4 research outputs found

    Layered graphical models for tracking partially-occluded moving objects in video (PhD thesis)

    Full text link
    Tracking multiple targets using fixed cameras with non-overlapping views is a challenging problem. One of the challenges is predicting and tracking through occlusions caused by other targets or by fixed objects in the scene. Considerable effort has been devoted toward developing appearance models that are robust to partial occlusions, tracking algorithms that cope with short-term loss of observations, and algorithms that learn static occlusion maps. In this thesis we consider scenarios where it is impossible to learn a static occlusion map. This is often the case when the scene consists of both people and large objects whose position is not permanently fixed. These objects may enter, leave or relocate within the scene during a short time span. We call such objects "relocatable objects" or "relocatable occluders." We develop a representation for scenes containing relocatable objects that can cause partial occlusions of people in a camera's field of view. In many practical applications, relocatable objects tend to appear often; therefore, models for them can be learned off-line and stored in a database. We formulate an occluder-centric representation, called a graphical model layer, where a person's motion in the ground plane is defined as a first-order Markov process on activity zones, while image evidence is aggregated in 2D observation regions that are depth-ordered with respect to the occlusion mask of the relocatable object. We represent real-world scenes as a composition of depth-ordered, interacting graphical model layers, and account for image evidence in a way that handles mutual overlap of the observation regions and their occlusions by the relocatable objects. These layers interact: proximate ground plane zones of different model instances are linked to allow a person to move between the layers, and image evidence is shared between the observation regions of these models. We demonstrate our formulation in tracking low-resolution, partially-occluded pedestrians in the vicinity of parked vehicles. In these scenarios some tracking formulations that rely on part-based person detectors may fail completely. Our pedestrian tracker fares well and compares favorably with the state-of-the-art pedestrian detectors---lowering false positives by twenty-nine percent and false negatives by forty-two percent---and a deformable-contour--based tracker

    Visual tracking: detecting and mapping occlusion and camouflage using process-behaviour charts

    Get PDF
    Visual tracking aims to identify a target object in each frame of an image sequence. It presents an important scientific problem since the human visual system is capable of tracking moving objects in a wide variety of situations. Artificial visual tracking systems also find practical application in areas such as visual surveillance, robotics, biomedical image analysis, medicine and the media. However, automatic visual tracking algorithms suffer from two common problems: occlusion and camouflage. Occlusion arises when another object, usually with different features, comes between the camera and the target. Camouflage occurs when an object with similar features lies behind the target and makes the target invisible from the camera’s point of view. Either of these disruptive events can cause a tracker to lose its target and fail. This thesis focuses on the detection of occlusion and camouflage in a particle-filter based tracking algorithm. Particle filters are commonly used in tracking. Each particle represents a single hypothesis as to the target’s state, with some probability of being correct. The collection of particles tracking a target in each frame of an image sequence is called a particle set. The configuration of that particle set provides vital information about the state of the tracker. The work detailed in this thesis presents three innovative approaches to detecting occlusion and/or camouflage during tracking by evaluating the fluctuating behaviours of the particle set and detecting anomalies using a graphical statistical tool called a process-behaviour chart. The information produced by the process-behaviour chart is then used to map out the boundary of the interfering object, providing valuable information about the viewed environment. A method based on the medial axis of a novel representation of particle distribution termed the Particle History Image was found to perform best over a set of real and artificial test sequences, detecting 90% of occlusion and 100% of camouflage events. Key advantages of the method over previous work in the area are: (1) it is less sensitive to false data and less likely to fire prematurely; (2) it provides a better representation of particle set behaviour by aggregating particles over a longer time period and (3) the use of a training set to parameterise the process-behaviour charts means that comparisons are being made between measurements that are both made over extended time periods, improving reliability

    Visual tracking: detecting and mapping occlusion and camouflage using process-behaviour charts

    Get PDF
    Visual tracking aims to identify a target object in each frame of an image sequence. It presents an important scientific problem since the human visual system is capable of tracking moving objects in a wide variety of situations. Artificial visual tracking systems also find practical application in areas such as visual surveillance, robotics, biomedical image analysis, medicine and the media. However, automatic visual tracking algorithms suffer from two common problems: occlusion and camouflage. Occlusion arises when another object, usually with different features, comes between the camera and the target. Camouflage occurs when an object with similar features lies behind the target and makes the target invisible from the camera’s point of view. Either of these disruptive events can cause a tracker to lose its target and fail. This thesis focuses on the detection of occlusion and camouflage in a particle-filter based tracking algorithm. Particle filters are commonly used in tracking. Each particle represents a single hypothesis as to the target’s state, with some probability of being correct. The collection of particles tracking a target in each frame of an image sequence is called a particle set. The configuration of that particle set provides vital information about the state of the tracker. The work detailed in this thesis presents three innovative approaches to detecting occlusion and/or camouflage during tracking by evaluating the fluctuating behaviours of the particle set and detecting anomalies using a graphical statistical tool called a process-behaviour chart. The information produced by the process-behaviour chart is then used to map out the boundary of the interfering object, providing valuable information about the viewed environment. A method based on the medial axis of a novel representation of particle distribution termed the Particle History Image was found to perform best over a set of real and artificial test sequences, detecting 90% of occlusion and 100% of camouflage events. Key advantages of the method over previous work in the area are: (1) it is less sensitive to false data and less likely to fire prematurely; (2) it provides a better representation of particle set behaviour by aggregating particles over a longer time period and (3) the use of a training set to parameterise the process-behaviour charts means that comparisons are being made between measurements that are both made over extended time periods, improving reliability
    corecore