research

Compressed Passive Macromodeling

Abstract

This paper presents an approach for the extraction of passive macromodels of large-scale interconnects from their frequency-domain scattering responses. Here, large scale is intended both in terms of number of electrical ports and required dynamic model order. For such structures, standard approaches based on rational approximation via vector fitting and passivity enforcement via model perturbation may fail because of excessive computational requirements, both in terms of memory size and runtime. Our approach addresses this complexity by first reducing the redundancy in the raw scattering responses through a projection and approximation process based on a truncated singular value decomposition. Then we formulate a compressed rational fitting and passivity enforcement framework which is able to obtain speedup factors up to 2 and 3 orders of magnitude with respect to standard approaches, with full control over the approximation errors. Numerical results on a large set of benchmark cases demonstrate the effectiveness of the proposed techniqu

    Similar works