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Abstract 

i 

Abstract 

Visual tracking aims to identify a target object in each frame of an image 

sequence. It presents an important scientific problem since the human visual 

system is capable of tracking moving objects in a wide variety of situations. 

Artificial visual tracking systems also find practical application in areas such as 

visual surveillance, robotics, biomedical image analysis, medicine and the media. 

However, automatic visual tracking algorithms suffer from two common 

problems: occlusion and camouflage. Occlusion arises when another object, 

usually with different features, comes between the camera and the target. 

Camouflage occurs when an object with similar features lies behind the target 

and makes the target invisible from the camera’s point of view. Either of these 

disruptive events can cause a tracker to lose its target and fail.   

This thesis focuses on the detection of occlusion and camouflage in a particle-

filter based tracking algorithm. Particle filters are commonly used in tracking. 

Each particle represents a single hypothesis as to the target’s state, with some 

probability of being correct. The collection of particles tracking a target in each 

frame of an image sequence is called a particle set. The configuration of that 

particle set provides vital information about the state of the tracker. The work 

detailed in this thesis presents three innovative approaches to detecting occlusion 

and/or camouflage during tracking by evaluating the fluctuating behaviours of the 

particle set and detecting anomalies using a graphical statistical tool called a 

process-behaviour chart. The information produced by the process-behaviour 

chart is then used to map out the boundary of the interfering object, providing 

valuable information about the viewed environment.  

A method based on the medial axis of a novel representation of particle 

distribution termed the Particle History Image was found to perform best over a 

set of real and artificial test sequences, detecting 90% of occlusion and 100% of 

camouflage events. Key advantages of the method over previous work in the area 

are: (1) it is less sensitive to false data and less likely to fire prematurely; (2) it 

provides a better representation of particle set behaviour by aggregating particles 

over a longer time period and (3) the use of a training set to parameterise the 

process-behaviour charts means that comparisons are being made between 

measurements that are both made over extended time periods, improving 

reliability. 
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Chapter 1 Introduction 

1.1. General introduction and motivation 

Visual tracking is the process of generating inferences about the motion of an 

object or set of objects from a time-ordered image sequence. The relationships 

between features from neighbouring frames are analysed to recover motion. Data 

is provided only at selected targets, but both the camera and/or target can be in 

motion. 

Tracking has received much attention and is a key problem in computer vision. 

The visual environment is naturally dynamic: people, animals and vehicles move 

almost continuously, providing constantly changing image data. Actual and 

potential applications are numerous and include tasks in visual surveillance, 

media analysis and generation, robotics, target tracking, biomedical image 

analysis and medicine.  

Trackers commonly consist of three main components – an appearance model 

which describes the image feature associated with the target, a motion model 

which describes its likely movement between frames and a tracking engine which 

combines the two to recover target motion and achieve tracking. Tracking 

engines are mostly built based upon model estimation concepts, such as Kalman 

filter or Sequential Monte Carlo methods. Kalman filtering (Kalman, 1960), 

particle filtering (Isard et al., 1996) and mean-shift algorithms (Comaniciu et al., 

2003, Comaniciu, 2003) are among the most widely used approaches. 

Many powerful tracking techniques exist. Recent reviews on visual tracking have 

suggested that current tracking methods can be categorised in a number of 

different ways. Yilmaz et al (Yilmaz et al., 2006) use the representation of the 

tracked object to distinguish three categories: kernel tracking, silhouette tracking 

and point tracking. Babu et al  (Babu et al., 2007) identify four broad types of 

tracker based on the tracking process used: gradient based methods, feature-

matching approaches, knowledge-based tracking algorithms and learning-based 

approaches.  

As tracking techniques and systems develop, evaluation becomes more 

important. Trackers are usually evaluated on the basis of some assessment of 

their accuracy, robustness and computational efficiency. Measures of accuracy 

reflect the precision with which the tracker output represents the target’s motion. 

A tracker is considered to be robust when it remains associated with its target 

throughout the input image sequence. Computational efficiency is important in 



Chapter 1 

2 

some applications (e.g. real-time surveillance or robotics), but is generally less 

important than metrics which assess the quality of tracking performed (Black et 

al., 2003, Ellis, 2002, Pound et al., 2007). 

While many effective tracking algorithms exist common problems remain. Some 

can cause deterioration in the tracker’s accuracy while others affect robustness. 

High levels of image noise can reduce robustness by disrupting the extraction of 

target features, but at moderate levels random variations in pixel values are 

more likely to reduce accuracy. Motion noise in the form of irregular target 

movement complicates tracking as motion models typically assume constant or 

smoothly varying movement. Again, highly irregular motion can reduce 

robustness, but in many cases motion noise affects only tracking accuracy. 

Variation in the target’s illumination can arise from changes in the real or artificial 

sources lighting the scene, or in the target’s relationship to those sources. 

Illumination changes can disrupt the way the target is represented in the image 

data, making it a poor match to the appearance model and reducing accuracy and 

sometimes robustness, depending on the appearance model used. Reduction of 

the target’s visibility from the camera’s point of view is likely to cause the tracker 

to fail. There are two ways visibility of the target can be disrupted: occlusion 

and/or camouflage. Occlusion happens when objects with different appearances 

to the target fall between the target and camera. Camouflage occurs when 

objects with similar appearances to the target form the background and distract 

the tracker away from the true target.  

Occlusion and camouflage are important because of the severe effect they have 

on tracker robustness. The occurrence of occlusion and camouflage during 

tracking are common and, if the camera is fixed, inevitable in most situations. At 

present, many tracking algorithms are able to remain associated with their 

target(s) through a reasonable number (tens or hundreds) of frames. Occlusion 

and camouflage will, however, eventually cause tracking to fail and present 

tracking algorithms do not allow target(s) to be reacquired with any reliability. 

Though occlusion and camouflage events typically occupy only a small number of 

frames, the length of time over which tracking can be expected to be successful 

increases substantially with every event that the tracker can deal with. The 

starting point of the work reported here is that detailed analysis of occlusion and 

camouflage events is necessary and important if the scope and performance of 

current visual tracking algorithms is to be improved. 
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The work reported here focuses on the detection of these two disruptive events in 

a particle-filtered based tracking framework. Particle filters are commonly used in 

tracking. Each particle represents a single hypothesis as to the target’s state, 

with some probability of being correct. The likely position of the target in each 

frame is represented by a collection of particles, referred to here as a particle set. 

Particle sets are of fixed size, but the distribution of the particles making up the 

set varies from image to image as the tracker works to maintain an accurate 

description of its target’s location in each image. A key feature of particle sets is 

that they are free to form multi-modal distributions, simultaneously representing 

alternative, competing interpretations. 

It should be stressed here that the detection of occlusion and/or camouflage is 

focused on target object(s) moving in 2D motion, where the changes to the 

target’s position in each frame is taken into consideration and the camera 

remains stationary throughout.  

1.2. Research aim 

The aims of this thesis are: 

1. To investigate the effects of interactions with interfering objects on the 

particle sets that represent estimates of target state in particle filter-based 

tracking algorithms.  

2. To develop methods of detecting these events, specifically occlusion and 

camouflage of the tracked object. 

3. To exploit the developed methods to create maps that outline areas of the 

viewed environment where occlusion and/or camouflage occur when 

tracking multiple targets moving in a static scene.    

Although, occlusion and camouflage may only take a few frames to occur, 

trackers which can survive these events are likely to track their target(s) for 

much longer time periods. Present trackers do not explicitly detect and react to 

the occurrence of occlusion and camouflage. Instead alternative approaches are 

used to cope with the occurrence of occlusion and camouflage. These include 

keeping the tracker more tightly focused on the target by manipulating the 

motion and/or appearance models employed and/or the engine used to apply 

them (Yang et al., 2011, Babu et al., 2007, Yilmaz et al., 2006, Xiang, 2011) or 

identifying areas of the environment in which the target is more likely to appear.  
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The assumption underlying this thesis is that the inherent complexity of real 

tracking problems means that the danger of noise and background objects 

disrupting tracking will never entirely be removed. Rather than attempt to create 

trackers which are impervious to such hazards, the solution lies in detecting and 

reacting to the disruptive events that they cause. 

1.3. Contributions 

Following an examination of the fluctuations in particle set distribution caused by 

these events, three approaches to the detection of occlusion and camouflage are 

considered here: 

1. Particle clustering and process-behaviour charts 

 Particle clustering is used within a particle-filtered tracker to analyse 

the effects of occlusion and camouflage and identify cues related to 

them. 

 The information gathered from that analysis is exploited by using a 

process-behaviour chart to allow the tracker to determine the 

occurrences of occlusion and camouflage by monitoring the control 

points. 

2. Particle History Images (PHI), Particle Boundary Images (PBI) and process 

behaviour charts 

 A novel view-based representation of apparent motion is constructed 

from the particle sets employed by a particle filter-based tracking 

algorithm, introducing the notion of the Particle History Image (PHI). 

 Applying a texture edge detection algorithm to the PHI produces a 

Particle Boundary Image (PBI) which highlights the boundary of the 

particle spread in the PHI. 

 Information pertaining to the width of the particle spread is gathered 

by analysing the PBI. 

 The resulting information is exploited using a process-behaviour chart 

to allow the tracker to detect the occurrences of occlusion and/or 

camouflage by monitoring the process-behaviour chart control points. 

3. Comparison of the tracker’s estimate of the target’s path and the medial 

axis of the PBI 

 Information pertaining to the alignment of the tracker’s estimated path 

and the medial axis path is computed. 
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 The computed data is exploited using a process-behaviour chart to 

detect occurrences of occlusion and/or camouflage during tracking by 

monitoring the process-behaviour chart control points.  

The effectiveness of each approach is evaluated when tracking multiple targets 

moving within a static scene. The resulting occlusion and camouflage events are 

then used to build Gaussian Mixture Model maps of the boundaries of the 

interfering objects, marking areas of the background environment in which 

occlusion and/or camouflage are likely to occur. 

The rest of this thesis describes how these contributions were achieved. 

1.4. Thesis overview 

This thesis is structured as follows: 

Chapter 2: Motivation and Background 

An examination of the literature detailing how present trackers handle the 

occurrence of occlusion and/or camouflage is given. Kalman filtering and 

particle filtering (e.g. Condensation) model estimation concepts and their 

implementation are presented. A particle filter-based tracker is described and 

applied to test image sequences exhibiting occlusion and camouflage. The 

results gathered in relation to the particle set behaviour associated with 

these events are analysed.  

Chapter 3: A Particle Clustering Approach   

Particle clustering via an implementation of a Gaussian Mixture Model within 

a particle-filter based tracker is presented. Use of a process-behaviour chart 

to detect occlusion and camouflage using information gathered from particle 

clustering is detailed. The performance of the process-behaviour chart 

algorithm and the Condensation algorithm is evaluated.  

Chapter 4: Measuring Particle Spread  

Two novel representations: (1) Particle History Images (PHI) and (2) Particle 

Boundary Images (PBI) are presented and later analysed to measure the 

width of the particle spread. The result of using a process-behaviour chart to 

exploit the information produced via two approaches to detect occlusion 

and/or camouflage during tracking is detailed.  

Chapter 5: Scene Mapping  

The novel approaches presented in Chapter 3 and Chapter 4 are applied to 

scene mapping. The accuracy of each approach at detecting occlusion and/or 

camouflage when tracking multiple targets moving within a static scene is 
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measured. Scene maps built as a result of exploiting the results produced 

from each approach using process-behaviour chart is analysed. Additionally, 

the accuracy of these scene maps at describing the interfering objects 

structures of the viewed environment are also evaluated.  

Chapter 6: Contributions and Future Work  

Contributions of this thesis are outlined and possible future work is 

presented. 
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Chapter 2 Motivation and Background 

2.1. Aim 

The aims of this chapter are: 

1. To describe the processes of occlusion and camouflage and explain their 

relevance to visual tracking.    

2. To review how present trackers handle the occurrence of occlusion and 

camouflage. 

3. To review key concepts in visual tracking. 

4. To apply a particle filter-based tracker to test image sequences exhibiting 

occlusion and camouflage and to consider the particle set behaviour 

associated with these events.   

2.2. Motivation 

2.2.1. Normal tracking, occlusion, self-occlusion and 

camouflage 

Normal tracking occurs when a target is fully visible from the view of the camera 

and is successfully tracked from the start of the tracking process to the end (e.g. 

Figure 2.5). 

Occlusion occurs when a target is lost from the view of the camera as an 

occluding object, usually with different features, falls between the camera and the 

target. Occlusion can be static, in which a fixed object occludes the target, or 

dynamic, in which another moving object comes between the target and camera. 

Figure 2.1 shows an example of the process of occlusion. The yellow circle is the 

target being tracked while the blue rectangle is the occluding object. The yellow 

circle is fully or partially visible for the first two frames in the image sequence but 

in the last frame; the blue rectangle replaces it in the foreground and makes the 

yellow circle invisible from the camera’s point of view. Self-occlusion, meanwhile, 

occurs when some part of the target occludes the feature(s) being tracked (e.g. 

Figure 2.16). The most common cause of self-occlusion is 3D rotation of the 

target, though articulated objects can self-occlude when one part of the target 

moves in front of another.  
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Figure 2.1 The process of occlusion.  
 

Camouflage on the contrary occurs when a target becomes invisible due to the 

presence of a larger object with similar features in the background. While the 

target remains in full view, the similarity of their appearance makes the 

camouflaging and target objects indistinguishable. Figure 2.2 shows an example 

of the process of camouflage. The yellow circle is the target being tracked in this 

image sequence while the yellow rectangle is the camouflaging object. For the 

first two frames, the yellow circle is fully or partially distinguishable. However, in 

the last frame; the yellow circle is no longer visible, having become embedded in 

the yellow rectangular in the background. 

 
Figure 2.2 The process of camouflage. 
 

Clutter is commonly cited as a key problem in visual tracking. Clutter occurs 

when multiple objects surrounding the target share similar features with the 

target. This can be thought of as multiple, partial camouflaging of the target, and 

causes confusion as to the location of the true target. 

Camouflage and occlusion can cause the tracker to become dissociated from its 

target, so that the data it produces is unrelated to the tracker’s behaviour. 

Therefore, effective handling of these events is vital to the success of a tracking 

process.  

2.2.2. A review of occlusion and camouflage handling 

Occlusion and camouflage are inevitable in visual tracking, and a variety of 

approaches have been adopted in response. Literature search has shown that 

occlusion can be handled in one of three ways: improving representation, 

improving search or through occlusion reasoning.  
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When improving representation, one approach is to finesse such problems by 

careful camera placement (Behera et al., 2012), though this is often not possible 

(Mittal et al., 2003). Other approaches attempt to improve the observation model 

used by incorporating additional, learned information (e.g. information of the 

target(s) visibility and existence within the scene) into its representation (Pérez 

et al., 2005) or updating the observation model whenever occlusion occurs (Hanzi 

et al., 2007). Some approaches use a template update (Nguyen et al., 2004) or 

even use temporal relationships between frames (Verma et al., 2003) to handle 

occlusion. (Babenko et al., 2009) handled the occurrence of occlusion in face 

detecting by updating the appearance model using an online multiple instance 

learning approach. In (Jepson et al., 2003, Jepson et al., 2001),(Han et al., 2005) 

and (Ross et al., 2004),occlusion is handled via an online adaptive appearance 

model. While each of these seeks to handle occlusion they do not completely 

solve the problem. Learned appearance models can improve the accuracy of 

normal tracking, but require sound data from which to learn. Even if the tracker 

maintains its link to the target, both full and partial occlusion typically reduce the 

accuracy of positional estimates. This reduces the quality of the appearance data 

passed to any learning or update algorithm, and is highly likely to lead to an 

inappropriate appearance model being learned. 

A more direct approach to handling occlusion involves choosing more complex 

representations of the target object(s) which are comparatively robust to 

occlusion, as done in (Jeyakar et al., 2008). In (Collins et al., 2005), occlusion is 

handled by representing target appearance using histograms of colour filter bank 

responses applied to red, green and blue pixel values within local image windows. 

While in (Kwak et al., 2011), occlusion is explicitly detected by dividing the target 

into several cells and training a classifier using a patch likelihood. Some like 

(Nummiaro et al., 2003, Bullock et al., 2004) try overcoming occlusion via the 

integration of colour distributions or the use of colour and motion cues within the 

tracking framework. Increasing the descriptive power of the appearance model 

increases the likelihood that the tracker will survive partial occlusion but, 

whatever pattern of features is used, there remains a chance that key information 

will be hidden. More descriptive appearance models also make it easier to re-

acquire the target after full occlusion, but this is only possible if the tracker 

models target motion well enough to be able to predict where it will reappear. 

Meanwhile, the use of mixed dynamical motion models (Brasnett et al., 2007) has 

also shown to be robust when dealing with occlusion. This, however, increases 

the complexity of the models as stronger assumptions about the tracked object 
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are imposed to achieve better performance, generally restricting the applicability 

of the tracker concerned (Senior et al., 2006). The approach is also still unlikely 

to solve the occlusion problem completely as partial and full occlusion reduces the 

accuracy of positional estimates, resulting in lower quality motion models being 

produced. However, it can lead to a system which degrades gracefully in the 

event of occlusion. 

Another way of handling occlusion is by modifying the underlying search engine 

(Ma et al., 2009). (Lanz, 2006, Arnaud et al., 2007) handles occlusion by 

modifying the diffusion step within the probabilistic propagation process of a 

Sequential Monte Carlo method using partial linear Gaussian models. (Song et al., 

2010) handles occlusion via a set of rules of tracklet estimation which is 

embedded into a stochastic graph evolution framework. In (Karavasilis et al., 

2011), occlusion is handled by forwarding a prediction of the object’s location to a 

Kalman filter whose parameters are estimated online based on a recent history of 

the motion models. Others try to handle occlusion by using multiple trackers’ 

output (Leichter et al., 2006, Kwon et al., 2011) or multiple tracking hypotheses 

(Maggio et al., 2009, Babu et al., 2007, Babu et al., 2006) to help improve the 

propagation process between time steps. Though this may be effective 

nevertheless, it will result in a constraint on computational time and resources.  

Occlusion reasoning meanwhile, can be implemented by using spatio-temporal 

reasoning to determine the consistency of dynamic scene interpretation (Bennett 

et al., 2008), via Bayesian networking (Town, 2007) or by deriving a likelihood 

model according to image formation principles and implementing occlusion 

reasoning at pixel level (Lanz, 2006, Arnaud et al., 2007). In (Lascio et al., 

2013), the authors uses contextual reasoning to deal with complex occlusion 

involving a plurality of moving people simultaneously, where the rationale is 

grounded on a suitable representation and exploitation of the recent history of 

each moving person being tracked. While (Adam et al., 2006) and (Chockalingam 

et al., 2009) handles occlusion by using robust statistics to reason about 

occlusion via decomposing the target into multiple components or patches. 

Conventionally, occlusion reasoning is done over depth or trajectories. In 

occlusion reasoning over depth, several projects have sought to address the 

problems caused by occlusion by explicitly representing occlusion relationship 

between objects. The goal here is to identify when a tracked target is likely to be 

(partially) occluded and vary the tracker’s operation accordingly. Occlusion 

reasoning typically involves some estimation of the depths of targets and 

potentially occluding objects. (Greenhill et al., 2008) recover a probability density 
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function for scene depth at each pixel from a training set of observations of 

people moving through an indoor environment. This is then used in a correlation-

based tracker to prevent occluded pixels being included in the computation of the 

correlation measure. The approach successfully reduces the effect of occlusion by 

static, background objects. To deal with the dynamic occlusion caused by other 

moving objects, (Greenhill et al., 2008) adopt the approach of (Senior et al., 

2006). This exploits appearance models of the objects being tracked to allow 

each pixel to be assigned to the most likely object, and so relative depth to be 

recovered, when two targets overlap. When occlusion reasoning over trajectories, 

(Rosales et al., 1998) detected dynamic occlusion by projecting the trajectories 

estimated by an Extended Kalman filter forward in time and thresholding the 

expected degree of overlap between pairs of targets. Occlusion is confirmed by 

applying a similar test to actual target descriptions. Targets are then merged for 

the duration of the occlusion, which can also be predicted using the available 

information, and split again once it’s over.  

Explicit discussion of handling camouflage has received less attention in the vision 

literature as compared to occlusion. In (KaewTrakulPong et al., 2003), they 

describe a system which employs colour, motion and shape models to track low 

resolution targets. The shape model used is a simple bounding box, which they 

note increases in size during camouflage and shrinks during occlusion. When 

these effects occur, the tracker moves from a data association to stochastic 

sampling process. It should be stressed, however, that (KaewTrakulPong et al., 

2003) do not explicitly seek to detect these events and the switch to stochastic 

sampling is made whenever a new observation cannot be associated with an 

existing track, whatever the reason. Whereas, in (Stolkin et al., 2012, Talha et 

al., 2012, Zhou et al., 2012, Shen et al., 2012), camouflage is handled by 

consistently improving the target state estimation at each successive frame 

through comparison between the foreground and background models. (Stolkin et 

al., 2012, Talha et al., 2012) presented a method that combines image data from 

a colour camera and a deep infra-red thermal imaging camera which continuously 

relearns local background models in each imaging modality, comparing these 

against a model of the foreground object being tracked and thereby adaptively 

weighting the data fusion process in favour of which ever imaging modality is the 

most discriminating at each successive frame. In the event of camouflage, the 

method reduces the influence of this poor modality and relies more on 

information from more discriminating modality. (Zhou et al., 2012), presents a 

novel foreground object detection scheme which constructs a foreground model 

based on the object model and the state of each target using the EM framework. 
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Camouflage is handled by augmenting the foreground detection using the 

foreground model, whereby, the fusion of the detection result for estimating the 

object’s state avoids the estimation drifting to the background area.  (Shen et al., 

2012) proposed a better temporal constraint to encourage segmentation which 

maintains a consistent appearance of foreground in consecutive frames, as this 

assists shape prior to alleviate camouflage. It should be stressed again here that, 

even though, these methods do attempt to handle camouflage when and if it does 

occur, these methods were not created to explicitly seek and detect the 

occurrence of camouflage during tracking.  

Examination of the literature has shown no significant analysis of the changes 

taking place within a tracker during occlusion and camouflage, i.e. over the few 

frames it takes for the target to transition from normal visibility to full occlusion 

or camouflage. Closer examination of the measurement stage of a particle filter-

based tracker provides useful information on the changes taking place within the 

particle set during occlusion and camouflage events. Measurement steps are 

often quite complex, powerful operations but can provide a lot of information 

about the target’s local environment. In addition, particle filters are particularly 

good at providing this information, as they sample from both the target and its 

surroundings. 

Section 2.3 presents a review of two common model estimation concepts used to 

build a tracking engine. The section will conclude by justifying the selection of a 

particle filter-based tracker as the platform for the research reported in this 

thesis.  

2.3. A review of model estimation concepts 

Two model estimation concepts commonly used to build a tracking engine, the 

Kalman filter and particle filter, are examined in this section.   

2.3.1. Kalman filter 

The Kalman filter was introduced in 1960 by (Kalman, 1960), but its roots can be 

traced as far back to the Gauss’s method of least squares in 1795 (Simon, 2001). 

Since its discovery, the Kalman filter has been applied in a range of diverse 

applications. In spite of it being developed for space navigation, the Kalman filter 

has been used in areas such as nuclear power plant instrumentation, 

demographic modelling, manufacturing, the detection of underground 

radioactivity, fuzzy logic, neural networks (Simon, 2001), automated missile 

guidance systems, robotics (Nagenborn, 2003), radar tracking, sonar ranging, 
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satellite orbit determination (Cipra, 1999) and improving precision (Greenspan et 

al., 2004). The Kalman filter is also used to build tracking engines within visual 

trackers (Forsyth et al., 2003, Welch et al., 1995). 

Literature has shown the Kalman filter being applicable to a diverse of problems, 

though, it is limited to linear motion and uni-modal Gaussian densities. The 

Kalman filter cannot represent multiple alternative hypotheses. Implementing a 

Kalman filter is also made more difficult due to the existence of the Riccati 

equation (Isard et al., 1998a). Moreover, Kalman filter based contour trackers 

which run in real time are very susceptible to distraction by clutter and 

correlation-based systems and is vulnerable to changes in object appearance and 

lighting and rapidly slows down as the space of deformations increases in 

complexity (Isard et al., 1998b). As a result, an alternative solution to overcome 

the limitations of Kalman filter is provided by a group of algorithms based upon 

the notion of the particle filter.  

2.3.2. Particle filters 

Particle filters, also known as sequential Monte Carlo methods (Kitagawa, 1996, 

Doucet et al., 2000, Cappe et al., 2007), are powerful estimation techniques 

based on simulation commonly used to handle non-Gaussian densities. Particle 

filters are based on point mass or “particle” representations of probability 

densities which is applicable to any state-space method and generalize the 

traditional Kalman filtering method (Arulampalam et al., 2002). The Particle filter 

is defined as a class of simulation filters that recursively approximate the random 

variable ),,(| 1t  tt yyYa  by “particles” M
t

1
t aa ,, , with discrete probability 

mass of 
M
tt  ,,1   (Pitt et al., 1999). The principle advantage of particle filters is 

that they do not rely on any local linearization technique or any crude function 

approximation and they have found real time application in fields as diverse as 

chemical engineering, computer vision, financial econometrics, robotics (Doucet 

et al., 2008), statistics, and signal processing (Cappe et al., 2007). Particle filters 

can be subdivided into two categories: particle filters that re-use particles and 

require re-sampling to prevent divergence, e.g. sequential importance particle 

filters and Bootstrap particle filters, or particle filters that do not re-use particles 

and therefore require no re-sampling, e.g. Gauss-Hermite particle filters, Monte 

Carlo particle filters and Unscented particle filters (Haug, 2005). Particle filters 

are simple to implement, robust towards fluctuating motions and able to handle 

non-linearity. As a result, a variety of algorithms utilizing the concept of particle 

filter together with some other variation of concepts has been introduced. Among 
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them are Gaussian particle filters (Kotecha et al., 2003), the Rao-Blackwellised 

particle filter (Sim et al., 2007), the Kalman particle filter (Li et al., 2003), 

Auxiliary particle filter (Pitt et al., 1999) and the mean shift embedded particle 

filter (Shan et al., 2007). 

In real tracking, multi-modal distributions are often required to represent 

competing hypotheses. Particle filtering is used to model this situation as particle 

filters can represent a higher degree of ambiguity in the target’s state. Particle 

filtering was introduced into computer vision in the Condensation algorithm (Isard 

et al., 1996, Isard et al., 1998a). 

2.3.2.1. The Condensation algorithm 

Condensation was developed to handle non-Gaussian state densities in visual 

tracking. Condensation is part of the particle filter family, though there is a 

significant difference that separates the two. (Li et al., 2003) presents evidence 

that for the Condensation sampling step, the proposal distribution from which 

particles are drawn is the distribution conditional on the particle state at the 

previous frame: the latest observation is only used in the weighting step and not 

in the sampling step.  

Each particle in Condensation represents a single hypothesis as to the target’s 

state, with some probability of being correct. Particles are compared to an 

observation in order to predict where the target is likely to be in the following 

frame of an image sequence. In visual tracking, particles are normally shown as 

spots of different colour or intensity overlaying a series of images as shown in 

Figure 2.3.  

 

Figure 2.3 Particles tracking a football player. 
 

Condensation is based on factored sampling. Factored sampling is used to 

approximate probability distribution, whereby in principle can be evaluated using 

the Bayes’ rule (Bayes et al., 1763). Though, in practice, it can be evaluated 

using iterative sampling techniques (Isard et al., 1998a). Condensation is 

estimated by a set of discrete particles. A sample or particle set 
n
tx which consists 
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of the target’s state vector representation is chosen from a prior distribution, 

denoted as   Nnxt ,,1,  , where n refers to the nth particle set, t refers to the 

current time step and N is the sample size of the population. Target state is 

commonly position but need not be as shape, colour or velocity can be used as 

alternative. Particles drift between time steps, so a motion model is used. In 

addition, to capture the uncertainty in the motion model, some noise is added to 

the particles. This noise is added to the target’s state vector representation. The 

particles then diffuse and agitate individually. Particles are distributed across the 

search space as each particle experiences Brownian motion step independently. 

This results in a new un-weighted particle set for the new time step. 

Subsequently, factored sampling takes place whereby the weights t  for each 

particle are obtained based on how similar the particle is when matched against 

an observation density. Consequently, this result in a weighted particle set, 

denoted as   Nnx n
t

n
t ,,1,,  . A high similarity will result in a high ratio, 

whereas, a low similarity will result in a low ratio value being assigned. To start 

the next iteration, a posterior distribution set is estimated by copying particles 

from the prior distribution set but taking into account their respective weights. 

Therefore, particles with high weight can be selected more than once. The sample 

size for the posterior distribution is identical to the prior distribution for time t+1. 

Finally the new posterior distribution set replaces the old prior distribution set and 

the entire process is repeated again for the next time step.  

The advantages presented by Condensation have resulted in several extensions 

to Condensation being addressed in the literature. ICondensation (Isard et al., 

1998b) provides a combination of low and high level information in a constraint 

probabilistic framework with the incorporation of importance sampling into 

Condensation. Mixed-state Condensation (Isard et al., 1998c) meanwhile, 

develops random sampling methods to allow automatic switching between 

multiple motion models as a natural extension of the tracking process.  

Section 2.4 provides groundwork for the research reported in this thesis. The 

section will begin by detailing the implementation of the Condensation algorithm. 

Subsequently, test image sequences that exhibit occlusion and camouflage are 

presented. The section will conclude by analysing the results gathered from 

applying the Condensation algorithm to test image sequences exhibiting occlusion 

or camouflage. 
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2.4. Groundwork: Condensation, occlusion and 

camouflage 

2.4.1. Condensation algorithm implementation 

A flowchart of the Condensation process is shown in Figure 2.4, further details are 

given in Algorithm 2.1. Implementation of Condensation tracking is 

straightforward. The particle set is represented as an array of N simple data 

structures, each representing one particle. Each particle data structure contains a 

hypothesised target state and an associated weight. State values are initialised 

randomly, and initial weights computed by matching the hypothesised states 

(typically target position) to the first image in the sequence. To predict target 

state (location) in the next image, N particles are randomly selected from the 

array. The selection process takes weights into account, so higher weighted 

particles are more likely to be selected. A given particle may be selected more 

than once. The selected particles are projected forward in time using a model of 

the expected motion of the target, often constant velocity. Random noise is then 

added to the predicted state descriptions. This prevents multiple copies of the 

same particle from making identical hypotheses and increases the search area. 

The new particle are weighted, as before, by comparing hypothesised states to 

image data; the next image in the sequence. The set of weighted particles 

created at each time step (i.e. for each image) represents the tracker’s 

estimation of it’s targets properties. For display purposes, the highest weighted 

particle or a weighted mean of the particle set can be used to indicate target 

location. Examples of the operation of the Condensation algorithm are shown in 

section 2.4.3. 
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Figure 2.4 A flowchart of a Condensation process. 

 

Algorithm 2.1 Condensation algorithm (Isard et al., 1996; Isard et al., 1998a). 
 

CONDENSATION ALGORITHM 
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A point representation (Yilmaz et al., 2006) Condensation algorithm is 

implemented in this thesis. A sample state is defined as: 

   ,,,, vuyxX  

where x  and y  are the target coordinate location, u  and v  are the target 

velocities and  is the sample weight. 

The success of the Condensation algorithm is governed by the effectiveness of 

the measurement model, motion model and initial state values. The following 

section details the measurement and motion model(s) and justification of initial 

state values.  

2.4.1.1. Measurement model 

The measurement model estimates the probability of a target being present at 

the location being examined. The probability of a given state is estimated by 

matching the measurement model to the current model of the image at a 

particular location. An observational measurement model (measurement model 

henceforth) represents the original state of the target. Feature selection on which 

the measurement model and current model is built on plays a pivotal role in the 

success of determining the presence of the target in the image during tracking. 

Different feature representation such as colour, edges, optical flow or texture 

(Yilmaz et al., 2006) can be used to characterize the target. Nevertheless, colour 

representations based on RGB colour space or HSV colour space have shown 

(Nummiaro et al., 2003) to be a common approach for building these model(s). 

HSV colour space is more illumination invariant than RGB colour space. By 

discarding the V value, hue and saturation becomes less sensitive to illumination 

changes. As mentioned in Chapter 1, illumination changes in tracking can gravely 

affect the tracking process. Therefore, the proper choice of colour space is vital to 

the success of tracking. As a result, the HSV colour space is used in this thesis. 

The measurement model and current model are built as a two dimensional 

histogram. The histogram is a distribution representation of the target’s hue and 

saturation. Hue and saturation can be computed using (2.1) and (2.2) 

respectively. The colours red, green and blue are represented as R, G and B, 

while hue and saturation are represented as H and S respectively in (2.1) and 

(2.2). 
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The similarity between the measurement histogram and current histogram is 

measured using Bhattacharyya distance (Bhattacharyya, 1943, Kailath, 1967, 

Djouadi et al., 1990, Ahere et al., 1997, Comaniciu et al., 2003). Bhattacharyya 

distance measures the similarity of two normalized discrete or continuous 

probability distributions. In this thesis, 
)(up represents the measurement 

histogram while the current histogram is represented by
)(uq . The result obtained 

from measuring the similarity of 
)(up and

)(uq  is a value between 0 and 1. An exact 

similarity between 
)(up and 

)(uq will produce a result of 1 whereas non similarity 

will produce a result of 0. The Bhattacharyya distance is computed using (2.3): 





M

u

uu qp  distance yyaBhattachar
1

)()(
                       (2.3) 

where   Mu
upp ,,1

)(
  and   Mu

uqq ,,1
)(

 . M refers to the total number of 

histogram bins used.  

2.4.1.2. Motion model 

Motion models are applied to the target’s original position (x, y) to allow the 

target to experience motion across time. A constant velocity model is commonly 

used. At each time step, the target’s new position ),( tt yx is estimated by adding 

the velocity ),( tt vu  onto the old target’s position ),( 11  tt yx . The velocity at every 

time step is computed using (2.4): 

),),), 11  tttttt yTarget(xyTarget(x vVelocity(u                  (2.4) 

Process noise is also added to the target’s position to capture the uncertainty in 

the motion model. In this thesis, noise is generated randomly using a probability 

density function. The Box-Muller transform (Box et al., 1958) is used to generate 
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a pair of random numbers from the same normal distribution given a pair of 

random numbers. Since only one noise value can be added to the target’s 

position at a given time, therefore, only one random number is used. The random 

number is generated using (2.5): 

 






 


c

c
b  Noise

ln2
*                                  (2.5) 

where b is a given random number, c is the total multiplication of 2 given random 

numbers, mean,  is zero and standard deviation,  is 5. A standard deviation of 

5 is selected because 95% of noise will fall between 5 . Hence, an additional 

noise of 5 pixels is added to the target’s new position after adding the original 

target position with the velocity model. Any higher standard deviation will cause 

the target to experience a drastic increase in motion which can result in the 

failure of tracking. 

2.4.1.3. Initial state values 

In Condensation, increasing the number of particles typically results in increased 

tracking performance. However, it also leads to an increased in processing time. 

As a compromise, a particle set size of 100 per target was used. A particle set 

size of 100 was found to produce a good tracking result for artificial videos as well 

for challenging real-world videos.  

For each video sequence, the initial starting point is user defined. Initial particles 

are automatically spread within the target’s vicinity using a normal distribution 

random number generator. A normal distribution is used because 95% of the 

particles generated will be within one sigma radius of the initial position. This 

ensures that the particles generated remains within the vicinity of the target 

boundary and avoids particles being initialized to track something other than the 

actual target. The normal distribution random number generator details have 

already been presented in the Motion model section. A standard deviation of 5 is 

used. Therefore, 95% of particles will be placed approximately 5 pixels from the 

user defined position.  

Process noise parameters were chosen to distribute particles over an area of 

radius ranging from 1 to 10 and it is user defined. The selection of a radius size 

depends on the target size. A smaller radius value is chosen to track a small size 

target. This is because it will force the particles to stay concentrated onto the 

target. If a higher radius value is chosen, it may cause some particles to not track 

the target but instead track the background surrounding the target.  
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Histogram bins are user defined as well. The number of histogram bins ranges 

from 10 to 50. A histogram bin of size 10 was found to produce a good tracking 

result when used on artificial and real videos. 

The initial velocities of particles are set to zero. 

2.4.2. Test videos 

Test video selected or created for this thesis, all exhibit occlusion and/or 

camouflage. Test videos are divided into two groups: artificial and real test 

videos. 

2.4.2.1. Artificial videos 

Artificial videos are created by combining together a series of images where, in 

each image, a target is placed at different position on a path to exhibit a constant 

motion. Images were created to show a target (yellow circle) either experiencing: 

(1) normal tracking or (2) occlusion or (3) camouflage. In all the images created, 

the image background is always initialised to white. 

For normal tracking, a yellow circle is next drawn at the left boundary of the 

image. Then, in successive images, a constant velocity model is added to the 

circle’s position. The velocity model is specified by the user. Adding the velocity 

model causes the circle to be drawn at a different position in the image, which 

simulates the circle moving horizontally. This process is repeated until the circle 

reaches the right boundary of the image. Finally, all the images are concatenated 

together to produce the artificial video. 

For occlusion and camouflage, the process is repeated. Additionally, in these 

images, a differently coloured rectangle (to invoke occlusion) or an identically 

coloured rectangle (to invoke camouflage) is drawn at the middle of every image 

and on the path of the moving yellow circle. As before, the images are then 

appended together to produce the respective artificial videos once the circle 

reaches the right boundary of the image.  

A total of six artificial videos were created. Each exhibits one of three different 

scenarios: a target moving normally, a target experiencing occlusion while 

moving and a target experiencing camouflage while moving. In order to 

demonstrate the reliability and effectiveness of the tracker used, the six videos 

are separated into 2 groups. One group of videos has no clutter present while the 

second group of videos has 4 types of clutter present. Clutter is added to make 

the videos more realistic as real videos are never entirely free from clutter.  
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Artificial videos that have no clutter present show a yellow circle placed at the left 

boundary of the image sequence moving horizontally to the right boundary of the 

image. In two videos, a differently (to invoke occlusion) or an identically (to 

invoke camouflage) coloured rectangle is placed in the path of the moving yellow 

circle. Figure 2.5 illustrates a target moving normally while Figure 2.6 and Figure 

2.7 illustrate a target experiencing occlusion and camouflage respectively.  

 

Figure 2.5 A yellow circle moving normally. 
 

 

Figure 2.6 A yellow circle experiencing occlusion. 
 

 

Figure 2.7 A yellow circle experiencing camouflage. 
 

In the artificial videos with clutter, background clutter and three different types of 

noise are added: motion noise, image noise and target noise. Background clutter 

adds objects with different sizes, shapes and colours randomly to the background 

of the image while the target is moving in the foreground of the image. Motion 

noise adds random velocity-(u, v) to the target’s position-(x, y) in order to have 

an uneven interval in the target’s movement. Image noise adds random colour 

pixels onto the entire image sequence of a video. Target noise only adds random 

colour pixels to the target’s vicinity in the image sequence. Motion, image and 

target noise are generated using a probability density function with a mean,   of 

zero and standard deviation,   of 10. A standard deviation of 10 is selected so 
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that 95% values obtained will fall between 10 . Since a percentage value is used 

to control the amount of noise generated for each artificial video, therefore, if a 

higher standard deviation value is selected, it will contribute to excessive noise 

being generated which will affect the tracking process. Trial and error using 

percentage values ranging from 0.1% to 100% was performed to determine the 

optimum percentage for each noise. Optimum percentage values were chosen on 

the basis of optimum values of noise generated does not affect the tracking 

process at an early stage even before the target experiences occlusion or 

camouflage. However, if no percentage limit is found, half of the maximum 

percentage is selected as the optimum value. The maximum percentage is not 

used because an overly noisy video will be produced since each video generated 

comprises of a combination of all four noise types. Therefore, the optimum values 

for each noise are: background clutter (50%), image noise (50%), movement 

noise (1.0%) and target noise (0.14%). In tracking, the measurement model 

which determines the success of tracking a target is build during the initial frame 

of a video sequence. To avoid any form of noise also being recorded into the 

measurement model which can affect the tracking process acutely, no form of 

noise is generated in the initial frame of the artificial videos. Figure 2.8 illustrates 

a yellow circle moving normally but with clutter present while Figure 2.9 and 

Figure 2.10 demonstrates a yellow circle experiencing occlusion and camouflage 

in addition to the presence of clutter. 

 

Figure 2.8 A yellow circle moving normally but in the presence of clutter. 
 

 

Figure 2.9 A yellow circle experiencing occlusion and in the presence of clutter. 
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Figure 2.10 A yellow circle experiencing camouflage and in the presence of 
clutter. 

 

2.4.2.2. Real videos 

A total of six real videos was chosen or captured. Similar to the artificial video, 

each of the real videos exhibits a target either moving normally, or experiencing 

occlusion or camouflage while moving. 

In Figure 2.11, a tree occludes a woman while in Figure 2.12, a player 

camouflages a football. Figure 2.13, Figure 2.14 and Figure 2.15 demonstrate a 

tennis ball either moving normally or experiencing occlusion or camouflage. 

Figure 2.16 illustrates a table tennis bat experiencing self-occlusion.  

 

Figure 2.11 A tree occludes a woman. 
 

 

Figure 2.12 A player camouflages a football. 
 

 

Figure 2.13 A tennis ball moving normally. 
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Figure 2.14 Some books occlude the tennis ball. 
 

 

Figure 2.15 A bag and file camouflages the tennis ball. 
 

 

Figure 2.16 A table tennis bat experiences self-occlusion. 
 

2.4.3. Condensation: the effect of occlusion and 

camouflage 

Applying a particle filter or Condensation algorithm to the test videos allows a 

closer examination of the measurement stage to be made. Analysis is centred on 

the particle distributions that arise as tracked targets become occluded or 

camouflaged. It should be pointed out here again that the detection of occlusion 

and/or camouflage is focused on target object(s) moving in 2D.  
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2.4.3.1. Tracking parameters  

In all the test videos, a particle set size of 100 was used. Process noise varied for 

each video. Depending on the target size, a radius size ranging from 1 to 10 is 

selected to produce a good tracking result under normal conditions. A histogram 

bin size of 10 is selected for all the test videos. 

2.4.3.2. Normal tracking  

In Figure 2.17 and Figure 2.18, the particles successfully track the yellow circle 

from the start of the tracking process to the end. The particle set also 

successfully tracks the tennis ball in Figure 2.19 from the start to the end of the 

video sequence.  

 

Figure 2.17 Particles successfully track the yellow circle. 
 

 

Figure 2.18 Particles successfully track the yellow circle amid clutter. 
 

 

Figure 2.19 Particles successfully track the tennis ball. 
 

2.4.3.3. Occlusion  

Analysing Figure 2.20 and Figure 2.21 demonstrates that as the yellow circle 

becomes occluded by the blue rectangle, some particles get transferred onto the 

blue rectangle and die, while the remaining particles start to experience some 

form of clustering. After losing the target, the particles are tightly clustered and 
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move rapidly, but randomly, over the image plane. However, though the yellow 

circle reappears after being occluded, the particles never reattach themselves 

onto the target. 

 

Figure 2.20 Particles lose the yellow circle following occlusion. 
 

 

Figure 2.21 Particles stop tracking the yellow circle as occlusion occurs amid 
clutter. 
 

The particles also behave similarly in real videos as depicted in Figure 2.22, 

Figure 2.23 and Figure 2.24. In Figure 2.22, as the tree occludes the woman, the 

particles cluster together and eventually stop tracking the woman when she is 

totally occluded by the tree. The particles fail to reattach themselves after the 

woman emerges from behind the tree. When the tennis ball is occluded by some 

books in Figure 2.23, the particles once again become closely clustered together. 

They again fail to reattach themselves onto the tennis ball when it reappears. In 

Figure 2.24, the table tennis bat experiences self-occlusion. As the table tennis 

bat rotates, the particles tracking the red side of the bat get tightly clustered 

together as the red side of the bat slowly disappears from view. When the target 

is fully self-occluded, the particle set is seen closely clustered together and no 

longer tracking the bat. The particles fail to reattach themselves to the red side of 

the table tennis bat once it returns to view.  
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Figure 2.22 Particles stop tracking the woman as she becomes occluded by the 
tree. 
 

 

Figure 2.23 Particles stop tracking the tennis ball as some books occlude the 
tennis ball. 
 

 

Figure 2.24  Particles stop tracking the table tennis bat as the table tennis bat 
experiences self-occlusion. 
 

2.4.3.4. Camouflage  

Examining the particles’ behaviour in Figure 2.25 and Figure 2.26, show that as 

the yellow circle becomes camouflaged by the yellow rectangle; particles are 

transferred onto the rectangle and start spreading out. The particles never 

reattach themselves to the circle but instead remain fixed to the camouflaging 

object. 
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Figure 2.25 Particles get transferred and start tracking the yellow rectangle as 
the yellow circle experiences camouflage. 
 

 

Figure 2.26 Particles never reattach themselves onto the yellow circle again 
after it experiences camouflage. 
 

Figure 2.27 and Figure 2.28 depict the particles’ behaviour in real videos. In 

Figure 2.27, as the player camouflages the football, particles tracking the football 

get transferred onto the player. Particles never again track the football, even 

after it reappears. The same behaviour is also illustrated in Figure 2.28 as the 

tennis ball is camouflaged by a bag and file. The particle set gets transferred onto 

the camouflaging bag and file and begins to spread widely within them. Though 

the tennis ball reappears from camouflage, the particles never reattach 

themselves to it. 

 

Figure 2.27 Particles get transferred onto the player and field line as the football 
becomes camouflaged by the player. 
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Figure 2.28 Particles never again reattach themselves onto the tennis ball even 
after the tennis ball stop experiencing camouflage. Particles continue to track the 
camouflaging bag and file instead. 
 

2.4.3.5. Summary 

Analysis of all test videos leads to the following hypotheses: 

 When occlusion occurs, the particles become closely clustered together 

and stop tracking the target. The particles typically fail to reattach 

themselves to the target when it reappears, though they may of course do 

so by chance. 

 When camouflage occurs, the particles are transferred onto and start to 

spread widely within the camouflaging object. Again, the particles never 

reattach themselves to the target.  

2.5. Chapter summary 

Kalman filters or Sequential Monte Carlo methods, e.g. particle filters are model 

estimation concepts commonly used to build a tracking engine. Though, literature 

has shown that the Kalman filter is proven to converge, the method is limited to 

linear motion and uni-modal priors. As a result, particle filtering is used as an 

alternative solution. Particle filters can represent multi-modal distributions by way 

of multiple hypotheses which represent some features (e.g. colour, texture or 

contour, shape) of the target in question. Customarily, these hypotheses are 

represented as a set of discrete particle that are often shown as spots of different 

colour or intensity overlaying the target on the image data. While many effective 

tracking algorithms have been based on the particle filter, occlusion and 

camouflage remain problems. Literature has detailed that previous tracking 

techniques have sought to avoid these problems by keeping the tracker more 

tightly focused on the target, so that camouflage is simply not noticed and the 

tracker is more likely to reacquire the target following (short periods of) 

occlusion. Multiple motion models have also been used, as have more detailed 

texture and colour cues that better model the target appearance. Alternatively, 

areas of the environment in which the target is more likely to appear might be 

identified. While these approaches improve tracker performance, nevertheless, 
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they do not entirely remove the problems of occlusion and camouflage. This 

thesis takes an alternative approach, arguing that the solution lies not in 

avoiding, but in detecting and explicitly reacting to these disruptive events. A 

particle filtered-based algorithm, Condensation is applied onto test videos that 

explicitly exhibit occlusion and/or camouflage. Analysis results provide evidence 

that particle set can be analysed collectively to provide vital information about the 

target’s state during the occurrences of occlusion and camouflage.  

These new findings are explored further in Chapter 3 and Chapter 4 of this thesis. 
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Chapter 3 A Particle Clustering Approach 

3.1. Motivation 

In Chapter 2, two key observations are drawn from an analysis of the effects of 

occlusion and camouflage on the operation of the Condensation algorithm:  

1. During occlusion, the particle set is compressed. After the reappearance of 

the target the closely clustered particles typically fail to reattach themselves 

to the target, though they may of course do so by chance. 

2. During camouflage, particles are transferred onto the camouflaging object 

and the particle set begins to spread across the camouflaging object. As the 

target reappears, the widely spread but inappropriately placed particles 

typically fail to reattach themselves to the target.  

The hypothesis considered here is that close examination of the behaviour of 

particle distributions every time step can provide an indication of the occurrence 

of occlusion and camouflage. A key feature of particle sets is that they are multi-

modal: a given particle set will dynamically arrange itself into a (usually small) 

number of clusters, each representing a different, conflicting interpretation of the 

available data. The number, size and spread of these clusters varies with the 

relationship between target and its surroundings. When attempting to quantify 

the effect occlusion and camouflage have on a particle set, it is natural to apply a 

clustering algorithm and use the parameters of the resulting clusters to 

characterise the particle distribution. 

3.2. Aim 

The aims of this chapter are to: 

1. Obtain information about the behaviour of particle distributions when a 

target experiences occlusion or camouflage. This is achieved by clustering 

particles at each time step. To provide a rich and widely applicable 

description of particle behaviour, a Gaussian Mixture Model is implemented 

to perform particle clustering. 

2. Exploit information gathered from particle clustering to identify cues 

related to occlusion and camouflage. This is achieved using process-

behaviour charts.  
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3.3. Particle clustering 

3.3.1. Gaussian Mixture Model and Expectation 

Maximization (EM) algorithm 

During the preliminary stages of the research, it was not clear what 

features/parameters of the particle set were going to be important. EM provides a 

rich representation (a Gaussian Mixture Model) which does not just assign data 

points to clusters. EM also gives probabilities of clusters membership and 

generates component weights summarising the importance of each cluster. 

Though in its basic form it needs the user to input the number of clusters to find, 

there exist extensions that can automatically determine the optimal number of 

clusters. For this reason, EM and GMM were chosen instead of the simpler K-

Means (MacQueen, 1967, Steinhaus, 1956) and Mean Shift (Fukunaga et al., 

1975) clustering algorithm. EM and Gaussian Mixture Models have previously 

been used successfully to represent particle sets in (Milstein et al., 2002) and 

(Vermaak et al., 2003).  

A Gaussian Mixture Model is a probabilistic model used for density estimation in 

pattern recognition (Bishop, 1995). Probabilistic models can handle noise, capture 

unlikely but logically possible events and support a variety of principled reasoning 

methods. Gaussian Mixture Model parameters are often estimated using the 

Expectation Maximization (EM) algorithm.  

The EM algorithm is an iterative maximum likelihood estimation process, mainly 

used when the data of interest are incomplete. The EM algorithm was formalized 

by (Dempster et al., 1977). Two main applications of the EM algorithm exist. The 

first arises when the data has missing values due to problems with or limitations 

of the observation process; and the second is when optimizing the likelihood 

function is analytically intractable but when the likelihood function can be 

simplified by assuming the existence of values for additional but missing (or 

hidden) parameters (Bilmes, 1997). The work presented here falls into the former 

class.  

The EM algorithm iterates between two steps, the Expectation step and the 

Maximization step. The Expectation step finds the expected value of the log 

likelihood )|,log Yp(X with respect to the unidentified data Ygiven the observed 

data X and the current parameter estimation (we follow the notations in (Bilmes, 

1997)): 
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],|)|,([log) )1(   i1)(i XYXpE,Q(          (3.1) 

where 
)1(  i
 is the current parameter estimation that is used to evaluate the 

expectation and  is the new parameter that is optimized to increase Q . The 

Maximization step then finds an improved parameter estimation by maximizing 

the expectation function in the first step: 

),(maxarg )1()(  ii Q     (3.2) 

At each iteration, the log-likelihood increases. As a result, when a specified 

criterion is met, the algorithm stops iterating as it has converged to a local 

maximum of the log-likelihood function.  

Literature shows the EM algorithm to be widely applicable in numerous fields 

including medical image analysis (Bromiley et al., 2003, Ziyan et al., 2009), 

pattern recognition and pattern classification in artificial intelligence (Kim et al., 

2006, Cheung et al., 2002, Figueiredo, 2003, Lim et al., 2005, Williams et al., 

2007). 

3.3.2. Modelling particle distribution via a Gaussian 

Mixture Model and EM 

In this thesis, an iterative EM algorithm is used to build a Gaussian Mixture Model 

to describe the particle set present in a Condensation tracker at each time step. 

(Redner et al., 1984, Xu et al., 1996) shows that there are a number of 

advantages in using the EM algorithm to build mixture models. Among the 

advantages are reliable global convergence, low cost per iteration, economy of 

storage, ease of programming, automatic satisfaction of probabilistic constraint 

and monotonic convergence without the need to set a learning rate.  

Clustering of particles is not the norm in visual tracking, but has been done as 

shown in (Milstein et al., 2002) and (Vermaak et al., 2003). In (Vermaak et al., 

2003), the EM algorithm is used as a clustering tool to cluster together particles 

from one time frame. Cluster membership is taken into account when particles 

are propagated into the next time frame. 

This thesis approach differs from the work reported in (Milstein et al., 2002) and 

(Vermaak et al., 2003) in a number of ways. Here, cluster membership is less 

important than the global properties (or parameters) of the clusters produced. 

Moreover, clusters are not propagated forward in time, but are recalculated at 

each time step. Particles do not stay within the same cluster throughout the 
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tracking process, and clusters may vary dramatically in size.  The details of the 

Gaussian Mixture Model algorithm can be found in section A.1 of this thesis.  

The functionality of the EM algorithm is governed by three parameters: a 

convergence criterion, an upper limit on the number of iterations performed and 

the number of clusters utilised. The following section examines and justifies the 

values chosen for each. 

3.3.2.1. Number of iterations 

The maximum iteration for the EM algorithm is set at 50. Analysis shows that the 

EM algorithm successfully converged even before reaching the maximum limit. 

The EM algorithm converges early, without having to iterate to the maximum 

iteration limit even when using different number of clusters. As a result, stopping 

the EM algorithm after iterating a maximum of 50 iterations is justifiable as 

choosing a higher iteration limit will cause the EM algorithm to iterate 

uneconomically and utilise additional computation time. Analysis also showed that 

the number of iteration of the EM algorithm does not provide any reliable effect to 

indicate the occurrence of occlusion or camouflage.  

3.3.2.2. Convergence Criterion 

The convergence criterion used within EM plays an important role in monitoring 

the progress of the algorithm. EM is implemented as an iterative process which 

continues to iterate until all clusters are stable. A convergence criterion 

immediately stops the EM algorithm once the clusters have stabilised, thus 

avoiding additional and unnecessary iterations.  

The convergence of the EM algorithm is measured by calculating the Euclidean 

distance between the cluster’s mean  yx,  coordinates in the current and 

previous iterations. The process is considered to have converged when this 

distance falls below an empirically determined convergence threshold. During 

occlusion, the EM algorithm often fails to converge and instead performs the 

maximum allowed number of iterations. The reason for this is that the particle set 

often moves beyond the boundary of the image plane after losing its target, 

making effective clustering of these particles impossible. Analysis also provides 

evidence that the Euclidean distance and convergence threshold are poor 

indicators of occlusion and camouflage. 
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3.3.2.3. Number of clusters 

To determine the number of clusters that should be considered EM was applied to 

the particle sets obtained from a Condensation algorithm processing the set of 

test sequences presented in Chapter 2. The number of clusters used was 2, 3, 

and 4. Selected results are included here; the remainder are documented in 

Appendix B. 

Two additional artificial test videos designed to exhibit multi modal particle sets 

were also created. In these, a differently (to invoke occlusion) or an identically 

(to invoke camouflage) coloured rectangle is placed in the path of the moving 

yellow circle. An additional two yellow circles are stationed prior to the interfering 

object to encourage multi-modality. Initially, the two yellow circles are stationary. 

Once the moving yellow circle interacts with the two stationary circles, all three 

move towards the interfering object. The two sequences are illustrated in Figure 

3.1 and Figure 3.2 respectively.  

 

Figure 3.1 Camouflage of a multi modal particle set. 
 

 

Figure 3.2 Occlusion of a multi modal particle set. 
 

Figure 3.3, Figure 3.5 and Figure 3.7 show the clusters found by EM during the 

occurrence of camouflage, albeit the use of 2, 3 or 4 clusters at the start of 

tracking. Analysis of graphs in Figure 3.4, Figure 3.6 and Figure 3.8 shows that 

regardless of the number of clusters EM is required to find, it usually only finds 

one or two clusters. This is because the target is very simple and can be 

described by one or two clusters. More importantly, there is no systematic change 

in the number of clusters, reported in the graph as the target becomes 

camouflaged. 
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Figure 3.3 A yellow circle experiencing camouflage when using: (a) 2 clusters, 
(b) 3 clusters or (c) 4 clusters. 
 

 
Figure 3.4 Graph showing the use of different numbers of clusters for a yellow 
circle experiencing camouflage. 
 

 
Figure 3.5 Tracking a camouflaged object with a multi-model particle set when 
using: (a) 2 clusters, (b) 3 clusters or (c) 4 clusters. 
 

 
Figure 3.6 Graph showing the use of different numbers of clusters when tracking 
a camouflaged object with a multi-modal particle set. 
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Figure 3.7 A tennis ball experiencing camouflage when using: (a) 2 clusters, (b) 
3 clusters or (c) 4 clusters. 
 

 
Figure 3.8 Graph showing the use of different numbers of clusters for a tennis 
ball experiencing camouflage. 
 

Figure 3.9, Figure 3.11 and Figure 3.13 shows the clusters found by EM during 

the occurrence of occlusion, even though at the start of tracking, the number of 

clusters was initialised to 2, 3 or 4 clusters. Analysis of graphs in Figure 3.10 and 

Figure 3.14 shows that there is an increase in clusters as the targets become 

occluded, as the particles bunch together on the occluding object. However, it is 

not a predictable event, as it is a function of the difference between the two 

objects, and not reliable enough to base a detection method on. Additionally, in 

Figure 3.12, the number of clusters goes up a bit earlier. This implies that there 

could be an increase in cluster numbers because there are similar objects nearby 

or because the target is occluded. So, while there might be an increase in cluster 

numbers when during occlusion, again, it is dangerous to rely on it.  

 
Figure 3.9 A yellow circle experiencing occlusion when using: (a) 2 clusters, (b) 
3 clusters or (c) 4 clusters. 
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Figure 3.10 Graph showing the use of different numbers of clusters for a yellow 
circle experiencing occlusion. 
 

 
Figure 3.11 Tracking an occluded object with a multi-model particle set when 
using: (a) 2 clusters, (b) 3 clusters or (c) 4 clusters. 
 

 
Figure 3.12 Graph showing the use of different numbers of clusters when 
tracking an object through occlusion with a multi-model particle set. 
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Figure 3.13 A tennis ball experiencing occlusion when using: (a) 2 clusters, (b) 3 
clusters or (c) 4 clusters. 
 

 
Figure 3.14 Graph showing the use of different numbers of clusters for a tennis 
ball experiencing occlusion. 
 

Analysis provides evidence that, regardless of the number of distinct clusters 

present in the particle set, the number of clusters does not change significantly 

when the target is occluded or camouflaged. 

While there are some variations in cluster number during occlusion and 

camouflage when EM is initialised with 2, 3 or 4 clusters, these variations are not 

robust enough to provide a strong and reliable cue indicating occlusion or 

camouflage. A single cluster will therefore be used to provide information about 

particle set behaviour during occlusion and camouflage. Though EM was adopted 

here as a valuable experimental tool, this result means that its use in any applied 

system is strictly unnecessary; if the particle set can reliably be assumed to form 

a single cluster, its mean position and deviation can be computed directly. The EM 

implementation described here is, however, employed, for consistency, 

throughout the remainder of this thesis. 

3.3.3. Discussion  

The three parameters: (1) an upper limit on the number of iterations performed; 

(2) convergence criterion and (3) the number of clusters utilised, play a pivotal 

role in fine-tuning the EM algorithm. However, none of these parameters can be 
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used to indicate occlusion or camouflage as neither of the effects which takes 

place when these events occurs provide a strong and reliable indicator to the 

occurrence of these events.  

3.4. Camouflage, occlusion and particle cluster properties 

Fitting a Gaussian Mixture Model to the particle set provides information 

regarding the collective particle behaviour while tracking a target moving 

normally, or during occlusion or camouflage. Results reported in section 3.3 

suggest that, while number of clusters, number of iterations and convergence 

behaviour show some variation when camouflage and occlusion takes place, the 

effects are not strong and cannot reliably be used as an indicator of these events. 

In what follows the particle set is modelled as a single cluster, with attention 

focussed on the properties of that cluster. At each time-step, the EM algorithm 

estimates the (mean) position and spread (deviation) of a single particle cluster. 

The tracker reports estimated speed, and the motion model used to project the 

particles forward is also recorded, allowing comparison of expected and actual 

speed. This information is plotted for the entire image sequence and displayed 

graphically. The particle cluster mean is shown as a pink dot and the particle 

cluster deviation is shown as a pink circle overlaid on each image.  

This data has been extracted from the test videos described in Chapter 2. The 

results are discussed in this section. All graph results are average graphs 

obtained after running the Gaussian Mixture Model algorithm on each test videos 

ten times.  

The Gaussian Mixture Model algorithm is a point based implementation. The initial 

starting point for each sequence is user defined. The same parameter settings 

used for the Condensation analysis in Chapter 2 are used for the particle cluster 

analysis in this chapter. In all test videos, a particle set size of 100 is used. The 

degree of process noise added varied for each test video depending on the target 

size. A radius size ranging from 1 to 10 is selected to produce a good tracking 

result. A histogram bin size of 10 is selected for all the test videos. 

3.4.1. Normal tracking  

Figure 3.15, Figure 3.17 and Figure 3.19 show the particle cluster data describing 

Condensation particles which successfully track the target (a yellow circle and a 

tennis ball) from the start of the image sequence to the end. The graphs showing 

the average particle cluster data for these 3 test videos are plotted in Figure 

3.16, Figure 3.18 and Figure 3.20. 
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Figure 3.15 Particle cluster data describing Condensation particles tracking a 
yellow circle moving normally. 
 

 

Figure 3.16 Graph showing the average particle cluster data for a yellow circle 
moving normally. 
 

 

Figure 3.17 Particle cluster data describing Condensation particles tracking a 
yellow circle moving normally amid clutter. 
 

 

Figure 3.18 Graph showing the average particle cluster data for a yellow circle 
moving normally amid the presence of clutter. 
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Figure 3.19 Particle cluster describing Condensation particles tracking a tennis 
ball moving normally. 
 

 

Figure 3.20 Graph showing the average particle cluster data for a tennis ball 
moving normally. 
 

Analysis of graphs shows that: 

 The deviation remains approximately constant throughout, though there 

appears to be increased variation in the presence of clutter. 

 Predicted and estimated speed is well-correlated.  

3.4.2. Occlusion  

Figure 3.21, Figure 3.23, Figure 3.25 and Figure 3.27 show the particle cluster 

data describing Condensation particles when the target (a yellow circle, a woman 

and a tennis ball) experiences occlusion. The average data values for each of 

these test videos are plotted in Figure 3.22, Figure 3.24, Figure 3.26 and Figure 

3.28. Figure 3.29 demonstrates the Gaussian cluster properties describing 

Condensation particles when the target (a table tennis bat) experiences self-

occlusion, while the average data values are plotted in Figure 3.30. 
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Figure 3.21 Particle cluster data describing Condensation particles tracking a 
yellow circle experiencing occlusion. 
 

 

Figure 3.22 Graph showing the average particle cluster data obtained from a 
yellow circle experiencing occlusion. 
 

 

Figure 3.23 Particle cluster data describing Condensation particles tracking a 
yellow circle experiencing occlusion amid the presence of clutter. 
 

 

Figure 3.24 Graph showing the average particle cluster data (over 10 trials) for 
a yellow circle experiencing occlusion amid clutter. 
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Figure 3.25 Particle cluster describing Condensation particles tracking a woman 
as she becomes occluded by a tree. 
 

 

Figure 3.26 Graph showing the average cluster data for tracking a woman 
becoming occluded by a tree. 
 

 

Figure 3.27 Particle cluster describing Condensation particles tracking a tennis 
ball experiencing occlusion. 
 

 

Figure 3.28 Graph showing the average cluster data for a tennis ball 
experiencing occlusion. 
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Figure 3.29 Particle cluster describing Condensation particles tracking a table 
tennis bat experiencing self-occlusion. 
 

 

Figure 3.30 Graph showing the average cluster data for a table tennis bat 
experiencing self-occlusion. 
 

As the target becomes occluded: 

 The particle deviation (spread) experiences a systematic drop. This is due 

to the particles becoming more tightly clustered on the shrinking visible 

portion of the target (prior to the target being fully occluded). 

 This is commonly accompanied by a corresponding increase in the 

predicted and estimated speed. The sudden increase in speed is the result 

of the particles losing the target and moving quickly across the occluding 

object, prior to being destroyed.  

3.4.3. Camouflage 

The particle cluster data obtained from Condensation particles when the target (a 

yellow circle, a football and a tennis ball) experiences camouflage is shown in 

Figure 3.31, Figure 3.33, Figure 3.35 and Figure 3.37. The average cluster data 
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plot for each of these test sequences is shown in Figure 3.32, Figure 3.34, Figure 

3.36 and Figure 3.38. 

 

Figure 3.31 Cluster data describing Condensation particles tracking a yellow 
circle experiencing camouflage 
 

 

Figure 3.32 Graph showing the average particle cluster data for a yellow circle 
experiencing camouflage. 
 

 

Figure 3.33 Particle cluster describing Condensation particles tracking a yellow 
circle experiencing camouflage amid clutter. 
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Figure 3.34 Graph showing the average particle cluster data for a yellow circle 
experiencing camouflage amid clutter. 
 

 

Figure 3.35 Particle cluster describing Condensation particles tracking a football 
as it becomes camouflaged by a player. 
 

 

Figure 3.36 Graph showing the average particle cluster data for a football being 
camouflaged by a player. 
 

 

Figure 3.37 Particle cluster describing Condensation particles tracking a tennis 
ball experiencing camouflage. 
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Figure 3.38 Graph showing the average cluster data for a tennis ball 
experiencing camouflage. 
 

As the target becomes camouflaged, the graphs show that: 

 The particle deviation (spread) increases. The systematic increase is 

caused by the transfer of particles spreading out across the (larger) 

camouflaging object. 

 The transfer and spread out of particles across the camouflage object also 

increases the estimated (and so the predicted) speed as well.  

3.4.4. Summary 

Analysing the parameters of the particle cluster produced by the EM algorithm 

leads to the following summary: 

 During normal tracking, the cluster deviation remains approximately 

constant, while the speed is also well-correlated.  

 During occlusion, the cluster deviation drops but the speed of the particles 

within the cluster increases. The reduction in the deviation is due to the 

particles being clustered at the (still visible) back of the target. The 

increase in speed occurs because during occlusion, a small number of 

particles will land on the occluding object, move quickly across it and then 

be destroyed as their weight drops to zero. 

 During camouflage, the cluster deviation increases, as does the speed of 

the particles within the cluster. The increase in deviation and speed can be 

attributed to a general expansion of the cluster when the particles are 

transferred onto the similar, but larger, camouflaging object. 
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As a result, the ability to reliably detect these changes in the particle set may 

enable a particle filter-based tracker to automatically identify occlusion and 

camouflage events. This is explored in section 3.5.  

3.4.5. 2D EM Algorithm VS 3D EM Algorithm 

Throughout this chapter, the EM algorithm implemented to build the Gaussian 

Mixture Model exploits only the position of the particle. The Condensation weights 

are not taken into consideration. The Condensation weight,   provide the 

tracker with information as to which particles are most likely to remain on the 

target and which ones are most likely to be propagated into the next frame. This 

extra information can be incorporated into the occlusion/camouflage detection 

method described in section 3.5 by simply extending the EM algorithm from two 

to three dimensions. A revised mathematical representation for a three 

dimensional EM algorithm is detail in section A.2.  

Figure 3.39 to Figure 3.44 are graphs showing the average particle cluster data, 

generated after running the two-dimension EM algorithm and the three-dimension 

EM algorithm onto artificial videos with clutter present for a total of ten times 

each. Figure 3.39 and Figure 3.40 shows the graph of using a two-dimension EM 

algorithm clustering and a three-dimension EM algorithm clustering while tracking 

a target moving normally. The graphs using two-dimension EM algorithm 

clustering and three-dimension EM algorithm clustering while tracking a target 

experiencing occlusion are shown in Figure 3.41 and Figure 3.42 respectively. The 

graphs illustrated in Figure 3.43 and Figure 3.44 shows the use of a two-

dimension EM algorithm clustering and a three-dimension EM algorithm clustering 

while tracking a target experiencing camouflage.  

 

Figure 3.39 Graph showing the use of 2D EM-algorithm clustering while tracking 
normally. 
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Figure 3.40 Graph showing the use of 3D EM-algorithm clustering while tracking 
normally. 
 

 

Figure 3.41 Graph showing the use of 2D EM-algorithm clustering while 
experiencing occlusion. 
 

 

Figure 3.42 Graph showing the use of 3D EM-algorithm clustering while 
experiencing occlusion. 
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Figure 3.43 Graph showing the use of 2D EM-algorithm clustering while 
experiencing camouflage. 
 

 

Figure 3.44 Graph showing the use of 3D EM-algorithm clustering while 
experiencing camouflage. 
 

Analysis of the graphs using a two-dimension EM algorithm and a three-

dimension EM algorithm on artificial videos with clutter present demonstrates that 

the clustered particle deviation and speed undergoes no significant changes with 

the inclusion of the Condensation weights. Hence, the decision to implement a 

two-dimensional EM algorithm for this thesis is justifiable. 

3.5. Detecting occlusion and camouflage 

Analysis of particle cluster data provides evidence that occlusion and camouflage 

have a direct affect on the particle cluster deviation (spread) and particle cluster 

speed. Hence, we hypothesise that by examining the fluctuating behaviour of the 

particle cluster spread and particle cluster speed during tracking, the occurrence 

of occlusion and camouflage can be identified.  

The current state of these parameters is compared with a model representation. 

Each parameter has an independent model representation associated with it. 

These model representations are created during the initial period of tracking 
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when the target is known or assumed to be clearly visible. Comparison of data 

and model is achieved via process behaviour charts.   

3.5.1. Process-behaviour charts 

Process-behaviour charts, also known as control charts, are graphical statistical 

tools used to monitor the behaviour of fluctuating data. Literature review has 

shown that process-behaviour charts are primarily a control engineering tool and 

have not previously been used in visual tracking.  

The Shewhart (Shewhart, 1931) and Exponentially Weighted Moving Average 

(EWMA) (Roberts, 1959) process-behaviour charts are the most commonly used. 

Shewhart charts are typically used to detect large changes in the mean and 

variation of some data value. Whereas EWMA charts are used when small 

changes in data mean and variance must be detected (Zhang et al., 2009).  

The EWMA algorithm relies on a user-specified parameter, , the choice of which 

is vital in making the chart sensitive to the changes sought. The value of   must 

be between 0 and 1, with values nearing to 0 giving a priority to older data and 

values nearing to 1 giving priority to newer data. As determination of an 

appropriate   is problematic, and particle set fluctuations are quite large, the 

Shewhart chart approach is employed here. 

The Shewhart chart parameters are computed over a moving window using the 

cluster data obtained from the EM algorithm. The moving window interval 

information is not gathered during the first five frames of the video sequence as, 

during this stage, the particles are spreading within the boundary of the target 

object. Trial and error showed using a moving window size of 7 produced good 

results. Maximum and minimum control limits are calculated using (3.3) and 

(3.4):  

 3trolLimitMaximumCon                          (3.3) 

 3trolLimitMinimumCon                           (3.4) 

On the chart, the maximum control limit is represented as upper control limit 

(UCL) while the minimum control limit is represented as lower control limit (LCL). 

These control limits are used as a measurement threshold to determine whether 

the data in question is still under control or has gone out of control. The 

maximum and minimum control limit points are computed from the mean of the 

data. The control limits used in this thesis is determined based on the Nelson rule 

(Nelson, 1984). In this thesis, rule 3 is implemented whereby, if six (or more) 

data points in a row continually increase (or decrease) beyond the control limits, 
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then the process-behaviour chart will fire, indicating a significant change. 

Applying this rule handles false alarms such as data points that have exceeded 

the control limits for a short time period before returning to be under control, e.g. 

Figure 3.45. 

In the event of the mean value exceeding the lower control limit, the tracker 

notifies the user that the target in question is experiencing occlusion. Should the 

upper control limit be exceeded, the target is considered to be experiencing 

camouflage.  

 

Algorithm 3.1 Process-behaviour chart algorithm. 
 

The process-behaviour chart algorithm (Chandesa et al., 2009a, Chandesa et al., 

2009b) has been applied to the test videos described in Chapter 2. For each test 

video, the Shewhart chart monitors the fluctuating behaviour in the clustered 

particle deviation and clustered particle speed. Results are shown below.  

PROCESS-BEHAVIOUR CHART ALGORITHM 

1) Record particle cluster result obtained from implementing the EM algorithm.  

2) Determine whether the model representation has been created: 

a) If no model representation is created, then build a model 

representation by computing the maximum and minimum control 

points from the computed mean, 1  and standard deviation, 1  of the 

initial moving window interval: 

i. 11 3 trolLimitMaximimCon  

ii. 11 3 trolLimitMinumumCon  

b) If a model representation is already created, then build the current 

state representation by computing the current state mean, t  of the 

moving window interval.  

3) Compare current state mean, t  with the control limits: 

a) If the current state mean, t  stays within the boundary of the control 

limits, then the target is moving normally. 

b) If the current state mean, t  exceeds the maximum control limits, then 

the target is experiencing camouflage. 

c) If the current state mean, t  exceed the minimum control limits, then 

the target is experiencing occlusion. 
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3.5.2. Normal tracking  

Shewhart control chart results when tracking: a clearly visible yellow circle are 

shown in Figure 3.45 and Figure 3.46, a yellow circle amid clutter are shown in 

Figure 3.47 and Figure 3.48 and the tennis ball moving normally are shown in 

Figure 3.49 and Figure 3.50. Figure 3.45, Figure 3.47 and Figure 3.49 monitor 

fluctuating behaviour in the clustered particle deviation, while Figure 3.46, Figure 

3.48 and Figure 3.50 monitor fluctuating behaviour in the clustered particle 

speed. 

 

Figure 3.45 Shewhart control chart for particle cluster deviation of a clearly 
visible yellow circle. 
 

 

Figure 3.46 Shewhart control chart for particle cluster speed of a clearly visible 
yellow circle. 
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Figure 3.47 Shewhart control chart for particle cluster deviation of a yellow circle 
moving amid clutter. 
 

 

Figure 3.48 Shewhart control chart for particle cluster speed of a yellow circle 
moving amid clutter. 
 

 

Figure 3.49 Shewhart control chart for particle cluster deviation of a clearly 
visible tennis ball. 
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Figure 3.50 Shewhart control chart for particle cluster speed of a clearly visible 
tennis ball. 
 

Analysis of all the graphs shows that when the target(s) is clearly visible and 

moving normally: 

 The cluster deviation remains within the control limits of the Shewhart 

control chart. 

 The cluster speed also stays within the boundaries of the Shewhart control 

chart limits. 

 Though there is more variation in the data in the presence of clutter, the 

method appears not to report false positive. 

3.5.3. Occlusion  

Shewhart control chart results for tracking: a yellow circle as occlusion occurs are 

shown in Figure 3.51 and Figure 3.52, tracking a woman as she becomes 

occluded by a tree are shown in Figure 3.53 and Figure 3.54, tracking the tennis 

ball as occlusion occurs are shown in Figure 3.55 and Figure 3.56 and tracking a 

table tennis bat as it experiences self-occlusion are shown in Figure 3.57 and 

Figure 3.58. Figure 3.51, Figure 3.53, Figure 3.55 and Figure 3.57 monitor the 

fluctuation behaviour in the particle cluster deviation, while Figure 3.52, Figure 

3.54, Figure 3.56 and Figure 3.58 monitor the fluctuation behaviour in the 

particle cluster speed. 
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Figure 3.51 Shewhart control chart for particle cluster deviation when tracking a 
yellow circle as occlusion occurs. 
 

 

Figure 3.52 Shewhart control chart for particle cluster speed when tracking a 
yellow circle as occlusion occurs. 
 

 

Figure 3.53 Shewhart control chart for particle cluster deviation when tracking a 
woman as she becomes occluded by a tree. 
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Figure 3.54 Shewhart control chart for particle cluster speed when tracking a 
woman as she becomes occluded by a tree. 
 

 

Figure 3.55 Shewhart control chart for particle cluster deviation when tracking a 
tennis ball as occlusion occurs. 
 

 

Figure 3.56 Shewhart control chart for particle cluster speed when tracking a 
tennis ball as occlusion occurs. 
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Figure 3.57 Shewhart control chart for particle cluster deviation when tracking a 
table tennis bat as it experiences self-occlusion. 
 

 

Figure 3.58 Shewhart control chart for particle cluster speed when tracking a 
table tennis bat as it experiences self-occlusion. 
 

When a target (yellow circle, woman, tennis ball and bat) experiences occlusion, 

the graphs show that: 

 The particle cluster deviation gradually decreases and eventually exceeds 

the lower control limits of the Shewhart chart. 

 The cluster speed in contrast increases and exceeds the upper control 

limits of the Shewhart chart in graphs generated for tracking a yellow 

circle (Figure 3.52) and woman (Figure 3.54). Though, the same effect is 

not produced when tracking the tennis ball (Figure 3.56) and bat (Figure 

3.58). In these videos, the graphs show the cluster mean well-correlated 

and commonly stays within the control limit.  

3.5.4. Camouflage 

Shewhart control chart results for tracking: a yellow circle as camouflage occurs 

is shown in Figure 3.59 and Figure 3.60, a football becoming camouflaged by a 

player is shown in Figure 3.61 and Figure 3.62 and a tennis ball as camouflage 

occurs is shown in Figure 3.63 and Figure 3.64. Figure 3.59, Figure 3.61 and 
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Figure 3.63 monitor the fluctuation behaviour of the particle cluster deviation, 

while Figure 3.60, Figure 3.62 and Figure 3.64 monitor the fluctuation behaviour 

of the particle cluster speed. 

 

Figure 3.59 Shewhart control chart for particle cluster deviation when tracking a 
yellow circle as camouflage occurs. 
 

 

Figure 3.60 Shewhart control chart for particle cluster speed when tracking a 
yellow circle as camouflage occurs. 
 

 

Figure 3.61 Shewhart control chart for clustered particle deviation when tracking 
a football becomes camouflaged by a player. 
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Figure 3.62 Shewhart control chart for particle cluster speed when tracking a 
football that becomes camouflaged by a player. 
 

 

Figure 3.63 Shewhart control chart for particle cluster deviation when tracking a 
tennis ball as camouflage occurs. 
 

 

Figure 3.64 Shewhart control chart for particle cluster speed when tracking a 
tennis ball as camouflage occurs. 
 

Graphs generated when a target (yellow circle, football and tennis ball) 

experiences camouflage show that: 

 The particle cluster deviation progressively increases and exceeds the 

upper Shewhart control chart limits. 
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 There is, however, variation in the results generated for monitoring the 

particle cluster speed. In video showing a yellow circle (Figure 3.60) and 

tennis ball (Figure 3.64), the cluster speed also increases and exceeds the 

upper control limits. But the same effect is not recorded for video showing 

the camouflaged football (Figure 3.62). Here, the cluster speed remains 

well-correlated and stays within the control limits.  

3.5.5. Summary 

Analysis shows that particle cluster deviation provides a clearer indicator of the 

occurrence of occlusion and/or camouflage than do apparent changes in speed. 

Though speed may go out of bounds during an occlusion or camouflage event, 

this cannot be relied upon to happen in even simple cases, and is at best a 

secondary effect. As a result, particle cluster deviations are used as the primary 

tool to determine when occlusion and camouflage occurs, with speed data 

providing supplementary information.  

Analysis also shows that by using the process-behaviour chart, the information 

gathered can be exploited to allow the tracker to determine when a target is 

experiencing occlusion and/or camouflage by monitoring the control points.  

3.6. Evaluation 

Artificial videos with clutter present were created to evaluate the robustness of 

the process-behaviour chart tracker (also known as control chart tracker). The 

contents of these artificial videos are identical to the contents of the artificial 

videos with clutter present discussed in section 2.4.2.1 of Chapter 2. Three 

different sets were created exhibiting a target either moving normally, or 

experiencing occlusion or experiencing camouflage. In each set, a total of six 

artificial videos were created for each clutter type: background clutter, image 

clutter, motion clutter and target clutter. Discussion into the characteristics of 

each clutter type has already been presented in section 2.4.2 of Chapter 2.  

For each clutter type, the amount of clutter generated in each of the six artificial 

videos is controlled by a percentage. The percentage level increases progressively 

from a minimum percentage value to a maximum percentage value. The different 

percentage levels are evenly spaced in between. A minimum percentage value 

implies the lowest value the tracking system can handle without failing. A 

maximum percentage value implies: (1) the value is the highest value accessible 

which is 100% or (2) the value is the limit before the tracking system fails. Trial 

and error using percentage values ranging from 0.1% to 100% was performed to 
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determine the minimum and maximum percentage values as well as the different 

percentage levels in between. The values are: 

 Background clutter: 10%, 30%, 50%, 70%, 90% and 100%. 

 Image clutter: 10%, 30%, 50%, 70%, 90% and 100%. 

 Motion clutter: 1.0%, 2.5%, 5.0%, 7.5%, 9.0% and 10.0%. 

 Target clutter: 0.14%, 0.28%, 0.56%, 0.98%, 1.12%, and 1.26%. 

These percentage levels are represented as diamond shape patterns in the 

graphs. Figures illustrating the above mentioned percentage levels used when 

generating the six artificial videos for each clutter type can be found in Appendix 

C of this thesis. 

The robustness of the control chart tracker is determined by running the tracker 

on each artificial video five times and at each time, recording the following 

results:  

1) The success rate at successfully: (1) tracking a target moving normally for 

the entire image sequence, detecting the occurrence of (2) occlusion and 

(3) camouflage.   

2) The mean and standard deviation of the number of frames for which 

tracking is achieved. High mean values are sought when tracking normally 

(indicating longer periods of successful tracking) and low deviations when 

occlusion and camouflage are present (indicating consistent detection of 

these events). The results are discussed subsequently.  

The control chart tracker is a point based implementation. Thus, the initial 

starting point for each artificial test video is user defined. For every artificial test 

videos, a particle set size of 100 is used. Since the target to be tracked in every 

artificial test videos is a yellow circle, hence, using a radius size of 3 is found to 

produce good tracking result. A histogram bin size of 10 is selected for all 

artificial videos.  

3.6.1. Normal tracking  

In this analysis, the Condensation tracker was also applied onto the above 

mentioned artificial videos with clutter present. The robustness of the 

Condensation tracker is evaluated in the same manner as the control chart 

tracker. The Condensation tracker is also a point based implementation and 

utilised the same parameters settings used by the control chart tracker.  
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Figure 3.65, Figure 3.66, Figure 3.67, and Figure 3.68 present graphs showing 

the robustness of the Condensation tracker and the control chart tracker at 

tracking target(s) moving normally amid the presence of different types of 

clutter.  

 

Figure 3.65 Graphs showing: (1) normal tracking success rate using: (a) 
Condensation tracker; (c) control chart tracker and (2) mean number of frames 
tracking a target correctly using: (b) Condensation tracker; (d) control chart 
tracker; while normal tracking amid the presence of background clutter. 
 

 

Figure 3.66 Graphs showing: (1) normal tracking success rate using: (a) 
Condensation tracker; (c) control chart tracker and (2) mean number of frames 
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tracking a target correctly using: (b) Condensation tracker; (d) control chart 
tracker; while normal tracking amid the presence of image clutter. 
 

 

Figure 3.67 Graphs showing: (1) normal tracking success rate using: (a) 
Condensation tracker; (c) control chart tracker and (2) mean number of frames 
tracking a target correctly using: (b) Condensation tracker; (d) control chart 
tracker; while normal tracking amid the presence of movement clutter. 
 

 

Figure 3.68 Graphs showing: (1) normal tracking success rate using: (a) 
Condensation tracker; (c) control chart tracker and (2) mean number of frames 
tracking a target correctly using: (b) Condensation tracker; (d) control chart 
tracker; while normal tracking amid the presence of target clutter. 
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Analysis shows that: 

 The control chart tracker is equally robust as the Condensation tracker 

when used to track a target moving normally amid the presence of 

different percentage of background (Figure 3.65) and image (Figure 3.66) 

clutter. Both trackers effectively track the target throughout the maximum 

frames within an image sequence in all 5 attempts. 

 However, there seem to be variations in regards to the robustness of the 

control chart tracker as well as the Condensation tracker when tracking a 

target moving normally amid the presence of motion and target clutter. In 

Figure 3.67 and Figure 3.68, the graph shows that both trackers suffer a 

gradual decrease in: (1) continuing to keep track of the target; and (2) 

the average number of frames a target is tracked correctly, for the 

duration of the entire image sequence. When the percentage of motion 

clutter and target clutter is increased, both trackers tend to lose the target 

early on and never track the target for the entire image sequence. This 

contributes to the gradual decrease recorded for the graphs in Figure 3.67 

and Figure 3.68.  

3.6.2. Occlusion 

Graphs showing the robustness of the control chart tracker at tracking target(s) 

amid the presence of an occluding object and different types of clutter are 

presented in Figure 3.69, Figure 3.70, Figure 3.71 and Figure 3.72. 

 

Figure 3.69 Graphs showing: (a) the success rate of detecting occlusion and (b) 
the standard deviation of the number of frames at which occlusion is detected; 
while in the presence of an occluding object and background clutter. 
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Figure 3.70 Graphs showing: (a) the success rate of detecting occlusion and (b) 
the standard deviation of the number of frames at which occlusion is detected; 
while in the presence of an occluding object and image clutter. 
 

 

Figure 3.71 Graphs showing: (a) the success rate of detecting occlusion and (b) 
the standard deviation of the number of frames at which occlusion is detected; 
while in the presence of an occluding object and movement clutter. 
 

 

Figure 3.72 Graphs showing: (a) the success rate of detecting occlusion and (b) 
the standard deviation of the number of frames at which occlusion is detected; 
while in the presence of an occluding object and target clutter. 
 

Analysing each graph shows that: 

 The control chart tracker is equally robust at detecting occlusion amid the 

presence of different percentage of background (Figure 3.69) and image 

(Figure 3.70) clutter. The control chart tracker successfully detects 

occlusion in all 5 attempts. Consideration of the deviation in the frame 

number at which events are reported shows a low deviation which is 

consistent with accurate detection of occlusion. 
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 However, a systematic drop in the robustness of the control chart tracker 

is recorded when the percentage of movement (Figure 3.71) and target 

(Figure 3.72) clutter is increased. As the clutter percentage is increased, 

the control chart tracker starts to lose the target early on, far ahead of the 

actual occurrence of occlusion. This eventually leads to the control chart 

tracker not successfully detecting occlusion in every attempt. 

Consideration of the deviation shows an increase in deviation being 

recorded as the detector becomes less reliable at detecting occlusion as a 

result of clutter. 

3.6.3. Camouflage  

Figure 3.73, Figure 3.74, Figure 3.75 and Figure 3.76 present graphs showing the 

robustness of the control chart tracker at tracking target(s) amid the presence of 

a camouflaging object and different types of clutter. 

 

Figure 3.73 Graphs showing: (a) the success rate of detecting camouflage and 
(b) the standard deviation of the number of frames at which camouflage is 
detected; while in the presence of a camouflaging object and background clutter. 
 

 

Figure 3.74 Graphs showing: (a) the success rate of detecting camouflage and 
(b) the standard deviation of the number of frames at which camouflage is 
detected; while in the presence of a camouflaging object and image clutter. 
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Figure 3.75 Graphs showing: (a) the success rate of detecting camouflage and 
(b) the standard deviation of the number of frames at which camouflage is 
detected; while in the presence of a camouflaging object and movement clutter. 
 

 

Figure 3.76 Graphs showing: (a) the success rate of detecting camouflage and 
(b) the standard deviation of the number of frames at which camouflage is 
detected; while in the presence of a camouflaging object and target clutter. 
 

Analysis provides evidence that: 

 The control chart tracker is equally robust at detecting camouflage amid 

the presence of different percentage of background (Figure 3.73) and 

image (Figure 3.74) clutter. The control chart tracker successfully detects 

camouflage in all 5 attempts. Consideration of the associated deviation 

shows a low deviation is recorded when detecting camouflage. The trivial 

variation in the recorded deviation is due to the tracker not detecting 

camouflage at the same frame number in all 5 attempts.  

 The control chart tracker seems to be less robust at detecting camouflage 

amid the presence of different percentage of motion (Figure 3.75) and 

target (Figure 3.76) clutter. The success rate of the control chart tracker 

detecting camouflage is shown to decrease as clutter percentage is 

gradually increased. The gradual decrease in robustness is influenced by 

the tracker failing to detect camouflage successfully in every attempt, as a 

result of the tracker losing the targets early on, due to the increased 

amount of clutter used. Consequently, this contributes to a high deviation 

being recorded as the detector becomes less reliable and not detect the 

event of camouflage.  
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3.6.4. Summary  

The evaluation analysis provides evidence that: 

 In normal tracking, the control chart tracker is shown to be equally robust 

as the Condensation tracker at tracking a target for the entire image 

sequence, while in the presence of background and image clutter. Both 

trackers also showed to be effective at tracking the target for the 

maximum number of frames within an image sequence amid the presence 

of clutter. However, both trackers are shown to be equally less robust 

when tracking targets amid the presence of movement and target clutter. 

Analysis showed that as the percentage clutter values are gradually 

increased, the robustness of both trackers gradually decreases. Both 

trackers tend to lose the target early on, which results in both trackers not 

continuously tracking the target for the entire image sequence and are 

also less effective at tracking the target for the maximum number of 

frames within the image sequence at every attempt. 

 In detecting occlusion and camouflage, the control chart tracker is shown 

to be robust at detecting these events amid the presence of background 

and image clutter. In all five attempts, the control chart tracker 

successfully detects occlusion and camouflage. This also contributes to a 

low deviation being recorded, which is consistent with the detection of 

these events. However, analysis also showed the control chart tracker to 

be less robust at detecting occlusion or camouflage while in the presence 

of movement and target clutter. Analysis showed that as the percentage 

clutter values are gradually increased, the robustness of the tracker 

gradually decreases. This is due to the control chart tracker losing track of 

the target early on as a result of clutter and does not successfully detect 

occlusion or camouflage. Due to the tracker losing the target too early, 

also contributes to a high deviation being recorded, which indicates that 

the tracker has become less reliable at detecting these events.   

In summary, this analysis provides evidence that in spite of the excessive amount 

of clutter (movement and target clutter) added; the process-behaviour chart 

tracker is as robust as the Condensation when the target is fully visible. 

Moreover, results presented in sections 3.6.2 and 3.6.3 showed the process-

behaviour chart tracker to have the added ability to detect occlusion and 

camouflage amid the presence of different clutter types.    
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3.7. Chapter summary 

Literature has shown that building a Gaussian Mixture Model using EM algorithm 

to cluster particle set is not the norm in visual tracking. Analysis provide 

evidences that examining particles collectively during an image sequence 

provides vital information pertaining to the particle set behaviour while tracking a 

target moving normally or experiencing occlusion and/or camouflage. Analysis 

also proved that in spite of using either a two-dimension EM algorithm or a three-

dimension EM algorithm, both approaches presented similar outcome in 

identifying cues related to these events. Analysis then provided attestation that 

by using an approach called, process-behaviour chart, the information gathered 

by the EM algorithm at every time-step of an image sequence can be accessed to 

allow a tracker to determine when a target is being tracked moving normally or 

experiencing occlusion and/or camouflage. Further analysis also showed that the 

process-behaviour chart tracker to be as robust as the Condensation tracker in 

normal tracking. Also, process-behaviour chart tracker is shown to have the 

added ability at detecting occlusion and camouflage amid the presence of 

different types of clutter used.  

In Chapter 5, the approach presented in this chapter is applied to detect the 

occurrences of occlusion and/or camouflage when tracking multiple targets 

moving within a static scene. 
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Chapter 4 Measuring Particle Spread 

4.1. Aim 

The aims of this chapter are to: 

1. Present the notion of the Particle History Image (PHI), a view-based 

representation of apparent motion constructed from the particle sets 

employed by a particle filter-based tracking algorithm. 

2. Apply a texture edge detection algorithm to the PHI, presenting the notion 

of the Particle Boundary Image (PBI).  

3. Examine the PHI and PBI to provide information on the width of the 

particle spread. Two ways to analyse these data structures are considered: 

temporal and spatial. 

4. Combine PHI and PBI-based measurements with a process-behaviour 

chart to detect occlusion and camouflage during tracking. 

4.2. Motivation 

Motion analysis and action recognition require compact but rich representations of 

the spatial configuration and movement of the object(s) of interest over some 

time period. One such representation, which has received considerable attention 

in the literature, is the temporal template of (Bobick et al., 1997, Davis et al., 

1997, Bobick et al., 1996b, Bobick et al., 2001). 

Temporal templates provide a view-based representation intended to support 

direct recognition of the two-dimension patterns of motion associated with known 

three-dimension actions and events. The approach is motivated by the 

observation that humans can easily recognise actions given only very low 

resolution image sequences that provide no information about the three-

dimension structure of the viewed scene (Bobick et al., 1996a). Temporal 

templates have two components: a Motion Energy Image (MEI) and a Motion 

History Image (MHI). 

Motion Energy Images are image-based representations showing the cumulative 

motion at each pixel location over some time period. Originally, these were 

obtained by computing the sum of squared difference between the first and each 

subsequent image, applying a threshold and summing the resulting binary 

images. The MEI then reflects the number of frames in which a given pixel 

showed above threshold motion. (Bobick et al., 1996a) use MEIs to identify 
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actions likely to be taking place, before a second, verification stage completes 

recognition. Later work in (Davis et al., 1997) lead to the identification of the 

binary MEI, in which the union, not the sum of the constituent binary images is 

recorded. Rather than note where motion is taking place, Motion History Images 

(Davis et al., 1997) record recency of motion, capturing how movement 

progresses. If ),,( tyxD is a binary image sequence indicating region(s) of motion 

over 10  Tt , the binary Motion Energy Image ),,( tyxET is: 


1

),,(),,(
0






T

i
T ityxDtyxE                            (4.1) 

While the corresponding Motion History Image ),,( tyxHT is: 

T if 1),,( tyxD , i.e. if motion is detected at time t  

),,( tyxHT = 

 1)1,,(,0max tyxHT , otherwise 

Note that the binary MEI is obtained by thresholding the MHI above 0. This simple 

relationship has marked the MHI out as the key representation, and lead to it 

receiving more attention in subsequent literature. 

A number of extensions to/variations on the Motion History Image theme have 

been proposed. (Babu et al., 2004) construct MHIs from MPEG compressed video 

data, partially decoding the MPEG to extract vectors which are used to construct 

coarse MHIs, at the macroblock level. Motion flow histories are also constructed 

which record the horizontal and vertical components of motion at time t  as long 

as the value reported is within the threshold of local, mean filtered 

measurements. MHIs and motion flow histories are used together to underpin 

recognition of simple human actions such as bending and walking. (Bradski et al., 

2000, Bradski et al., 2002) present timed MHIs, in which pixel values record 

actual time, rather than frame number. (Davis, 1999) present an approach that 

provides better patterns of motions description when recognizing various human 

movements by means of characterising a MHI through multiple, overlapping 

histograms of motion orientations. (Davis, 2001) defines hierarchical Motion 

History Images, building a MHI pyramid before extracting local motion histograms 

with which to support recognition. (Ahad et al., 2007) extend the MHI by 

considering the direction, and not just presence, of motion during its 

construction. They estimate motion in each of four directions, producing separate 

MHIs for each and arguing that the representation obtained is less sensitive to 

self-occlusion and so leads to better activity recognition on more complex scenes. 
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(Weinland et al., 2006) have extended the concept to three dimensions, basing 

their representation on the visual hulls of objects viewed by multiple cameras.  

Motion History Images have found application in a variety of situations. (Davis et 

al., 1997, Davis et al., 1998) recognise aerobic exercises, and deployed MEIs in 

an early version of their KidsRoom interactive environment (Bobick et al., 1999). 

(Bradski et al., 2000, Bradski et al., 2002) recognise walking, waving and 

clapping gestures, allowing a freestanding person to conduct a virtual orchestra. 

(Boehme et al., 1998) use MHIs in the user identification component of their 

mobile robot system. 

The main strength of the Motion History Image approach is that it neatly captures 

motion information across the whole field of view and over a wide range of time 

periods. While MHIs created over very short periods perhaps fail to take best 

advantage of the method, and those describing over very long periods can be 

hard to interpret (see e.g. motion context (Zhang et al., 2008)), MHIs can 

succinctly represent motion over the times taken to form many interesting 

gestures and actions. As (Rosales, 1998) notes: These representations collapse 

the temporal component in a way that no explicit temporal or sequence matching 

is needed – the use of an image-based representation means that many image 

processing and analysis tools and methods exist that can be applied to MHI 

interpretation. (Bradski et al., 2000) use standard image gradient methods to 

compute local motion direction from their timed MHIs, and pixel dilation and 

region growing algorithms to perform motion segmentation. Action recognition 

typically involved extraction of standard image features from (regions of) MHIs. 

Hu moments (Hu, 1962) were used in Davis and Bobick’s original work, and in 

other subsequent projects (Bobick et al., 1999, Bradski et al., 2000). (Rosales, 

1998) assumes moments will be used, and examines the effectiveness of 

different recognition approaches.  

The various form of Motion History Image discussed hitherto, however, share two 

common limitations: 

1. Each is based upon some form of boundary representation of the object(s) 

of interest. This means that the information they contain is inextricably 

linked to the shape of the image plane projection of the target object. 

Examination of the literature suggests that MHIs have only been employed 

to recognise events involving objects of a single shape class – humans. 

2. That boundary representation must be extracted successfully and 

independently from each frame of the input image sequence as failure to 
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do so can result in a distorted MHI being produce; the addition of a new 

silhouette to a developing MHI is a hard decision. Fully reliable 

background/foreground segmentation is, however, beyond the state of the 

art unless the environment is constrained in some way.  

Section 4.3 presents and investigates the notion of the Particle History Image 

(PHI), a view-based representation of apparent motion constructed not from 

silhouettes, but from the particle sets employed by particle filter-based tracking 

algorithms. The proposed representation are independent of shape and the 

appearance model used to track the target of interest and, by representing 

temporal variation in the estimated target state density.  

4.3. Particle history image 

The fundamental component of a PHI is the particle set. PHIs are generated from 

the particles’ x  and y  coordinate over a temporal window. If particle set for a 

time step is defined as N

n
n
tXP 1)(  , where )( n

tXP is the particle representation, n is 

the nth particle set in a N size population and t is the time step, hence, a 

),( TXPHI is defined as: 

 
Tt

tj

N

n

n
jXPTXPHI







1

)(),(                             (4.2) 

where T refers to the temporal window size and is MT 0 where M refers to 

the maximum time step of an image sequence.  

Figure 4.1 shows a PHI captured over a temporal window size of 52 frames for 

video(s) tracking a target moving normally.  

 

Figure 4.1 PHIs for a: (a) yellow circle moving normally; (b) tennis ball moving 
normally. 
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A PHI can be linearly normalised as in (Bradski et al., 2000, Bradski et al., 2002) 

to illustrate gradual changes in intensity to represent the temporal transition. 

However, to address the research problem in this thesis, a binary PHI is used.  

Generating a PHI over a temporal window exhibiting occlusion or camouflage 

provides a chronological view-based representation of the change in the particle 

sets’ behaviour as tracking is disrupted. In Figure 4.2, PHIs are produced over 

particle filtered image sequences exhibiting a yellow circle experiencing occlusion 

and a tennis ball experiencing camouflage. 

 

Figure 4.2 PHIs for a: (a) yellow circle experiencing occlusion; (b) tennis ball 
experiencing camouflage. 
 

Note that as camouflage occurs, the PHIs reflect the camouflaging object’s shape 

as particles begin to spread across it. During occlusion, however, particles tend to 

closely cluster together and detach themselves from the target when the target 

becomes fully occluded. Information pertaining to the change in the particle sets’s 

behaviour during disruptive events can be obtained by segmenting out the 

particle mass in the foreground.  

4.4. Particle boundary images 

4.4.1. Texture edge detection implementation 

A Particle Boundary Image (PBI) is a view-based representation that outlines the 

boundary surrounding the particle spread in a PHI. A PBI is constructed here by 

applying a texture edge detection algorithm to the PHI. The texture edge 

detection algorithm comprises two processes: Laws’ texture energy and the 

Compass operator. Laws’ texture energy analyses the texture information within 

the PHI whereas a Compass operator is used to locate and highlight the texture 

edges within the PHI. Section 4.4.1.1 and 4.4.1.2 details the implementation of 

these two processes.  



Chapter 4 

78 

4.4.1.1. Laws’ texture energy  
There are two major approaches to the analysis of textures in digital images; 

statistical and structural/syntactic methods (Maxwell et al., 2003). 

Statistical methods analyse textures using spatial or frequency-based filters. 

Examples of spatial filters are Laws’ texture energy filter and co-occurrence 

matrices. Frequency-based filters include Fourier, discrete cosine and wavelet 

transforms. Structural/syntactic methods break a texture into symbolic units and 

then represent the texture in terms of the relationships between elements. 

However, (Maxwell et al., 2003) notes that currently, statistical methods 

dominate the field of texture analysis.  

As there is no clear consensus on the best statistical method (Randen et al., 

1999), a simple approach for generating texture images is implemented in this 

thesis: Laws’ texture energy filter (Laws, 1980a, Laws, 1979, Laws, 1980b). 

Constructing PBIs from PHIs is a comparatively simple texture edge detection 

problem; thus, implementing a simple approach like the Law’s texture energy 

filter to perform this is sufficient.  

Laws’ texture energy filter (Laws, 1980a, Laws, 1979, Laws, 1980b) comprises a 

set of filters designed to identify specific primitive features in a local region within 

a digital image. The Laws’ filter is focused on three vectors: 

 1213 L                                        (4.3) 

 1013 E                                        (4.4) 

 1213 S                                        (4.5) 

3L  is mnemonic for Level and its function is smoothing, 3E  is mnemonic for Edge 

and locates edges and 3S  is mnemonic for Spot and its purpose is to identify 

spots. Convolving these three vectors among themselves produces five additional 

vectors: 

 146415 L                                        (4.6) 

 120215 E                                        (4.7) 

 102015 S                                        (4.8) 

 120215 W                                        (4.9) 

 146415 R                                      (4.10) 
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The five vectors’ names are mnemonics for Level, Edge, Spot, Wave and Ripple. 

Each represents the type of feature it is designed to detect. A set of 25 55  

masks are obtained by multiplying the five vectors with themselves and one 

another. Twenty of these are transposes of another mask. 

Applying the 25 masks to the PHI produces a set of 25 images where each image 

represents a texture plane. A windowing operation is performed on each of these 

25 images, replacing each pixel with a Texture Energy Measure (TEM), ensuing in 

25 Texture Energy Image (TEI) being produced. (Laws, 1980a, Laws, 1979, Laws, 

1980b) showed that using a 1515  moving window produced good results when 

computing the TEM, and that window size is adopted here. The TEM is computed 

using (4.11) (we follow the notation in (Kelly, 2010)): 

   
 


7

7

7

7

2,,
i j

jyixyxTEI                         (4.11) 

The resulting TEI that are transposes of one another are then combined and are 

divided with 55 LL  , resulting in 14 texture planes being produced. The 55 LL   

image is used as the base image because it is the only image that does not 

produce a zero mean result. The 14 texture planes can be created by applying 

(4.12) which is norm used for contrast stretching in digital image(s) (we follow 

the notation in ((Fisher et al., 2003)), which is modified for this thesis): 

b
dc

ba
dyxTyxT currentnew 











 )),((),(                    (4.12) 

where ),( yxTnew is the new texture image plane, ),( yxTcurrent is the current texture 

image plane, a and b refers to the upper and lower limits, which are obtained 

from the base image, whereas, c and d refers to the highest pixel value and 

lowest pixel value, which are obtained from ),( yxTcurrent .  

To ensure no filter dominates the edge magnitude computation, the 14 texture 

planes are normalised using (4.13)(we follow the notation in (Maxwell et al., 

2003)): 

i

ii
i

TyxT
yxT



ˆ),(
),(ˆ 
                            (4.13) 

(Maxwell et al., 2003) notes that (4.13) gives each texture plane iT  equal 

significance by normalising by the mean iT̂  and standard deviation i . The 14 
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Laws’ texture feature images are obtained by restricting the range values to 4 

standard deviations and scaled to a range  255,0 . 

The Compass operator is then applied to these 14 Laws’ texture features in order 

to obtain the PBI.  

4.4.1.2. Compass operator  

The Compass operator was originally intended (Ruzon et al., 1999) to perform 

colour edge detection by comparing two halves of an oriented circle at a variety 

of orientation for each pixel in an image. However, (Maxwell et al., 2003) argue 

that the Compass operator can also be used to perform texture edge detection.  

The Compass operator is applied to each of the 14 Laws’ texture feature images. 

A Compass operator is built on top of each pixel with a radius size of r . For every 

texture feature image, each pixel is evaluated at different orientations. Each of 

these different orientations splits the Compass operator into two halves which 

builds two histogram distributions. The two histogram distributions signify the 

),( yx -pixel coordinate placement within one half of the two halves. (Maxwell et 

al., 2003) notes that each pixel within a texture image represents an area of the 

size of the underlying filter for a given plane, therefore, pixels that lie within the 

radius, r  are ignored when computing the histogram distributions because these 

pixels represents a mixed or transitional distribution of texture feature rather 

than one of the distributions on either side of the edge. Consequently, the 

numbers of pixels that are ignored are ruled by the size of a mini radius, 

mr originated from r . Thus, all pixels lying within mr are not included in the 

histograms.  

Once the histograms have been built, the magnitude of the differences between 

the two distributions is computed. (Maxwell et al., 2003) shows that this can be 

done using dynamic time warping (DTW) (Rabiner et al., 1993). Dynamic time 

warping is a dynamic programming approach used to find the optimal 

correspondence between two time varying sequences by measuring their 

similarities. (Maxwell et al., 2003) shows that DTW is equally applicable to one 

dimensional histograms.  

After the Compass operator is applied to each texture feature image, the 

recorded maximal distance and orientation results for each plane are summed 

and averaged, generating a single average image. A maximum value is initially 

found by traversing through the average image. The edge image is then obtained 



Chapter 4 

81 

via thresholding at a percentage of the maximum value. The PBI is generated 

after applying a thinning algorithm (Gonzalez et al., 2002) to the edge image. 

4.4.2. Results  

The texture edge detection algorithm was applied to the PHIs shown in Figure 4.1 

and Figure 4.2.   

Each Law’s texture feature image was evaluated at four different orientations (0, 

45, 90 and 135 degrees) by the Compass operator. A Compass operator with a 

radius, r size of 10 and mini radius, mr size of 5 is used for every PHI. These 

parameters were determined empirically. A bin size of 10 was selected when 

computing the histograms at each orientation, and thresholds of 70-75% of the 

maximum applied, following (Maxwell et al., 2003).  

Figure 4.3 (a) and (b) demonstrates a view-based representation of PBIs 

generated for video(s) sequence in Chapter 3 (indicated by the figure number in 

brackets) where the target is being tracked while moving normally.  

 

Figure 4.3 PBIs for a: (a) yellow circle moving normally (Figure 3.15); (b) tennis 
ball moving normally (Figure 3.19). 
 

Figure 4.4 (a), (b), (c) and (d) show PBIs generated from video sequences in 

Chapter 3 (as indicated by the figure number in brackets) that exhibit a target 

experiencing occlusion. Figure 4.4 (e) shows the PBI generated when a target 

experienced self-occlusion as shown in Figure 3.29 in Chapter 3.  
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Figure 4.4 PHIs for a: (a) yellow circle experiencing occlusion (Figure 3.21); (b) 
yellow circle experiencing occlusion and in the presence of clutter (Figure 3.23); 
(c) tree occluding a woman (Figure 3.25); (d) tennis ball experiencing occlusion 
(Figure 3.27); (e) table tennis bat experiencing self-occlusion (Figure 3.29). 
 

Figure 4.5 (a), (b), (c) and (d) illustrates PBIs produced for video sequences in 

Chapter 3 (as indicated by the figure number in brackets) that shows a target 

experiencing camouflage.  
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Figure 4.5 PBIs for a: (a) yellow circle experiencing camouflage (Figure 3.31); 
(b) yellow circle experiencing camouflage and in the presence of clutter (Figure 
3.33); (c) player camouflaging a football (Figure 3.35); (d) tennis ball 
experiencing camouflage (Figure 3.37). 
 

Applying a texture edge detection algorithm to the PHIs clearly captures 

potentially valuable information about the behaviour of particle sets during 

disruptive events. Section 4.5 presents two ways to extract this information, 

which is then exploited using a process-behaviour chart to detect occlusion and 

camouflage events.    

4.5. Measuring particle spread  

Results presented in Chapter 3 showed that the spread of the particle sets over a 

given temporal interval indicates whether occlusion or camouflage has taken 

place within that period. The PHI and PBI data structures provide a compact 

representation of the spatio-temporal behaviour of particle sets, and support a 

number of measures of particle distribution. Two such measures are investigated 

in what follows. One emphasises the temporal information available, the other the 

spatial. 
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4.5.1. Hypothesis 

The method reported in Chapter 3 relies upon particle clusters formed, 

independently, at each time step. Though the approach was successful in 

detection occlusion and camouflage events, reliance on individual particle clusters 

raises some concerns. The spread of a given cluster is a complex function of the 

relationship between appearance model, target and background properties. Local 

variations in particle spread might be introduced by background clutter, 

illumination changes, etc., distorting the measurements upon which event 

detection is based. The PHI and PBI representations provide opportunities to 

measure particle spread at a given time point while taking into account particle 

behaviour over a longer time period. We hypothesise that this will provide a more 

robust measure of particle spread and so more reliable occlusion and camouflage 

detection.  

4.5.2. Emphasising temporal behaviour 

To exploit the temporal information in the PHI and PBI, we overlay the target 

path reported by the tracker. 

The location of the particle set at a given time step is approximated by the mean 

particle location, ),( yxtX  . In Chapter 3, this is provided by the EM algorithm. 

Here, however, it is computed using (4.14) and (4.15): 
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where x  and y  represent the particle’s location, N is the sample population size 

and   is the particle weight computed by the Condensation algorithm. 

Mean particle locations over a specified temporal interval provide an indication of 

the tracker’s estimate of target path (henceforth referred to as the tracker’s path 

estimate). Particle spread is computed by overlaying the tracker’s path estimate 

on the PBI. However, mean particle locations can be noisy, as a result of 

fluctuations in particle behaviour during tracking. Thus, the tracker’s path 

estimates are improved by applying Gaussian smoothing prior to computing the 
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particle spread. Gaussian smoothing is implemented as detailed in (Trucco et al., 

1998). 

A line normal to the tracker’s path estimate is computed for each mean particle 

location and used to estimate the particle spread. A vector )ˆ,ˆ( yx  between two 

mean particle(s) on the tracker’s estimate path is computed using (4.16) and 

(4.17): 

1
ˆ




tt xxx                                             (4.16) 

1
ˆ




tt yyy                                             (4.17) 

where x and y  represent the mean particle locations and t  is the time step. A 

normal line in the directions of )ˆ,ˆ( xy  and )ˆ,ˆ( xy   is then computed from )ˆ,ˆ( yx  

and plotted using the Bresenham line algorithm (Bresenham, 1965). Bresenham’s 

algorithm allows us to navigate along the normal line, in both directions, from 

),(
11  tt yx   until a boundary point ),( bb yx  in the PBI is reached. The distance 

between ),(
11  tt yx   and ),( bb yx  is then computed using (4.18):  
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                            (4.18) 

The distance measured in both directions is summed to estimate particle spread.  

The process is repeated for every mean particle location on the tracker’s path 

estimate. Graphical representations of the results of computing the particle 

spread in this way are shown as green lines and blue dots overlaid on the PBI. 

The green lines represent the normal lines, while the blue dot(s) represent mean 

particle locations.  

Once particle spread is computed for each point on the tracker’s path estimate, 

the resulting data is input to a process-behaviour chart to detect the occlusion 

and camouflage events. The need to construct PHI and PBIs before applying the 

process-behaviour chart introduces a delay in the detection of disruptive events – 

detection can only occur at the end of the time interval used to build the PHI. It is 

hypothesised, however, that the increased robustness of the method will 

compensate for this short delay. 

Gaussian smoothing with a standard deviation, , of 2 is used to reduce noise in 

the tracker’s path estimate. A standard deviation of 2 was selected after trial and 

error using standard deviations ranging from 1 to 5 showed that using a standard 

deviation value greater than 2 causes the mean particle location on the tracker’s 
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estimate path to experience high fluctuations if the path is too short compared to 

the size of the Gaussian mask.  

The process-behaviour chart analysis in Chapter 3 shows that a moving window 

size of 7 produces good results. As a result, and to allow comparison of methods, 

the same moving window size is used throughout this analysis.  

4.5.2.1. Normal tracking  

Figure 4.6 and Figure 4.8 demonstrate particle spread measurement based on 

temporal behaviour for video sequences in which the target is moving normally. 

The process-behaviour chart graphs are shown in Figure 4.7 and Figure 4.9 

respectively.  

 

Figure 4.6 Particle spread, measured relative to the tracker path, for a yellow 
circle moving normally. 
 

 

Figure 4.7 Shewhart control chart analysing particle spread for a yellow circle 
moving normally. 
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Figure 4.8 Particle spread, measured relative to the tracker path, for a tennis 
ball moving normally. 
 

 

Figure 4.9 Shewhart control chart analysing particle spread for a tennis ball 
moving normally. 
 

During normal tracking: 

 The tracker’s path estimate for a tennis ball moving normally (Figure 4.8) 

is smoother than the path estimates for a yellow circle moving normally 

(Figure 4.6).  

 The Shewhart control charts in Figure 4.7 and Figure 4.9 both show the 

control chart mean exceeding the upper control limit momentarily. While 

the exceeding period is too short to cause the tracker to fire in the event 

monitored in Figure 4.9, the event monitored in Figure 4.7 does result in 

the tracker firing incorrectly. The false positive results in both figures 

occur due to noise in the tracker’s estimate of target path.  

4.5.2.2. Occlusion  

Measurement of particle spread relative to the trackers path estimate from video 

sequences showing occlusion is demonstrated in Figure 4.10, Figure 4.12, Figure 

4.14 and Figure 4.16. Figure 4.11, Figure 4.13, Figure 4.15 and Figure 4.17 give 
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corresponding process-behaviour chart graphs. Figure 4.18 and Figure 4.19 show 

results obtained from a self-occluding target. 

 

Figure 4.10 Particle spread for a yellow circle experiencing occlusion. 
 

 

Figure 4.11 Shewhart control chart analysing particle spread for a yellow circle 
experiencing occlusion. 
  

 

Figure 4.12 Particle for a yellow circle experiencing occlusion and with clutter 
present. 
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Figure 4.13 Shewhart control chart analysing particle spread for a yellow circle 
experiencing occlusion with clutter present. 
 

 

Figure 4.14 Particle spread for a tree occluding a woman. 
 

 

Figure 4.15 Shewhart control chart analysing particle spread for a tree occluding 
a woman. 
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Figure 4.16 Particle spread for a tennis ball experiencing occlusion. 
 

 

Figure 4.17 Shewhart control chart analysing particle spread for a tennis ball 
experiencing occlusion. 
 

 

Figure 4.18 Particle spread for a table tennis bat experiencing self-occlusion. 
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Figure 4.19 Shewhart control chart analysing particle spread for a table tennis 
bat experiencing self-occlusion. 
 

In the event of occlusion: 

 A relatively steady and smooth tracker’s path estimate is recorded prior to 

the occurrence of occlusion (as shown in Figure 4.16). However, as 

occlusion occurs, the path starts to fluctuate and begins deviating away 

from the earlier steady path (Figure 4.10 and Figure 4.16 shows blue dots 

deviating away from the path as occlusion happens). As the target is lost, 

the path estimates becomes too noisy as at this stage the particles may be 

drifting within the image plane trying to recapture the target once it 

reappears or tracking clutter (Figure 4.12) which has similar 

characteristics to the target. As a result, considerable noise is introduced 

into the orientations of the measurements made, and the resulting data 

does not capture the reduction in particle spread that is clearly seen in 

Figure 4.10 and Figure 4.14.  

 The Shewhart control charts in Figure 4.11, Figure 4.13, Figure 4.15 and 

Figure 4.17 shows the control mean to be within acceptable limits during 

normal tracking, when the tracker’s path estimate is steady. However, in 

the event of occlusion, all four charts show the control mean exceeding 

the upper control limit. This occurs because the path estimate recorded 

after occlusion is too noisy and the shrunk regions in the PBI as a result of 

occlusion are not measured.  

 In the event of self-occlusion (Figure 4.18), the tracker’s path estimate is 

seen steady (analysing the blue dots from left to right). Though, the blue 

dots starts fluctuating and overlapping over the earlier steady path (on the 

right side of the path). This may imply that self-occlusion is starting to 
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occur. Shewhart control chart in Figure 4.19 shows the control mean 

falling below the lower control limit as a result of self-occlusion. 

4.5.2.3. Camouflage  

Figure 4.20, Figure 4.22, Figure 4.24 and Figure 4.26 show the computation of 

particle spread based on relative to the tracker’s path estimate for video 

sequences in which targets experience camouflage during tracking. Figure 4.21, 

Figure 4.23, Figure 4.25 and Figure 4.27 shows corresponding process-behaviour 

chart graphs.  

 

Figure 4.20 Particle spread for a yellow circle experiencing camouflage. 
 

 

Figure 4.21 Shewhart control chart analysing particle spread for a yellow circle 
experiencing camouflage. 
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Figure 4.22 Particle spread for a yellow circle experiencing camouflage and in 
the presence of clutter. 
 

 

Figure 4.23 Shewhart control chart analysing particle spread for a yellow circle 
experiencing camouflage and with clutter present. 
 

 

Figure 4.24 Particle spread for a player camouflaging a football. 
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Figure 4.25 Shewhart control chart analysing particle spread for a player 
camouflaging a football. 
 

 

Figure 4.26 Particle spread for a tennis ball experiencing camouflage. 
 

 

Figure 4.27 Shewhart control chart analysing particle spread for a tennis ball 
experiencing camouflage. 
 

In the event of camouflage: 

 As the target is being tracked moving normally (prior to the occurrence of 

camouflage), a relatively steady and smooth tracker’s path estimate is 

recorded. However, as camouflage occurs, the path seems to experience 
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some form of fluctuation (Figure 4.20). Additionally, some of the path 

estimates start to overlap the preceding path estimates (Figure 4.22, 

Figure 4.24 and Figure 4.26). This occurs from the particles moving 

aggressively within the camouflaging object, causing a noisy path estimate 

to be recorded. As a result, the direction in which the particle spread is 

measured varies. This can be clearly seen in Figure 4.24 where two 

particle spread is measured horizontally as opposed to vertically. 

 Shewhart control charts in Figure 4.21, Figure 4.23, Figure 4.25 and 

Figure 4.27 all show the control mean exceeding the upper control limit in 

the event of camouflage.  

4.5.2.4. Summary 

Analysis showed that six false positives (refer to Figure 4.7, Figure 4.9, Figure 

4.11, Figure 4.13, Figure 4.15 and Figure 4.17) were recorded for the Shewhart 

control chart when analysing normal tracking and occlusion events. These false 

positives occurred due to the less smooth and noisy path recorded. Analysis also 

showed the control chart recorded five true positives when analysing self-

occlusion and all camouflaging events. It should be noted here that the gaps of 

the PBI played no role in contributing to these results.  

Though the tracker’s path estimate successfully formed the basis of instantaneous 

particle spread measurements in Chapter 3, its use to measure the width of the 

occupied region of a PHI does not appear to be viable. Therefore, in section 4.5.3, 

an alternative approach is examined.  

4.5.3. Emphasising spatial behaviour 

This section presents an alternative approach to the computation of particle 

spread from a PBI. The emphasis here is on spatial information, specifically the 

medial axis of the occupied region of the PHI. The PBIs are pre-processed using 

image processing methods to estimate the medial axis. The medial axis is then 

used to estimate particle spread as before.  

Three test videos are selected at random to illustrate the method. The selected 

examples are: (1) a yellow circle moving normally but in the presence of clutter; 

(2) a yellow circle experiencing occlusion and (3) a tennis ball experiencing 

camouflage. 
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4.5.3.1. Pre-processing 

Prior to applying image processing methods to the PBIs, the non-thinned images 

generated by the Compass operator are manually edited to close any gaps in the 

PBI’s boundary. This could be attempted automatically, but consideration of this 

is beyond the scope of this thesis. Figure 4.28(a), Figure 4.29(a) and Figure 

4.30(a) show the non-thinned PBIs before manual editing, while Figure 4.28(b), 

Figure 4.29(b) and Figure 4.30(b) show the same structures post-editing.  

 

Figure 4.28 Non-thinned PBIs for a yellow circle moving normally but in the 
presence of clutter: (a) before manual edit; (b) after manual edit. 
 

 

Figure 4.29 Non-thinned PBIs for a yellow circle experiencing occlusion: (a) 
before manual edit; (b) after manual edit. 
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Figure 4.30 Non-thinned PBIs for a tennis ball experiencing camouflage: (a) 
before manual edit; (b) after manual edit. 
 

The improved PBIs are then thinned to produce single pixel wide boundaries using 

the thinning algorithm implemented in the Compass operator. The results are 

illustrated in Figure 4.31 (a), (b) and (c).  

 

Figure 4.31 Thinned PBIs for: (a) a yellow circle moving normally but in the 
presence of clutter; (b) a yellow circle experiencing occlusion; (c) a tennis ball 
experiencing camouflage. 
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A flood fill algorithm (Foley et al., 1995, Hearn et al., 2004) is then applied to the 

thinned PBIs to fill up the inner region of the PBIs. The results are shown in 

Figure 4.32 (a), (b) and (c).  

 

Figure 4.32 Flood-filled PBIs for: (a) a yellow circle moving normally but in the 
presence of clutter; (b) a yellow circle experiencing occlusion; (c) a tennis ball 
experiencing camouflage. 
 

A distance transform (Borgefors, 1986) is applied to the flood filled PBIs to 

extract the medial axis. Distance transforms provide the shortest distance from 

each pixel to the closest boundary via the use of a distance map. A Chamfer 

distance transform approach is applied here, whereby a distance map is built by 

traversing the image in two passes. A filter mask is overlaid on each pixel during 

each pass. Trial and error using different filter mask sizes (e.g. 33  and 55 ) 

showed that a filter mask size of 33  produces good results. Therefore, a filter 

mask size of 33  is used throughout this analysis. The distance transform results 

are shown in Figure 4.33 (a), (b) and (c). 
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Figure 4.33 Distance transform results for: (a) a yellow circle moving normally 
but in the presence of clutter; (b) a yellow circle experiencing occlusion; (c) a 
tennis ball experiencing camouflage. 
 

The medial axis is obtained by marking pixel coordinates whose distance value is 

the maximum within their 8-neighborhood. Medial axis results are shown in 

Figure 4.34 (a), (b) and (c).  
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Figure 4.34 Medial axis results for: (a) a yellow circle moving normally but in the 
presence of clutter; (b) a yellow circle experiencing occlusion; (c) a tennis ball 
experiencing camouflage. 
 

Examination of Figure 4.34 shows that in addition to the true medial axis, some 

additional features are recorded around the boundary of the occupied region. 

These are filtered out by inverting each medial axis result, and superimposing 

each one over their respective non-thinned PBIs. All “medial axis” points that fall 

upon boundary pixel coordinates in the non-thinned PBIs are removed. Figure 

4.35 (a), (b) and (c) shows the final medial axes, after being inverted back to 

their original appearance. To provide a clearer view of these medial axes, Figure 

4.35 (a), (b) and (c) shows an enlarged view of the medial axes from its original 

size.  
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Figure 4.35 Filtered medial axis results for a: (a) yellow coloured circle moving 
normally but with the presence of clutter; (b) yellow coloured circle experiencing 
occlusion; (c) tennis ball experiencing camouflage. 
 

The Bresenham line algorithm is then applied to each filtered medial axis result to 

produce a solid medial axis path by filling gaps between the medial axis points. 

Prior to this, any outlying points that are clearly not on the true medial axis are 

removed via manual edit. Although this could be attempted automatically, this is 

beyond the scope of this thesis. Applying the Bresenham line algorithm causes 

some parts of the medial axis path to become more than one pixel thick. This 

occurs because the optimal medial path also consists of points which are 

neighbours to a point located along the path. A thinning algorithm is therefore 

applied to produce a final medial axis path which is one pixel thick. The final 

medial axes are shown in Figure 4.36 (a), (b) and (c).  
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Figure 4.36 Final medial axes for: (a) a yellow circle moving normally but in the 
presence of clutter; (b) a yellow circle experiencing occlusion; (c) a tennis ball 
experiencing camouflage. 
 

4.5.3.2. Implementation 

During the computation of the particle spread as described in section 4.5.2, the 

direction in which the tracker’s path is traversed is known. When replacing the 

tracker’s path estimate with the potentially more stable medial axis, some 

method is needed of determining in which order measurements tied to medial 

axis points should be input to the process-behaviour chart. To allow the medial 

axis to be traversed in the correct direction, the distance is measured from the 

first and last points on the medial axis to the first point on the tracker’s path 

estimate. The medial axis endpoint the shortest distance from the tracker starting 

point is taken as the start point for subsequent analysis.  

A line normal to the medial axis is constructed for each point on the medial axis 

and used to estimate local particle spread as in section 4.5.2. Equations (4.16), 

(4.17) and (4.18) are, however, replaced with (4.19), (4.20) and (4.21): 

1ˆ  pp xxx                                         (4.19) 

1ˆ  pp yyy                                         (4.20) 
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   21
2

1),( bpbp yyxxyxd                 (4.21) 

where x  and y refer to the medial axis point coordinate and p is the medial axis 

point number on the path.  

As before, in the figures below, green lines mark the normals along which spread 

is measured. Blue lines represent the medial axis. The particle spread results are 

used by the process-behaviour chart to detect occlusion and camouflage events. 

A moving window size of 7 is used throughout this analysis, again as before, and 

to allow comparison of results. 

4.5.3.3. Normal tracking  

Results of computing particle spread from the PBI medial axis for video sequences 

showing a target being tracked moving normally are shown in Figure 4.37 and 

Figure 4.39. Figure 4.38 and Figure 4.40 respectively show corresponding 

process-behaviour chart graphs. 

 

Figure 4.37 Particle spread computed from the PBI medial axis for a yellow circle 
moving normally. 
 

 

Figure 4.38 Shewhart control chart analysing particle spread computed from the 
PBI medial axis for a yellow circle moving normally. 
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Figure 4.39 Particle spread computed from the PBI medial axis for a tennis ball 
moving normally. 
 

 

Figure 4.40 Shewhart control chart analysing particle spread computed from the 
PBI medial axis for tennis ball moving normally. 
 

When normal tracking, examination of the particle spread data and process-

behaviour charts show that: 

 The PBI medial axis is smoother than the tracker’s path estimate. This 

contributes to a better measurement of the width of the particle spread, as 

shown in Figure 4.37 and Figure 4.39. 

 Shewhart control charts in Figure 4.38 and Figure 4.40 both record true 

positives.  

4.5.3.4. Occlusion  

Figure 4.41, Figure 4.43, Figure 4.45 and Figure 4.47 show estimates of particle 

spread computed from the PBI medial axis for video sequences showing a target 

experiencing occlusion. Process-behaviour chart graphs generated from this data 
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are shown in Figure 4.42, Figure 4.44, Figure 4.46 and Figure 4.48. Figure 4.49 

shows particle width data obtained from a target undergoing self-occlusion. 

 

Figure 4.41 Particle spread computed from the PBI medial axis for a yellow circle 
experiencing occlusion. 
 

 

Figure 4.42 Shewhart control chart analysing particle spread computed from the 
PBI medial axis for a yellow circle experiencing occlusion. 
 

 

Figure 4.43 Particle spread computed from the PBI medial axis for a yellow circle 
experiencing occlusion and in the presence of clutter. 
 



Chapter 4 

106 

 

Figure 4.44 Shewhart control chart analysing particle spread computed from the 
PBI medial axis for a yellow circle experiencing occlusion and with clutter present. 
 

 

Figure 4.45 Particle spread computed from the PBI medial axis when a tree 
occludes a woman. 
 

 

Figure 4.46 Shewhart control chart analysing particle spread computed from the 
PBI medial axis for a tree occluding a woman. 
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Figure 4.47 Particle spread computed from the PBI medial axis for a tennis ball 
experiencing occlusion. 
 

 

Figure 4.48 Shewhart control chart analysing particle spread computed from the 
PBI medial axis for a tennis ball experiencing occlusion. 
 

 

Figure 4.49 Particle spread computed from the PBI medial axis for a table tennis 
bat experiencing self-occlusion. 
 

As occlusion occurs, the particle spread data and process-behaviour charts show 

that: 

 The PBI medial axis allows measurements to be made in regions of the PBI 

which are shrunk as a result of occlusion, as shown clearly in Figure 4.41, 

Figure 4.43 and Figure 4.45. Similar measurement could not be done 
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when using tracker’s path estimate. However, since the shrunk region are 

not clearly visible in the PBI (Figure 4.47) due to the particles becoming 

stationary once occlusion has occurred. Therefore, no measurement were 

made as a result of no medial axis being present at this region.  

 Shewhart control charts in Figure 4.42 and Figure 4.46 both correctly 

detect the event of occlusion. Although the control chart mean in Figure 

4.46 exceeds the upper control limit momentarily, the exceeding period is 

too short to cause the tracker firing prematurely. However, control chart 

results in Figure 4.44 and Figure 4.48 record false positives. This 

occurrence is explained in section 4.5.3.6. 

 In the event of self-occlusion (Figure 4.49), no medial axis path was 

generated. This is because particle sets generated at later time steps tend 

to overlap particle sets from prior time steps resulting in a blob like PHI 

and PBI. The PBI is shown in Figure 4.5 (e). Particle sets that become 

closely clustered as a result of self-occlusion are not distinguishable in the 

generated PHI and PBI. Applying pre-processing approaches to the PBI 

generated a medial axis point instead of a medial axis path. No process-

behaviour chart is shown here.  

4.5.3.5. Camouflage  

Figure 4.50, Figure 4.52, Figure 4.54 and Figure 4.56 show particle spread 

estimates computed from the medial axis for video sequences showing a target 

experiencing camouflage. Figure 4.51, Figure 4.53, Figure 4.55 and Figure 4.57 

shows corresponding process-behaviour chart graphs. 

 

Figure 4.50 Particle spread computed from the PBI medial axis for a yellow circle 
experiencing camouflage. 
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Figure 4.51 Shewhart control chart analysing particle spread computed from the 
PBI medial axis for a yellow circle experiencing camouflage. 
 

 

Figure 4.52 Particle spread computed from the PBI medial axis for a yellow circle 
experiencing camouflage amid the presence of clutter. 
 

 

Figure 4.53 Shewhart control chart analysing particle spread computed from the 
PBI medial axis for a yellow circle experiencing camouflage and with clutter 
present. 
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Figure 4.54 Particle spread computed from the PBI medial axis for a player 
camouflaging a football. 
 

 

Figure 4.55 Shewhart control chart analysing particle spread computed from the 
PBI medial axis for a player camouflaging a football. 
 

 

Figure 4.56 Particle spread computed from the PBI medial axis for a tennis ball 
experiencing camouflage. 
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Figure 4.57 Shewhart control chart analysing particle spread computed from the 
PBI medial axis for a tennis ball experiencing camouflage. 
 

Examination of the particle spread data and process-behaviour charts show that 

in the event of camouflage: 

 The medial axes in Figure 4.50, Figure 4.52, Figure 4.54 and Figure 4.56 

allow measurements to be made in the expanded region of the PBI where 

camouflage occurs, providing more accurate event detection than seen 

when using the  tracker’s path estimate. 

 Shewhart control charts in Figure 4.51 and Figure 4.57 shows the control 

mean exceeding the upper control limit in the event of camouflage. 

However, Figure 4.53 and Figure 4.55 record false positives. This is 

explained in section 4.5.3.6. 

4.5.3.6. Summary  

Examination of the particle spread data and process-behaviour charts presented 

here leads to the following summary: 

 Results presented in section 4.5.2 shows that when tracker’s path 

estimate experiences noise due to disruptive events, measurement of the 

shrunk/expanded regions of the PBI as a result of these events can not be 

made. This results in a lower quality measurement of the particle spread 

being made. In contrast, the PBI medial axis does not experience noise 

when these events occur, thus, allowing measurement of the 

shrunk/expanded regions of the PBI to be made. Therefore, the PBI medial 

axis provides more and better oriented and so higher quality 

measurements of particle spread than the tracker’s path estimate.  This 

improves the accuracy of the event detection.  
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 The false positives recorded in Figure 4.44, Figure 4.48, Figure 4.53 and 

Figure 4.55 occurs because though the medial axes are typically smooth, 

the boundary descriptions extracted via texture edge detection may not 

be. As a result, the control limits computed during the early stages of 

tracking can be inappropriate, and generate spurious events.  

 The PBI medial axis method recorded four false positives as compared to 

six false positives recorded for the tracker’s path estimate method in 

section 4.5.2. Tracker’s path estimate method recorded five true positives 

of detecting the events correctly. However, the PBI medial axis method 

recorded six true positives of correctly detecting the events, even though 

self-occlusion could not be measured using the PBI medial axis method.  

Analysis shows that the medial axis provides a better representation of the PBI 

than the tracker’s path estimate. The medial axis is smoother, making the 

approach more viable than the method presented in section 4.5.2. However, due 

to noise in the PBI boundaries, the associated produced process-behaviour 

chart(s) record false positives. This could be addressed by forcing the boundary 

to become smooth, for example by taking an active contour approach. 

Alternatively, an alternative, control chart could be adopted. 

4.5.4. Building control charts from training sets 

All event detection results presented hitherto in this thesis rely upon the process-

behaviour chart detailed in Chapter 3. The control limits for this method are 

computed independently, from a few frames at the beginning of each sequence, 

when tracking commences. This is the intended use of the Shewhart method. In 

the method presented here, control limits are only computed after analysing the 

entire duration of a training sequence in which the target of interest is clearly 

visible. The lengths of these training sequences are as follows: (1) a clearly 

visible yellow circle is 196 frames; (2) a yellow circle, clearly visible but in the 

presence of clutter, is 172 frames and (3) a clearly visible tennis ball is 99 

frames. It should be pointed out here that the method of computing and utilising 

the control limits are similar to the originals, presented in Chapter 3. They only 

differ in the duration of time it takes to compute them. These control limits are 

then applied to similar sequences in which occlusion or camouflage might occur. 

The moving window size is maintained at 7 throughout.  

Training data is unavailable for some of the test sequences used previously: (1) 

the table tennis bat experiencing self-occlusion, (2) the tree occluding a woman 
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and (3) the player camouflaging a football. These examples are therefore not 

considered further.  

The process-behaviour chart graphs given in Figure 4.58, Figure 4.59 and Figure 

4.60 show data obtained from a yellow circle tracked while (1) moving normally, 

(2) experiencing occlusion and (3) experiencing camouflage. 

 

Figure 4.58 Shewhart control chart analysing particle spread computed from the 
PBI medial axis and via a training set for a yellow circle moving normally. 
 

 

Figure 4.59 Shewhart control chart analysing particle spread computed from the 
PBI medial axis and via a training set for a yellow circle experiencing occlusion. 
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Figure 4.60 Shewhart control chart analysing particle spread computed from the 
PBI medial axis and via a training set for a yellow circle experiencing camouflage. 
 

Figure 4.61, Figure 4.62 and Figure 4.63 show process-behaviour chart graphs 

produced from videos showing a yellow circle moving through clutter: (1) 

normally, (2) during occlusion and (3) during camouflage. 

 

Figure 4.61 Shewhart control chart analysing particle spread computed from the 
PBI medial axis and via a training set for a yellow circle moving normally in the 
presence of clutter. 
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Figure 4.62 Shewhart control chart analysing particle spread computed from the 
PBI medial axis and via a training set for a yellow circle experiencing occlusion 
and with clutter present. 
 

 

Figure 4.63 Shewhart control chart analysing particle spread computed from the 
PBI medial axis and via a training set for a yellow circle experiencing camouflage 
in the presence of clutter. 
 

Process-behaviour chart graphs produced from sequences showing a tennis ball 

being tracked while: (1) moving normally, (2) experiencing occlusion and (3) 

experiencing camouflage are shown in Figure 4.64, Figure 4.65 and Figure 4.66. 
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Figure 4.64 Shewhart control chart analysing particle spread computed from the 
PBI medial axis and via a training set for a tennis ball moving normally. 
 

 

Figure 4.65 Shewhart control chart analysing particle spread computed from the 
PBI medial axis and via a training set for a tennis ball experiencing occlusion. 
 

 

Figure 4.66 Shewhart control chart analysing particle spread computed from the 
PBI medial axis and via a training set for a tennis ball experiencing camouflage. 
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Examination of the data presented above shows that: 

 Computing control limits from a longer training sequence does improve the 

accuracy of the process-behaviour chart. All but one of the process-

behaviour charts records true positives.  

 The process-behaviour chart produced for the sequence showing a tennis 

ball experiencing occlusion, however, records a false positive (refer to 

Figure 4.65). This occurs due to the medial axis being within regions of the 

PBI (refer to Figure 4.47) which had not fully shrunk as a result of 

occlusion. These regions have similar characteristics as to when a tennis 

ball is being tracked moving normally. Additionally, the medial axis path 

does not extend into the shrunk regions of the PBI. Again, it should be 

noted here that the shrunk regions of the PBI are not clear in Figure 4.47 

is because the particles stopped moving once occlusion had occurred. A 

clearer shrunk region of the PBI would contribute to the medial axis path 

prolonging into these regions.  

4.5.5. Summary 

In summary: 

1. The tracker’s path estimate and the medial axis both provide medial 

representations of the PBI, with the medial axis being the smoothest and 

so best suited to the detection of occlusion and camouflage.  

2. Computing a template of the process-behaviour chart control limits from a 

training set improves the accuracy of the process-behaviour chart when 

detecting occlusion and camouflage.  

Drawing comparisons between the medial axis and training set detection method 

presented here, and the particle clustering method presented in Chapter 3, show 

that: 

 The medial axis and training set method provides opportunities to 

measure particle spread at a given time point while taking into account 

particle behaviour over a longer time period. The generated PBI also 

provides a clearer view of the changes taking place within the 

configuration of the particle spread as a result of occlusion and 

camouflage. These are not possible using the particle clustering method in 

Chapter 3 as the method relies upon particle clusters formed, 

independently, at each time step. Therefore, the detection method 
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presented here allows a more reliable and consistent evaluation to be 

made.  

 As mentioned earlier, control limits generated for the particle clustering 

method in Chapter 3 are computed by only analysing data in a few frames 

at the beginning of a video sequence. Though, results showed that the 

process-behaviour chart correctly distinguish the events that occur, 

however, the charts can be sensitive to false data and fire prematurely. 

Using training sets as shown here allows control limits to be computed by 

analysing through the entire duration of a video sequence showing a 

target moving normally. This not only improves the accuracy of the 

process-behaviour chart but also makes the process-behaviour chart less 

sensitive and prevents it from firing prematurely.  

4.6. A path alignment approach 

4.6.1. Motivation 

If a clearly visible target is tracked successfully throughout an image sequence, 

the corresponding PHI will show a broad swath of particles centred on the target 

path. The width of this particle-filled area will be approximately constant. As a 

result, distance between the medial axis of the PHI and the estimated target 

position at each time step will be small. We hypothesise that by measuring the 

alignment distance between these two paths will provide valuable information to 

indicate the occurrence of occlusion and camouflage. 

4.6.2. Aim 

The aims of this section are to: 

1. Gather information pertaining to the alignment of the tracker’s path 

estimate over the medial axis path.  

2. Exploiting the gathered information using a process-behaviour chart to 

detect the occurrences of occlusion and/or camouflage during tracking by 

monitoring the process-behaviour chart control points. 

4.6.3. Alignment analysis 

The alignment computation between the tracker’s path estimate and the medial 

axis path is analysed in viewpoint from the tracker’s path estimate.  

Analysis results presented in section 4.5.4 shows that using training sets 

produces more accurate process-behaviour chart results. As a result, the same 

approach is applied here. 
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4.6.3.1. Implementation 

Prior to computing the alignment distance between each mean particle on the 

tracker’s path estimate from the medial axis path, a Gaussian smoothing is 

applied onto the tracker’s path estimate. Implementing a Gaussian smoothing has 

already been detailed in section 4.5.2. Subsequently, a normal line for each mean 

particle on the tracker’s path estimate is computed in the same manner as 

detailed in section 4.5.2.  

Once a normal line is computed, navigate along the line in both directions 

originating from ),(
11  tt yx   until a point ),( mpmp yx  on the medial axis path is 

reached. Then compute the alignment distance between ),(
11  tt yx   and 

),( mpmp yx  using (4.22): 

   22

11
),( mpympx yxyxd

tt



                        (4.22) 

The direction which has the lowest alignment distance is recorded and later 

exploited using the process-behaviour chart. However, if no point ),( mpmp yx  on 

the medial axis path is reached, no alignment distance value is computed for that 

particular mean particle and that mean particle is ignored during the process-

behaviour chart analysis. In the graphical representations, normal lines are 

shown as green lines. Blue dots represent the mean particle on the tracker’s path 

estimate while black lines represent the medial axis path. 

Once all the distance results are computed, the alignment distances are then 

exploited using the process-behaviour chart to detect the occurrences of occlusion 

and/or camouflage. The same parameter settings applied when computing the 

particle spread based on temporal behaviour is maintained throughout.  

4.6.3.2. Normal tracking  

Figure 4.67, Figure 4.69 and Figure 4.71 shows alignment distance for a target 

moving normally. The associated process-behaviour charts are shown in Figure 

4.68, Figure 4.70 and Figure 4.72. 

 
Figure 4.67 Alignment distance for a yellow circle moving normally. 
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Figure 4.68 Shewhart control chart analysing the alignment distance between 
the paths for a yellow circle moving normally. 
 

 
Figure 4.69 Alignment distance for a yellow circle moving normally amid the 
presence of clutter. 
 

 

Figure 4.70 Shewhart control chart analysing the alignment distance between 
the paths for a yellow circle moving normally amid the presence of clutter. 
 

 
Figure 4.71 Alignment distance for a tennis ball moving normally. 
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Figure 4.72 Shewhart control chart analysing the alignment distance between 
paths for a tennis ball moving normally. 
 

During normal tracking: 

 Figure 4.67, Figure 4.69 and Figure 4.71 all show the alignment between 

the tracker’s path estimate and the medial axis path to be in close 

proximity throughout the video sequence. 

 Since the alignment distance between the two paths remain relatively 

constant throughout, results in the control mean in the Shewhart control 

charts (Figure 4.68, Figure 4.70 and Figure 4.72) remained within the 

boundaries of the control limit for the duration of the video sequence. This 

also contributed in all three charts recording true positives.   

4.6.3.3. Occlusion  

Alignment distance when a target experiences occlusion is shown in Figure 4.73, 

Figure 4.75 and Figure 4.77. Figure 4.74, Figure 4.76 and Figure 4.78 shows the 

process-behaviour charts produced for these videos sequence. 

 
Figure 4.73 Alignment distance for a yellow circle experiencing occlusion. 
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Figure 4.74 Shewhart control chart analysing the alignment distance between 
the paths for a yellow circle experiencing occlusion. 
 

 
Figure 4.75 Alignment distance for a yellow circle experiencing occlusion amid 
the presence of clutter. 
 

 

Figure 4.76 Shewhart control chart analysing the alignment distance between 
the paths for a yellow circle experiencing occlusion amid the presence of clutter. 
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Figure 4.77 Alignment distance for a tennis ball experiencing occlusion. 
 

 

Figure 4.78 Shewhart control chart analysing the alignment distance between 
the paths for a tennis ball experiencing occlusion. 
 

In the event of occlusion: 

 The path alignment between the paths remains in close proximity while 

the target is fully visible. However, when occlusion happens, Figure 4.73, 

Figure 4.75 and Figure 4.77 all show the tracker’s path estimate deviating 

away from the medial axis path due to the tightly clustered particle set 

dispersing as a result of occlusion. This causes the alignment distance 

between the paths to increase. 

 Shewhart control chart in Figure 4.76 shows the control mean exceeding 

the upper control limit when occlusion is detected. Results presented thus 

far have shown that the occurrence of occlusion causes the mean to 

exceed the lower control limit. This is not seen here because a transitory 

increase in alignment distance is seen during occlusion. This will only 

result in an increase in the control mean, which implies that the mean will 

never trigger the lower limit of the chart. Figure 4.74 and Figure 4.78 both 

recorded false positives. The control mean in both of these charts 
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remained within the control limit boundaries even after occlusion has 

taken place. The reason for both of these charts recording false positives 

will be explained in section 4.6.3.5. 

4.6.3.4. Camouflage  

Graphical representations of alignment distance when a target experiences 

camouflage are shown in Figure 4.79, Figure 4.81 and Figure 4.83. The 

associated process-behaviour charts graphs are shown in Figure 4.80, Figure 4.82 

and Figure 4.84. 

 
Figure 4.79 Alignment distance a yellow circle experiencing camouflage. 
 

 

Figure 4.80 Shewhart control chart analysing the alignment distance between 
the paths for a yellow circle experiencing camouflage. 
 

 
Figure 4.81 Alignment distance for a yellow circle experiencing camouflage amid 
the presence of clutter. 
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Figure 4.82 Shewhart control chart analysing the alignment distance between 
the paths for a yellow circle experiencing camouflage amid the presence of 
clutter. 
 

 
Figure 4.83 Alignment distance for a tennis ball experiencing camouflage. 
 

 

Figure 4.84 Shewhart control chart analysing the alignment distance between 
the paths for a tennis ball experiencing camouflage. 
 

In the event of camouflage: 

 As in the occlusion analysis, the path alignment between the tracker’s path 

estimate and the medial axis path in Figure 4.79, Figure 4.81 and Figure 

4.83 all show both paths being in close proximity when tracking the target 

moving normally. However, the alignment distances all experiences a 

sudden increase as camouflage occurs. This is because as camouflage 
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occurs, the PHI will begin to reflect the shape of the camouflaging object 

and the tracker’s path estimate can reasonably be expected to deviate 

away from the medial axis.   

 The increase in the alignment distance causes the control mean in the 

Shewhart control chart in Figure 4.80, Figure 4.82 and Figure 4.84 to 

exceed the upper limits of the chart. It should be pointed out here that all 

three charts record true positives of the event.  

4.6.3.5. Summary 

Examination of the alignment distance leads to the following summary:  

 Occlusion and camouflage can be detected by estimating errors in the 

alignment of the medial axis of the PHI and the tracker’s path estimate. 

This presents an alternative approach to detecting these disruptive events 

as compared to the particle clustering method in Chapter 3 and the medial 

axis and training set method in section 4.5.4, which both detect occlusion 

and camouflage by detecting anomalies in the particle spread via process-

behaviour chart. Even though, results shows that evaluating the alignment 

distance data via process-behaviour chart respond differently to occlusion 

and camouflage as well as cannot clearly distinguish these disruptive 

events apart, nevertheless, results also shows that evaluation of the 

alignment distance via process-behaviour chart is still effective at 

detecting these events. 

 The alignment distance method recorded seven true positives when 

detecting disruptive events.  

 Only two events recorded false positives (refer to Figure 4.74 and Figure 

4.78). This is because: 

1. The result shown in Figure 4.74 measures the result in Figure 4.73. 

Figure 4.73 shows the tracker’s path estimate being in close proximity 

to the medial axis path as the target is tracked moving normally. 

However, as occlusion occurs, the tracker’s path estimate starts to 

deviate away and in the opposite direction as to the medial axis path. 

This occurs because after occlusion, the clustered particle sets starts 

experiencing fluctuations in its behaviour, thus providing unreliable 

data. Thus, making it difficult to measure the alignment distance 

between the paths.  
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2. The result in Figure 4.78 showed that the use of a moving window size 

of 7 was too large to detect occlusion correctly. Figure 4.85 shows the 

mean data going out of control as a result of occlusion when using a 

moving window size of 3. Using a smaller moving window size makes 

the process-behaviour chart more sensitive to immediate changes in 

the mean data as the amount of alignment distance data analysed in 

one instance is less.  

 

Figure 4.85 Shewhart control chart analysing the alignment distance between 
the paths for a yellow circle experiencing occlusion using a moving window size of 
3. 
 

Although the alignment path method cannot clearly distinguish the events of 

occlusion and camouflage as done by the particle clustering detection method in 

Chapter 3 and the medial axis and training set detection method in this chapter, 

analysis showed the alignment path method to be a viable detection method in 

detecting disruptive events.  

4.7. Chapter summary 

Motion analysis and action recognition require compact but rich representations of 

the spatial configuration and movement of the object(s) of interest over some 

time period. Inspired by the motion history image (MHI) this chapter has 

introduced a more general view-based representation, the particle history image 

(PHI). 

The particle history image is constructed not from silhouettes, but from the 

particle sets employed by particle filter-based tracking algorithms. As such it is 

independent of shape, making the detection of disruptive events much easier. 

Examination has shown that creating a PHI over a suitable temporal window 

presents a chronological view-based representation of the change in particle set 
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behaviour which can be exploited to detect occlusion and camouflage events. To 

achieve this, the boundary of the particle mass was obtained using texture edge 

detection, producing a secondary representation, the particle boundary image 

(PBI). 

Building upon the results obtained in Chapter 3, two measurements of the particle 

distribution were presented: 

1. Examination has shown that measurement made emphasising on spatial 

information in the PHI and PBI provides a more viable and robust measure 

of the particle spread than using temporal information in the PHI and PBI. 

Analysis also provided evidence that using PHI and PBI spatial information 

together with a template of the process-behaviour chart control limits 

computed from training sets improves the accuracy of occlusion and 

camouflage detection. 

2. Investigation also showed that the detection of occlusion and camouflage 

can be made by exploiting the alignment distance of the medial axis of the 

PHI and the tracker’s path estimate. Although, the detection method 

cannot clearly distinguish the disruptive events that occur, but it does 

provide an accurate indication when the target is no longer moving 

normally. 

The two measurements of the particle distribution presented in this chapter are 

evaluated in Chapter 5 to detect occlusion and/or camouflage when tracking 

multiple targets in a static scene. 
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Chapter 5 Scene Mapping 

5.1. Aim 

Results presented in the previous two chapters showed that the detection of 

occlusion and camouflage can be accomplished using process-behaviour charts to 

exploit data obtained from one of three approaches: (1) instantaneous particle 

clustering; (2) measurement of particle spread from the medial axis of the PHI; 

and (3) estimation of errors in the alignment of the PHI’s medial axis and the 

tracker’s estimate of target path. Henceforth, these three approaches will be 

referred to by the numbers (in brackets) above.  

As a result, the aims of this chapter are to: 

1. Evaluate the effectiveness of each approach at detecting occurrences of 

disruptive events when tracking multiple targets moving within a static 

scene. 

2. Exploit the resulting information to:  

a) Build scene maps showing the boundaries of interfering objects, 

providing valuable information about the viewed environment.  

b) Assess the accuracy of these scene maps. 

5.2. Motivation 

A scene map provides valuable information about the environment being viewed. 

The process of creating a scene map is commonly called scene mapping. In order 

to produce a scene map, data acquired at different time points must be fused and 

the combined data presented in an appropriate, spatially indexed format. Scene 

maps are often registered with the ground plane, with objects etc., locations 

being projected onto that plane.  The alternative, adopted here, is to project 

object and/or event data onto a plane registered with the imaging surface of a 

camera viewing the scene. Scene maps are important in fields such as 

augmented reality (Castle et al., 2011a, Castle et al., 2011b, Ventura et al., 

2012) and robotics (Ess et al., 2009) where maps are fundamentally used for 

obstacle avoidance (Morris et al., 2008), path planning (Dolgov et al., 2008) and 

robot navigation (Holz et al., 2008).  

In what follows, multiple targets are tracked while moving within a static scene. 

The information gathered is fused together to build a map of the viewed 

environment. The maps are used to: (1) provide information pertaining to the 
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boundary of the interfering object(s), thus identifying the likely locations of 

disruptive events; (2) assess the ability of each approach to describe the 

boundary of interfering object(s) in the viewed environment.  

5.3. Scene mapping tools 

5.3.1. Test videos 

For the scene mapping experiments detailed in section 5.4, three sets of test 

videos were created and captured. Two sets are artificial while one set contains 

real videos. 

5.3.1.1. Artificial videos 

A total of two hundred artificial videos were created to exhibit targets 

experiencing one of three scenarios: moving normally, experiencing occlusion or 

experiencing camouflage.  

In these artificial videos, coloured circles are randomly placed at the boundaries 

of an image containing an identically (when considering camouflage) or differently 

(when considering occlusion) coloured rectangle. Figure 5.1 and Figure 5.2 show 

graphical representations of these events, created by overlaying selected frames 

(at instances where occlusion or camouflage is about to be invoked) extracted 

from selected video sequences. 

Henceforth, all artificial videos exhibiting occlusion will be referred to as artificial 

occlusion scene mapping while all artificial videos exhibiting camouflage will be 

referred to as artificial camouflage scene mapping. 

 

Figure 5.1 A graphical representation of how camouflage is to be invoked.  
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Figure 5.2 A graphical representation of how occlusion is to be invoked. 
 

5.3.1.2. Real videos 

One hundred and forty three videos were edited out of an hour long image 

sequence captured using a fixed camera monitoring an outdoor walkway at the 

University of Nottingham, Malaysia Campus. The walkway comprises a roof 

supported by a series of narrow vertical pillars that occlude those using it. Each 

video shows pedestrians being occluded by the pillars. Figure 5.3 shows a sample 

image from the video sequence. 

Henceforth, all videos exhibiting pedestrian(s) being occluded by the pillars will 

be referred to as real occlusion scene mapping.  

 

Figure 5.3 An actual scene showing pedestrians being occluded by narrow 
vertical pillars. 
 

5.3.2. Tracking parameters 

5.3.2.1. Artificial videos 

For every artificial scene mapping videos analysis, a particle set size of 100 is 

used. To produce good tracking results for all test videos, a radius size of 3 is 

used to add process noise. A histogram bin size of 10 is selected for all videos. 

The same parameter settings are also applied during the creation of the PHIs. 

The PBIs are obtained by applying the parameter settings documented in Chapter 

4.   
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5.3.2.2. Real videos 

In analysing the real occlusion scene mapping videos, the pedestrians were 

tracked using Condensation employing an RGB colour histogram target 

representation. An RGB histogram was chosen after an HSV colour histogram 

representation produced poor results due to the large number of shadows caused 

by the strong sunlight. HSV is generally more stable than RGB under illumination 

changes. This is because illumination changes usually affect the V component 

much more than the H and S, allowing V values to be down-weighted or ignored. 

R, G and B are all affected by illumination changes. Here, however, the changes 

caused by the strong sunlight are very large, and the shadows introduce an 

additional hue change. Under these circumstances, though each component 

changes, the combined RGB vector changes more smoothly than the HSV data 

and therefore was chosen. 

For every real occlusion scene mapping videos analysis, a particle set size of 100 

was used. Process noise varied depending on the target size. Therefore, a radius 

size ranging from 1 to 3 was selected, empirically, to produce a good tracking 

result. A histogram bin size of 10 was used for all videos. The same parameter 

settings are also used in the creation of the PHIs, and the parameter setting 

employed in Chapter 4 were again used to obtain PBIs. 

5.3.3. Process-behaviour chart control limits 

5.3.3.1. Artificial videos 

Results in Chapter 4 showed that accuracy of detecting occlusion and camouflage 

from applying approaches (2) and (3) are significantly improved using a template 

of the process-behaviour chart control limits, computed from a training set. Thus, 

the same manner in computing the control limits is also employed here for the 

artificial scene mapping videos analysis.  

The control limits were empirically determined.  

5.3.3.2. Real videos 

In real scene mapping videos analysis, no video exhibited a pedestrian being 

tracked moving normally, therefore, providing no training set to compute the 

control limits. Therefore, the control limits for approach (2) and (3) was 

computed based on the concept detailed in Chapter 3.  
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5.3.4. Confusion matrices  

Confusion matrices are a visualisation tool commonly utilised when evaluating the 

performance of a classification system. Each column represents cases in an actual 

classification while each row represents cases in a predicted classification, table 

entries show the number of times each predicted classification was made when 

each actual classification was present. Here, confusion matrices are used to show 

the accuracy of each approach when differentiating between tracking target(s) 

moving normally, or experiencing occlusion and/or camouflage. These confusion 

matrices are presented and discussed in section 5.4. 

5.3.5. Implementing occlusion and camouflage map(s) 

When a process-behaviour chart fires as a result of some measure exceeding the 

acceptable range, the associated position (of the particle cluster, or relevant point 

on the medial axis) and particle spread provide an indication of the image 

location at which occlusion or camouflage occurred. Note that the position alone 

may not be reliable, but that the particle spread gives an indication of potential 

error. If the camera is fixed, results obtained by tracking multiple targets through 

the same environment can be combined to produce an occlusion or camouflage 

map of the background scene. 

Each time an event is detected, the associated particle spread information is 

viewed as describing a Gaussian particle distribution and added to a Gaussian 

Mixture Model representing the occlusion or camouflage structure of the viewed 

environment. This mixture model is situated on a scene map registered with the 

image plane. The scene map is initialised to zero, indicating no evidence for an 

interfering boundary. When a new event is detected, scene map locations are 

updated with the value of that event’s Gaussian, recording the likelihood of an 

event boundary at that location. When Gaussians overlap, the highest value is 

recorded. The concept of the Gaussian Mixture Model has already been detailed in 

Chapter 3 of this thesis. The model used here is somewhat simplified, in that the 

weight associated with each component is effectively equal.  

Though the resulting maps (shown in section 5.4) are used here primarily as 

indicators of the performance of the event detection approaches they are 

potentially useful in themselves, providing valuable information about scene 

structure.  
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5.4. Detecting and mapping occlusion and camouflage  

Table 5.1, Table 5.4 and Table 5.7 present confusion matrix results using 

approach (1), while, Table 5.2 , Table 5.5 and Table 5.8 are confusion matrix 

results using approach (2). Confusion matrix results via approach (3) are 

presented in Table 5.3, Table 5.6 and Table 5.9. 

All three video sets are used during the analysis of approach (1). The result is 

then fused together to generate the respective scene maps. The occlusion and 

camouflage maps are shown in Figure 5.4 (a), Figure 5.5(a) and Figure 5.6 (a).  

However, during the analysis of approaches (2) and (3), only selected videos are 

used. The chosen videos are randomly selected and comprise videos exhibiting 

target(s) being tracked moving normally or experiencing either occlusion and/or 

camouflage. A small number of videos are used because approach (2) and (3) 

require computation of the PBI. Since the viewed scene over which the analysis is 

being performed remains constant throughout, using a high number of videos will 

produce results that are redundant. The occlusion and camouflage maps 

generated using approach (2) are shown in Figure 5.4(c), Figure 5.5(c) and 

Figure 5.6(c), while Figure 5.4 (e), Figure 5.5(e) and Figure 5.6(e) give the 

occlusion and camouflage maps produced via approach (3).  

The ability of the proposed methods to describe the occlusion or camouflage 

structure of the viewed environment is illustrated in Figure 5.4 (b) (d) (f), Figure 

5.5 (b) (d) (f) and Figure 5.6 (b) (d) (f). These figures are generated by 

overlaying the Gaussian Mixture Model results over edge-detected images of the 

viewed scene where the detected camouflage/occlusion boundaries and the true 

silhouette of the camouflaging/occluding object are shown in yellow. 

Table 5.1 Confusion matrix result for artificial occlusion scene mapping videos 
using approach (1): particle clustering. 

 

Table 5.2 Confusion matrix result for artificial occlusion scene mapping videos 
using approach (2): spread measured relative to the PBIs medial axis.  

 

  Actual 
Normal tracking  Occlusion 

Predicted 
Normal tracking  40 0 

Occlusion 3 57 

  Actual 
Normal tracking  Occlusion 

Predicted 
Normal tracking  4 0 

Occlusion 1 10 
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Table 5.3 Confusion matrix for artificial occlusion scene mapping videos using 
approach (3): alignment for the PBI medial axis and tracker's path estimate. 

 

For artificial occlusion scene mapping, the confusion matrices show that: 

 All three approaches detect occlusion but suffer from misclassifications. 

 Approach (1) records three misclassifications (Table 5.1), while approach 

(2) record only one misclassification (Table 5.2). These misclassifications 

during normal tracking are caused when the target cut across the corner 

of the interfering occluding object, while still maintaining partial visibility. 

This instance, however, can cause a change in the particle spread width 

(as a result of the particles gathering closely together, tracking the 

partially visible side of the target), hence, causing the detector to fire.  

 Approach (3) also records three misclassifications (two during normal 

tracking and one during occlusion), as shown in Table 5.3. This can result 

from noise on the path which causes the detector to fire/not fire correctly.  

  Actual 
Normal tracking  Occlusion 

Predicted 
Normal tracking  4 1 

Occlusion 2 8 
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Figure 5.4 Occlusion maps for artificial occlusion scene mapping videos via: (a) 
approach (1), (c) approach (2), (e) approach (3); (b), (d), and (f) show occlusion 
maps overlaid on edge-detected images of the viewed scene. 
 

Occlusion maps generated for artificial occlusion scene mapping provide evidence 

that: 

 All three approaches correspond to the true silhouette of the occluding 

object with the maps (Figure 5.4 (a), (b)) generated via approach (1) 

providing a slightly clearer illustration with many more data points used.  
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 All three approaches produce maps (Figure 5.4 (a), (b), (c), (d), (e) and 

(f)) showing entries gathered outside of the occluding object boundaries. 

Three entries, however, fire just inside the occluding object (one in Figure 

5.4 (d) and two in Figure 5.4 (f)). The single entry fire in Figure 5.4 (d) is 

due to the target cutting across the corner of the interfering occluding 

object while still maintaining partial visibility, causing the detector to fire. 

Whereas, the two entries in Figure 5.4 (f) are due to noise on the path 

which causes the detector to fire. 

Table 5.4 Confusion matrix result for artificial camouflage scene mapping videos 
using approach (1): particle clustering. 

 

Table 5.5 Confusion matrix for artificial camouflage scene mapping videos using 
approach (2): spread measured relative to the PBIs medial axis. 

 

Table 5.6 Confusion matrix for artificial camouflage scene mapping videos using 
approach (3): alignment of the PBI medial axis and tracker's path estimate. 

 

Examining the confusion matrices for artificial camouflage scene mapping shows 

that: 

 Approach (1) detects camouflage but suffers six false positive (Table 5.4), 

as a result of the target cutting across the corner of the interfering object, 

causing the particles to be transferred into the vicinity of the camouflaging 

object during normal tracking. 

 Approach (2) and (3) both detects camouflage with no errors (Table 5.5 

and Table 5.6 respectively).  

  Actual 
Normal tracking  Camouflage 

Predicted 
Normal tracking 28 0 

Camouflage 6 66 

  Actual 
Normal tracking  Camouflage 

Predicted 
Normal tracking  5 0 

Camouflage 0 10 

  Actual 
Normal tracking  Camouflage 

Predicted 
Normal tracking  5 0 

Camouflage 0 10 
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Figure 5.5 Camouflage maps for artificial camouflage scene mapping videos via: 
(a) approach (1), (c) approach (2), (e) approach (3); (b), (d), and (f) shows 
camouflage maps overlaid on edge-detected images of the viewed scene. 
 

Camouflage maps generated for artificial camouflage scene mapping shows that: 

 All three approaches correspond to areas in the environment where 

camouflage occurs. 

 Maps produced for approach (1) (Figure 5.5 (a), (b)) and approach (3) 

(Figure 5.5 (e), (f)) shows entries are gathered inside the camouflaging 

object boundary. While, approach (2) produced maps ((Figure 5.5 (c), (d)) 

showing entries are gathered outside or on the boundaries of the 

camouflaging object. Approach (2) fires outside or on the boundaries of 

the camouflaging object is due to regions in the PBI, expanded as a result 

of camouflage, thus, causing the detector to fire. 
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Table 5.7 Confusion matrix for real occlusion scene mapping videos using 
approach (1): particle clustering. 

 

Table 5.8 Confusion matrix for real occlusion scene mapping videos using 
approach (2): particle spread measured relative to the PBIs medial axis. 

 

Table 5.9 Confusion matrix for real occlusion scene mapping videos using 
approach (3): alignment of the PBI medial axis and tracker's path estimate. 

 

The confusion matrices for real occlusion scene mapping leads to the following 

summary: 

 All three approaches are capable of detecting occlusion events, though all 

three approaches record some misclassifications. 

 Approach (1) and (2) suffers two false negative (Table 5.7 and Table 5.8 

respectively); while approach (3) performed less well and suffers five false 

negative (Table 5.9). These misclassifications are caused by the detector 

firing incorrectly due to the targets being tracked here are of variable size 

and most are wider than the occluding object.  

 

  Predicted 
Normal tracking  Occlusion 

Actual Occlusion 2 142 

  Predicted 
Normal tracking  Occlusion 

Actual Occlusion 2 18 

  Predicted 
Normal tracking  Occlusion 

Actual Occlusion 5 15 
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Figure 5.6 Occlusion map for real occlusion scene mapping videos via: (a) 
approach (1), (c) approach (2), (e) approach (3); (b), (d), and (f) show occlusion 
maps overlaid on edge-detected images of the viewed scene. 
 

Analysing the occlusion maps for real occlusion scene mapping provides evidence 

that:  

 Maps produced showed all three approaches correspond to the areas in 

the environment where the two narrow vertical pillars are located, which 

causes occlusion to occur. 

 Approach (1) produced maps (Figure 5.6 (a), (b)) whose entries marked 

the narrow vertical pillars that cause occlusion. Approach (2) (Figure 5.6 

(c), (d)) and approach (3) (Figure 5.6 (e), (f)) also produced maps 

showing entries gathered around the pillars. It should be noted that for 

approach (2) and (3) respectively, most entries are gathered in between 

the vicinity of the two pillars because these two approaches rely on spatial 

information computed from the medial axis of the PBI, whereas approach 

(1) rely on particle clusters formed independently, at each time step.  
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 Note that although the pillar boundaries are less clear than in the maps for 

artificial scene mapping videos, this is because the targets tracked here 

are of variable size and more, importantly, most are wider than the 

occluding pillars.  

In summary: 

1. The confusion matrices show that all three approaches successfully 

distinguish targets moving normally or experiencing occlusion or camouflage. 

Table 5.10 presents the rate of accuracy (%) of each approach and is 

computed from the confusion matrices presented earlier in this chapter. Rate 

of accuracy is defined in (5.1) as the number of test videos that were 

correctly interpreted divided by the total number of videos in the test set. 

Here, correctly interpreted means that a disruptive event was correctly 

identified (true positive) or no events were reported during normal tracking 

(true negative). 

 100
__

___
_(%)__  








samplesofNumber

tionsinterpretacorrectofNumber
accuracyofRate           (5.1) 

Table 5.10 Event detection accuracy (% correct interpretations) of each 
approach. 

 

2. Examination of Table 5.10 and the data presented above suggests that: 

 In artificial occlusion scene mapping, approaches (1) and (2) recorded an 

accuracy rate of 97% and 93% respectively. Approach (3) meanwhile 

only recorded an 80% accuracy rate. Approaches (1) and (2) suffer a 3% 

and 7% loss, respectively, in accuracy because the detector fired 

incorrectly during normal tracking, when the target cuts across the 

corner of the occluding object. Again, using a larger moving window size 

can improve the performance of approaches (1) and (2). Approach (3) 

suffers a 20% loss in accuracy due to noise on the path which causes the 

detector to fire/not fire correctly. Therefore, we hypothesise that 

removing these effects can significantly improve the performance of 

approach (3). 

  
Scene mapping type 

Artificial 

occlusion 

Artificial 

camouflage 

Real  

occlusion 

Methods 

Approach (1) 97% 94% 98.6% 
Approach (2) 93% 100% 90% 
Approach (3) 80% 100% 75% 
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 In artificial camouflage scene mapping, approach (2) and (3) performed 

far better than approach (1). Both approaches have an accuracy rate of 

100% at detecting camouflage as compared to approach (1) which has 

an accuracy rate of 94%. Approach (1) suffers a 6% loss in accuracy due 

to particles being transferred into the vicinity of the camouflaging object 

when the target cuts across the corner of the interfering object, causing 

the detector to fire incorrectly. We hypothesise that the use of a larger 

moving window size can make the detector less sensitive to these 

instances and improve the performance of approach (1).  

 In real occlusion scene mapping, approach (1) recorded the highest 

accuracy rate at 98.6%, followed by approach (2) with 90% and 

approach (3) with 75%. The loss in accuracy for all three approaches can 

be due from the detector firing incorrectly as a result of tracking targets 

of variable size and most are wider than the occluding object. Therefore, 

using better targets can help improve the performance of all three 

approaches. 

 In scene mapping, approaches (2) and (3) perform better than approach 

(1) in artificial camouflage but do not perform as well as approach (1) in 

artificial and real occlusion. It should be stressed here that comparing 

approach (2) and (3) with approach (1) is made more difficult due to the 

different number of samples used. We hypothesise that the use of similar 

number of samples as in approach (1) will improve the detection 

accuracy of both approach (2) and (3), respectively. The current data, 

however, shows that approach (2) is better than approach (3) in all 

scene mapping scenarios.   

3. All three approaches produced maps that identified locations in the viewed 

environment where disruptive events occurred as well as marked the 

boundaries of these camouflaging/occluding objects. 

5.5. Chapter summary 

Literature has shown that scene map plays an integral part in a number of 

different research fields.  

Three different approaches were applied to sets of scene mapping videos and the 

results produced from each approach exploited using process-behaviour chart to 

detect occurrences of occlusion and camouflage. These were subsequently used 

to create image-based scene maps marking locations at which each event 

occurred. Analysis of results provided evidence that all three approaches are 
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equally and very successful at differentiating between a target moving normally 

or experiencing occlusion or camouflage. Analysis also demonstrated that the 

scene maps created via each approach correspond to areas of the background 

environment in which occlusion and/or camouflage are likely to occur.  

This opens ups the possibility of the tracker being able to detect and respond 

appropriately to inevitable, highly disruptive events. 
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Chapter 6 Contributions and Future Work 

6.1. Contributions 

The primary contribution of the work reported here is the demonstration that the 

distribution and behaviour of the particle sets generated by a particle filter-based 

tracker carry information about the current state of the tracking process, and can 

be used to detect occlusion and camouflage events. Detection is achieved via the 

novel application of the Shewhart process-behaviour chart, a method developed 

within control engineering to monitor the internal state of a process.  

The control chart is applied to three distinct measures of particle behaviour:   

1. The standard deviation of the particle clusters formed during particle filter-

based tracking. 

2. Measurements of particle spread made after aggregating the particle sets 

generated over a temporal window.   

3. Estimates of the errors in the alignment of the medial axis of the 

aggregated particle sets and the estimated target path as provided by the 

tracker. 

A desire to aggregate particle sets over time lead to the second contribution of 

the research: the formulation of a novel view-based representation of visual 

motion, the Particle History Image, and a related data structure capturing the 

boundary of the aggregated particles, the Particle Boundary Image. Though the 

focus here is on the detection of occlusion and camouflage events, it is 

anticipated that these representations will find further application elsewhere. 

The third contribution of the work is an experimental evaluation of the new 

techniques. The proposed methods have been applied to real and artificial image 

sequences, their ability to detect disruptive events assessed and the output of the 

process-behaviour charts used to create Gaussian Mixture Models of the occlusion 

and camouflage structure of the underlying scene. Examination of the resulting 

data leads to the observations that: 

 All three representations allowed successful event detection. 

 Performance was increased when the process-behaviour control charts 

were constructed using longer training sequences. 
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 Though the particle clustering and PBI medial axis methods are capable of 

distinguishing occlusion and camouflage, the path alignment method is 

not. It does however, provide an indication that tracking is being lost. 

 Evaluation of the three detection methods showed that the medial axis 

detection method is the best detection method. The method is less 

sensitive to false data and firing prematurely. We suggest that this is due 

to the PHI providing a better representation of particle set behaviour by 

aggregating particles over a longer time period. The use of a training set 

to parameterise the process-behaviour control chart means that 

comparisons are being made between measurements that are both made 

over extended time periods, and so more reliable.  

 The presence of noise affected the tracker’s path estimate more severely 

when measuring the width of the occupied region of a PHI as compared to 

measuring the instantaneous particle spread, independently, at each time 

step.   

 In scene mapping, evaluation of the three different approaches showed 

that all three approaches created maps that outlined the true silhouette of 

the camouflaging/occluding object as well as the boundaries of these 

interfering objects in a viewed environment. It is anticipated that these 

maps will find further application in trackers created to detect and respond 

appropriately to these disruptive events.  

 Note that the size of the target affects the event detection accuracy of 

each approach. We hypothesise that this is due to the target size affecting 

the behaviour of the particles which tracks them. Further investigation into 

this behaviour is beyond the scope of this thesis, though it does open up 

new questions about the relationship between segmentation and particle-

based algorithms, and possible future work.  

The contributions mentioned above successfully fulfil the objectives specified in 

section 1.2. A discussion on self-occlusion and 3D motion is given in section 6.2 

and possible extensions of the work reported here are discussed in section 6.3.  

6.2. Self-occlusion and 3D 

Results in Chapter 3 and Chapter 4 showed the particle clustering method to be 

the best detection method at handling self-occlusion. The PBI medial axis method 

could not detect self-occlusion successfully as no clear motion was recorded due 

to the particle set(s) generated at newer time step overlapped over particle set(s) 

from prior time steps, thus, generating a blob like PHI and PBI. This resulted in 
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no medial axis path being recorded. With no medial axis path, the alignment 

distance method could not be used to detect for self-occlusion. 

In Chapter 3, the particle cluster deviation (spread) analysis showed that the 

deviation increases when the particle spread out across the camouflaging object 

as camouflage occurs and decreases when the particle spread becomes closely 

clustered as a result of occlusion. These events can increase/decrease the 

estimated (and so the predicted) speed. Currently, deviation is used as the main 

indicator, while speed acts as a secondary indicator in the detection of occlusion 

and camouflage. This makes the particle clustering method more general as other 

factors (e.g. size of the target) is assumed to be fixed throughout. We 

hypothesise that by extending the evaluation to 3D using the target size, speed 

and deviation can improve the accuracy of the detection method at detecting 

occlusion and camouflage. 

6.3. Future Work 

This section explores possible improvements and further investigation to the 

research work documented in this thesis.  

6.3.1. Detecting occlusion and/or camouflage in 3D 

motion 

The work presented here focuses primarily on occlusion and camouflage occurring 

when tracking target(s) moving in two-dimension. Results provided evidence that 

the detection of occlusion and/or camouflage can be done by exploiting the 

results gathered from either one of three approaches documented in this thesis 

using process-behaviour chart. 

Further investigation to find a solution for detecting these disruptive events in 

three-dimension is beyond the scope of this thesis; nevertheless, it does lead to 

future work. Possible solution to this problem could lie in: 

1. Performing additional experiments to understand how the results gathered 

from applying the particle clustering method can be further improved prior 

to exploiting the results using process-behaviour chart.  

2. Evaluating more information about the target (e.g. monitoring the change 

in the target’s shape) during 3D motion.  



Chapter 6 

147 

6.3.2. Automating tools 

In Chapter 4, improving the results of the non-thinned PBIs and the medial axis 

are done via manual editing as the creation of automated tools is beyond the 

scope of this thesis. Thus, future work of creating algorithms to perform these 

improvements automatically is feasible.  

In the improvement of the non-thinned PBIs, an algorithm can be created which 

analyses the graphical representation of the non-thinned PBI and identify existing 

gaps within the non-thinned PBI boundary which is later filled and closed.  

As for the improvement of the medial axis path, a separate algorithm can be 

created which analyses along the PBI medial axis path and identify point(s) that 

does not fit within the optimum path of the medial axis, resulting in that point(s) 

being removed. 

6.3.3. Improvements to the texture edge detection 

algorithm  

At present, there is a short delay in the detection of disruptive events as a result 

of constructing PHI and PBI using the texture edge detection algorithm presented 

in Chapter 4. Future work is required to investigate how the performance of the 

texture edge detection algorithm can be improved so as to allow the construction 

of PHI and PBI to be done without any delay.   

One possible way to improve the performance of the texture edge detection 

algorithm is during the Compass operator process. (Maxwell et al., 2003) 

suggested taking a sampling approach to estimating the texture gradient in the 

image as an alternative to computing Compass operator at each pixel of the 14 

Laws’ texture feature images.  

6.3.4. Using alternative scene mapping videos 

For scene mapping analysis detailed in Chapter 5, only three sets of test videos 

were used. Analysis showed that even by using three sets of test videos, the 

three approaches successfully detected and mapped out occlusion and 

camouflage. 

Further investigation can involve applying the three approaches to different and 

more complex sets of scene mapping videos and analysing the results it produce 

when detecting and mapping out occlusion and/or camouflage.  
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6.3.5. Improving tracking 

The work detailed here presented three approaches to detect and subsequently, 

map out the occurrences of occlusion and camouflage during tracking. Further 

investigation into how trackers can utilise the results produced by these three 

approaches to respond appropriately after experiencing occlusion and camouflage 

is beyond the scope of this thesis. 

Therefore, future work is required to exploit the knowledge gained from the 

investigation presented here to create an improved particle filter-based tracker 

that is capable of detecting and responding appropriately to these disruptive 

events. 
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Appendix A Gaussian Mixture Model 

A.1. 2 Dimension EM Algorithm 

 

Algorithm A.1 Gaussian Mixture Model algorithm. 
 

Particles are defined as   NnXn
t ,,1,  , where 

n
tX is the target state vector 

representations in coordinate location-  yx, , n is the nth particle set, t is the time 

step and N is the sample size of the population. At each time step, the sample 

size of the particle population is equally assigned to each cluster. The cluster’s 

mean for coordinate location-  yx,  are weighted using (A.1) and (A.2), while 

deviation values are weighted using (A.3).  The mixture weight is computed using 

GAUSSIAN MIXTURE MODEL ALGORITHM 

1) Assign N number of particles, 
N
n

n
tX 1

)( }{   to g number of clusters. Clusters’ 

mean, deviation and mixture weight are randomly computed during 

initialization.  

2) Compute mixture model by considering all particles in all clusters’: 


g

i
ii yxPxP )|,()(   

3) Perform an iterative Expectation Maximization (EM) algorithm: 

)(

)()|(
)|

xP

PxP
xP( ii

i





  

4) Re-estimate cluster parameters at iteration step, 1s by taking into 

consideration the probability of each particle belonging to each cluster. 

5) Check for convergence between clusters at iteration step, s and 1s using 

the Euclidean distance formula: 

    0.1
2121   s

y
s
y

s
x

s
x   

a. If no convergence is attained, then replace the clusters at iteration 

step, s with the clusters from iteration step, 1s  and repeat from step 

2; 

b. If convergence is attained, classify particles based on the cluster 

with the highest Gaussian probability value.  

i. Recalculate the cluster parameters and weights after the particles 

have been split into their respective clusters. 

ii. Feed the clustered particles to the particle filtered-tracker.  
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(A.4). The cluster’s mean, deviation and mixture weight for the initial iteration 

are randomly selected. For successive iterations, a weighted mean and a 

weighted deviation are computed.   
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N is the particle sample size population, iw is the clusters’ weight, )(c
mw is the 

cluster’s weight, M is the particle sample size population within a single cluster 

and  yxP i ,| is the probability of the particle being in a cluster. The mixture 

model (A.5) is then computed by taking all particles in every cluster into concern.  
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i  is the mixing weights, g is the total number of clusters and  iyxP |,  is a 

probability density function of particles’ from the cluster’s mean. Probability 

density function is computed using (A.6): 
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The Expectation step is performed by using the Bayes’ rule (Bayes et al., 1763): 
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)|( YXP is the posterior distribution, )|( XYP is the conditional probability 

likelihood of Y given X, )(XP is the prior distribution and )(YP is the 

normalization factor which guarantees that )|( YXP  amounts to unity. Bayes’ 

rule allows the posterior distribution to be inferred from observation data. 

Therefore, the probability of each particle arising from each cluster is computed: 
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                            (A.8) 

)|,( iyxP  is the probability of a cluster generating each particle, )( iP  is the 

cluster weight and ),( yxP is the mixture model. 

In the Maximization step, improved parameters for each cluster at iteration step  

1s  are computed by taking into consideration the probability of each particle 

being in each cluster. The convergence of the EM algorithm is based on the 

Euclidean distance (A.9) between clusters at iteration step  1s  and s . 
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When the EM algorithm has successfully converged, particles are assigned to 

mixture components based on the cluster with the highest probability value and 

the clusters’ parameters are recomputed. 

A.2. 3 Dimension EM Algorithm 

A revised mathematical representation for a three dimension EM algorithm is 

given in (A.10) to (A15). The weighted means are computed using (A.10), (A.11) 

and (A.12), while (A.13) computes the weighted deviation. The revised mixture 

model is computed using (A.14) and the Euclidean distance to determine EM 

convergence is computed using (A.15).  
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Appendix B Number of Clusters Analysis 

This appendix presents the results gathered from applying different number of 

clusters on the remaining test videos presented in Chapter 2. 

B.1. Occlusion 

 
Figure B.1 Tracking a yellow circle experiencing occlusion amid clutter when 
using: (a) 2 clusters, (b) 3 clusters or (c) 4 clusters. 
 

 

Figure B.2 Graph showing the use of different numbers of clusters for a yellow 
circle experiencing occlusion amid clutter. 
 

 
Figure B.3 A tree occluding a woman when using: (a) 2 clusters, (b) 3 clusters 
or (c) 4 clusters. 
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Figure B.4 Graph showing the use of different numbers of clusters for a tree 
occluding a woman. 
 

 
Figure B.5 A table tennis bat experiencing self-occlusion when using: (a) 2 
clusters, (b) 3 clusters or (c) 4 clusters. 
 

 

Figure B.6 Graph showing the use of different numbers of clusters for a table 
tennis bat experiencing self-occlusion. 
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B.2. Camouflage 

 
Figure B.7 Tracking a yellow circle experiencing camouflage amid clutter when 
using: (a) 2 clusters, (b) 3 clusters or (c) 4 clusters. 
 

 

Figure B.8 Graph showing the use of different numbers of clusters for a yellow 
circle experiencing camouflage amid clutter. 
 

 
Figure B.9 Tracking a football being camouflaged by a player when using: (a) 2 
clusters, (b) 3 clusters or (c) 4 clusters. 
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Figure B.10 Graph showing the use of different numbers of clusters for a football 
being camouflaged by a player. 
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Appendix C Evaluation 

C.1. Normal tracking 

 
Figure C.1 Different percentage levels of background clutter with the minimum 
value being 10% and the maximum value being 100%. 
 

 
Figure C.2 Different percentage levels of image clutter with the minimum value 
being 10% and the maximum value being 100%. 
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Figure C.3 Different percentage levels of motion clutter with the minimum value 
being 1.0% and the maximum value being 10.0%. 
 

 
Figure C.4 Different percentage levels of target clutter with the minimum value 
being 0.14% and the maximum value being 1.26%. 
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C.2. Occlusion 

 
Figure C.5 Different percentage levels of background clutter during the 
occurrence of occlusion with the minimum value being 10% and maximum value 
being 100%. 
 

 
Figure C.6 Different percentage levels of image clutter during the occurrence of 
occlusion with the minimum value being 10% and maximum value being 100%. 
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Figure C.7 Different percentage levels of motion clutter during the occurrence of 
occlusion with the minimum value being 1.0% and maximum value being 10.0%. 
 

 
Figure C.8 Different percentage levels of target clutter during the occurrence of 
occlusion with the minimum value being 0.14% and maximum value being 
1.26%. 
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C.3. Camouflage 

 
Figure C.9 Different percentage levels of background clutter during the 
occurrence of camouflage with the minimum value being 10% and maximum 
value being 100%. 
 

 
Figure C.10 Different percentage levels of image clutter during the occurrence of 
camouflage with the minimum value being 10% and maximum value being 
100%. 
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Figure C.11 Different percentage levels of motion clutter during the occurrence 
of camouflage with the minimum value being 1.0% and maximum value being 
10.0%. 
 

 
Figure C.12 Different percentage levels of target clutter during the occurrence of 
camouflage with the minimum value being 0.14% and maximum value being 
1.26%. 
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