4,399 research outputs found

    3-D inelastic analysis methods for hot section components (base program)

    Get PDF
    A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described

    Linear systems analysis program, L224(QR). Volume 1: Engineering and usage

    Get PDF
    The QR computer program is described as well as its use in classical control systems analysis and synthesis (root locus, time response, and frequency response)

    Understanding the viscoelastic behavior of collagen matrices through relaxation time distribution spectrum

    Get PDF
    This study aims to provide understanding of the macroscopic viscoelastic behavior of collagen matrices through studying the relaxation time distribution spectrum obtained from stress relaxation tests. Hydrated collagen gel and dehydrated collagen thin film was exploited as two different hydration levels of collagen matrices. Genipin solution was used to induce crosslinking in collagen matrices. Biaxial stress relaxation tests were performed to characterize the viscoelastic behavior of collagen matrices. The rate of stress relaxation of both hydrated and dehydrated collagen matrices shows a linear initial stress level dependency. Increased crosslinking reduces viscosity in collagen gel, but the effect is negligible for thin film. Relaxation time distribution spectrum was obtained from the stress relaxation data by inverse Laplace transform. For most of the collagen matrices, three peaks at the short (0.3s ~1 s), medium (3s ~90 s), and long relaxation time (> 200 s) were observed in the continuous spectrum, which likely corresponds to relaxation mechanisms involve fiber, inter-fibril, and fibril sliding. Splitting of the middle peak was observed at higher initial stress levels suggesting increased structural heterogeneity at the fibril level with mechanical loading. The intensity of the long-term peaks increases with higher initial stress levels indicating the engagement of collagen fibrils at higher levels of tissue strain

    Dynamic loads analysis system (DYLOFLEX) summary. Volume 1: Engineering formulation

    Get PDF
    The DYLOFLEX computer program system expands the aeroelastic cycle from that in the FLEXSTAB computer program system to include dynamic loads analyses involving active controls. Two aerodynamic options exist within DYLOFLEX. The analyst can formulate the problem with unsteady aerodynamics calculated using the doublet lattice method or with quasi-steady aerodynamics formulated from either FLEXSTAB or doublet lattice steady state aerodynamics with unsteady effects approximated by indicial lift growth functions. The equations of motion are formulated assuming straight and level flight and small motions. Loads are calculated using the force summation technique. DYLOFLEX consists of nine standalone programs which can be linked with each other by magnetic files used to transmit the required data between programs

    Impact on multilayered composite plates

    Get PDF
    Stress wave propagation in a multilayer composite plate due to impact was examined by means of the anisotropic elasticity theory. The plate was modelled as a number of identical anisotropic layers and the approximate plate theory of Mindlin was then applied to each layer to obtain a set of difference-differential equations of motion. Dispersion relations for harmonic waves and correction factors were found. The governing equations were reduced to difference equations via integral transforms. With given impact boundary conditions these equations were solved for an arbitrary number of layers in the plate and the transient propagation of waves was calculated by means of a Fast Fourier Transform algorithm. The multilayered plate problem was extended to examine the effect of damping layers present between two elastic layers. A reduction of the interlaminar normal stress was significant when the thickness of damping layer was increased but the effect was mostly due to the softness of the damping layer. Finally, the problem of a composite plate with a crack on the interlaminar boundary was formulated

    Aeroelastic analysis for propellers - mathematical formulations and program user's manual

    Get PDF
    Mathematical development is presented for a specialized propeller dedicated version of the G400 rotor aeroelastic analysis. The G400PROP analysis simulates aeroelastic characteristics particular to propellers such as structural sweep, aerodynamic sweep and high subsonic unsteady airloads (both stalled and unstalled). Formulations are presented for these expanded propeller related methodologies. Results of limited application of the analysis to realistic blade configurations and operating conditions which include stable and unstable stall flutter test conditions are given. Sections included for enhanced program user efficiency and expanded utilization include descriptions of: (1) the structuring of the G400PROP FORTRAN coding; (2) the required input data; and (3) the output results. General information to facilitate operation and improve efficiency is also provided

    Compressed Passive Macromodeling

    Get PDF
    This paper presents an approach for the extraction of passive macromodels of large-scale interconnects from their frequency-domain scattering responses. Here, large scale is intended both in terms of number of electrical ports and required dynamic model order. For such structures, standard approaches based on rational approximation via vector fitting and passivity enforcement via model perturbation may fail because of excessive computational requirements, both in terms of memory size and runtime. Our approach addresses this complexity by first reducing the redundancy in the raw scattering responses through a projection and approximation process based on a truncated singular value decomposition. Then we formulate a compressed rational fitting and passivity enforcement framework which is able to obtain speedup factors up to 2 and 3 orders of magnitude with respect to standard approaches, with full control over the approximation errors. Numerical results on a large set of benchmark cases demonstrate the effectiveness of the proposed techniqu
    corecore