for the best results of the Apriori 

algorithm, the confidence could have been safely set up to 80%, without a loss in 

coverage rate.  

 
Table 6.25: Minimum Confidence Effect on Rule Discovered in Apriori, Maximal and 

Closed for Iris dataset 

 
Table 6.26: Minimum Confidence Effect on Rule Discovered in Apriori, Maximal and 

Closed for Mushroom dataset 

 
 
 
 
 
 

Apriori  Maximal Closed  Type  
of  
analysis 

Data  
Partition # 

Rules 
AR % CR % #  

Rules 
AR % CR 

% 
#  
Rules 

AR % CR % 

Training  89.79 100.00 90.91 86.67 90.97 97.78 Conf.  
60% Testing 

21 
86.43 100.00

12 
85.71 76.67 

22 
86.54 100.00 

Training  92.91 100.00 93.28 84.44 94.37 97.78 Conf.  
70% Testing 

19 
93.23 100.00

11 
89.09 75.00 

20 
93.85 100.00 

Training  94.76 100.00 98.89 70.00 96.47 97.78 Conf.  
80% Testing 

17 
95.98 100.00

9 
100.00 55.00 

18 
96.89 100.00 

Training  97.25 94.44 98.89 70.00 97.50 94.44 Conf.  
90% Testing 

14 
97.89 88.33

9 
100.00 55.00 

17 
97.96 88.33 

Training  100.00 74.44 100.00 62.22 100.00 74.44 Conf.  
100% Testing 

9 
100.00 71.67

8 
100.00 48.33 

12 
100.00 71.67 

Apriori  Maximal Closed  Type  
of  
analysis 

Data  
Partition # 

Rules 
AR % CR % #  

Rules 
AR % CR 

% 
#  
Rules 

AR % CR % 

Training  94.62 100.00 91.61 98.89 89.79 100.00Conf.  
60% Testing 

20 
94.24 100.00

13 
91.85 98.71 

14 
89.88 100.00

Training  94.62 100.00 97.51 98.36 94.01 100.00Conf.  
70% Testing 

20 
94.24 100.00

12 
97.23 98.40 

13 
93.66 100.00

Training  95.84 100.00 97.51 98.36 95.69 99.47Conf.  
80% Testing 

19 
95.51 100.00

12 
97.23 98.40 

12 
95.40 99.69

Training  98.15 99.47 98.43 97.23 98.15 97.23Conf.  
90% Testing 

15 
97.67 99.69

11 
98.06 97.14 

9 
97.71 97.14

Training  100.00 85.86 100.00 85.35 100.00 68.20Conf.  
100% Testing 

8 
100.00 85.88

7 
100.00 85.17 

5 
100.00 67.08
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Table 6.27: Minimum Confidence Effect on Rule Discovered in Apriori, Maximal and 

Closed for Adult dataset 

 

6.2.7.1 Choosing the Confidence Threshold based on the AR and CR 

As just discussed and illustrated in Tables 6.24-6.27, restricting the rule sets 

according to the minimum confidence values impacts on the trade-off between 

accuracy and coverage rates. Experiments show that, the AR increase simultaneously 

with the increase of the confidence values. However at some stages, too many rules 

will be discarded which significantly make the coverage rate suffer. In the previous 

experiment in Section 6.2.6, when the statistical analysis, and redundancy and 

contradictive assessment methods were utilized for the rules, there is no significant 

reduction of CR with the reduced number of rules until the confidence parameter is 

included. It is important in this framework to monitor the CR in reducing the number 

of rules and to identify the break point/right time at which to stop reducing the 

number of rules (increasing the confidence values). Thus, in this experiment, the 

stopping points are chosen at which a dramatic reduction of CR occurred. Choosing 

an optimal stopping point based on the confidence threshold will ensure that the 

reduction of rules can be stopped before reaching an unacceptable level of coverage. 

 

For example in Figure 6.6 and Figure 6.7, for both Wine and Adult datasets for each 

of the Apriori, Maximal and Closed rule sets, the cut-off value to stop reducing the 

number of rules is at 90% confidence, as it was found that the CR drops dramatically 

when the confidence threshold is increased to 90%. Additionally, at 100% 

confidence threshold for Adult data (Figure 6.7), there are no rules that satisfy the 

given threshold.  

Apriori  Maximal Closed  Type  
of  
analysis 

Data  
Partition # 

Rules 
AR 
% 

CR 
% 

#  
Rules 

AR 
% 

CR 
% 

#  
Rules 

AR % CR 
% 

Training  88.31 96.38 87.28 96.37 89.09 98.01Conf.  
60% Testing 

43 
88.41 96.12

19 
87.48 96.10

27 
89.25 98.08

Training  89.63 93.78 87.28 96.37 89.09 98.01Conf.  
70% Testing 

41 
89.75 93.44

19 
87.48 96.23

27 
89.25 98.08

Training  90.61 90.45 91.55 75.58 91.84 82.35Conf.  
80% Testing 

38 
90.72 90.05

17 
91.71 74.73

25 
91.97 81.84

Training  96.16 53.50 95.66 51.24 96.83 49.23Conf.  
90% Testing 

21 
96.00 53.90

10 
95.59 51.57

15 
96.71 49.20

Training  - - - - - - Conf.  
100% Testing 

0 
- - 

0 
- - 

0 
- - 
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Wine: Testing Data
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Figure 6.6: Confidence Value vs. Coverage Rate on Wine for Testing Dataset  

 

Adult: Testing Data
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Figure 6.7: Confidence Value vs. Coverage Rate on Adult for Testing Dataset  

 

As for the Mushroom data in Figure 6.8, the graph demonstrated that there is a 

significant drop of coverage rate as the confidence value is increased to 100%. This 

occurred for each of the Apriori, Maximal and Closed frequent itemsets rules. 

Finally, for the Iris dataset (Figure 6.9), the confidence break point at which the 
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coverage rate dropped significantly is 90% for both Apriori and Closed, and 80% for 

Maximal.  

 

Mushroom: Testing Data
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Figure 6.8: Confidence Value vs. Coverage Rate on Mushroom for Testing Dataset  

 

Iris: Testing Data
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Figure 6.9: Confidence Value vs. Coverage Rate on Iris for Testing Dataset  

 

While the confidence cut-off value may differ for each dataset and for each Apriori, 

Maximal and Closed frequent itemsets, this may indicate that the choice of optimal 
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confidence break points will depend on the type of data, application and business 

involved. In some cases, such as in a critical domain, one may prefer to have a strict 

cut-off value or higher confidence rate to guarantee an accurate assessment and 

results. For example, they may prefer to use only high confidence rules for decision 

support in the cases covered by the rule set, and would prefer not to use lower 

confidence rules for decision support in the remaining cases.  

 

6.3 Conclusion 

This chapter presented a framework for evaluating the rules discovered from three 

association rule mining algorithms, namely the Apriori, Maximal and Closed 

algorithms. The quality of the rules discovered was measured using statistical 

analysis, and redundancy and contradictive assessment methods.  

 

Initially, two variants of the Apriori algorithm were evaluated. The first variant 

corresponded to the standard Apriori algorithm with both support and confidence 

thresholds, while the second variant was constrained using only the minimum 

support threshold. Rules were then verified in order to determine their validity and 

interestingness. The results show that it is more advantageous to remove the rules 

that failed the statistical test, the redundant rules, and the contradictive rules in the 

initial evaluating process and utilize the confidence constraint only at the end of the 

process. This will result in a relatively small number of rules and at the same time 

allow for detection of contradictive rules as all lower confidence rules are initially 

considered. As demonstrated in the experiments, a drawback of applying the 

minimum confidence threshold at the start of the process is that the existence of a 

contradictive rule that has relatively low confidence will not be known. This lack of 

knowledge can cause an unreliable association rule to become part of the final rule 

set which, as demonstrated, reduces the accuracy of the rule set in comparison to 

when the rule was removed. Alternatively, within the rules generated from Apriori 

with min_sup, initially the two or more contradictive rules exist so all of the 

contradictive rules will be discarded, as the contradiction implies that they are 

unreliable for prediction purposes. An alternative approach would be to start with a 

lower confidence threshold to still discard those patterns where the confidence is not 

high enough for them to be considered as a significant contradiction to another rule 
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with much higher confidence. One can then progressively increase the threshold after 

the statistical rule validation techniques have been applied. Based on the proper rule 

evaluating steps in the proposed framework, the final rules from the Wine, Iris, 

Mushroom and Adult datasets generated using the Apriori with min_sup constraint 

are fewer in number and achieve a better classification and prediction accuracy for 

both the training and the testing datasets.  

 

In the second experiment set, the rules generated from the Apriori with min_sup, 

Closed and Maximal approaches are evaluated according to the proposed framework. 

Experimental results show that the rules from the Closed approach generated from 

the Wine, Iris and Adult datasets offer a better final rule set in terms of classification 

and prediction accuracy, while for the Mushroom dataset, the Apriori obtains the best 

results. The Maximal approach, due to its preference for longer patterns, generally 

produces fewer general rules and only the most specific rules that satisfy the 

minimum support threshold. On the other hand these specific rules (contain more 

attributes constraints) are commonly removed in Closed and Apriori, because more 

general rules (less attribute constraints) existed, which through 

statistical/redundant/contradictive check, determined the redundancy of those 

specific rules. This is explained by the lowest coverage rate of the final rule sets from 

every dataset, especially for the testing set. Generally speaking, the coverage rate of 

long and specific rules (contains more attributes constrain) is expected to be weaker 

for unseen datasets.   

 

In the final experiment set, the effects of the minimum confidence on the proposed 

framework in evaluating the rules from each of the datasets generated from all three 

approaches are revealed. Increasing the confidence threshold will gradually reduce 

the number of rules to those that have very high accuracy because of large 

confidence. However, as the rule sets have been reduced, more instances will not be 

captured by the rule set; hence, typically there is deterioration in the CR. Choosing 

smaller confidence thresholds will result in larger sets of rules that may lack 

generalization power, thereby weakening the AR performance, but are capable of 

covering more instances. Alternatively, choosing relatively high confidence 

thresholds will result in a smaller set of rules, thereby achieving higher AR with the 

trade-off of capturing fewer instances. Hence, one needs to carefully monitor the 
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effect of increasing the confidence thresholds. As indicated by the experiment, while 

the AR improved with the increase of the confidence threshold, conversely there is 

significant loss of CR. Thus, by properly defining and providing a certain optimal 

break point of the confidence threshold, at some point, an acceptable level of AR and 

CR will be achieved. Thus, it is important to balance the trade-off between AR and 

CR in order to determine the optimal value for the minimum confidence threshold, 

which may differ depending on the sensitivity of the domain at hand. 

 

Generally speaking, the experimental results have demonstrated that the proposed 

framework is capable of reducing a large number of non-significant and redundant 

rules while simultaneously preserving a relatively high level of accuracy. The 

experiments have also revealed the important differences between frequent, closed 

and maximal patterns, when used for classification tasks, and the effect of the 

confidence threshold and the difference when utilized at different stages of the rule 

filtering process.  
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CHAPTER 7 DETAILS OF SOLUTION AND EVALUATION FOR TREE-

STRUCTURED DATA 

7.1 Introduction  

This chapter provides the details of a framework developed for evaluating the 

association rules discovered from XML documents or tree-structured data in general; 

the evaluation and validation of the proposed framework is also presented. As 

described earlier in Chapter 4, the work on evaluating the association rules derived 

from XML documents was extended from the initial framework intended to evaluate 

the association rules from relational data. The main motivation of this thesis is to 

examine how statistical analysis, redundancy and contradictive assessment methods 

can be employed, and to develop a proper sequence of use of these techniques to 

arrive at a more reliable and interesting set of rules. However, the focus here is on 

the association rules discovered from semi-structured or tree-structured data such as 

XML. This chapter starts with an overview of tree-structured data, and the issues 

surrounding the modelling of tree structured-data are discussed in Section 7.2. 

 

A general description of frequent subtree mining and the IMB3 algorithm for 

frequent subtree discovery are provided in Section 7.3. In this chapter, the initial 

focus is on evaluating frequent subtrees generated using the IMB3 Miner algorithm 

(Tan, Dillon, Hadzic, Chang, & Feng, 2006). This frequent subtree mining algorithm 

is characterized by adopting a Tree Model Guided (TMG) candidate generation (Tan, 

Hadzic, Dillon, Chang, & Feng, 2008). 

 

As the experiment using the IMB3 algorithm was expanded to include more complex 

tree-structured data, the statistical analysis to determine irrelevant rules was difficult 

to be applied directly as the measures themselves do not take structural aspects of 

data into account. As demonstrated in evaluating association rules from relational 

data (Chapter 6), a flat representation allows application of standard statistical 

analysis, and redundancy and contradictive assessment methods. Thus, by having a 

tree structured data effectively represented in a flat format while preserving the 

structural characteristics, this will allow the direct application of statistical analysis, 

and redundancy and contradictive assessment methods to evaluate the frequent-
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subtree-based rules. (Hadzic, 2011) developed a method to represent and preserve 

tree-structured data in a flat format by using a Database Structure Model (DSM). 

This method was developed to enable a wider range of data mining/analysis 

techniques to be directly applied to tree-structured data, as well as to handle 

complexity issues that arise when dealing with complex tree structrues. Section 7.4 

provides a detailed explanation and examples of tree-structured data represented in 

such a structure-preserving flat format. 

 

Section 7.5 provides a general description of the evaluation process for the proposed 

framework, while Subsection 7.5.1 describes in detail the characteristics of each 

dataset used in each experiment. The evaluation of the proposed framework is 

undertaken in two main sections. In the first section, the interestingness of frequent 

subtrees discovered using the IMB3 algorithm will be evaluated. This acts as the 

traditional frequent subtree mining application in discovering association rules from 

tree-structured data. This can be found in Section 7.6. Section 7.7 provides a new 

direction for the way that the frequent subtree will be evaluated. The tree-structured 

data format is converted into the structure-preserving flat table format and from here 

the evaluation is done of the frequent rules discovered from the commonly-used 

itemset format representation. In Section 7.7.1, the frequent rules derived with the 

DSM approach are progressively verified with statistical analysis, and redundancy 

and contradictive assessment methods. The effect of the inclusion/exclusion of 

backtrack attributes/nodes for DSM approach is discussed in Section 7.7.2. 

Moreover, the evaluation extends to the rules based on embedded subtrees and rules 

based on induced subtrees in Section 7.7.3. In addition to that, a comparison with a 

well-known structural classification approach based on frequent subtrees, namely the 

XRules classifier (Zaki & Aggarwal, 2003) is undertaken in Section 7.7.4 to measure 

and compare the performance of the proposed framework. The evaluation of the 

interestingness of frequent-subtree-based rules extracted using the DSM approach 

using a real-world dataset is presented in Section 7.7.5. The results are summarized 

and the chapter is concluded in Section 7.8. 

 



 162

7.2 Tree-Structured Data 

The XML-enabled association rule as explained in Chapter 3 enables the discovery 

of interesting relationships in a given set of semi-structured data. An XML document 

has a hierarchical structure, where an element may contain further embedded 

elements, and a number of attributes can be attached to each element. It is therefore 

commonly represented as a rooted ordered labelled tree and such representation is 

utilized in this thesis.  

 

String-like representation of rooted ordered labelled trees has become a well-

accepted representation in the frequent subtree mining field (Chi, Muntz, Nijssen, & 

Kok, 2005; Tan, Dillon, Hadzic, Chang, & Feng, 2006; Tan, Hadzic, Dillon, Chang, 

& Feng, 2008; Zaki, 2005). This representation as reviewed by (Chi, Muntz, Nijssen, 

& Kok, 2005), is more compact and easy to manipulate compared to standard data 

structures, thus creating space efficiency.  

 

The pre-order (depth-first) string encoding as described in (Chi et al., 2005; Zaki, 

2005) is utilized in this thesis for frequent subtree mining tasks. The definition of 

pre-order traversal is taken from (Hadzic, Tan, & Dillon, 2011): If ordered tree T 

consists only of a root node r, then r is the pre-order traversal of T. Otherwise let T1, 

T2, ..., Tn be the subtrees occurring at r from left to right in T. The pre-order traversal 

begins by visiting r and then traversing all the remaining subtrees in pre-order 

starting from T1 and finishing with Tn. The pre-order string encoding (Chi, et al., 

2005) can be generated by adding vertex labels in a pre-order traversal of a tree, and 

appending a backtrack symbol (for example ‘-1’, and ‘-1’∉L) whenever there is 

backtrack from a child node to its parent node.  

 

Figure 7.1 and Table 7.1 depict a tree database consisting of 7 tree instances (or 

transactions) and the string encoding for tree database, respectively:   
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Figure 7.1: Example of a tree-structured database (Tdb) consisting of 7 (T0 – T6 transactions) 

 

Table 7.1:  Example of Tree Transactions 

Tree Database (Tdb) Pre-order String Encoding 
T0 ‘a b d n -1 e -1 -1 -1 c -1’ 
T1 ‘b c -1 b e -1 -1’ 
T2 ‘b d e -1 -1’ 
T3 ‘l m -1 n -1’ 
T4 ‘k l m -1 -1 n -1’ 
T5 ‘b a c f -1 -1 -1 d -1’ 
T6 ‘a b c d -1 e -1 -1 -1 f g h -1 i -1 -1 -1’ 
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7.2.1 Modelling Tree-Structured Data  

An example of three user sessions logged into the DEBII website server is depicted 

here to represent the process of modelling the XML documents in a tree structure 

format.  

 

Session 1: 
/ 
/research.html 
/research/topics.html 
/research/topics/51-business-intelligence.html 
/research/topics/55-e-education-ecosystems.html 
/research/seminars.html 
/research/seminars/413-presentation-by-eric-feinberg.html 
/phd-a-msc.html 
/phd-a-msc/scholarships.html 
/phd-a-msc/scholarships.html#debii  
/about.html 
/about/objectives.html 
/about/mission-and-vision.html 
 
Session 2: 
/ 
/research.html 
/research/centres-and-labs.html  
/centres-and-labs/217-anti-spam-research-lab-asrl.html 
/centres-and-labs/214-centre-for-stringology-a-applications-csa-.html  
/research/jobs.html 
/contact-us.html 
 
Session3: 
/ 
/research.html 
/research/publications.html 
/research/publications/conf-a-journal-papers.html 
/allstaff.html 
/allstaff/Research Professors & Fellows.html 
/exchange-students.html 
/phd-a-msc.html 
/phd-a-msc/research-training.html 

Figure 7.2:  Example of user sessions 
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Table 7.2: Integer mapping for web pages from Figure7.2 

ID Web page 
0 Home page 
1 Research 
2 Topics 
3 51-business-intelligence 
4 55-e-education-ecosystems 
5 Seminars 
6 413-presentation-by-eric-feinberg 
7 phd-a-msc 
8 Scholarships 
9 scholarships.html#debii 
10 About 
11 Objectives 
12 mission-and-vision 
13 centres-and-labs 
14 217-anti-spam-research-lab-asrl 
15 214-centre-for-stringoLogsy-a-applications-csa- 
16 Jobs 
17 contact-us 
18 Publications 
19 conf-a-journal-papers 
20 Allstaff 
21 Research Professors & Fellows 
22 research-training 
 

In Section 7.2, a formal representation of modeling an XML document to a tree 

structure is provided. Table 7.2 is an example of an XML string index computed 

from the XML session in Figure 7.2. The mapping process from string index to 

integer index can be done with a hash function as discussed in (Zaki, 2005). 

Representing a label as an integer instead of a string label has considerable 

performance and space advantages (Tan et al., 2006). 

 

As mentioned earlier, a common way of representing trees is to use the pre-order 

(depth-first) string encoding (φ) as described in (Zaki, 2005). For example, the pre-

order string encoding representation of the underlying tree structure of the user 

navigation of Figure 7.2 is transformed to φ(session 1) =  ‘0 1 2 3 -1 4 -1 -1 5 6 -1 -1 

-1 7  8 9 -1 -1 -1 10 11 -1 12 -1 -1 ’ and φ(session 2) = ‘0 1 13 14 -1 15 -1 -1 16 -1 -1 

17 -1’ and φ(session 3) = ‘0 1 18 19 -1 -1 -1 20 21 -1 -1 7 22 -1 -1’. The access 

sequence of web pages from Figure 7.2 can be represented in a tree-structured way as 

shown in Figure 7.3. The order of pages accessed is reflected by the pre-order 

traversal of the tree. The corresponding tree structure is more informative than just a 
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sequence of pages accessed as it captures the structure of the web site, and 

navigational patterns over this website. With this approach, specific pages can be 

considered within the same context. 

 

An example of this is the two pages being grouped under the ‘centres and labs’ 

parent node with label 13 in the tree of session 2, and 2 pages under the ‘research’ 

parent node with label 1 in the tree of session 1. Session 1 has come from an IP 

within the university and is most likely an example of a student acquiring some 

general information about the institute and then seeking information related to 

postgraduate study. The second session came from an IP internal to the university 

(most likely from another university in Perth), where the user was interested in 

looking for jobs by browsing DEBII centres and labs, and contacted the institute for 

more information. While session three may come from a potential external student 

who is searching for a potential supervisor by browsing some related conference 

papers and is interested in finding a research training program.   
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Figure 7.3: Integer-indexed tree of XML tree in Figure 7.2 

 

The integer–indexed tree is then formatted as shown in Table 7.3. This dataset format 

representation was proposed by (Zaki, 2005). Please note that the second column 

(cid) could be used to refer to a specific entity which the record describes (eg. User 

id). However, in many domains such information is often unavailable, or it has been 

intentionally omitted or related through the transaction id (tid). Hence, in most of the 

tree databases represented in this format, the cid column will simple be a repetition 

of the tid column. This is the common format used in the frequent subtree mining 

field (Hadzic, Tan et al., 2011).  
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Table 7.3:  An Integer-Indexed tree in Figure 7.3 formatted as a string-like representation as 

used in (Zaki, 2005).  tid: transaction-id; cid: omitted (i.e. equal to tid); |S|: size of string  

 
tid cid |S| Pre-order(depth-first) encoding 
0 0 25 0 1 2 3 -1 4 -1 -1 5 6 -1 -1 -1 7  8 9 -1 -1 -1 10 11 -1 12 -1 -1 
1 1 13 0 1 13 14 -1 15 -1 -1 16 -1 -1 17 -1 
2 2 15 0 1 18 19 -1 -1 -1 20 21 -1 -1 7 22 -1 -1 
… ... … … 
… ... … … 
 

The dataset format in Table 7.3 is a comprehensive approach for frequent subtree 

mining algorithms. As proven by (Zaki, 2005), it involves a simple process of 

scanning the tree database to discover frequent associations among tree structured 

data objects.  

 

7.3 Frequent Subtree Mining  

As mentioned in Chapter 3 and Chapter 4, the aim in this thesis with respect to the 

tree- structured data is to evaluate the interestingness of frequent subtrees. In this 

section, there is a discussion of general issues surrounding frequent subtree mining 

including the candidate generation and counting, and the algorithm used in this thesis 

in generating the frequent subtrees. These development issues are not part of the 

thesis; however, there are important issues worth discussing in order to develop an 

understanding of how frequent subtrees are generated. As stated earlier in Chapter 4, 

the problem of frequent subtree mining is to find all subtrees that occur at least as 

many times as the user-specified support threshold. The generation of frequent 

subtrees, involves two steps: candidate subtree enumeration and frequency 

subtree counting. The candidate subtree enumeration refers to the task of 

enumerating all possible subtrees of the given document tree in a complete, non-

redundant and efficient manner. While there are many techniques for enumerating 

the candidate subtrees (Chi et al., 2005; Hadzic, Tan et al., 2011), in this thesis the 

candidate subtrees are enumerated based on the tree model guided (TMG) approach 

as proposed by (Tan et al., 2006; Tan, Hadzic, Dillon, Chang, et al., 2008). This 

approach offers a non-redundant systematic enumeration model that will ensure that 

only those valid candidates are generated which conform to the actual tree structure 

of the data. The application of TMG candidate generation utilized the tree 

representation identified as an embedding list to present the structural aspect of XML 
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documents in an efficient way. This technique represents the structural node 

information in the tree that enables efficient implementation of TMG generation.  

 

With this approach, the XML documents are scanned in order to create the global 

pre-order sequence in memory identified as dictionary. The dictionary acts as the 

shared global nodes’ related information that can be directly accessed. The 

advantages of having shared global nodes is that this will provide all necessary 

information for the general lookup process, thus enabling the further scanning of the 

documents themselves.  

 

In the next step, once the candidate subtree is enumerated, it needs to be counted in 

order to determine whether it is frequent so that the infrequent ones can be removed 

from the process. In counting the enumerated subtrees, the subtrees need to be 

represented in a proper condition that will enable the counting process to work 

properly. A hashing method (Agrawal & Srikant, 1994; Chi et al., 2005) is a 

conventional and effective way of counting the subtrees (Tan, Hadzic, Dillon, & 

Chang, 2008). The pre-order string encoding (Zaki, 2005) is a hashing method 

utilized in this thesis for counting the subtrees. With this approach, the labels of 

subtrees are listed sequentially according to the pre-order traversal of each subtree. In 

tracking the order of the subtrees, a backtrack symbol (“/”) is used to track the 

movement node in the tree during the pre-order traversal of the tree being 

represented. As asserted earlier, space optimization and ease-of-manipulation are the 

major advantages of the string-like encoding technique. The string-like encoding 

treats every subtree as unique. All occurrences of a particular subtree in the 

document are counted in order to determine the frequency of a subtree. In the 

following section, the IMB3 Miner algorithm utilized in the aforementioned step to 

generate frequent subtrees is outlined. 

 

7.3.2 IMB3 Miner 

In this thesis, the IBM3 Miner (Tan et al., 2006) algorithm is utilized to discover 

frequent subtrees from a tree database. This algorithm as stated by (Tan, Hadzic, 

Dillon, & Chang, 2008) was developed based on the Tree Model Guided (TMG) 

candidate enumeration framework and it utilizes the level of embedding constraint to 
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mine induced subtrees. While the details regarding the development of this algorithm 

are not part of this thesis, in general this algorithm involves several processes as 

follows. The tree-structured database is first transformed into a database of a rooted 

integer-labelled ordered tree. The modelling process of the tree database is 

demonstrated in Section 7.2. For the generation of the frequent subtrees, the tree 

database is traversed once to create a global sequence which stores each node in the 

pre-order traversal together with the necessary node information. The Recursive List 

(RL) is constructed based on the global sequence generated from the traversal 

database. When the RL is constructed, the TMG is utilized to generate the subtree 

candidates. Before certain a subtree is stored as a frequent subtree, the pruning task is 

undertaken to ensure that all generated subtrees do not contain infrequent subtrees. 

To determine whether a subtree is frequent, the occurrence of that subtree is counted 

and checked to ascertain whether is greater than or equal to the specified minimum 

support.   

 

7.4 Flat Data Format for Tree-Structured Data 

As discussed in 7.3.4, IMB3 Miner is an algorithm that is useful for discovering 

frequent subtrees in tree-structured data. There are many well-developed frequent 

subtree mining algorithms tailored to solve certain applications and problems. 

However, the main concern regards their capabilities in handling instances in a tree 

database that are characterized by complex tree structures. In certain domain 

applications, capturing the information using an XML document may result in 

complex tree-structured data. This can happen due to a large number of elements 

(attributes) that are likely to be present in every instance or transaction. Additionally, 

these attributes might not be as useful for the decision-making process, but they 

significantly increase the complexity of the frequent subtree mining task due to the 

combinatorial complexity. As mathematically shown in (Hadzic, Tan et al., 2011; 

Tan, Hadzic, Dillon, Chang et al., 2008), certain structural characteristics of data 

may cause infeasibility in the frequent subtree mining task due to the enormous 

volume of candidate subtrees that need to be enumerated. 

 

Moreover, even though frequent subtree patterns supplied with certain threshold 

parameters might discover interesting patterns, indeed the pattern set itself can be 
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very large and unwieldy, with many patterns within it being irrelevant and not useful, 

generated based on random discovery. For example, a very low support threshold 

may be provided to extract certain underlying rules from certain applications. 

However, lowering the support threshold might affect the performance of the 

algorithm as the inherent complexity of the task is increased, and in the worst case, 

no results would be obtained. In addition, at low support thresholds, the frequent 

subtree patterns themselves may be so large in number that they cause significant 

delays in the analysis and interpretation of the results.  

 

Given the above situations, the applicability of frequent subtree mining based 

approach might not be a suitable preference to implement. A new method for 

effectively representing tree-structured data in a structure-preserving flat format has 

recently been proposed in (Hadzic, 2011). The main motivation of the method is to 

enable a wider range of well-established data mining analysis/techniques, previously 

developed for flat data format, to be applied directly to tree-structured data. It is 

promising in the sense that many of the complexity issues caused by the structural 

properties in the document can be overcome, and class distinguishing criteria can be 

directly sought after. In the context of the work of this thesis, the framework for 

verifying the interestingness of the rules using statistical analysis, and redundancy 

and contradictive assessment methods has proven effective in the context of flat or 

relational data. Having a structure-preserving flat format for tree-structured data will 

enable such a framework to be applied to tree-structured data, and the statistical 

analysis, and redundancy and contradictive assessment methods will not need to 

undergo major modifications in order to adapt to structural characteristics. However, 

there are still some important implications that need to be discussed when applying 

statistical analysis, and redundancy and contradictive assessment methods to 

determine the interestingness of tree-structured association rules. 

 

7.4.1 Database Structure Model (DSM) 

The definition given by (Hadzic, 2011) is utilized here to describe the Database 

Structure Model (DSM). In a relational table format, the first row of a table consists 

of attribute name. In a tree database, however, the attributes themselves are scattered 

throughout the independent tree instances. To address this problem, (Hadzic, 2011) 
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has utilized a structure according to which all the instances/transactions are 

organized. Each of the transactions in a tree-structured document should be a valid 

subtree of this assumed structure, which is referred to as the Database Structure 

Model (DSM) (Hadzic, 2011). Generally, the string-like representation of a tree 

database, an example of which was given in Table 7.3, is converted into a flat data 

format while preserving the ancestor-descendant and sibling node relationships. 

Henceforth, this structure-preserving flat data representation will be simply referred 

to as ‘table’. 

 

The first row of the table contains the DSM without any specific attribute names. It 

represents only the most general structure where every instance from the tree 

database can be matched to. This will ensure that when the labels of a particular 

transaction from the tree database are processed, they are placed in the correct 

column, corresponding to the position in the DSM that this label matches. The 

following explanation of the DSM technique is reproduced from (Hadzic, 2011); 

 

“The labels (attribute names) of this DSM will correspond to pre-order positions of 

the nodes of the DSM and sequential position of the backtrack (‘-1) symbols from the 

string encoding of this DSM. The process of extracting a DSM from a tree database 

consists of traversing the tree database and expanding the current DSM as necessary 

so that every tree instance can be matched against DSM. Let the tree database 

consisting of n transactions be denoted as Tdb = {tid0, tid1, …, tidn-1}, and let the 

string encoding of the tree instance at transaction tidi be denoted as φ(tidi). ). 

Further, let |φ(tidi)| denote the number of elements in φ(tidi), and φ(tidi)k (k = {0, 1, 

…, |φ(tidi)|-1}) denote the kth element (a label or a backtrack ‘-1’) of φ(tidi). The 

same notation for the string encoding of the (current) DSM is used, i.e. φ(DSM)”. 

The pseudo code of extracting the DSM from Tdb process is shown in Figure 7.4 
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Input: Tdb 
Output: DSM  
inputNodeLevel = 0 // current level of φ(tidi)k    
DSMNodeLevel = 0 // current level of φ(T(hmax, dmax))k   
φ(DSM) = φ(tid0) // set default DSM    
for i = 1 to n – 1  // n = |Tdb|   
   for each φ(tidi)k in φ(tidi)    
      for each p = 0 to (|φ(DSM)|-1)     
         if  φ(tidi)k = -1 then inputNodeLevel– – else inputNodeLevel++  
         if φ(DSM)p=‘bi’ then DSMNodeLeve– – else DSMNodeLevel++ 
         if inputNodeLevel ≠  DSMNodeLevel 
 if  φ(tidi)k = -1 then              
                 while inputNodeLevel ≠ DSMNodeLevel 
                    p++ 
                    if  φ(DSM)p = -1 then DSMNodeLevel– – else DSMNodeLevel++ 
                 endwhile 
           else 
    while inputNodeLevel ≠ DSMNodeLevel 
                    append φ(tidi)k at position p+1 in φ(DSM)   

      k++ 
      p++ 

                    if  φ(tidi)k = -1 then inputNodeLevel– – else inputNodeLevel++ 
             endwhile 
      endfor 
   endfor 
endfor 
return DSM 
Figure 7.4: Model Tree Extraction from a Tree database Tdb reproduced from (Hadzic, 
2011) 

  

To illustrate the complete conversion process using DSM, please refer to Figure 7.1. 

Using the string encoding format representation (Zaki, 2005), the tree database Tdb 

from Figure 7.1 would be represented as is shown in Table 7.1, where the left 

column corresponds to the transaction identifiers, and the right column is the string 

encoding of each subtree.  

 

In this example, the DSM is reflected in the structure of T6 in Figure 7.1 and it 

becomes the first row of the table to reflect the attribute names as explained 

previously. The string encoding is used to represent this uniform structure and since 

the order of the nodes (and backtracks (‘-1)) is important, the nodes and backtracks 

are labeled sequentially according to their occurrence in the string encoding. For 

nodes (labels in the string encoding), xi is used as the attribute name, where i 

corresponds to the pre-order position of the node in the tree, while for backtracks, bj 

is used as the attribute name, where j corresponds to the backtrack number in the 

string encoding. Hence, from our example in Figure 7.1 and Table 7.1, φ(DSM) = ‘x0 

x1 x2 x3 b0 x4 b1 b2 b3 x5 x6 x7 b4 x8 b5 b6 b7 ’.  
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To fill in the remaining rows, every transaction from Tdb is scanned and when a 

label is encountered, it is placed in the matching column (i.e. under the matching 

node (xi) in the DSM), and when a backtrack (‘-1’) is encountered, a value ‘1’ (or ‘y’) 

is placed in the matching column (i.e. matching backtrack (bj) in DSM). The 

remaining entries are assigned values of ‘0’ (or ‘no’, indicating non existence). The 

flat data format of Tdb from Table 7.1 (and Figure 7.1) is illustrated in Table 7.4. 

 

Table 7.4: Flat representation of Tdb in Figure 7.1 and Table 7.1 

x0 x1 x2 x3 b0 x4 b1 b2 b3 x5 x6 x7 b4 x8 b5 b6 b7 
a b d n 1 e 1 1 1 c 0 0 0 0 0 0 1 
b c 0 0 0 0 0 0 1 b e 0 0 0 0 1 1 
b d e 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
l m 0 0 0 0 0 0 1 n 0 0 0 0 0 0 1 
k l m 0 0 0 0 1 1 n 0 0 0 0 0 0 1 
b a c f 1 0 0 1 1 d 0 0 0 0 0 0 1 
a b c d 1 e 1 1 1 f g h 1 i 1 1 1 

 

The conversion process can be formalized as follows. Let the tree database consisting 

of n transactions be denoted as Tdb = {tid0, tid1, …, tidn-1}, and let the string 

encoding of the tree instance at transaction tidi be denoted as φ(tidi). The DSM is 

extracted from Tdb using the procedure explained earlier. Further, let |φ(tidi)| denote 

the number of elements in φ(tidi), and φ(tidi)k (k = {0, 1, …, |φ(tidi)|-1}) denote the 

kth element (a label or a backtrack ‘-1’) of φ(tidi). The flat data format or table FT (C, 

R) (C = columns, R = rows) is set up where C = {c0, c1, …, cm-1} (m = |C| = 

|φ(DSM)|), and R = {r0, r1, …, rp-1} ( p = |R| = n+1 (i.e. extra column for attribute 

names). The value in column number x and row number y is denoted as FT (cx, ry). 

Hence, to set the attribute names FT (ci, r0) = φ(DSM)k  where i = k = {0, 1, …, 

(|φ(DSM)|-1)). The process of populating the entries from FT using Tdb is explained 

by the pseudo code in Figure 7.5.  
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Input: Tdb, DSM 

Output: FT  

// set up the attribute name row in FT 

FT (ci,r0)=φ(DSM)k ∀  i=k={0, …, (|φ(DSM)|-1)) 
inputNodeLevel = 0 // current level of φ(tidi)k    
DSMNodeLevel = 0 // current level of φ(DSM)k   
// populate FT 
for i = 0 to n – 1  // n = |Tdb|   
   for each φ(tidi)k in φ(tidi)    
      for p = 0 to (|φ(DSM)|-1)     
         if  φ(tidi)k = -1 then inputNodeLeve– – else inputNodeLevel++ 
         if φ(DSM)p=‘bi’ then DSMNodeLevel– – else DSMNodeLevel++ 
         if inputNodeLevel = DSMNodeLevel 
            if  φ(tidi)k = -1 then FT (cp,ri+1) = 1 else FT (cp,ri+1) = φ(tidi)k 
             else // level mismatch traverse φ(DSM) until match  
             while inputNodeLevel ≠ DSMNodeLevel 
                FT (cp,ri+1) = 0 
                p++ 
                if  φ(DSM)p =‘bi’ then DSMNodeLevel– – else DSMNodeLevel++ 
            endwhile 
            if  φ(tidi)k = -1 then FT(cp,ri+1) = 1  
            else FT (cp,ri+1) = φ(tidi)k 
      endfor 
   endfor 
endfor 
return FT  
Figure 7.5: Tree database Tdb to flat data format (FDT) conversion reproduced from 
(Hadzic, 2011) 

 

In addition to that, during the conversion process as mentioned in (Hadzic, Hacker, 

& Tagarelli, 2011; Hadzic & Hecker, 2011), one can incorporate the minimum 

support threshold s so that the DSM captures only those structural characteristics that 

have occurred in at least s% of the tree database. Hence, in some cases only a 

fraction of a tree instance can be matched to the DSM due to low occurrences in the 

tree database, but the partial information still needs to be included in the resulting flat 

table.  

 

As an example, refer to the tree database (Tdb) in Table 7.4 and Figure 7.1, in mining 

the subtrees with minimum support threshold of 3, the resulting DSM would be as 

follows: “x0, x1, x2, b0, b1, b2, x3, b3” and the new table is shown in Table 7.5.   
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Table 7.5: Flat representation of Tdb in Figure 7.1 and Table 7.1 when minimum support = 3 

x0 x1 x2 x3 b0 b1 b2 x4 b3

a b c n 1 1 1 c 1 
b c 0 0 0 0 1 b 1 
b d e 0 0 1 1 0 0 
l m 0 0 0 0 1 n 1 
k l m 0 0 1 1 n 1 
b a c f 1 1 1 d 1 
a b c d 1 1 1 f 1 

 

7.4.1.1 Tree to Flat Conversion Example using DEBII WebLogs Data 

Referring to the DEBII WebLogs data example in Section 7.2.1, the pre-order 

encoding format of the tree database need to be converted into a flat representation as 

proposed by (Hadzic, 2011). The DSM application and the algorithm were described 

earlier in Section 7.4.1. In this section, a detailed example is provided using the 

DEBII WebLogs example as reference.  

 

Initially, the DSM needed to be constructed. In this example, the DSM is reflected in 

the structure of T0 in Table 7.3 and the corresponding tree is shown in Figure 7.3 

(Session 1). Transaction “T0 ” becomes the general structure of DSM (Figure 7.6) and 

the first row in Figure 7.7 to reflect the attributes names. The string encoding is 

utilized to represent the DSM and since the order of the nodes (and backtracks (-1)) is 

important, the nodes and backtracks are labeled sequentially according to their 

occurrence in the string encoding. 

 

“x0  x1  x2  x3  b0  x4  b1  b2  x5  x6  b3  b4  b5  x7  x8  x9  b6  b7  b8  x10  x11  b9  x12  b10  b11” 

Figure 7.6: General Structure for DSM  

 

As the DSM has been chosen according to the aforementioned criteria, consequently 

this will be the first row of the newly-generated flat table. Every transaction that 

remains in the Tdb will be matched against the DSM and every node label placed in 

the matching column (i.e. under the matching node (xi) in the DSM), and when a 

backtrack (‘-1’) is encountered, a value ‘yes’ is placed to the matching column (i.e. 

matching backtrack (bj) in DSM). The remaining entries are assigned a value of ‘no’ 

(indicating non existence). The flat data format of Tdb from Table 7.3 is illustrated in 

Figure 7.7. 
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Figure 7.7: Flat representation of DEBII WebLogs Tdb in Table 7.3 

 
As described in Chapter 4 (Framework B), the flat data format as illustrated in Figure 

7.7 is used to generate the association rules. The Apriori algorithm is then utilized to 

generate the frequent rules. Figure 7.8 below depicts the data format fed to the SAS 

Enterprise Miner software to generate the frequent rules (this data format was 

described earlier in Chapter 5 (Section 5.6)). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.8: Data format (DEBII WebLogs) for Apriori algorithm based on Flat 
Representation in Figure 7.7  
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7.4.1.2 Representing Disconnected Trees w.r.t. DSM 

As discussed earlier in Section 7.4.1, the DSM preserves the structural characteristics 

in the data mining results, since the extracted patterns are mapped onto the DSM to 

re-generate the pre-order string encoding of subtrees. Even though the rules from 

DSM can be converted into pre-order string encoding of the subtrees, and hence are 

represented as subtrees of the tree database, still the implication of the conversion 

process needs to be highlighted. There are some rules that may not be representatives 

of valid subtrees, due to the fact that data mining tasks used for structure-preserving 

flat data representation are not performed by following the structure, but rather, 

structural properties are preserved by the DSM.  

 

For example, it is possible that some items in the rules correspond to sibling nodes in 

the original tree, while the parent or any ancestor node connecting those in the 

original tree is not present in the rules discovered using DSM approach. Hence, this 

would result in an invalid subtree as the nodes are disconnected. In addressing this 

matter, one can add the other nodes that make it into a valid subtree but flag them as 

irrelevant. Furthermore, the user can always choose to match the formed subtree to 

the general structure model represented by the DSM. The process consists of 

sequentially listing the values of each matched node in DSM, while retaining the 

level of information of each current node in DSM and in the subtree pattern. Since 

the DSM itself is ordered according to the pre-order traversal, this results in pre-order 

string encodings of the subtrees. 

 

As a simple illustrative example, consider the following associations/patterns 

extracted from DEBII WebLogs Data; 

 

P1: business-intelligence & human-space-computing & phd-msc  

P2: scholarships & management & phd-a-msc  
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P1

business-intelligence

human-space-computing

phd-a-msc

 

Figure 7.9: Displaying Pattern (P1) w.r.t DSM in Figure 7.6 

 

P2

phd-a-msc

scholarships management

 

Figure 7.10: Displaying Pattern (P2) w.r.t DSM in Figure 7.6 

 

With refer to pattern (P1) in Figure 7.9 and pattern (P2) in Figure 7.10, there are items 

(nodes) in the rule correspond to sibling nodes in the original tree, while the parent or 

any ancestor node connecting those in the original tree is not present in the rule. 

Hence, this would result in an invalid subtree as the nodes are disconnected. This is 

illustrated in both Figure 7.9 and Figure 7.10, where irrelevant nodes are shaded 

grey. One can also choose to display the labels of nodes that are there to 

contextualize the information, i.e. scholarships and management and phd-a-msc, 

which would essentially contextualize the specific rule constraints. Additionally, the 

labels of nodes can be displayed in order to contextualize the information in the tree. 

In this work, these rules are recognized as FullTree rules. 
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7.5 Evaluation of Framework for Tree-Structured Data 

The evaluation of the unification framework is performed using the Prion (Hadzic, 

Dillon, Sidhu, Chang, & Tan, 2006), DEBII WebLogs (Hadzic, 2011), web access 

trees from the computer sciences department of the Rensselaer Polytechnic Institute 

(CSLogs) (Zaki & Aggarwal, 2003) and CRM dataset. These datasets are all in the 

form of integer labeled trees. The purpose of the experiments is to demonstrate that 

by using the tree database transformation, one can still discover useful knowledge 

from tree-structured data using techniques developed for a flat data format. A general 

description of datasets is provided in Section 7.5.1, followed by the dataset 

characteristics for flat table formats in Table 7.7 to Table 7.11. 

 

The evaluation processes are then separated into two parts. The first part is explained 

in Section 7.6. As an initial experiment, the focus is solely on the evaluation of 

frequent subtrees from Prion data that has been generated using the IMB3-Miner 

(Tan et al., 2006). Since this dataset was rather limited in depth, only a small 

adjustment was needed in the general framework for measuring rule interestingness 

proposed in this thesis. However, in tree databases where the average depth of every 

tree instance can be large, and complex structural properties exist, the proposed 

framework would need to undergo considerable adjustments in order to be applied. 

To alleviate this problem, the DSM approach is used (explained earlier) in the second 

part of the experiment where more complex tree databases are considered. Hence, the 

focus is on evaluating the frequent subtrees from flat table format using the DSM 

approach. The experiments are conducted using 3 sets of data, namely the DEBII 

WebLogs, CSLogs and CRM data. The whole set of experiments is described in 

Section 7.7. 

 

Table 7.6 sums up the structural characteristics of each dataset and its content 

variations, and the following notation is used: |Tr| - Number of transactions 

(independent tree instances); |L| - Number of unique labels; |T| - Number of nodes 

(size) in a transaction; |D| - Depth; |F| - Fan-out-factor (or degree); (Avg = average). 

As exhibited in Table 7.6, the DEBII WebLogs, CSLogs and CRM dataset contains 

more complex data compared with Prion data, especially with respect to the tree 

instances having relatively more depth.  
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Table 7.6: General Dataset Characteristics 

Dataset |Tr| |L| Avg |T| Avg |D| Avg |F| Max |T| Max |D| Max |F| 
Prions  17511 46851 12.97 1 11.98 19 1 18
DEBII WebLogs 18836 34052 9.63 4.98 1.56 60 59 37
CSLogs  68302 16207 7.80 3.45 1.82 313 123 137
CRM 1181 10611 52.97 4.89 8.00 533 5 46
 

7.5.1 Dataset Characteristics 

Framework B is evaluated on four sets of XML data, namely the Prion, DEBII 

WebLogs, CSLogs and CRM dataset. The details of these datasets are as follows: 

 

Prions  

Proteinaceous Infectious Particle data or Prion is a database of rooted ordered 

labeled subtrees that described the protein instances stored for Human Prion Proteins 

(Sidhu, Dillon, & Chang, 2006). The Prion dataset has been utilized by (Sidhu et al., 

2006) in describing Protein Ontology database for Human Prion proteins in XML 

format (Sidhu, Dillon, Sidhu, & Setiawan, 2004). Within this XML format, the 

Prion’s XML tags are mapped to integer indexes similar to the format used in (Tan, 

Dillon, Hadzic, Chang, & Feng, 2005) and (Zaki, 2005). The general characteristics 

of Prion data are provided in Table 7.6 and detailed information about the data is 

given in Section 7.6. 

 

DEBII WebLogs  

The DEBII WebLogs data is an apache2 (v2.2.3) web server logs files taken from the 

DEBII website (debii.curtin.edu.au). The DEBII WebLogs data was initially used in 

(Hadzic & Hecker, 2011) in utilizing the DSM application. For the purpose of the 

work in this thesis, the similar setting of the DEBII WebLogs data as described in 

(Hadzic & Hecker, 2011) has been utilized. The data was collected for a four-month 

period in its native (default) format. During this period, all access to the DEBII 

website was stored in logs files, while messages stored in the normal error message 

logs were excluded. The access to the website was then classified as “internal” 

(within the university) and “external” (outside the university). The grouped user 

sessions were converted to trees as was explained with the illustrative example in 

Section 7.2.1. The resulting dataset had 18836 instances, of which 66% was used for 

training and the remainder for testing. The details of the setting of the DEBII 
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WebLogs access can be found in (Hadzic & Hecker, 2011). Table 7.6 shows the 

general characteristics of the data, while in Table 7.7 and Table 7.8 the 

characteristics of DEBII WebLogs data in flat table format are given. 

 

CSLogs  

CSLogs data comprises the web access trees from the computer science department 

of the Rensselaer Polytechnic Institute previously used in (Zaki & Aggarwal, 2003) 

to evaluate the XRules structural classifier. The tree instances are labeled according 

to two classes, namely the internal and external web site access. For the purpose of 

the work of this thesis, all of the three datasets (US1924, US2430, and US304) were 

combined and instances were replicated to make the class distribution even. The total 

number of combined instances is 68302. Sixty-six percent of the data was used for 

the training set and the remainder for the testing set. Since different support 

thresholds were used, in our approach the flat data representation of the dataset is 

done separately for each support threshold, as the extracted database structure model 

(DSM) varies; hence, the number of attributes used during frequent pattern 

generation. The general characteristics of the data are shown in Table 7.6, while the 

flat table format for CSLogs data is provided in Table 7.9 and Table 7.10. 

 

CRM 

CRM data refers to Customer Relationship Management and is a real-world dataset 

relating to the handling of complaints in the area of real estate. These complaints are 

then classified into “WorkCompletion”, with 2 possible values (work completion ≤  

3 or ≥  4 weeks). The dataset consists of 1181 instances with 675 attributes, of which 

66% was used for training and 34% for the testing set. However, there are many 

complex classes within this CRM data which may interest the users of the data. 

Nevertheless in this case, as our main purposes is not to analyze the problem of CRM 

itself, but to look at the CRM data as an example of tree-structured data, the attention 

is confined to the aforementioned class. The general characteristics of the data are 

shown in Table 7.6, while the flat table format for CRM data is provided in Table 

7.11. 

 

Table 7.7 to Table 7.11 summarizes the general characteristics of the datasets based 

on the flat table format representation. It shows the number of transactions, the 
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number of attributes, and the number of selected attributes based on Symmetrical 

Tau (ST) feature selection in each dataset. The table also shows the initial rule sets 

that have been generated, namely FullTree, Embedded and Induced. 

 

FullTree refers to the rules that may contain a disconnected tree, while embedded 

and induced is a subset of rules from FullTree rules (a definition of FullTree is given 

in Section 7.4.1.2). Generally, rules from FullTree may consist of invalid subtrees, 

but one can add the other nodes that make them into valid subtrees but flag them as 

irrelevant. Induced and Embedded rules contain only connected trees from FullTree, 

and induced subtrees preserve parent-child relationships, while in embedded 

subtrees, a parent of a node can correspond to an ancestor of the node in the original 

tree The embedded and induced approaches were included in this experiment as the 

rules that occur in FullTree may not be representative of valid subtrees due to the 

presence of disconnected nodes. This is because the data mining task, statistical 

analysis, and redundancy and contradictive assessment methods employed in the 

framework are not performed by following the structure.  

 

The selected attributes based on ST in Column 4 in Table 7.7 to Table 7.11 are 

measured according to their capabilities in predicting the values of the attribute class 

in each dataset such as “DEBII WebLogs Data: Access (Internal and External)”, 

CSLogs Data: Access (Internal and External)” and “CRM Data: WorkCompletion 

(work completion ≤  3 or ≥  4 weeks)”. As previously discussed in Chapters 3 and 6, 

the ST feature selection criterion was used earlier in the framework to remove any 

irrelevant attributes. Furthermore, this would reduce the number of subtrees that may 

contain irrelevant attributes/nodes. A relevant cut-off point is chosen based on 

decreasing ranking of the nodes. The significant difference was considered to occur 

in the ranking at the position where that attribute’s ST value is less than half of the 

previous attribute’s ST value in the ranking. At this point and below in the ranking, 

all attributes are considered as irrelevant.  

 

As for confidence thresholds, the default confidence parameter was set at 50%, while 

the support was varied from 30% to 1%. The flat data representation of the dataset 

was done separately for each support threshold. This resulted in variations in the 
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extracted database structure model (DSM) and the number of attributes used for 

rules verification purposes. 

 

Table 7.7:  DEBII WebLogs Data with Backtrack Characteristics based on DSM Application 

# of Rules with Target Variable DEBII WebLogs 
Dataset 

# 
Transactions 

#Attr.*
(DSM) 

# Selected Attr. 
(Sym. Tau) FullTree Embedded Induced 

1% 18836 442 437 - - - 
5% 18836 126 123 28282 28280 28280
10% 18836 70 63 234 234 234
20% 18836 36 29 50 49 49
30% 18836 26 19 14 13 13
 

Table 7.8:  DEBII WebLogs Data without Backtrack Characteristics based on DSM 

Application 

# of Rules with Target Variable DEBII WebLogs 
Dataset 

# 
Transactions 

#Attr.*
(DSM) 

# Selected Attr. 
(Sym. Tau) FullTree Embedded Induced 

1% 18836 222 221 308 278 156
5% 18836 64 63 17 15 15
10% 18836 36 35 8 7 4
20% 18836 19 18 2 1 1
30% 18836 14 13 1 No Rules No Rules 
 
Table 7.9: CSLogs Data with Backtrack Characteristics based on DSM Application 

# of Rules with Target Variable CSLogs 
Dataset 

# 
Transactions 

#Attr.*
(DSM) 

# Selected Attr. 
(Sym. Tau) FullTree Embedded Induced 

1% 68302 222 217 13835 13833 13809
5% 68302 64 52 920 919 918
10% 68302 40 29 216 215 215
20% 68302 24 11 48 47 47
30% 68302 16 7 32 31 31
 
Table 7.10:  CSLogs Data without Backtrack Characteristics based on DSM Application 

# of Rules with Target Variable CSLogs 
Dataset 

# 
Transactions 

#Attr.*
(DSM) 

# Selected Attr. 
(Sym. Tau) FullTree Embedded Induced 

1% 68302 127 125 144 138 138
5% 68302 43 41 8 7 7
10% 68302 24 22 4 3 3
20% 68302 17 15 No Rules No Rules No Rules 
30% 68302 12 10 No Rules No Rules No Rules 

 

 
 
 
 
 



 184

Table 7.11:  CRM Data with Backtrack Characteristics based on DSM Application 

# of Rules with Target Variable CRM Data # 
Transactions 

#Attr.*
(DSM) 

# Selected Attr. 
(Sym. Tau) FullTree Embedded Induced 

5% 1181 *675 586 +27116 +5270 +5270
Legend (Table 7.7-7.11): 

(-) = Unavailable 

(*) = Including the Class variable 

(+) = Number of rules after ST application 

 

7.6 Evaluation of Frequent Subtrees from IMB3-Miner 

The IMB3 algorithm is utilized to discover the frequent patterns from the Prion 

dataset. The IMB3 algorithm discovered a total of 27 occurring patterns. The 

minimum support value was set at 10%. Table 7.12 shows three examples of patterns 

discovered.  

 

Table 7.12: Examples of Several Patterns Discovered Based on IMB3-Miner Algorithm 

Patterns # Patterns  # of Occurrences 
ATOMChain(A) 1 

   Element(C) 
3957 

ATOMChain(A) 
 ATOMResidual(TYR) 

2 

 Occupancy (1) 

1743 

ATOMChain(A) 
 Occupancy(1) 
 Temperature(0) 

3 

 Element(C) 

3805 

 
 

Pattern number 1 shows an association between ATOMChain(A) with Element(C) 

and this pattern was discovered 3957 times. Here, the ATOMChain with value A is 

associated with Elements with value C. The patterns discovered by the IMB3 Miner 

algorithm can aid in discovering potentially useful pattern structures in Protein 

Ontology datasets, which makes it useful for comparison of protein datasets taken 

across protein families and species and helps to establish interesting similarities and 

differences. However, the question still remains whether these patterns are 

discovered due to pure coincidence resulting from certain randomness in the 

particular dataset being analyzed. Furthermore, they are often quite large in number, 

which can degrade the analysis procedure, and hence in the next section the 
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statistical significance of the discovered patterns is measured in order to remove any 

non-significant patterns. 

 

7.6.1 Subtrees Significance Test 

Statistical analysis approaches, namely the chi-squared test and log-linear analysis 

were used to determine the usefulness of frequent rules obtained. The results from the 

chi-squared test are discussed first.   

 

Table 7.13:  Patterns Verification Based on Chi-Squared Test 

Node Name Sig. Att. 
Value 

ATOMResidual(TYR) Occupancy(1) Not Sig. 
Occupancy(1) Temperature(0) Not Sig. 
ATOMChain(A) Occupancy(1) Not Sig. 
ATOMChain(A) Element(C) Sig. 
ATOMChain(A) Element(H) Sig. 
Temperature(0) Element(C) Sig. 
Temperature(0) Element(H) Sig. 
ATOMChain(A) ATOMResidual(TYR) Sig. 
ProteinOntoLogsyID(3) Occupancy(1) Not Sig. 
ProteinOntoLogsyID(3) Element(C) Sig. 
ATOMChain(A) Temperature(0) Sig. 
Occupancy(1) Temperature(1) Not Sig. 
Occupancy(1) Element(N) Not Sig. 
Occupancy(1) Element(C) Not Sig. 
Occupancy(1) Element(O) Not Sig. 
Occupancy(1) Element(H) Not Sig. 

Table 7.13 shows that there are 16 association relationships among structured items 

discovered using the IMB3 algorithm. Based on the chi-squared test, 7 of the 16 

relationships are significant. Table 7.14 shows 11 patterns with more than two nodes. 

The log-linear analysis is used to examine the association between these nodes. Only 

one pattern out of 11 patterns is accepted as a significant pattern based on this 

analysis. Based on the log-linear analysis, the result revealed that there is a 

significant association between ATOMChain(A), Temperature(0) and Element(H). 
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Table 7.14:  Patterns Verification Based on Log-Linear Analysis 

Node Name Sig. Att. Value 
ATOMChain(A) ATOMResidue(TYR) Occupancy(1)  Not Sig. 
ATOMChain(A) Occupancy(1) Temperature(0)  Not Sig. 
ATOMChain(A) Occupancy(1) Element(C)  Not Sig. 
ProteinOnto(3) Occupancy(1) Element(C)  Not Sig. 
ATOMChain(A) Occupancy(1) Element(H)  Not Sig. 
Occupancy(1) Temperature(0) Element(C)  Not Sig. 
ATOMChain(A) Temperature(0) Element(C)  Not Sig. 
Occupancy(1) Temperature(0) Element(H)  Not Sig. 
ATOMChain(A) Temperature(0) Element(H)  Sig. 
ATOMChain(A) Occupancy(1) Temperature(0) Element(C) Not Sig. 
ATOMChain(A) Occupancy(1) Temperature(0) Element(H) Not Sig. 
 

7.6.2 Prion as a Classification Problem  

Previous works in (Shaharanee, Hadzic, & Dillon, 2009; Shaharanee, Hadzic, & 

Dillon, 2011) show that the unification framework involves several steps in 

evaluating the rules discovered from the association rules mining process. For the 

Prion dataset, similar steps were followed. A new variable (target variable) identified 

as Human Protein or Animal Protein class is defined. This new variable was derived 

from ProteinOntologyID and SuperFamily variables. Hence, the ProteinOntologyID 

and SuperFamily variables are excluded from the dataset used for this task. Thus, for 

this classification problem, the target variable (i.e., Human or Animal’s Protein) is 

chosen as the right hand side/consequence of the association rules.  

 

In this experiment, the Prion dataset is divided into training set and testing set. Then 

the pre-processing techniques are applied including the removal of missing values 

and discretization of attributes with continuous data. The equal depth binning 

approach method was selected as it produces a better result as discussed in 

(Shaharanee, Hadzic, & Dillon, 2009; Shaharanee, Hadzic, & Dillon, 2011). The 

determination of relevant attributes with respect to being able to predict the target 

attributes is shown in Table 7.15. This is based on Symmetrical Tau (Zhou & Dillon, 

1991). The Symmetrical Tau (ST) measure is effective in distinguishing criteria for 

the class to be predicted, as it does not favor multi-valued attributes. The attributes 

with ST values that are respectively lower than other attribute’s ST values, are 

considered as irrelevant for the task. The significant difference was considered to 

occur at the position where that attribute’s ST value is less than half of the previous 
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attribute’s ST value in the ranking. Hence for this dataset, attributes ‘Occupancy’ and 

‘Y’ were considered as irrelevant for the prediction task and were removed.  

Table 7.15:  Symmetrical Tau Result for Prion Dataset 

Variables ST Values
ATOMChain    0.2088 
Temperature    0.1230 
Z  0.0812 
ATOMid 0.0407 
ATOMResSeqNum 0.0280 
X  0.0256 
Element  0.0153 
Atom  0.0109 
ATOMResidue  0.0082 
Y 0.0029 
Occupancy   0.0001 

 
 

Next, the rules were generated based on the minimum support of 5% and confidence 

of 50% respectively. Table 7.16 shows examples of the generated rules. The 

discovered rules were then verified with statistical techniques, namely the chi-

squared test (Agresti, 2007) and logistics regression analysis (Agresti, 2007). The 

result produced by these statistical analyses indicates that only variables 

ATOMChain, ATOMResidual, ATOMResSeqNum, X and Z were significant 

contributors to the target variable of class Human or Animal. 

Table 7.16: Examples of Prion Rules 

Set Size Confidence (%) Support (%) Count Rules 
2 75.32 8.97 934 X(g) ==> Class (Animal) 
4 61.71 6.66 693 X(d) & Z(b) & ATOMChain(A)  

==> Class (Human) 
 

Additional constraint measurement techniques were applied in order to discard any 

redundant rules (Shaharanee et al., 2011; Webb, 2007). The combination of these 

rule evaluation strategies will enable the association rule mining framework to 

determine the accuracy and high quality of rules. Table 7.17 shows the progressive 

difference in the number of rules generated as statistical analysis and redundancy 

assessment are applied. There are 116 initial rules. Upon the removal of 75% rules 

following ST and statistical analysis, the AR for both training set and testing set has 

increased by more than 1%., while the CR is still preserved at 100%. This 

demonstrates the importance of evaluating the association rules by statistical 
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analysis, as in this particular scenario, the simplified rule set is more general and 

performs better on unseen data. Within the context of the experiment for this dataset 

in particular, the statistical significance analysis was an appropriate means of 

discarding non-significant rules, which results in a significant reduction in the overall 

complexity of the rule set. Moreover, as the redundancy assessment was 

progressively utilized, 6 redundant rules emerged, but there were no contradictive 

rules. Table 7.17 shows that this substantial reduction of rules was not at the cost of a 

reduction in accuracy; in fact, this increased for the Prion dataset in classifying and 

predicting the protein classes (Shaharanee, Hadzic, & Dillon, 2010).  

 

Moreover, the effect of altering the minimum confidence threshold was observed and 

it was found that the changes in confidence values have a direct impact on the size of 

the rule sets’ AR and CR values. A similar experiment was carried out and described 

in Section 6.2.6 of Chapter 6. By increasing the confidence values from 50% to 60%, 

the AR for both training and testing set increased by more than 19%. However, this 

comes with a trade-off of losing more than 34% CR of the dataset. This is because 

the number of rules was reduced from 23 to 10. Of the 13 discarded rules, some 

might have been rules capable of capturing more instances in the database. Thus, by 

discarding these 13 rules, the capability of the remaining rules to cover all instances 

in the dataset has been decreased. The result demonstrated that there is a trade-off in 

accepting either high accuracy of rules with fewer instances captured or capturing 

more, but less accurate, instances in the dataset in their prediction/classification 

capabilities. Moreover, these findings are similar to those previously discussed when 

evaluating rules interestingness for relational data in Chapter 6. Thus, it is important 

to balance the trade-off between AR and CR in order to determine the optimal value 

for the minimum confidence threshold, which may differ depending on the sensitivity 

of the domain at hand. 
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Table 7.17:  Accuracy Rate (AR) and Coverage Rate (CR) for Prion Data 

 

 

 

 

 

 

 

 

 

 
 

7.7 Evaluation of Frequent Subtree-based Rules Extracted using the DSM 

Approach 

In Section 7.6, the interestingness of frequent subtree based rules from XML could 

directly be measured using the aforementioned statistical analysis, and redundancy 

and contradictive assessment methods. For these particular Prion XML documents, 

the evaluation task was applicable and viable as the data is a limited XML document 

structure with a maximum height of 1 as shown in Table 7.6. 

 

However, as the analysis was extended to dealing with complex XML documents 

(Refer to Row 3, 4 and 5; the DEBII WebLogs, the CSLogs and the CRM dataset 

respectively in Table 7.6), it is difficult for the aforementioned measures to be 

applied directly to evaluate the interestingness of frequent subtrees from these 

datasets.  

 
Chapter 3, with reference to the evaluation of rules from tree-structured data, 

presented a discussion of the complexities of XML format and the difficulties of 

analyzing it. One reason for this is the existence of a large number of attributes that 

are likely to be present in all instances or transactions (Hadzic, 2011).  

 

In the context of the work in this thesis, following the approach taken in Chapter 5 

and Chapter 6, having the data in a flat table format offers a better way of applying 

the statistical analysis, and redundancy and contradictive assessment methods to 

Type  
of  analysis 

Data  
Partition 

# Of 
Rules 

AR % CR% 

Training  59.00 100.00 Initial 
# of Rules  Testing 

116 
58.65 100.00 

Training  59.75 100.00 # of Rules  
after ST Testing 

89 
59.35 100.00 

Training  60.22 100.00 Statistics 
Analysis Testing 

29 
59.89 100.00 

Training  60.52 100.00 Redundancy 
Removal Testing 

23 
60.12 100.00 

Training  60.52 100.00 Contradictive 
Removal Testing 

23 
60.12 100.00 

Training  78.59 65.84 Conf.  60% 
Testing 

10 
79.04 66.88 
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evaluate the interestingness of frequent rules derived from relational data. Thus, by 

having a structure-preserving flat format for tree-structured data, our proposed 

framework can be applied directly to tree-structured data, and the statistical analysis, 

and redundancy and contradictive assessment methods will not need to undergo 

major adaptive changes according to structural characteristics.  

 

(Hadzic, 2011) has initiated the DSM approach in order to represent a tree-structured 

database in a flat table data format. The motivation for this work was to ease the 

burden of analyzing XML documents and enabling the direct application of a wider 

range of data mining/analysis techniques to tree-structured data.  

 

For the experiments conducted here, an evaluation of the unification Framework B 

was performed using the web access trees from the computer sciences department of 

the Rensselaer Polytechnic Institute (CSLogs), DEBII WebLogs and CRM dataset. 

As stated in Chapter 3 (Section 3.6), the focus in this thesis is on evaluating frequent 

subtrees with a predefined class which presents a classification problem.  

 

The purpose of the experiments was to evaluate the frequent subtree generated from 

DSM approach. Each dataset underwent conversion into a structure-preserving flat 

data format (henceforth FDT) using the DSM approach. The backtrack attributes 

information was kept in the database structure model (DSM) as this is important for 

preserving the structural information. Hence, this can be used to represent the 

resulting rules as trees/subtrees. The backtrack attributes can be optionally kept in the 

FDT as they can indicate the existence/non-existence of a node irrespective of the 

label (Hadzic & Hecker, 2011). The effect of the inclusion/exclusion will be 

empirically studied in a later section for the datasets used in this experimental 

evaluation. With this application, the rules can be converted into the pre-order string 

encoding of the subtrees, and hence represented as subtrees of the tree database.  

 

Using the DSM approach, implies that a subtree will be considered as the same entity 

only if all of its nodes have occurred in the same position with respect to the 

extracted DSM, as was discussed in (Hadzic, 2011). Once the frequent subtrees have 

been converted into flat format, the next step is to remove the irrelevant node/nodes 

using the ST feature selection tool. This reduces the number of frequent subtree 
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based rules which contain irrelevant node/nodes. However, in some cases the pre-

processing task may need to occur prior to the application of feature subset selection. 

This was the case for the CRM dataset since the discretization approach was utilized 

in handling the continuous attributes, as discussed earlier in Chapter 5.  

 

The Apriori algorithm was then used to discover frequent rules from the resulting flat 

table format. While the Apriori algorithm may be applied with some constraints and 

parameters to reduce the number of rules, nevertheless, many misleading, 

uninteresting and insignificant rules might still be present as discussed earlier in 

Chapter 3 and Chapter 6. Thus, similar to the evaluation of relational data in Chapter 

5 and Chapter 6, the chi-squared test, logistic regression analysis and redundancy 

removal are used to find and discard irrelevant input nodes and the rules that contain 

them, as they are useless for predicting the target class. 

 

However, some rules generated by the DSM approach may not always be 

representatives of valid subtrees (Hadzic, 2011) due to the data mining tasks not 

being performed by following the structure as discussed in Section 7.4.1.2. The rules 

that reflect invalid subtrees can be determined by matching them against the DSM. 

However, even if they are representatives of invalid subtrees, they may still contain 

useful associations. Hence, the quality of the initially extracted subtree sets that 

contain both valid and invalid (disconnected subtrees) will also be assessed. This set 

will be referred to as FullTree. Thus in these experiments, the initial FullTree set is 

filtered to exclude invalid/disconnected subtrees which results in a rule set based on 

embedded subtrees. The definitions of embedded and induced subtrees were given in 

Chapter 3, and generally speaking, in an embedded subtree a parent-child 

relationship can correspond to an ancestor-descendant relationship in the original 

tree; while in an induced subtree, all parent-child relationships are exactly preserved. 

Hence, from the rule set based on embedded subtrees, any subtrees that have a level 

of embedding between the nodes > 1 are removed, which results in a rule set based 

on induced subtrees. Hence, the induced rule set ⊆  embedded rule set ⊆  FullTree 

rule set.  

 

The evaluation of the rule sets comprises four main tasks. The first analysis of the 

usefulness of the rules generated and the sequence of usage of certain parameter is 
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discussed. The progressive difference in the number of rules, the Accuracy Rate 

(AR) and the Coverage Rate (CR) values are revealed as the statistical analysis and 

redundancy assessment method are utilized. The second evaluation is to compare the 

rules based on the existence of backtrack and non-existence of backtrack in the 

dataset (FDT) (referred to as WithBacktrack or/and WithOutBacktrack). The third 

analysis is to ascertain the differences between FullTree, Embedded and Induced rule 

sets based on the AR and CR criteria. In addition, the XRules classifier (Zaki & 

Aggarwal, 2003) which is capable of discovering association rules based on the 

algorithm for discovering frequent ordered embedded subtrees is used to evaluate the 

usefulness of the rules discovered from the Framework B which applied the DSM. 

The experiments were run on HP Compact Intel(R) Core ™ 2 Duo CPU E6750 @ 

2.66Hz 1.97 GHz, 1.96 GB of RAM, 100GB Hard Disk Space and SAS@ Enterprise 

Miner. 

 

7.7.1 Rules Set Optimization 

The first experiment focussed on evaluating the interestingness of frequent subtrees 

generated from a flat table using the DSM application, with steps similar to those of 

the Framework A described in Chapter 5 and Chapter 6. Firstly, in this section we 

discuss the reduction in the number of rules from the initial frequent rule sets and 

rule sets after using the Symmetrical Tau (ST) features selection approach. Next, the 

focus is on the progressive frequent rules verification based on statistical analysis, 

namely the chi-squared test, logistic regression analysis and redundancy assessment 

method.  

 

As shown in Tables 7.7 to 7.11, the conversion of the original tree-structured data 

into the flat data format representation, created a very large number of input 

attributes, especially at lower support thresholds. By utilizing the Apriori algorithm 

to generate all frequent rules, one might encounter difficulties in analyzing all rules 

given certain support and confidence constraints as proven by our experiment for 

relational data. By referring to the entire Tables 7.20 to Table 7.24, even with the 

given support constraint, the number of extracted rules (Initial Rule Set) is large and 

unfeasible to analyze. In addition to that, within the support of 1% for DEBII 

WebLogs WithBacktrack (Table 7.20) and 5% support value for CRM data (Table 
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7.24), the initial rules cannot be displayed due to limitations of software and tools. 

As a remark, for the DEBII WebLogs WithBacktrack, the rules are generated based 

on the attributes that satisfy both ST and chi-squared test. In this case, the chi-

squared test is used to identify and remove any attributes that are not significant in 

predicting the class value within the dataset. For the CRM dataset, the rules are 

generated based on the attributes that satisfy the ST measure. Moreover, one can 

observed that, in CSLogs WithOutBacktrack (Table 7.23) for support values 20% 

and 30%, no rules are meeting the given thresholds.  

 

A large volume of rules may be discovered due to the presence of irrelevant 

attributes in the dataset. The capabilities of ST in selecting appropriate attributes, 

thereby removing irrelevant attributes, are shown in our previous experiments for 

relational data problems. For this particular task of evaluating tree-structured rules, 

similar experiments were conducted. The attributes for each different support were 

ranked according to their decreasing ST and a relevance cut-off point was chosen.  

 

Table 7.18 indicates the differences between the number of initial input attributes and 

the number of attributes after applying Symmetrical Tau (ST) with their respective 

rule number (below) for each dataset for each different support. All attributes that 

have been removed from DEBII WebLogs WithBacktrack and CSLogs 

WithBacktrack are backtrack attributes; moreover, in CSLogs WithBacktrack the ST 

also removed one label node of X0 which in the context of CSLogs data is a single 

value attribute. While for the DEBII WithOutBacktrack, no attributes were removed 

and only 1 attribute was removed from CSLogs WithOutBacktrack which is the same 

X0 attribute in CSLogs WithBacktrack.  

 

This indicates that the inclusion of these backtrack nodes may not be useful or have 

low capabilities in predicting the class attributes in this dataset. As expected, the 

input variable that contains a single value is unable to distinguish the class variables. 

Such input attributes have been discarded as they are considered irrelevant based on 

the ST value calculated. With the application of ST feature selection technique, rules 

that contain attributes that failed the ST measure are discarded. Furthermore, in two 

specific cases as shown in Table 7.18 for CSLogs WithBacktrack with support 20% 
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and 30%, as the ST measures been utilized; consequently, all rules have been 

discarded as these rules consist of attributes that failed the ST measure. 

 

Table 7.18: Number of Attributes Removes By ST and Respective Number of Rules 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(*) = Unavailable 

(-) = No rules 

 
The next task in measuring the interestingness of frequent subtrees is the application 

of the chi-squared test and logistic regression analysis for rule verification. The 

statistical analysis is applied in this framework in order to determine the usefulness 

and significance of input variables in predicting the class variables as was the case in 

relational data problems. Hence, this will provide an appropriate means of 

identifying and discarding rules that are not significant. However, to some extent 

some implications and issues arose when a similar approach was applied to the 

frequent subtrees extracted from the flat data format. 

 

To illustrate this, an example from CSLogs WithBacktrack with 1% support is used. 

As all the input attributes were included in the SAS@ software, the statistical 

measurements for large-valued attributes cannot be performed because the software 

limits the maximal number of unique values to 125. Hence, one additional 

assumption included here is that any input attributes exceeding a certain limit of the 

number of its possible values will be omitted. For example, in this dataset, input 

attribute X1 is being omitted from further analysis as it consists of 535 unique values. 

There are some implications behind this assumption, and alternatives need to be 

WithBacktrack WithOutBacktrack  
1% 5% 10% 20% 30% 1% 5% 10% 20% 30%

# of Initial Input Attr. 
 
(# of Initial Rules)  

441

(*)

125

(28282)

69

(234)

35

(50)

25

(14)

221 
 

(308) 

63 
 

(17) 

35

(8)

18

(2)

13

(1)

DEBII 
WebLogs 

# of Attr. After ST  
 
(# of Rules After ST) 

437

(*)

123

(8031)

63

(43)

29

(8)

19

(3)

221 
 

(308) 

63 
 

(17) 

35

(8)

18

(2)

13

(1)
# of Initial Input Attr. 
 
(# of Initial Rules)  

221

(13835)

63

(920)

39

(216)

23
 

(48)

15

(32)

126 
 

(144) 

42 
 

(8) 

23

(4)

16

(-)

11

 (-)

CSLogs 

# of Attr. After ST 
  
(# of Rules After ST) 

217

(6084)

52

(99)

29

(25)

11
 
(-)

7

(-)

125 
 

(72) 

41 
 

(4) 

22

(2)

15
 
(-)

10
 
(-)
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taken in the pre-processing stage. However, this is left as future work and the related 

discussion is provided in Chapter 8. After the application of the chi-squared test, 182 

attributes failed the chi-squared test and were removed. Another 13 attributes were 

also rejected because they exceeded the value’s limit per attribute which is 

considered unimportant based on the software used. The remaining 18 input 

attributes were selected for the logistic regression analysis. Table 7.19 presents the 

summary of attributes for CSLogs Data WithBacktrack for 1%, while Figure 7.11 

displays a screen shot of the chi-squared test results.  

 

Table 7.19: Summary of Attributes for CSLogs Data WithBacktrack  

Total # 
of Input 
Attr. 

# of 
 Class 
Attr. 

# of  
Input  
Attr. 
After ST 

# of Attr. With 
Exceeding 
Limit Values 
per Attr. 

# of Attr. with 
Exceeding 
Chi Squared 
Limit 

# of Attr. 
with  
Small Chi 
Squared 
Value 

# of Attr. 
for Logistic 
Regression 
analysis 

221 1 217 13 4 182 18 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.11: Variables Selection based on Chi-squared test for CSLogs WithBacktrack for 
Support 1% 

 

Several logistic regression models were then developed for the remaining 18 input 

attributes. The selected model is the model that proves to be the most parsimonious 

with the lowest misclassification rate. This result is possible because different 
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variable combinations may contain different/complementary information that 

contributes to the prediction of the value of the target variable. 

 

The selected model consists of these attributes: “X102, X13, X14, X16, X16,X55, X6, X7, 

X71, X77, X78, X80, X82, X84, X85, X86” However, as one can observe in the developed 

models in Figure 7.12, the misclassification rate for the each model is within the 

range of 44% - 45%. Compared to all results for the logistic regression models for 

relational data problems, this misclassification rate is lower, thereby possibly having 

further implications for the subtrees verification process. This may be due to the 

existence of sparse values within each attribute because of the greater variation 

among users who accessed the CSLogs’s server. In this particular case for this kind 

of data, further analysis needs be done to determine an appropriate measure that can 

handle the many values within an attribute. These issues are reserved for our future 

work as discussed in Chapter 8.  

 

 

Figure 7.12:  Logistic Regression Model Selection for CSLogs WithBacktrack for Support 
1% 

 

Redundant rules assessment is then performed in determining the existence of any 

redundant rules in the database. As defined by (Bayardo, Agrawal, & Gunopulos, 

2000; Webb, 2007), redundant rules are those rules that include items in the 

antecedent that are entailed by the other elements of the antecedents. Of all datasets 

in Table 7.20 to Table 7.24 (the number of rules is shown in brackets), there were a 
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number of rules detected as redundant based on the application of the redundancy 

removal with 1% support for DEBII WebLogs and CSLogs; and 5% support for 

CRM dataset. This is due to the large number of existing rules even when the 

confidence was constrained to 50%. 

 

These large numbers of rules managed to be reduced with a proper sequence of usage 

of parameters including the ST feature selection, statistical analysis and the 

redundancy assessment method. For this experiment, and with reference to the 

specific datasets, the reduction of the number of rules increased the AR for DEBII 

WebLogs WithBacktrack for 10%, 20% and 30% support; CSLogs WithBacktrack 

1%, 5% and 10% but this produces a reduction in CR capabilities.  

 

One may observe that, for DEBII WebLogs WithBacktrack for 1% and 5% support 

and DEBII WebLogs WithOutBacktrack for 1%, 5% and 10% support; CSLogs 

WithOutBacktrack for 1%, both AR and CR are slightly reduced with the reduction 

in the number of rules. Moreover, there are no rules available to be evaluated once 

the ST is used for the CSLogs WithBacktrack and CSLogs WithOutBacktrack for 

20% and 30% support.  

 

However, for CSLogs WithOutBacktrack with 5% and 10% support thresholds, the 

AR and CR are both preserved even with the reduced number of rules. However, 

there are no rules to be removed for DEBII WebLogs WithOutBacktrack with 20% 

and 30% support, thereby preserving the same AR and CR values. 

 

Several variations occurred within the experiments for each different dataset and for 

each different support. One might observe that the results are not consistent 

throughout the entire experiments. This might be a case as noted by (Hadzic & 

Hecker, 2011) of there being differences between period of web access between 

DEBII WebLogs (4 months) and CSLogs (3 weeks) which may account for the 

inconsistency in results. However, one can observe that, in most of the cases 

demonstrated earlier, the reduction of rules have increased their 

prediction/classification ability but weakened their ability to capture/cover more 

instances in the datasets. 
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Furthermore, as two web logs access data were utilized in this experiment (the CRM 

dataset will be discussed in Section 7.7.5), the result demonstrated that, because of 

the large navigational variants between users who accessed different web pages from 

the website, this consequently created sparse values within attributes. This will affect 

the application of statistical analysis including the chi-squared test and logistic 

regression analysis. Thus, one may need to limit the number of maximum values for 

each attribute, or group the values under certain categories, if meaningful categories 

can be devised. However, this issue is outside of the scope of the work of this thesis.  

 
Table 7.20:  DEBII WebLogs WithBacktrack 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(*) = Unavailable 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Support : 1% Support : 5% Support : 10% Support : 20% Support : 30% Type  
of  analysis 

Data  
Partition AR % CR % AR % CR % AR % CR % AR % CR % AR % CR % 

Training  90.61 
(28282) 

100.00 
(28282) 

64.27 
(234) 

100.00 
(234) 

58.36 
(50) 

100.00 
(50) 

59.62 
(14) 

100.00 
(14) Initial  

# of Rules  Testing 
* * 94.41 

(28282) 
100 
(28282) 

70.06 
(234) 

100.00 
(234) 

62.01 
(50) 

100.00 
(50) 

57.90 
(14) 

100.00 
(14) 

Training  90.50 
(8031) 

100.00 
(8031) 

75.19 
(43) 

73.95 
(43) 

68.60 
(8) 

64.20 
(8) 

68.36 
(3) 

59.16 
(3) # of Rules 

after ST Testing 
* * 94.26 

(8031) 
100.00 
(8031) 

74.94 
(43) 

74.09 
(43) 

72.48 
(8) 

57.23 
(8) 

74.57 
(3) 

51.95 
(3) 

Training  83.13 
(528) 

94.03 
(528) 

73.97 
(22) 

91.26 
(22) 

78.21 
(11) 

64.47 
(11) 

74.08 
(3) 

59.32 
(3) 

75.81 
(1) 

38.64 
(1) Chi Squared 

Testing 80.23 
(528) 

93.75 
(528) 

68.77 
(22) 

91.68 
(22) 

74.96 
(11) 

60.12 
(11) 

75.51 
(3) 

53.20 
(3) 

80.49 
(1) 

35.77 
(1) 

Training 82.62 
(496) 

94.03 
(496)         Logistic 

Regression Testing 80.02 
(496) 

93.75 
(496)         

Training  78.52 
(189) 

94.03 
(189)         Redundancy 

Removal Testing 75.06 
(189) 

93.75 
(189)         
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Table 7.21:  DEBII WebLogs WithOutBacktrack 

 

Table 7.22:  CSLogs WithBacktrack 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Support : 1% Support : 5% Support : 10% Support : 20% Support : 30% Type  
of analysis 

Data  
Partition AR % CR % AR % CR % AR % CR % AR % CR % AR % CR % 

Training  86.04 
(308) 

82.70 
(308) 

80.72 
(17) 

68.13 
(17) 

79.40 
(8) 

56.30 
(8) 

74.36 
(2) 

53.43 
(2) 

75.81 
(1) 

38.64 
(1) Initial 

# of Rules  Testing 83.66 
(308) 

72.08 
(308)   

77.90 
(17) 

59.21 
(17) 

76.12 
(8) 

49.92 
(8) 

75.84 
(2) 

47.17 
(2) 

80.49 
(1) 

35.77 
(1) 

Training  86.04 
(308) 

82.70 
(308) 

80.72 
(17) 

68.13 
(17) 

79.40 
(8) 

56.30 
(8) 

74.36 
(2) 

53.43 
(2) 

75.81 
(1) 

38.64 
(1) # of Rules 

after ST Testing 83.66 
(308) 

72.08 
(308)  

77.90 
(17) 

59.21 
(17) 

76.12 
(8) 

49.92 
(8) 

75.84 
(2) 

47.17 
(2) 

80.49 
(1) 

35.77 
(1) 

Training  86.04 
(308) 

82.70 
(308) 

80.72 
(17) 

68.13 
(17) 

79.40 
(8) 

56.30 
(8)     

Chi Squared 
Testing 83.66 

(308) 
72.08 
(308)  

77.90 
(17) 

59.21 
(17) 

76.12 
(8) 

49.92 
(8)     

Training 84.68 
(260) 

82.70 
(260) 

78.72 
(10) 

62.19 
(10) 

76.61 
(4) 

54.50 
(4)     Logistic 

Regression Testing 83.13 
(260) 

72.08 
(260) 

78.18 
(10) 

53.86 
(10) 

75.42 
(4) 

48.20 
(4)     

Training  82.18 
(140) 

82.70 
(140)         Redundancy 

Removal Testing 80.51 
(140) 

72.08 
(140)         

Support : 1% Support : 5% Support : 10% Support : 20% Support : 30% Type  
Of analysis 

Data  
Partition AR % CR % AR % CR % AR % CR % AR % CR % AR % CR % 

Training  68.09 
(13835) 

98.59 
(13835) 

62.79 
(920) 

98.33 
(920) 

60.14 
(216) 

98.32 
(216) 

56.49 
(48) 

91.65 
(48) 

56.39 
(32) 

91.65 
(32) Initial 

# of Rules  Testing 69.94 
(13835) 

98.60 
(13835) 

63.58 
(920) 

98.35 
(920) 

60.73 
(216) 

98.34 
(216) 

57.10 
(48) 

91.45 
(48) 

57.13 
(32) 

91.45 
(32) 

Training  69.94 
(6084) 

98.59 
(6084) 

64.71 
(99) 

98.33 
(99) 

60.98 
(25) 

98.32 
(25)     # of Rules 

after ST Testing 72.01 
(6084) 

98.60 
(6084) 

65.47 
(99) 

98.35 
(99) 

61.66 
(25) 

98.34 
(25)     

Training  79.22 
(73) 

48.97 
(73) 

66.04 
(11) 

74.81 
(11) 

62.16 
(8) 

81.53 
(8)     

Chi Squared 
Testing 78.78 

(73) 
48.77 
(73) 

65.94 
(11) 

74.60 
(11) 

62.45 
(8) 

81.49 
(8)     

Training 79.22 
(73) 

48.97 
(73)         Logistic 

Regression Testing 78.78 
(73) 

48.77 
(73)         

Training  79.01 
(61) 

48.97 
(61)         Redundancy 

Removal Testing 78.53 
(61) 

48.77 
(61)         
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Table 7.23:  CSLogs WithOutBacktrack 

 
Table 7.24:  CRM Data WithBacktrack 

 
 
 
 
 
 
 

 
 

 
 

                               
(*)  = Unavailable 

 

7.7.2 Comparing Rules with Backtrack and Rules without Backtrack 

By referring to the DEBII WebLogs and CSLogs dataset characteristics in Tables 7.7 

to  7.10, one can see that if there are x non-backtrack attributes in the dataset 

WithOutBacktrack, there will be x-1 additional backtrack attributes in the dataset 

WithBacktrack. Hence, the number of rules from the datasets WithBacktrack is 

always higher compared to rules within dataset WithOutBacktrack. All initial rules 

are discovered for every dataset for different support. However, there are no initial 

rules discovered for DEBII Weblogs data WithBacktrack with 1% support (Refer to 

Support : 1% Support : 5% Support : 10% Support : 20% Support : 30% Type  
of analysis 

Data  
Partition AR % CR % AR % CR % AR % CR % AR % CR % AR % CR % 

Training  79.25 
(144) 

48.31 
(144) 

79.31 
(8) 

20.40 
(8) 

76.69 
(4) 

20.36 
(4) Initial 

# of Rules  Testing 78.77 
(144) 

48.01 
(144) 

78.73 
(8) 

20.35 
 (8) 

76.90 
(4) 

20.30 
(4) 

No Rules No Rules 

Training  79.25 
(72) 

48.31 
(72) 

79.31 
(4) 

20.40 
(4) 

76.69 
(2) 

20.35 
(2)     # of Rules 

after ST Testing 78.77 
(72) 

48.01 
(72) 

78.73 
(4) 

20.35 
(4) 

76.90 
(2) 

20.30 
(2)     

Training  79.25 
(72) 

48.31 
(72)         

Chi Squared 
Testing 78.77 

(72) 
48.01 
(72)         

Training 79.25 
(72) 

48.31 
(72)         Logistic 

Regression Testing 78.77 
(72) 

48.01 
(72)         

Training  79.05 
(60) 

48.31 
(60)         Redundancy 

Removal Testing 78.53 
(60) 

48.01 
(60)         

Support : 5% Type  
of analysis 

Data  
Partition # Rules AR % CR % 
Training  Initial  

# of Rules Testing * * * 

Training  83.02 100.00 # of Rules after ST Testing 
27116 

83.74 100.00 
Training  79.85 100.00 Chi Squared Testing 91 80.95 100.00 
Training  76.78 100.00 Redundancy 

Removal Testing 51 77.72 100.00 
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Table 7.26). This is due to the large number of attributes (441 attributes for Initial 

Rules and 437 attributes after applying Symmetrical Tau and discarding irrelevant 

attributes - Refer to Table 7.18) and the limitation of memory of our software and 

tools. 

 

For DEBII Weblogs data (Refer to Table 7.26 to Table 7.30), the coverage rate (CR) 

for rules WithBacktrack is always higher compared to the CR for rules 

WithOutBacktrack. In contrast, the accuracy rate (AR) for rules WithOutBacktrack is 

higher compared to rule set WithBacktrack. Table 7.25 gives an example of the final 

rules from both WithBacktrack and WithOutBacktrack from DEBII Weblogs data 

with 20% support to demonstrate the aforementioned issues and implications. 

 
Table 7.25: Comparison between DEBII WebLogs FullTree WithBacktrack and 

WithOutBacktrack for 20% Support  

FullTree WithBacktrack FullTree WithOutBacktrack 
X0(7) ==> Class(1) X0(7) ==> Class(1) 
B11(yes) ==> Class(1) X1(7) ==> Class(0) 
X1(7) ==> Class(0)  
 

The final 3 rules and 2 rules from FullTree are the significant rules based on the 

unification framework as discussed earlier in Section 7.7.1. The CR in the testing set 

for the 3 final rules from rule set WithBacktrack is 53.20% which is higher compared 

to the 2 final rules from rule set WithOutBacktrack of 47.17%. The AR for the 3 

final rules from rules WithBacktrack testing set is 75.51% which is slightly less than 

the AR for the 2 final rules in the dataset WithOutBacktrack for 75.84%. This 

observation indicates that the rules can capture more instances in the dataset when a 

backtrack node is included. Each node in a pre-order string encoding upon which 

DSM is based, implies the existence of a specific backtrack attribute in the string 

encoding. Rules indicating existence/non-existence of a backtrack attribute also 

indicate the existence of a particular node in the structure irrespective of that node’s 

actual value. Such rules may be useful in cases when the specific values cannot 

become part of a rule because they do not satisfy the specified support threshold 

(20% in this example). However, it can come with a trade-off that the rules 

WithBacktrack are not specific enough, thereby reducing the AR.  
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Additionally, one can observe that in DEBII Weblogs WithBacktrack for support 5% 

(refer to Table 7.27) both AR and CR for the initial rule set and rule set after the ST 

application is higher compared to the initial rule set and rule set after ST application 

extracted from WithOutBacktrack dataset variation. This exception occurs due to the 

large number of rules been discovered from the dataset WithBacktrack thus creating 

possibility that the initial rules and rules after ST are capable of capturing every 

instance in the database and still maintain a high level of accuracy. However, as 

emphasized in our evaluation framework, the initial set of rules may be contaminated 

with insignificant, random and redundant rules. Even their AR and CR are higher, 

creating possible difficulties in interpreting, handling and presenting the rules.  

 

Table 7.26: The comparison between rules for DEBII WebLogs WithBacktrack and DEBII 

WebLogs WithOutBacktrack using 1% support 

(*) = Unavailable 
 

Table 7.27: The comparison between rules DEBII WebLogs WithBacktrack and DEBII 

WebLogs WithOutBacktrack using 5% support 

 
 

WithBacktrack WithOutBacktrack Type  
of analysis 

Data  
Partition AR % CR % AR % CR % 
Training  86.04 (308) 82.70 (308)Initial 

# of Rules  Testing * * 83.66 (308) 72.08 (308)
Training  86.04 (308) 82.70 (308)# of Rules  

after ST Testing * * 83.66 (308) 72.08 (308)
Training  83.13 (528) 94.03 (528) 86.04 (308) 82.70 (308)Chi Squared 
Testing 80.23 (528) 93.75 (528) 83.66 (308) 72.08 (308)
Training  82.62 (496) 94.03 (496) 84.68 (260) 82.70 (260)Logistic 

Regression Testing 80.02 (496) 93.75 (496) 83.13 (260) 72.08 (260)
Training  78.52 (189) 94.03 (189) 82.18 (140) 82.70 (140)Redundancy 

Removal Testing 75.06 (189) 93.75 (189) 80.51 (140) 72.08 (140)

WithBacktrack WithOutBacktrack Type  
of analysis 

Data  
Partition AR % CR % AR % CR % 
Training  90.61 (28282) 100.00 (28282) 80.72 (17) 68.13 (17)Initial 

# of Rules  Testing 94.41 (28282) 100.00 (28282) 77.90 (17) 59.21 (17)
Training  90.50 (8031) 100.00 (8031) 80.72 (17) 68.13 (17)# of Rules  

after ST Testing 94.26 (8031) 100.00 (8031) 77.90 (17) 59.21 (17)
Training  73.97 (22) 91.26 (22) 80.72 (17) 68.13 (17)Chi Squared 
Testing 68.77 (22) 91.68 (22) 77.90 (17) 59.21 (17)
Training  78.72 (10) 62.19 (10)Logistic  

Regression Testing 78.18 (10) 53.86 (10)
Training      Redundancy 

Removal Testing     
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Table 7.28: The comparison between rules DEBII WebLogs WithBacktrack and DEBII 

WebLogs WithOutBacktrack using 10% support 
 
 
 

 

 

 

 

 

 

 

Table 7.29: The comparison between rules DEBII WebLogs WithBacktrack and DEBII 

WebLogs WithOutBacktrack using 20% support 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Table 7.30: The comparison between rules DEBII WebLogs WithBacktrack and DEBII 

WebLogs WithOutBacktrack using 30% support  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WithBacktrack WithOutBacktrack Type  
of analysis 

Data  
Partition AR % CR % AR % CR % 
Training  64.27 (234) 100.00 (234) 79.40 (8) 56.30 (8) Initial 

# of Rules  Testing 70.06 (234) 100.00 (234) 76.12 (8) 49.92 (8) 
Training  75.19 (43) 73.95 (43) 79.40 (8) 56.30 (8) # of Rules  

after ST Testing 74.94 (43) 74.09 (43) 76.12 (8) 49.92 (8) 
Training  78.21 (11) 64.47 (11) 79.40 (8) 56.30 (8) Chi Squared 
Testing 74.96 (11) 60.12 (11) 76.12 (8) 49.92 (8) 
Training  76.61 (4) 54.50 (4) Logistic  

Regression Testing 75.42 (4) 48.20 (4) 
Training    Redundancy 

Removal Testing     

WithBacktrack WithOutBacktrack Type  
of analysis 

Data  
Partition AR % CR % AR % CR % 
Training  58.36 (50) 100.00 (50) 74.36 (2) 53.43 (2) Initial 

# of Rules  Testing 62.01 (50) 100.00 (50) 75.84 (2) 47.17 (2) 
Training  68.60 (8) 64.20 (8) 74.36 (2) 53.43 (2) # of Rules after 

ST Testing 72.48 (8) 57.23 (8) 75.84 (2) 47.17 (2) 
Training  74.08 (3) 59.32 (3)  Chi Squared 
Testing 75.51(3) 53.20 (3)  
Training   Logistic  

Regression Testing     
Training      Redundancy 

Removal Testing     

WithBacktrack WithOutBacktrack Type  
of analysis 

Data  
Partition AR % CR % AR % CR % 
Training  59.62 (14) 100.00 (14) 75.81 (1) 38.64 (1) Initial 

# of Rules  Testing 57.90 (14) 100.00 (14) 80.49 (1) 35.77 (1) 
Training  68.36 (3) 59.16 (3) 75.81 (1) 38.64 (1) # of Rules after 

ST Testing 74.57 (3) 51.95 (3) 80.49 (1) 35.77 (1) 
Training  75.81 (1) 38.64 (1)  Chi Squared 
Testing 80.49 (1) 35.77 (1)  
Training      Logistic 

Regression Testing     
Training      Redundancy 

Removal Testing     
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As for CSLogs data, regarding the final rules of each dataset for each different 

support, one can observe that the number of rules extracted from WithBacktrack 

dataset is always higher. In comparing the AR and CR within the CSLogs dataset, 

and the similar pattern as for DEBII WebLogs data also occurs here. It was found 

that in the final rule sets with support of 1%, 5% and 10%, the CR is higher and the 

AR is lower for the FullTree WithBacktrack, while in contrast, the AR is always 

higher and CR is lower for FullTree WithOutBacktrack.  

 

Table 7.31: The comparison between rules CSLogs WithBacktrack and CSLogs 

WithOutBacktrack using 1% support 

 
 

Table 7.32: The comparison between rules CSLogs WithBacktrack and CSLogs 

WithOutBacktrack using 5% support 
 
 
 

 

 

 
 
 
 
 

 
 

 

 

 

WithBacktrack WithOutBacktrack Type  
of analysis 

Data  
Partition AR % CR % AR % CR % 
Training  68.09 (13835) 98.59 (13835) 79.25 (144) 48.31 (144)Initial 

# of Rules  Testing 69.94 (13835) 98.60 (13835) 78.77 (144) 48.01 (144)
Training  69.94 (60.84) 98.59 (60.84) 79.25 (72) 48.31 (72)# of Rules  

after ST Testing 72.01 (6084) 98.60 (6084) 78.77 (72) 48.01 (72)
Training  79.22 (73) 48.97 (73) 79.25 (72) 48.31 (72)Chi Squared 
Testing 78.78 (73) 48.77 (73) 78.77 (72) 48.01 (72)
Training  79.22 (73) 48.97 (73) 79.25 (72) 48.31 (72)Logistic  

Regression Testing 78.78 (73) 48.77 (73) 78.77 (72) 48.01 (72)
Training  79.02 (61) 48.97 (61) 79.05 (60) 48.31 (60)Redundancy 

Removal Testing 78.53 (61) 48.77 (61) 78.53 (60) 48.01 (60)

WithBacktrack WithOutBacktrack Type  
of analysis 

Data  
Partition AR % CR % AR % CR % 
Training  62.79 (920) 98.33 (920) 79.31 (8) 20.40 (8) Initial 

# of Rules  Testing 63.58 (920) 98.35 (920) 78.73 (8) 20.35  (8) 
Training  64.71 (99) 98.33 (99) 79.31 (4) 20.40 (4) # of Rules  

after ST Testing 65.47 (99) 98.35 (99) 78.73 (4) 20.35 (4) 
Training  66.04 (11) 74.81 (11)  Chi Squared 
Testing 65.94 (11) 74.60 (11)  
Training   Logistic  

Regression Testing     
Training      Redundancy 

Removal Testing     
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Table 7.33: The comparison between rules CSLogs WithBacktrack and CSLogs 

WithOutBacktrack using 10% support 

 

Table 7.34: The comparison between rules CSLogs WithBacktrack and CSLogs 

WithOutBacktrack using 20% support 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 7.35: The comparison between rules CSLogs WithBacktrack and CSLogs 

WithOutBacktrack using 30% support 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

WithBacktrack WithOutBacktrack Type  
of analysis 

Data  
Partition AR % CR % AR % CR % 
Training  60.14  (216) 98.32 (216) 76.69 (4) 20.36 (4)Initial 

# of Rules  Testing 60.73 (216) 98.34 (216) 76.90 (4)  20.30 (4) 
Training  60.98 (25) 98.32 (25) 76.69 (2) 20.35 (2)# of Rules 

after ST Testing 61.66 (25) 98.34 (25) 76.90 (2) 20.30 (2)
Training  62.16 (8) 81.53 (8)  Chi Squared 
Testing 62.45 (8) 81.49 (8)  
Training   Logistic 

Regression Testing     
Training      Redundancy 

Removal Testing     

WithBacktrack WithOutBacktrack Type  
of analysis 

Data  
Partition AR % CR % AR % CR % 
Training  56.49 (48) 91.65 (48)Initial 

# of Rules  Testing 57.10 (48) 91.45 (48) No Rules 

Training      # of Rules 
after ST Testing     

Training      Chi Squared 
Testing     
Training      Logistic 

Regression Testing     
Training      Redundancy 

Removal Testing     

WithBacktrack WithOutBacktrack Type  
of analysis 

Data  
Partition AR % CR % AR % CR % 
Training  56.39 (32) 91.65 (32)Initial 

# of Rules  Testing 57.13 (32) 91.45 (32) No Rules 

Training      # of Rules  
after ST Testing     

Training      Chi Squared 
Testing     
Training      Logistic 

Regression Testing     
Training      Redundancy 

Removal Testing     



 206

As indicated by both DEBII Weblogs and CSLogs datasets, in most of the cases, the 

final rule set WithBacktrack may increase the CR, but reduce some AR. This is 

because the rules extracted from the WithBacktrack dataset variations can be larger 

in number and contain rules based on backtrack attributes, which essentially 

constrain the existence/non-existence of a node irrespective of the label. Such rules 

are more general than those rules constraining the existence of a specific label at a 

node, and consequently can capture more instances from the dataset. However, in 

some cases (e.g. support = 1%), the differences in AR between rule sets from 

WithBacktrack and WithOutBacktrack data are too minimal to completely discard 

one option in favour of another. Thus, there is a trade-off between rules more capable 

of correctly classifying/predicting class variables thus obtaining the higher AR, and 

rules that cover more instances, thus achieving a higher CR. Therefore, the choice to 

include/exclude backtrack attributes from the dataset and hence the rule set, may be 

dependent on the application domain.  

 

7.7.3 FullTree, Embedded and Induced Subtree Rules 

In Section 7.4.1, the characteristics of the DSM approach are overviewed. The 

frequent rules generated using DSM approach might be representatives of 

invalid/disconnected subtrees. The implications and the way in which disconnected 

subtrees can be represented with respect to the extracted database structure model 

(DSM) were discussed in Section 7.4.1.2.  

 

Thus, in this section, the rules from FullTree, Embedded and Induced rule sets are 

compared in terms of their accuracy and coverage rate. The FullTree consist of the 

largest number of rules (including rules based on disconnected subtrees), followed by 

Embedded (rules based on embedded subtrees) and Induced (rules based on induced 

subtrees). This is because the rules generated from embedded and induced subtrees 

are constrained by the following characteristics: in an embedded subtrees the 

ancestor-descendant relationship is preserved over several levels at the parent-child 

relationship, while in an induced subtree the parent-child relationships are preserved. 

Hence, the Induced rule set ⊆  Embedded rule set ⊆  FullTree rule set. Note also that 

these rule sets can both vary depending on whether the backtrack attributes were left 



 207

in the dataset. When they are left in the datasets, the rules can potentially be 

comprised of constraints on the existence/non-existence of a backtrack attribute.  

 

7.7.3.1 FullTree, Embedded and Induced Rules Optimization based on the 

Sequences of Usage of Parameters 

The evaluation of a FullTree rule set was discussed earlier in Section 7.7.1. In this 

section, similar to the experiments described in Section 7.7.1, rules from Embedded 

and Induced rule sets have been progressively assessed with statistical analysis and 

redundancy assessment method. The results demonstrate that characteristics revealed 

from FullTree rule sets in Section 7.7.1 are similar to the ones observed in these 

experiments for both Embedded and Induced rule sets. With reference to Table 7.36, 

with the reduction of number of rules for Embedded and Induced rule sets for DEBII 

Weblogs WithBacktrack (10% Support) the AR are increased  but at the cost of a 

decrease in CR. One can also notice that the AR for the FullTree rule set is initially 

slightly lower than the AR of the Embedded and Induced rule set, but after 

Symmetrical Tau is applied, the accuracy of FullTree is higher and remains higher 

after chi-squared rule filtering.  

 

Table 7.36: The comparison between FullTree, Embedded and Induced Rule Sets using 10% 

Support value for DEBII Weblogs WithBacktrack 

 

WithBacktrack 
FullTree Embedded Induced 

Type  
of  
analysis 

Data  
Partition 

AR % CR % AR % CR % AR % CR % 
Training  64.27 

(234)
100.00 

(234)
64.54 
(232)

100.00 
(232)

64.54 
(232) 

100.00 
(232)

Initial 
# of Rules  

Testing 70.06 
(234)

100.00 
(234)

70.55 
(232)

100.00 
(232)

70.55 
(232) 

100.00 
(232)

Training  75.19 
(43)

73.95 
(43)

74.94 
(42)

73.95 
(42)

74.94 
(42) 

73.95 
(42)

# of Rules 
After  ST 

Testing 74.94 
(43)

74.09 
(43)

74.84 
(42)

74.09 
(42)

74.84 
(42) 

74.09 
(42)

Training  78.21 
(11)

64.47 
(11)

77.56 
(10)

64.47 
(10)

77.56 
(10) 

64.47 
(10)

Chi Squared 

Testing 74.96 
(11)

60.12 
(11)

74.58 
(10)

61.02 
(10)

74.58 
(10) 

61.02 
(10)

Training  Logistic  
Regression Testing 

      

Training  Redundancy 
Removal Testing 
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The similar characteristics of the CSLogs dataset for FullTree rule sets are also 

observable in Embedded and Induced rule sets. As an example, CSLogs 

WithBacktrack (1% Support) is extracted and displayed in Table 7.37. The result 

revealed that the reduction of the number of rules from Embedded and Induced rule 

sets has increased the AR but at the cost of reduced CR capabilities. 

  

To conclude, the characteristics of the FullTree rule set described in Section 7.7.1 are 

similar to those of the Embedded and Induced rule sets for each datasets for each 

different support thresholds, and the accuracy and coverage rates are very similar or 

the same for the different rule sets. This is because the rules from Embedded and 

Induced rule sets are subsets of FullTree, and in this dataset there were not so many 

variations among the rule sets among the level of embedding in subtrees or frequent 

patterns that produce disconnected subtrees.  By selecting important input attributes 

with ST and evaluating the rules with statistical analysis and redundancy assessment 

method, there is a reduction in the number of rules.  

 
The increase in prediction/classification accuracy comes with a trade-off since fewer 

instances are captured from the datasets. On the positive side, a smaller number of 

discovered rules will increase their generalization power and make it easier for the 

user to understand and utilize these rules for decision support purposes. 
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Table 7.37: The comparison between FullTree, Embedded and Induced Rule Sets using 1% 

support value for CSLogs WithBacktrack 

 

7.7.3.2 Comparing the final rule set of FullTree, Embedded and Induced Subtree 

Rules 

The final FullTree and Embedded set of rules extracted from DEBII WebLogs 

WithBackTrack at 10% support and 50% confidence (Refer to Table 7.36) is 

displayed in Table 7.38. Please note that the “final” set of rules in this setting 

corresponds to the rule set remaining after the sequential application of statistical 

analysis and redundancy assessment method used within the framework. However, 

the application of certain criteria could result in the complete rule set being removed, 

and therefore the “final” rule set reflects the last non-empty set of rules. R7 from 

FullTree is the rule that does not exist in embedded rules as it is disconnected, and 

hence not part of a valid embedded subtree set.  

 

 

 

WithBacktrack 
FullTree Embedded Induced 

Type  
of  
analysis 

Data  
Partition 

AR % CR % AR % CR % AR % CR % 
Training  68.09 

(13835)
98.59 

(13835)
68.12 

(13834)
98.59 

(13834) 
68.11 

(13810) 
98.59 

(13810)
Initial 
# of Rules  

Testing 69.94 
(13835)

98.60 
(13835)

69.94 
(13834)

98.60 
(13834) 

69.93 
(13810) 

98.60 
(13810)

Training  69.94 
(60.84)

98.59 
(60.84)

70.02 
(6083)

98.59 
(6083) 

70.02 
(6081) 

98.59 
(6081)

# of Rules 
After ST 

Testing 72.01 
(6084)

98.60 
(6084)

72.10 
(6083)

98.60 
(6083) 

72.10 
(6081) 

98.60 
(6081)

Training  79.22 
(73)

48.97 
(73)

79.02 
(72)

48.39 
(72) 

78.41 
(65) 

48.39 
(65)

Chi Squared 

Testing 78.78 
(73)

48.77 
(73)

78.57 
(72)

48.25 
(72) 

78.06 
(65) 

48.25 
(65)

Training  79.22 
(73)

48.97 
(73)

79.02 
(71)

48.39 
(71) 

78.41 
(64) 

48.39 
(64)

Logistic  
Regression 

Testing 78.78 
(73)

48.77 
(73)

78.57 
(71)

48.25 
(71) 

78.06 
(64) 

48.25 
(64)

Training  79.02 
(61)

48.97 
(61)

78.71 
(54)

48.97 
(54) 

78.71 
(54) 

48.97 
(54)

Redundancy 
Removal 

Testing 78.53 
(61)

48.77 
(61)

78.53 
(54)

48.77 
(54) 

78.53 
(54) 

48.77 
(54)
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Table 7.38: Comparison between the final rules for DEBII WebLogs WithBackTrack data 

with 10% support 

# FullTree  # Embedded 
R1 X0(7) ==> Class(1) R1 X0(7) ==> Class(1) 
R2 B23(yes) ==> Class(1) R2 B23(yes) ==> Class(1) 
R3 X1(7) ==> Class(0) R3 X1(7) ==> Class(0) 
R4 X0(13) ==> Class(0) R4 X0(13) ==> Class(0) 
R5 X22(7) ==> Class(0) R5 X22(7) ==> Class(0) 
R6 B17(yes) ==> Class(1) R6 B17(yes) ==> Class(1) 
R7 X22(7) & X1(7) ==> Class(0) R7 X1(7) & X0(13) ==> Class(0) 
R8 X1(7) & X0(13) ==> Class(0) R8 X22(7) & X0(13) ==> Class(0) 
R9 X22(7) & X0(13) ==> Class(0) R9 B23(yes) & X0(7) ==> Class(1) 
R10 B23(yes) & X0(7) ==> Class(1) R10 X22(7) & X1(7) & X0(13) ==> Class(0) 
R11 X22(7) & X1(7) & X0(13) ==> Class(0)   
 
 

In describing the FullTree rules and the embedded rules in Table 7.38, R7 is mapped 

from FullTree onto the extracted DSM from DEBII WebLogs for 10% Support 

(Refer to Table 7.7 - Row 4 Column 3), to generate the pre-order string encoding of 

subtree as shown in Figure 7.13. While the actual DSM for support of 10% contains 

70 attributes (including the Class Attribute), many attributes have been omitted as 

including those would create a deep tree structure that is hard to display.  

 

 
Figure 7.13: Displaying Rules WithBacktrack (R7 from Table 7.38) with Class 0 w.r.t DSM 
with support 10% that been removed from embedded rules 

 

This rule corresponds to the existence of particular nodes with respect to their 

occurrence in DSM when accessing the DEBII website. The grey nodes represent 

attributes that did not have specific values that occurred frequently enough with the 

specific value of “7” for nodes X1 and X22, and they are in that sense irrelevant for 

rule R7. The other possibility is that those attributes/nodes have been determined as 

irrelevant during feature subset selection phase. Hence, one can present the whole 
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DSM, and flag irrelevant node/s to represent structural information of the rule 

pattern. Another option would be to display only the nodes that will reveal the 

structure of the disconnected subtree, i.e. only the root node (X0) and the two value 

constraints on nodes X1 and X22. The rule R7 from FullTree is omitted from 

embedded rules because the rule is based on a disconnected subtree 

 

For the final rule sets from DEBII WebLogs for testing data (Refer to Table 7.39 to 

Table 7.43 where number of rules is shown in brackets) for both WithBacktrack and 

WithOutBacktrack, and for each different support, the AR and CR from FullTree 

rule set are the highest. However, in some cases, as the rules are progressively 

evaluated, the result demonstrate that the final rules sets for embedded and induced 

are the same as those of the FullTree, thus resulting in the same AR and CR 

respectively.  

 

Table 7.39: Comparison for the final rule set for DEBII WebLogs Data for 1% Support 

 

Table 7.40: Comparison for the final rule set for DEBII WebLogs Data for 5% Support 

 

Table 7.41: Comparison for the final rule set for DEBII WebLogs Data for 10% Support 

 

Table 7.42: Comparison for the final rule set for DEBII WebLogs Data for 20% Support 

FullTree Embedded Induced DEBII WebLogs 
Data AR % CR % AR % CR % AR % CR % 
WithBacktrack 75.06 (189) 93.75 (189) 74.71 (179) 93.75 (179) 73.89 (156) 93.75 (156)
WithOutBacktrack 80.51 (140) 72.08 (140) 79.48 (113) 72.08 (113) 78.98 (106) 72.08 (106)

FullTree Embedded Induced DEBII WebLogs  
Data AR % CR % AR % CR % AR % CR % 
WithBacktrack 68.77 (22) 91.68 (22) 68.39 (21) 91.68 (21) 68.39 (21) 91.68 (21)
WithOutBacktrack 78.18 (10) 53.86 (10) 78.18 (10) 53.86 (10) 78.18 (10) 53.86 (10)

FullTree Embedded Induced DEBII WebLogs 
Data AR % CR % AR % CR % AR % CR % 
WithBacktrack 74.96 (11) 60.12 (11) 74.58 (10) 61.02 (10) 74.58 (10) 61.02 (10)
WithOutBacktrack 75.42 (4) 48.20 (4) 75.42 (4) 48.20 (4) 75.42 (4) 48.20 (4)

FullTree Embedded Induced DEBII WebLogs 
Data AR % CR % AR % CR % AR % CR % 
WithBacktrack 75.51 (3) 53.20 (3) 75.51 (3) 53.20 (3) 75.51 (3) 53.20 (3)
WithOutBacktrack 75.84 (2) 47.17 (2) 75.84 (2) 47.17 (2) 75.84 (2) 47.17 (2)
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Table 7.43: Comparison for the final rule set for DEBII WebLogs Data for 30% Support 

 

Similar patterns occurred within the CSLogs dataset (Table 7.44 – Table 7.48), as 

there is only a slight difference in AR of FullTree rule set for support = 1%. 

However, for the support of 20% and 30% for CSLogs dataset, there are no final rule 

sets for comparison purposes. Only the initial rule sets for CSLogs WithBacktrack 

(refer to Table 7.22) are captured, as all of these rules were discarded after ST 

application. For CSLogs WithOutBacktrack (refer to Table 7.23), no rules could be 

extracted based on the minimum support and confidence thresholds settings.  

 

Table 7.44: Comparison for the final rule set for CSLogs Data for 1% Support 

 

Table 7.45: Comparison for the final rule set for CSLogs Data for 5% Support 

 

Table 7.46: Comparison for the final rule set for CSLogs Data for 10% Support 

 

Table 7.47: Comparison for the final rule set for CSLogs Data for 20% Support 

 

 

FullTree Embedded Induced DEBII WebLogs 
Data AR % CR % AR % CR % AR % CR % 
WithBacktrack 80.49 (1) 35.77 (1) 80.49 (1) 35.77 (1) 80.49 (1) 35.77 (1)
WithOutBacktrack 80.49 (1) 35.77 (1) 80.49 (1) 35.77 (1) 80.49 (1) 35.77 (1)

FullTree Embedded Induced CSLogs  
Data AR % CR % AR % CR % AR % CR % 
WithBacktrack 78.53 (61) 48.77 (61) 78.53 (54) 48.77 (54) 78.53 (54) 48.77 (54)
WithOutBacktrack 78.53 (60) 48.01 (60) 78.52 (53) 48.01 (53) 78.52 (53) 48.01 (53)

FullTree Embedded Induced CSLogs 
Data AR % CR % AR % CR % AR % CR % 
WithBacktrack 65.94 (11) 74.60 (11) 65.94 (11) 74.60 (11) 65.94 (11) 74.60 (11)
WithOutBacktrack 78.73 (4) 20.35 (4) 78.73 (4) 20.35 (4) 78.73 (4) 20.35 (4)

FullTree Embedded Induced CSLogs Data 
AR % CR % AR % CR % AR % CR % 

WithBacktrack 62.45 (8) 81.49 (8) 62.45 (8) 81.49 (8) 62.45 (8) 81.49 (8)
WithOutBacktrack 76.90 (2) 20.30 (2) 76.90 (2) 20.30 (2) 76.90 (2) 20.30 (2)

FullTree Embedded Induced CSLogs Data 
AR % CR % AR % CR % AR % CR % 

WithBacktrack No Rules 
WithOutBacktrack No Rules 
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Table 7.48: Comparison for the final rule set for CSLogs Data for 30% Support 

 

In comparing the number of rules between FullTree and Embedded, the results 

revealed that the rules from FullTree are discovered based totally on the user defined 

support and confidence thresholds. In most of the cases, the total number of rules 

from FullTree is larger than embedded and induced rules. While in some cases, the 

number of rules in FullTree, Embedded and Induced, are the same. One can conclude 

that for both datasets, the reduced number of rules in embedded subtrees is caused by 

the unique properties of embedded characteristics which preserve the ancestor-

descendant relationship of several levels at the parent-child relationship while this 

was not the case for the rules from FullTree.  

 

To conclude, by referring to the final rule sets for DEBII WebLogs WithBacktrack 

and WithOutBacktrack for all support thresholds, and CSLogs WithBackTrack and 

WithOutBackrack with 1%, 5% and 10% support thresholds, the AR and CR for 

FullTree is higher or the same when compared to Embedded and Induced rule sets, 

while in some cases, both are similar. This indicates the capabilities of FullTree and 

the unique DSM structure-preservation application (Hadzic, 2011) in capturing useful 

rules that increase the rules’ accuracy and coverage. Hence, by default one can aim 

to discover the FullTree set as it will have at least as high an accuracy and coverage 

rather than when the rules are constrained to be based on embedded or induced 

subtree. If an important association exists in the data that is not necessarily 

representative of a valid (connected) subtree, it is still important that it be discovered, 

which will be the case when considering the FullTree rule set. 

 

When comparing Embedded and Induced rule sets, in Tables 7.39 to 7.46, these are 

mainly equal except for DEBII WebLogs Data for 1% support where more rules in 

the Embedded set have slightly increased the accuracy. One may expect that the 

additional rules in embedded rule set may be essential in capturing important 

associations deeply embedded within the tree structures, i.e. not limited to parent-

child relationships as is the case in the Induced rule set. 

FullTree Embedded Induced CSLogs Data 
AR % CR % AR % CR % AR % CR % 

WithBacktrack No Rules 
WithOutBacktrack No Rules 
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7.7.4 Comparing FullTree Classification Results with XRules 

As an overall comparison, the XRules classifier classifier (Zaki & Aggarwal, 2003) is 

utilized as a benchmark for the proposed framework. The XRules approach is a 

traditional approach for generating frequent subtrees, and hence the rules discovered 

from XRules are based on subtree patterns that are not constrained by the position of 

the node/nodes. In contrast, within the frequent subtrees extracted from FDT using 

the DSM, the node/s positions are preserved in the extracted patterns. The patterns 

are then mapped to the DSM to re-generate the pre-order string encoding of subtrees. 

With the XRules approach, the default confidence threshold of 50% is used while the 

support thresholds were set at 1%, 5%, 10%, 20% and 30%. 

 

Table 7.49:  Comparison of Rules Accuracy and Coverage for DEBII WebLogs Data using 

the XRules and FullTree (WithBacktrack dataset/FDT variation is used) 

 

Refer to support 30% in Table 7.49 (the number of rules is shown in brackets); the 

final rule is the same for both approaches and it is shown in Table 7.50. The AR in 

FullTree is higher compared to XRules but lower in terms of CR. In FullTree this 

specific rule is constrained by the exact node position, i.e. to occur as the first (root) 

node in the tree (in this dataset it corresponds to the first web page accessed within a 

user session). Hence, it is more specific than the corresponding rule in the XRules 

approach, as in XRules there is no constraint on where a particular node (web page) 

occurs. As expected, the rule extracted using the DSM approach will classify specific 

instances and hence have higher accuracy, but results in a smaller coverage rate as 

fewer instances are covered than when there is no constraint on the exact position of 

a particular node.   

 

Table 7.50: Rules comparison for Support 30% 

# XRules # FullTree 
1 7 ==> Class(1) 1 X0(7) ==> Class(1) 
 

Support: 1% Support: 5% Support: 10% Support :20% Support :30%  
AR % CR % AR % CR % AR % CR % AR % CR % AR % CR % 

XRules 79.72 
(50000) 

88.59 
(50000) 

78.13 
(45)

75.00 
(45)

74.50 
(14)

70.70 
(14)

73.04 
(3) 

62.40 
(3) 

71.35 
(1)

62.27 
(1)

FullTree 80.51 
(140) 

72.08 
(140) 

78.18 
(10)

53.86 
(10)

75.42 
(4)

48.20 
(4)

75.84 
(2) 

47.17 
(2) 

80.49 
(1)

35.77 
(1)
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A similar observation can be made for CSLogs dataset in Table 7.51. The AR for 

rule set in FullTree is always higher compared to the rule in XRules, although this 

comes at the cost of lower CR for FullTree. 

 

 
Table 7.51: Comparison of Rules Accuracy and Coverage for CSLogs Data using the 

XRules and FullTree (WithBacktrack dataset/FDT variation is used) 

 

For the support value of 10% for CSLogs dataset (Refer to Table 7.52), one can 

observe that the FullTree rule set does not contain a rule that corresponds to rule 

number 3 in XRules even though it was considered frequent by XRules. The reason 

for this is that the particular node with label “6” with “Class(0)”, where “6” occurs at 

the same node/position in DSM did not occur in 10% of the instances to be 

considered frequent and part of the FullTree rule set.  

 

Table 7.52: Rules comparison for Support 10% 

# XRules # FullTree 
1 1 ==> Class(0) 1 X1(1) ==> Class(0) 
2 12811 ==> Class(1) 2 X1(12811) ==> Class(1) 
3 6 ==> Class(0)   
 

To conclude, given the result demonstrated in both Table 7.49 and Table 7.51, the 

proposed framework can achieve comparable results with the rules from XRules in 

evaluating the AR and CR from both datasets. It is important to note that there are 

crucial differences between the XRules and the DSM approach which makes the 

results somewhat incompatible for comparison purposes. However, the general 

framework developed in this thesis could be directly applied to the rules extracted 

using the DSM approach as it utilizes the structure-preserving flat representation. 

Hence, the comparison performed with the XRules approach in this section, served 

mainly as a benchmark for the kind of accuracy and coverage rate that is to be 

Support: 1% Support: 5% Support: 10% Support :20% Support :30%  
AR % CR % AR % CR % AR % CR % AR % CR % AR % CR % 

XRules 72.72 
(298) 

66.04 
(298) 

61.74 
(20) 

40.70 
(20) 

56.90 
(3) 

23.21 
(3) 

Default  
rules 

Default  
rules 

Default  
Rules 

Default  
Rules 

FullTree 78.53 
(61) 

48.77 
(61) 

78.73 
(4) 

20.35 
(4) 

76.90 
(2) 

20.30 
(2) 

No 
Rules 

No  
Rules 

No  
Rules 

No  
Rules 
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obtained when basing the classification on frequent patterns/subtrees extracted using 

the support and confidence thresholds.  

 

7.7.5 Classification Problems for Customer Relationship Management (CRM) 

In the last experiment of evaluating the interestingness of frequent subtree based 

rules extracted using the DSM approach, the evaluation of frequent subtrees is 

performed for the CRM data which is a real-world problem involving complaint 

handling in the real estate area. 

 

In this experiment, the steps given in Framework B are followed in order to 

determine the interestingness of frequent subtrees. The complexity of the CRM 

dataset in XML documents format and general characteristic of CRM data in flat 

table format are exhibited in Table 7.6 and Table 7.11 (In Section 7.5.1) respectively. 

In the flat table format, there are 1181 instances in the database; however, the 

numbers of attributes are 676 which is larger compared to other datasets used in the 

previous experiments. These include backtrack attributes and attributes with labels. 

The CRM dataset was pre-processed to make it suitable for the structural 

classification problem. In here the class attribute is specified into 

“WorkCompletion”, with 2 possible values (work completion ≤  3 or ≥  4 weeks). 

The attributes containing similar information or referring to work/task completion 

duration have then been removed.  By employing the ST feature selection 

application, the numbers of attributes have been reduced to 586 input variables. The 

rules are then generated based on support of 5% and confidence of 50%. As shown in 

Table 7.53, there are 27116 rules. The statistical analysis has then been used to 

determine the usefulness and significance of input variables in predicting the target 

variables. Table 7.53 illustrates the results as the statistical analysis and the 

redundancy assessment have progressively been utilized to evaluate the 

interestingness of rules. Based on the results shown, as the CRM dataset underwent 

conversion into FDT using the DSM approach, a large volume of input attributes 

appeared, including the backtrack and label nodes. However, for this particular data 

in this particular experiment, only the attributes with labels are considered for the 

statistical analysis and redundancy assessment. Since the backtrack attribute just 

indicates the existence of nodes irrespective of the label, they can be removed during 
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the statistical analysis. Additionally, since the structures of the subtrees were 

preserved using the DSM, the rules can be mapped to DSM to regenerate the pre-

order string encoding of the subtrees. 

 

As can be seen in Table 7.53, in this experiment, FullTree  rule set is the most 

optimal one, as it is not only capable of classifying/predicting specific instances in 

the database, but also achieves a higher coverage rate compared to 

Embedded/Induced rule sets. As discussed earlier, this is due to the fact that the 

FullTree rule set can contain rules that do not convert to valid (connected) subtrees 

when matched to DSM. Nevertheless, these are important to include as they may 

represent important associations that should not be lost because they do not convert 

to connected valid subtrees. Another interesting feature that has been confirmed by 

this experiment is the effect of minimum confidence. As verified in relational data 

problems, and again in this experiment, by increasing the minimum confidence to a 

certain threshold one may increase the AR but at the same time may lose some CR. 

One can confirm that, when choosing appropriate optimal confidence values, one 

may need to trade off in order to either select rules with higher AR but lower CR, or 

lower AR but higher CR. This could be largely dependent on the application domain, 

as for example, in more critical domains, one may prefer to use only those rules that 

have very high confidence, since the misclassification of only one instance could 

have severe consequences. 

 

Table 7.53: Frequent Subtrees Evaluation for CRM Data 

(*) = Unavailable 
 

FullTree Embedded Induced Type  
of  
analysis 

Data  
Partition # 

Rules 
AR % CR % # 

Rules 
AR % CR % # 

Rules 
AR % CR % 

Training  Initial 
# of Rules Testing 

* * * * * * * * * 

Training  83.02 100.00 81.56 100.00 81.56 100.00# of Rules 
after ST Testing 

27116 
 83.74 100.00

5270
83.40 100.00 

5270 
83.40 100.00

Training  79.85 100.00 68.54 100.00 68.54 100.00Statistics 
Analysis Testing 

91 
80.95 100.00

17
70.57 100.00 

17 
70.57 100.00

Training  76.78 100.00 68.54 100.00 68.54 100.00Redundancy 
Removal Testing 

51 
77.72 100.00

17
70.57 100.00 

17 
70.57 100.00

Training  83.82 95.50 77.20 91.53 77.20 91.53Min_Conf. 
60% Testing 

44 
84.57 96.15

12
79.18 93.59 

12 
79.18 93.59
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7.8 Conclusion  

This chapter extends the framework for evaluating the association rules from 

relational data to tree-structured or semi-structured data, such as XML. At the start of 

the chapter, a detailed explanation is provided of the way in which the problem of 

evaluating frequent subtrees is handled. The results are then presented and discussed 

after the proposed framework has been applied to several datasets.  

 

Initially, the focus was on evaluating the frequent subtrees discovered by using the 

traditional frequent subtree mining algorithm, namely the IMB3 Miner. The results 

demonstrate that, the combination of statistical analysis; and redundancy and 

contradictive assessment methods provided a means of discarding non-significant 

rules, which significantly reduces the overall complexities of the rule set. However, 

these come with a trade-off between obtaining a higher AR but lower CR. Thus, as 

asserted in Chapter 6, it is important to strike a balance between obtaining a larger 

set of rules that may lack generalization power, thus weakening the AR, but which 

are capable of covering more instances, or choosing fewer rules, thereby obtaining 

higher AR but capturing fewer instances. As the framework uses more complex tree-

structured data, the evaluation task using the statistical analysis, and redundancy and 

contradictive assessment methods becomes infeasible due to the existence of large 

volume of elements in every transaction/instance. A new direction is then taken to 

evaluate the interestingness of frequent subtrees using a previously proposed 

approach for preserving tree-structured data in a flat table format.  

 

Following this new direction, five experiments were undertaken to evaluate the 

frequent subtrees generated from a flat table using the DSM approach. Two variants 

for each dataset were used. The first variant corresponds to the dataset that contains 

the backtrack nodes and the second variant corresponds to that without backtrack 

nodes. The support values for each variant were chosen to be 30%, 20%, 10%, 5% 

and 1%. In the first experiments, the intention is to optimize the rules based on the 

sequence of usage of parameters. The results demonstrated that the numbers of rules 

have been reduced with a proper sequence of usage of parameters including the ST 

feature selection, statistical analysis and redundancy assessment method. In addition 

to that, the AR and CR are varied with the reduction of rules based on the 

aforementioned parameters. In most of the cases, the reduction of rules has increased 
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their prediction/classification ability but at the same time weakened the capabilities 

of the rules to capture more instances in the datasets. However, in several cases, both 

AR and CR are decreased for smaller sizes of rule sets and in two datasets, both AR 

and CR are well preserved even with the reduced number of rules. Slightly different 

patterns in results are observed between each dataset for each different support, and 

this can be attributed to the characteristics of the weblog data used in this 

experiment. Since the weblogs were collected at different times during which the 

website itself might be modified (this is the case in DEBIIWebLogs data) this may 

contribute to the inconsistency of the results.  

 

In the second experiment, the differences between rules with backtrack and rules 

without backtrack were explored. As discussed earlier, the existence/non-existence of 

the backtrack attribute indicates the existence of a particular node in the structure 

irrespective of the actual value/label of that the node. The results of this experiment 

show that the CR for the final rule sets for rules with backtrack is always higher 

compared to the CR for the final rules without backtrack. In contrast, the AR for the 

final rule set for rules without backtrack is higher compared to the rule set with 

backtrack. With the inclusion of the backtrack node, the rules can capture more 

instances in the dataset. However, this comes with a trade-off because the rules with 

backtrack are not specific enough, thereby reducing the AR. It was noted that the 

differences between AR with rule set with backtrack and without backtrack are still 

sensible if one prefers to trade off between presenting a set of rules that are more 

capable of classifying/predicting class variables thus obtaining higher AR with a set 

of rules that can cover more instances/transactions, thereby obtaining a higher CR.   

 

In general, the DSM approach preserves the structural characteristics of frequent 

patterns, since the extracted patterns are mapped onto the DSM to re-generate the 

pre-order string encoding of subtrees, and hence represented as subtrees of the tree 

database. However, in some cases, there are some patterns that may not 

representative of valid subtrees, due to the data mining tasks utilized not being 

performed by following the structure, but rather structural properties are preserved 

by the DSM. Hence, in the third experiment, the quality of the initially extracted 

subtrees set that contains both valid and invalid (disconnected) subtrees identified as 

FullTree is evaluated. Consequently, the FullTree rule type is compared with 
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Embedded and Induced subtree-based rules (the rule sets that exclude 

invalid/disconnected subtrees). Experimental results show that in the final rule sets 

for the majority of the cases, the AR and CR for the FullTree is always higher 

compared to those of embedded subtrees while only in some cases are both AR and 

CR the same. Moreover for CSLogs dataset for support 20% and 30%, there are no 

final rule sets to be evaluated. The higher AR and CR for the rule sets from FullTree 

indicate the advantages of using the DSM approach as the frequent patterns extracted 

are not limited to representing connected subtrees. Hence, potentially interesting 

associations could be found that would not be detected using traditional frequent-

subtree-based approaches. These unique rules could in turn increase the 

prediction/classification capabilities and capture more instances in the dataset (i.e. 

increase coverage rate). When comparing embedded and induced subtrees, it was 

found that the AR and CR are either equal, or embedded subtrees are always better. 

Generally speaking, since the induced subtrees ⊆ embedded subtrees, the number of 

rules in embedded is always higher or in some cases the same. One may observe that 

the additional rules in embedded subtrees may be important rules capable of 

classifying/predicting specific classes and capturing more instances in the datasets. 

They can capture associations deeply embedded over several levels within the tree 

structure and are not limited to only one level (parent-child) as is the case in induced 

subtrees.  

 

In the fourth experiment setting, the AR and CR of the final frequent subtrees rule 

sets that were extracted using the DSM approach are compared with the rules 

extracted using the XRules classifier. The frequent-subtree-based rules discovered 

from XRules are not constrained by the position of node/nodes, and they all need to 

be representatives of valid connected subtrees. On the other hand, with the DSM 

approach FDT the node/s positions are taken into account and subtrees are further 

distinguished based on their occurrence within the DSM. Furthermore, since the 

structural information is ignored during rule generation, some rules could be 

representing invalid/disconnected subtrees. The results show that the AR for 

FullTree is higher compared to XRules but lower in CR, which is mainly due to its 

characteristic of distinguishing rules based on the exact occurrence of the 

node(s)/subtree(s) within the DSM. Hence, fewer instances can be covered by the 

rules but the specific instances can be more accurately classified. Moreover, for the 
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XRules approach, to discover association rules from XML data, the node/s has to be 

constrained so that they have to reflect the valid subtree. However, as demonstrated 

in this experiment, some association rules with disconnected subtrees contain 

important associations for classification/prediction purposes. To conclude, in 

forming association rules for tree-structured data, one should not be constrained to a 

valid and connected subtree because an interesting association can be anywhere in a 

tree instance, and it does not need to be a connected subtree of that instance. 

 

In the final experiment, the framework is evaluated using a real-world data problem. 

This experiment is presented in the last section of this chapter to demonstrate the 

differences between two types of tree-structured data using the DSM approach. In the 

initial experiment, the dataset used is a weblog data. For this type of data, every 

attempt to access pages in the website is stored, thereby creating a large log file with 

many unique navigations over the website. The CRM data used in the final 

experiment represent the information of customer relationship management that have 

been stored in a tree-structured format. The result demonstrated that the FullTree rule 

set produced more rules in comparison with Embedded and Induced rule sets. Rules 

were then verified in order to determine their validity and interestingness. The results 

show that it is more advantageous to remove the rules that failed the statistical 

analysis and redundant assessment in the initial evaluation process and utilize the 

confidence constraint only at the end of the process. This will result in a relatively 

small number of rules and at the same time any detected redundant rules will be 

removed. Moreover, the rules from the FullTree approach offer a better final rule set 

in terms of classification and prediction accuracy compared to Embedded and 

Induced. The FullTree approach, since it contains both valid and invalid 

(disconnected) subtrees, results in generally more rules and the additional rules in 

FullTree may be important rules capable of correctly classifying/predicting the class 

of specific instances as well as capturing more instances in the datasets.  

 

Increasing the confidence threshold from 50% to 60% reduces the number of rules to 

those that have very high accuracy because of large confidence. However, as the rule 

sets are reduced, more instances will not be captured by the rule set; hence, typically 

there is deterioration in the CR. Choosing smaller confidence thresholds will result in 

larger sets of rules that may lack generalization power, thereby weakening the AR 
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performance, but are capable of covering more instances. Alternatively, choosing 

relatively high confidence thresholds will result in a smaller set of rules, thereby 

achieving higher AR with the trade-off of capturing fewer instances. Thus, it is 

important to balance the trade-off between AR and CR in order to determine the 

optimal value for the minimum confidence threshold, and the choice may also be 

dependent on the nature and sensitivity of the application domain. 
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CHAPTER 8: RECAPITULATION OF THE THESIS AND FUTURE WORKS 

8.1 Introduction  

This chapter recapitulates the research undertaken in this thesis. It discusses the 

importance of the contributions to the research fields addressed, and draws out the 

main conclusion from the research. Even though the research undertaken is important 

and contributes to the body of knowledge of the investigated domain, a number of 

significant problems and applications are worth further exploration as part of future 

works involved in extending the developed framework. These outstanding problems 

are beyond the scope of the work in this thesis, but are nevertheless very important 

problems in the data mining field. Therefore, this chapter will also provide an 

overview of the planned future work in the areas of rules interestingness for 

relational data and semi-structured data. 

 
In Section 8.2, the chapter provides a summary of each of the chapters of the thesis, 

and in Section 8.3, future works are discussed. The chapter concludes in Section 8.4 

with a summary of the main contribution of the thesis. 

  

8.2 Recapitulation 

The section summarizes each chapter by drawing out the key points and main 

conclusions from presented materials. The contribution of this thesis is twofold, 

namely: evaluating association rules from relational data and semi-structured data. 

 

The introductory chapter (Chapter 1) provides a background for the knowledge 

discovery and data mining fields in general, beginning with a discussion of 

knowledge discovery techniques and important issues that need to be considered. 

Their strengths, weaknesses and opportunities that lie ahead are fast-tracked, and 

consequently important issues of interest regarding the quality of rules from 

knowledge discovery processes is discussed. To clarify the knowledge discovery 

process, there is a detailed explanation of the several phases involved. In the thesis, 

the data mining application is viewed as one of the phases in the knowledge process 

which includes data pre-processing, pattern evaluation and knowledge 

interpretation/presentation. The chapter also differentiates between two 
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functionalities of data mining: predictive modeling and descriptive modeling. The 

tasks that are associated with both functions, including the classification, prediction, 

outlier analysis, clustering, association analysis and sequence discovery are 

described. Next, the discussion is centered on the types of data commonly 

encountered in the data mining process including relational data, sequential data, 

semi-structured data and finally, unstructured data.  

 
The fundamental aspects of the knowledge discovery process are summarized in the 

earlier section of the chapter, while later sections describe the motivations and the 

research boundary that delineates the scope of this thesis. The overall structure of the 

thesis is provided in the last section of the chapter. 

  

Chapter 2 provided the literature review of the current state of the research in the 

problem areas that are within the scope of the thesis as identified in Chapter 1. It 

begins with a basic concept of association rule mining. This serves to provide a 

fundamental understanding of the general issues surrounding the task of association 

rules mining. The essential issues in association rule mining are then extended by 

venturing into specific data types, namely the relational and semi-structured data. 

The development of algorithms for association rules mining and its applications in 

certain domains are listed and discussed. While many works have focused on the 

development of efficient algorithms for mining association rules specifically for 

relational data, recently more attention has been paid to understanding and 

developing efficient association rules from semi-structured data. Thus, several 

algorithms for association rule mining from both data types are provided and 

reviewed.  

 

The chapter then examines the interestingness of rules, an important issue in the 

context of rules generation from both relational and semi-structured data. Three types 

of measures for interestingness of rules are reviewed, namely, the objective, 

subjective and semantic. It was found that there is no specific agreement on which is 

the best measure that can be applied to all cases; usually, measures are 

complementary and correlated with one another. Special attention is given to 

describing the objective measures as this approach offers a rigorous way of 
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discovering quality patterns based on a statistical mechanism underlying the 

measures.  

 

The final section of Chapter 2 highlights the relationship between reducing the size 

of attributes in rules and generation of rules interestingness. Several feature subset 

selection techniques and their suitable applications are discussed. The feature subset 

selection is utilized in this thesis to reduce the size of frequent rules, thus reducing 

the complexity of the rules.  

 

In Chapter 3, the key concepts are defined and the formal definitions of the terms 

necessary for understanding the particular problem areas addressed in this thesis are 

provided. This chapter then explains the concept and provides a definition of 

relational and semi-structured data. This section includes the details of data pre-

processing which is in important task in the knowledge discovery process. This is 

due to the fact that in some cases, the dataset used may be contaminated with 

incomplete, inconsistent or irrelevant information or in some cases is not suitable for 

the data mining task at hand. Thus the pre-processing techniques are used to prepare 

data suitable for further data mining application. The approach for handling missing 

data and continuous data is described. As semi-structured data is utilized in this 

thesis, essential issues pertaining to the conversion of semi-structured data from 

XML documents to tree-structured format are explained. This includes the 

representative model of XML as a rooted ordered labeled tree as it is the important 

format that has been utilized in mining association rules from tree-structured data.  

 

The chapter then defines the keys concepts of frequent itemset mining and frequent 

subtree mining, including maximal and closed frequent itemset mining, and 

embedded and induced subtree types for frequent subtree mining. The different 

characteristics of support and confidence of each frequent mining task are presented 

in detail. 

 

Finally, at the end of Chapter 3, the problems to be addressed within this thesis are 

defined. It begins with the general problem of finding quality rules from an 

association rules mining framework. First, the problems of rules interestingness and 

validity for relational data are discussed. The characteristics of Apriori, Maximal and 
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Closed frequent itemsets are given in detail. Then the problem of rules 

interestingness and validity of rules derived from tree-structured data is explained. 

These types of data present two problems: first, the frequent subtrees are those 

patterns that have not been assigned a particular class to be used for a 

prediction/classification task; second, the frequent subtrees are those patterns that 

contain a certain preferred node that will be utilized as a class label that can be used 

for the classification/prediction tasks. A relationship between the feature subset 

selection application and the interestingness of rules is defined. A detailed discussion 

is provided on how the application of the feature subset selection task is utilized to 

determine a quality rule. 

 

Finally, the chosen methodology for approaching the problem of evaluating the 

interestingess of association rules is given. The feature subset selection task is 

utilized in order to determine irrelevant attributes in predicting the class variable. The 

use of statistical analysis for determining significant and quality rules is formalized. 

This has been done by employing the hypothesis testing, correlation analysis and 

regression analysis approach. Additional assessment methods, namely redundancy 

removal and contradictive removal, were then explained. A combination of these 

measures will offer a quality rule set that not only satisfies the statistical analysis, but 

also contains non-redundant and non-contradictive rules.  

 

For frequent patterns from both relational data and tree-structured data, the aim is to 

investigate the use of statistical measures for the above problem, to determine how 

the existing interestingness measures and parameters can be utilized effectively, and 

the sequence of their use. With the aforementioned measures used for measuring the 

interestingness of rules from both frequent itemsets and frequent subtrees, another 

issue arises: whether the reduced size of rules resulting from these measures 

significantly reduces their usefulness for classification and prediction purposes. 

Hence, the rules accuracy rate (AR) and coverage rate (CR) and generalization 

capabilities are defined and measured. 

  

A high level perspective of the proposed solution is provided in Chapter 4. An 

overview is provided of the way in which the problems that this thesis focuses on 

(defined in Chapter 3) are addressed, and in particular on how the rules and their 
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interestingness are measured. The proposed framework consists of two sections: the 

framework for evaluating the interestingness of association rules from relational data 

(based on frequent itemset mining) and the framework for evaluating the 

interestingness of association rules from tree-structured data (based on frequent 

subtree mining). Different statistical analysis, redundancy and contradictive 

assessment methods will be utilized, including correlation and regression analysis, 

and the redundancy and contradictive removal. Moreover, there is a review of the 

application of Symmetrical Tau feature selection in providing the relative usefulness 

of attributes to predict the value of class attributes. This chapter then describes the 

final step of each framework, that is, the way that the quality of frequent itemsets and 

frequent subtrees are measured based on their accuracy, coverage rate and 

generalization capabilities.  

 

The following three chapters are concerned with the details of the development of the 

proposed framework for evaluating the interestingness of frequent patterns from both 

relational and tree-structured data, and the evaluation of the framework in those 

different settings. This framework provides a means of utilizing the interestingness 

and constraint-based parameters and the appropriate sequencing of their usage.  

 

Chapter 5 describes in detail the development of the proposed framework for 

evaluating the association rules discovered from relational data using the Apriori, 

Maximal and Closed approaches. The aim of the developed framework is to 

investigate how data mining and statistical measurement techniques can be utilized to 

complement each other, and to develop a proper sequence of use of these techniques 

to arrive at a more reliable and interesting set of rules. There are several relevant 

tasks involved in the development of the proposed framework. These include the data 

pre-processing application such as the preparation of suitable data format and data 

cleaning for the association rule mining process. These pre-processing applications 

ensure that only appropriate and accurate data are supplied to the association rule 

mining process. Within the framework, a well-recognized feature subset selection 

approach is utilized. The advantage of selecting certain features for inclusion in the 

association rule mining process is that only those attributes relevant to the 

classification task at hand are used to generate the association rules. The frequent 

itemsets are then discovered using the aforementioned association rules mining 
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algorithms based on the selected attributes from the feature subset selection process. 

A formal approach on how the rule set verified is provided, including a detailed 

explanation of how statistical analysis, and redundancy and contradictive assessment 

methods are exploited in the framework. In regards to these measures, the chi-

squared test is used to test the dependence between antecedent and the consequent of 

an association rule, while the logistic regression models are developed to measure the 

relationship between the target variable and the input variable. In this analysis, the 

target variable is recognized as the consequent and the input variable as the 

antecedent of an association rule. Moreover, any rules identified to be redundant or 

contradictive to other rules in the rule set are discarded. Within this chapter, the 

process of evaluating the rules based on the aforementioned statistical analysis, and 

redundancy and contradictive assessment methods are formalized. At the end of this 

chapter, the process of evaluating the rule reduction based on the statistical analysis, 

redundancy and contradictive assessment methods, as well as the confidence measure 

based filtering, is described with respect to measuring the accuracy and the coverage 

rate of the rule set.  

 

Experiments undertaken to evaluate the proposed framework for rules interestingness 

from relational data are described in Chapter 6. The proposed framework was 

evaluated based on three association rule mining algorithms, namely the Apriori, 

Maximal and Closed algorithms. The quality of the rules discovered is measured 

using statistical analysis, and redundancy and contradictive assessment methods. 

Two variants of the Apriori algorithm were utilized. The first variant corresponded to 

the standard Apriori algorithm with both support and confidence threshold, while the 

second variant was constrained using only the minimum support threshold. The 

rationale for using two variants of the Apriori algorithm is to demonstrate the effect 

of the confidence application before and after the statistical analysis, and redundancy 

and contradictive assessment methods have been applied to filter the rule set in the 

framework. Three important findings are presented in this chapter.  

 

The first finding from the first experiment reveals the effect of applying minimum 

confidence thresholds at the end of the rule evaluation process after discarding all the 

rules that failed the statistical test, the redundant rules, and the contradictive rules. 

The advantage of doing this is that any detected contradictive rules will be removed. 
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The disadvantage of applying the minimum confidence threshold at the start of the 

process is that the existence of a contradictive rule that has relatively low confidence 

will not be known. This lack of knowledge can cause an unreliable association rule to 

become part of the final rule set, which as demonstrated in Chapter 6, reduces the 

accuracy of the rule set in comparison to when the rule was removed.  

 

In comparing the interestingness of rule sets from Apriori with min_sup (later 

referred to as Apriori), Closed and Maximal, the result varies and in some cases will 

depend on the sensitivity of the domain at hand. Generally, based on the dataset used 

in this thesis, the classification and prediction accuracies are better for the final rules 

set discovered from Closed approach for Wine, Iris and Adult datasets, while for the 

Mushroom dataset, the Apriori approach obtains the best results.  

 

The third finding from the final experiment concerns the minimum confidence effect 

on the proposed framework of all three algorithms. It was found that initially setting 

a low confidence measure may be a desired approach to improve the rule coverage 

rate, as opposed to initially setting a high confidence measure which may discard 

some of the patterns/rules that cover a smaller subset of data objects from the domain 

at hand. The rules covering a smaller subset of data may be necessary to detect 

contradictions in the formed associations and discard those contradictive rules. This 

is experimentally demonstrated in this thesis where, for the majority of datasets, a 

better accuracy is achieved when the confidence constraint is applied after removing 

any contradictive rules. In addition, the changes in confidence values have a direct 

impact on the size of rule set, the accuracy rate (AR) and the coverage rate (CR). The 

trade-off between finding a rule set with optimal values of AR and CR is essential 

(Novak, Lavrač, & Webb, 2009; Wang & Dillon, 2006). 

 

Chapter 7 provides an extension of the work from evaluating the interestingness of 

association rules from the relational data to semi-structured data. This chapter 

demonstrates the extensibility of the developed framework for evaluating the 

frequent subtree rules. It also indicates the direction taken so that a frequent subtree 

can be evaluated using the proposed framework. In the initial experiment, the 

traditional frequent subtree mining algorithm is utilized to discover frequent subtrees, 

and subsequently, the interestingness of these frequent subtrees was measured using 



 231

the proposed framework. The results indicate that the combination of statistical 

analysis, redundancy and contradictive assessment methods is a means of discarding 

non-significant rules, which significantly reduces the overall complexity of the rule 

set. However, this requires a trade-off between higher accuracy at the cost of lower 

coverage rate. As more complex tree-structured data was explored by the 

aforementioned traditional frequent subtree mining algorithm, the rule evaluation 

task using the statistical analysis, redundancy and contradictive assessment methods 

based on the proposed framework became infeasible due to the large volume of 

elements present in all transactions/instances. A new means of preserving tree-

structured data in a flat table format, namely the Database Structure Model (DSM) 

approach, was presented in (Hadzic, 2011) and was utilized in the later experiments 

to evaluate the interestingness of frequent subtrees.  

 

In optimizing the number of rules based on sequence of usage of parameters, the 

result demonstrated that, in most of the cases for the dataset used in this chapter, the 

reduction of rules has increased the prediction/classification ability of the rules but at 

the same time weakened the capabilities of the rules to capture more instances in the 

datasets. However, in several cases, as the number of rules decreased, both AR and 

CR declined and in two cases even with the reduced number of rules, both AR and 

CR are well preserved. For the problem of evaluating the frequent subtree extracted 

from a dataset with backtrack attributes and without backtrack attributes, the result 

confirmed that the CR for the final rule sets for rules with backtrack is always higher 

compared to the CR for the final rules without backtrack. In contrast, the AR for the 

final rule set for rules without backtrack is higher compared with the rule set with 

backtrack. With the inclusion of the backtrack node, the rules can capture more 

instances in the dataset. However, this comes with a trade-off since the rules with 

backtrack attributes are not specific enough, thereby reducing the AR. In accessing 

the quality of the initially extracted subtree set that contains both valid and invalid 

(disconnected subtrees) identified as FullTree, a comparison is made with rule sets 

based on embedded and induced subtree (the rule set that exclude 

invalid/disconnected subtrees). The result shows that in the final rule sets for the 

majority of the cases, the AR and CR for the FullTree is always higher compared to 

embedded subtrees while only in several cases both AR and CR are the same. The 

higher AR and CR for the rule sets from FullTree indicates the advantages of using 
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the DSM approach as the frequent patterns extracted are not limited to the 

representation of connected subtrees. As demonstrated in the experiment, these 

additional rules can increase the prediction/classification capabilities and capture 

more instances in the datasets. When comparing embedded with induced subtrees, 

the experiment demonstrated that the AR and CR are either equal, or embedded 

subtrees achieve better values. One may observe that the additional rules in 

embedded subtrees may be important rules that are capable of classifying/predicting 

specific classes and capturing more instances in the datasets, as they can capture 

interesting associations embedded deeply in the tree instances (ancestor-descendant) 

as opposed to induced subtrees that preserve only parent-child relationships.  

 

Another important finding emerged when comparing the AR and CR of the final 

frequent subtrees rule sets that been preserved based on the DSM approach with the 

XRules classifier classifier (Zaki & Aggarwal, 2003). The results show that the AR 

for FullTree is higher compared to XRules but lower in CR. This is due to its 

characteristics of distinguishing rules based on the exact occurrence of specific 

node(s)/subtree(s). Consequently, fewer instances can be covered by the rules but 

very specific instances can be classified and/or predicted. Moreover, for the XRules 

approach, to discover association rules on XML data, the node/s has to be 

constrained so that they have to reflect the valid subtree. However as demonstrated in 

this experiment, some association rules with disconnected subtree contain important 

pattern for classification/prediction purposes. To conclude, an interesting subtrees 

can exist in any place in a tree instances, thus one should not constrain themselves to 

valid and connected subtree when forming association rules from tree-structured 

data. 
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8.3 Future Works 

This section is organized according to the problem areas that can be addressed by 

future extensions or research. Hence, for each contribution made by this thesis, some 

possible future extensions are indicated.   

 

8.3.1 Refining the Statistical Analysis based Rule Filtering   

The framework proposed in this thesis has demonstrated how data mining, statistical 

measurement techniques, redundancy and contradictive assessment methods can be 

utilized in a proper sequence to complement each other and to arrive at a more 

reliable and interesting set of rules. The chi-square and the logistic regression 

measures were used as a case in point for statistic-based rule filtering, while 

symmetrical tau was utilized in the feature subset selection process. However, by no 

means is any claim being made that these are the most optimal measures to be used. 

Hence, other statistic-based measures and/or techniques for rule removal/attribute 

relevance determination can be considered for use in the proposed framework. As 

part of the future work, it will therefore be interesting to explore the use of other 

statistical techniques and evaluate their advantages/disadvantages with respect to chi-

square, logistic regression as well as any other techniques progressively being 

utilized.  For example, several of the techniques mentioned in (Han, Kamber, & Pei, 

2012) have proven to be effective when applied to data in the domains of science, 

economics and social sciences. The use of such techniques within the proposed 

framework will be explored in terms of the most effective techniques to satisfy a 

particular purpose (e.g. irrelevant attribute detection) as well as an optimal 

combination of techniques so that the benefits of the different measures are exploited 

so as to optimize the quality of the derived rule set.  

 

8.3.2 Evaluation of Rules Interestingness for Maximal/Closed Frequent 

Subtree  

As demonstrated in Chapters 4, 5 and 6, the developed framework is capable of 

evaluating Maximal and Closed frequent itemsets. Maximal and Closed algorithms 

for mining frequent maximal/closed itemsets are known for their ability to reduce the 

number of frequent itemset candidates that need to be enumerated. Even with a 

reduced set of frequent itemsets, no information is lost since the complete set of 
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frequent items can be obtained from both closed and maximal sets of frequent items. 

Thus, given these benefits, this work has been extended to frequent subtree mining to 

find frequent maximal/closed frequent subtrees. While these algorithms are capable 

of mining both maximal/closed subtrees from databases, a similar observation can be 

made that some of the subtrees discovered are due to pure coincidence resulting from 

certain randomness in the particular dataset being analyzed. Therefore, rules can be 

either a true discovery or merely an artifact of random association.  

 

In terms of the proposed framework evaluating the interestingness of frequent 

subtrees generated based on DSM approach, the representation of frequent subtrees 

as a flat table format might offer a way for a prominent maximal and closed itemset 

mining to be utilized. As described in Chapters 4 and 5, the GenMax (Gouda & Zaki, 

2001) and CHARM (Zaki & Hsiao, 2002) are capable of discovering maximal and 

closed frequent patterns based on relational data format. Hence, it is feasible to 

extend both approaches in discovering maximal and frequents pattern from a flat 

table format (FDT). Similar to the experiment conducted in Chapter 7, it is worth 

assessing the quality of the rules and issues such as the implication of the 

existence/non-existence of backtrack node discovered from maximal and closed 

based frequent subtrees. 

 

Thus, the task of evaluating frequent maximal/closed subtrees is highly important 

and these problems are yet to be resolved in the tree-structured data mining research 

field. Given the results of evaluating maximal/closed itemsets, extensions to the 

framework presented in this thesis will be made in order to evaluate the 

interestingness of rules based on frequent maximal/closed subtrees.  

 

8.3.3 Extended Statistical Analysis for Tree-Structured Data 

In Chapter 7, the capability of the software used for building the logistic regression 

model is limited. For example, there is a limit on the number of unique values each 

attribute can have. Hence, an additional assumption that was included in this work is 

that, any input attributes exceeding a certain limit of its possible values will be 

omitted. The removal of these attributes might be useful in reducing the number of 

attributes for logistic regression models; however, they might also contain important 
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information for the classification task, and thus their removal may result in 

deterioration of the model. Another possible direction is to apply an additional pre-

processing task such as the cardinality reduction (Refaat, 2007) to reduce the number 

of categories of attributes. This task, as described by (Refaat, 2007), reduces the 

number of categories and can be done either by ignoring same categories with small 

frequencies or by creating a schema to group categories into a smaller set of new 

super categories. This can be done by investigating the content of each category and 

grouping them on the basis of their meaning with respect to the specific domain. 

Moreover, as asserted by (Refaat, 2007), if there is no agreement on format when 

combining the categories, one can opt to combine the categories to increase the 

overall contribution of the variables to the model being developed.  

 
Moreover, rather than using the proposed statistical analysis, it is worth considering 

several other statistical techniques for data analysis. Several of these techniques as 

mentioned in (Han et al., 2012) have been proven effective and been extensively 

applied to data in the domains of science, economics and social sciences. This will be 

useful because, as demonstrated in the framework for evaluating frequent subtrees, 

most of the tree datasets consist of large volumes of transactions and attributes, 

where attributes can potentially have a large domain of possible values. The 

complexities of the attributes require us to use statistical measures that are better 

suited for tree-structured types of data and those observed characteristics. This 

provides an interesting research problem that merits future investigation. 

 

8.3.4 Evaluation of Interestingness of Rules based on Unordered Subtrees 

This thesis provides a framework that evaluates only the ordered frequent subtrees; 

hence, its limitation. However, as stated in Chapter 3, a tree-structured 

pattern/subtree may be unordered and the order of the sibling nodes does not need to 

be preserved, or in other words, the order of sibling nodes can be swapped and the 

resulting subtree is considered the same. Unordered subtrees are important in many 

applications where the order of the sibling-nodes is considered unimportant or 

irrelevant to the domain, or is simply unavailable (Hadzic, Tan, & Dillon, 2011). 

This is especially the case when the data comes from heterogeneous sources where 

there may be no standard way of representing the available domain information, and 
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hence the same aspects of the domain may be represented at different sibling nodes. 

(Chi, Muntz, Nijssen, & Kok, 2005; Tan, Hadzic, Dillon, & Chang, 2008) have 

overviewed several prominent algorithms for mining frequent unordered subtrees in 

terms of their performances. While these algorithms offer a way of discovering 

frequent unordered subtrees, some work needs to be done on evaluating the 

interestingness of the unordered subtrees and their usefulness in the 

classification/prediction task. Extending the current framework to evaluate these 

types of rules appears to be feasible; however, additional work and understanding is 

required in order to systematically arrive at desirable results. Since in this thesis, the 

tree-structured data has been preserved in a flat table format, an appropriate flat table 

format needs to be developed for the mining of tree data in unordered contexts. Since 

the order of sibling nodes is considered unimportant, one might preserve a certain 

structure that relatively will give the user the most information. Moreover, one needs 

to determine an appropriate representation of rules, and an updated evaluation phase 

to ignore the order when determining rules accuracy and coverage rate.  

 

8.3.5 Evaluation of Rules Interestingness from Sequential Data 

Mining frequent subsequences is another major development in the association rule 

mining field that specifically deals with sequential data, as explained in Chapter 1. 

The application of the proposed framework for evaluating the interestingness of 

sequential patterns is worthy of exploration. A sequence as described in (Han et al., 

2012) refers to an ordered list of events. There are three main characteristics of 

sequence, namely the time-series data, symbolic sequence data and biological 

sequences. The sequential data may involve a certain timestamp, occurrences, 

streams and gaps. The sequence mining task is a challenging one due to the large 

search space. As pointed out by (Zaki, 2001), this task requires the algorithm to make 

a full database scan for the longest frequent sequences. To address this problem, 

(Zhao & Bhowmick, 2003) applied a minimum support threshold that can prune 

those sequential patterns out of user interest, consequently making the mining 

process less complex. There are many sequence mining algorithms as reviewed by 

(Hadzic et al., 2011; Zhao & Bhowmick, 2003) capable of performing well in 

generating frequent subsequence patterns. However, motivated by the problems 

defined in this thesis, one still needs to evaluate the quality of the subsequences 
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produced. In doing this, several aspects need to be taken into consideration. One 

important consideration when mining sequential data is the need to preserve the 

order of objects in the extracted knowledge patterns or rules. Hence, the proposed 

framework needs to be modified and readapted for this purpose. Moreover, certain 

tools of statistical analysis for time series forecasting can be integrated with the 

current statistical tools available in the proposed framework. As most of the time 

series data for statistical analysis as provided by (Hyndman, 2011) is in relational 

format, thus preserving the subsequence into flat table format, this might offer a way 

for these statistical based time series analysis tools to be utilized to evaluate the 

subsequences rules.  

 

8.3.6 Evaluation of Rules Interestingness from Unstructured Data 

Currently, many enterprises implement certain business processes to streamline their 

operations, and the majority of these processes are automated, thereby generating 

numerous documents. This results in the proliferation of unstructured information 

within the enterprise such as email communication, power point presentation, word-

processing, notes and customer reviews/comments. Therefore, there is a need to 

extract more structured information from this unstructured data for business 

intelligence purposes. (Han et al., 2012) provided several examples of data mining 

applications for unstructured data such as mining text data from documents, user 

comments of product, multimedia contents and the web.  

 

The main characteristic of unstructured data is that there is no description of the 

underlying structure of the data, consequently making the process of frequent rules 

discovery from unstructured data more complicated compared to mining relational or 

semi-structured data. Some work has been done on mining rules from unstructured 

data such as the mining of text documents by (Feldman & Dagan, 1995; Mahgoub, 

Rösner, Ismail, & Torkey, 2007; Nahm & Mooney, 2002).  

 

In developing the current framework so that it can be applied to unstructured data, 

one needs to determine the statistical techniques that are appropriate for such data. 

While with the proposed framework, the data is partitioned into training and testing 

sets, this might be a challenging task when dealing with unstructured data as there 
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are no pre-determined structures available, thereby making it difficult to determine 

the appropriate attributes/concepts and instances to be partitioned.  

 

Given the premise that unstructured documents can be converted into XML format 

(Mahgoub et al., 2007), this offers a direction for the current proposed framework to 

be readapted and extended into evaluating unstructured patterns. This can be done by 

identifying important keywords that satisfy a pre-determined threshold such as 

support and confidence, or by utilizing a domain expert to analyze the text, thus 

providing some insight in determining a suitable structure for the documents. By 

doing this, certain information can be mapped/tagged into pre-determined concepts. 

Hence, the conversion of unstructured features into a structured format using the 

XML format offers a way for the proposed framework to be utilized for the 

evaluation of the unstructured patterns. However, one need to be careful in defining 

the concepts as these may force the unstructured information into a certain structure 

and in some cases may result in the partial loss of information originally residing in 

the unstructured data. As the unstructured data will be transformed into XML format, 

ideally a step similar to that given in Framework B can be utilized to evaluate the 

rules. While this offers an opportunity to examine the capabilities of the proposed 

framework with more complex data, this will require major development to adapt the 

framework and this work is reserved for future research.  

 

8.3.7 Incorporating Domain Knowledge within the Proposed Framework 

Domain-driven data mining (D3M)(Cao, 2010) is a new frontier in data mining 

research which is currently under extensive investigation. The D3M clearly is an 

extended phase of data mining and points to the future direction of data mining 

research. The development of D3M is motivated by the gap created between the 

traditional data mining research and executable capabilities of data mining 

techniques in real-world applications. Presenting already known patterns is of no 

particular interest; nor are those patterns that are hard to apply or used for decision 

support. Given such issues, the development of D3M is of crucial importance. 

 

The proposed framework provides a means of using statistical analysis, redundancy 

and contradictive assessment methods and their sequence of usage to produce a set of 
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quality rules from either relational or semi-structured data. Considering the current 

trend in data mining research in producing “domain-driven and actionable 

knowledge discovery” (Cao, 2010), the next important task is to enhance the 

capabilities of the current framework to produce “quality actionable rules”. This will 

need to be done by incorporating domain knowledge into the whole framework in the 

form of a machine-readable knowledge base. Generally, the knowledge database can 

be developed by a domain expert, and the framework will be made general enough to 

accept input from any domain a knowledge base and a dataset from which the 

association rules are to be discovered. This knowledge base will serve the purpose of 

verifying whether any of the discovered rules already exist in the domain knowledge, 

which will prevent the inclusion of “common sense”/uninteresting rules. Similarly, if 

certain discovered rules represent a contradiction or refinement of the current body 

of domain knowledge, the interestingness of these will be high as they could 

potentially extend the current body of knowledge or correct previously drawn 

conclusions that are proven wrong as new data/evidence emerges. Furthermore, in 

certain application areas, the aim is to find rare or exceptional events, known as 

outlier detection, and the knowledge base representing the domain knowledge could 

indicate what the “norm” is considered to be in the particular domain under 

investigation. Utilizing this domain knowledge will make the outlier detection phase 

more accurate and will make it easier to distinguish those outliers that represent true 

exceptions to the domain knowledge from simply noise in data. Hence, this is a 

rather important extension of the developed framework which will make its 

utilization in different domains/application tasks more attractive.   

 

8.4 Conclusion 

This chapter has summarized the thesis, highlighting the key points and the main 

conclusions from each chapter. This chapter has also identified the research problems 

that will be addressed in future, as these were outside of the scope of this thesis. 

These include the exploration of suitable statistical techniques to measure the 

interestingness of rules from sparse and complex data. Furthermore, in order to 

extend the application of the current framework to evaluate other types of subtrees 

and data formats, the framework may require additional modification to suit certain 

data formats and applications. To conclude, the research undertaken has proven to be 
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important as the developed framework is capable of achieving the desired result of 

filtering our irrelevant/uninteresting rules without negatively affecting accuracy in 

both relational and tree-structured data domains. Given the quality of results obtained 

for relational and tree-structured data, a number of significant problems and 

applications are worth further research exploration to adapt and extend the proposed 

framework to be applicable to a wider range of data formats and application tasks. 
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