24,153 research outputs found

    An efficient method for antenna design based on a self-adaptive bayesian neural network assisted global optimization technique

    Get PDF
    Gaussian process (GP) is a very popular machine learning method for online surrogate model-assisted antenna design optimization. Despite many successes, two improvements are important for GP-based antenna global optimization methods, including (1) the convergence speed (i.e., the number of necessary electromagnetic simulations to obtain a high-performance design), and (2) the GP model training cost when there are several tens of design variables and/or specifications. In both aspects, state-of-the-art GP-based methods show practical but not desirable performance. Therefore, a new method, called self-adaptive Bayesian neural network surrogate model-assisted differential evolution for antenna optimization (SB-SADEA), is presented in this paper. The key innovations include: (1) The introduction of the Bayesian neural network (BNN)-based antenna surrogate modeling method into this research area, replacing GP modeling, and (2) a bespoke self-adaptive lower confidence bound method for antenna design landscape making use of the BNN-based antenna surrogate model. The performance of SB-SADEA is demonstrated by two challenging design cases, showing considerable improvement in terms of both convergence speed and machine learning cost compared to state-of-the-art GP-based antenna global optimization methods

    An Efficient Method for Antenna Design Based on a Self-Adaptive Bayesian Neural Network-Assisted Global Optimization Technique

    Get PDF
    Gaussian process (GP) is a very popular machine learning method for online surrogate-model-assisted antenna design optimization. Despite many successes, two improvements are important for the GP-based antenna global optimization methods, including: 1) the convergence speed (i.e., the number of necessary electromagnetic (EM) simulations to obtain a high-performance design) and 2) the GP model training cost when there are several tens of design variables and/or specifications. In both aspects, the state-of-the-art GP-based methods show practical but not desirable performance. Therefore, a new method, called the self-adaptive Bayesian neural network surrogate-model-assisted differential evolution (DE) for antenna optimization (SB-SADEA), is presented in this article. The key innovations include: 1) the introduction of the Bayesian neural network (BNN)-based antenna surrogate modeling method into this research area, replacing GP modeling, and 2) a bespoke self-adaptive lower confidence bound (LCB) method for antenna design landscape making use of the BNN-based antenna surrogate model. The performance of SB-SADEA is demonstrated by two challenging design cases, showing considerable improvement in terms of both convergence speed and machine learning cost compared with the state-of-the-art GP-based antenna global optimization methods

    An Efficient Method for Antenna Design Based on a Self-Adaptive Bayesian Neural Network Assisted Global Optimization Technique

    Get PDF
    Gaussian process (GP) is a very popular machine learning method for online surrogate model-assisted antenna design optimization. Despite many successes, two improvements are important for GP-based antenna global optimization methods, including (1) the convergence speed (i.e., the number of necessary electromagnetic simulations to obtain a high-performance design), and (2) the GP model training cost when there are several tens of design variables and/or specifications. In both aspects, state-of-the-art GP-based methods show practical but not desirable performance. Therefore, a new method, called self-adaptive Bayesian neural network surrogate model-assisted differential evolution for antenna optimization (SB-SADEA), is presented in this paper. The key innovations include: (1) The introduction of the Bayesian neural network (BNN)-based antenna surrogate modeling method into this research area, replacing GP modeling, and (2) a bespoke self-adaptive lower confidence bound method for antenna design landscape making use of the BNN-based antenna surrogate model. The performance of SB-SADEA is demonstrated by two challenging design cases, showing considerable improvement in terms of both convergence speed and machine learning cost compared to state-of-the-art GP-based antenna global optimization methods

    Weighted Fair Multicast Multigroup Beamforming under Per-antenna Power Constraints

    Get PDF
    A multi-antenna transmitter that conveys independent sets of common data to distinct groups of users is considered. This model is known as physical layer multicasting to multiple co-channel groups. In this context, the practical constraint of a maximum permitted power level radiated by each antenna is addressed. The per-antenna power constrained system is optimized in a maximum fairness sense with respect to predetermined quality of service weights. In other words, the worst scaled user is boosted by maximizing its weighted signal-to-interference plus noise ratio. A detailed solution to tackle the weighted max-min fair multigroup multicast problem under per-antenna power constraints is therefore derived. The implications of the novel constraints are investigated via prominent applications and paradigms. What is more, robust per-antenna constrained multigroup multicast beamforming solutions are proposed. Finally, an extensive performance evaluation quantifies the gains of the proposed algorithm over existing solutions and exhibits its accuracy over per-antenna power constrained systems.Comment: Under review in IEEE Transactions in Signal Processin

    Multicast Multigroup Beamforming under Per-antenna Power Constraints

    Full text link
    Linear precoding exploits the spatial degrees of freedom offered by multi-antenna transmitters to serve multiple users over the same frequency resources. The present work focuses on simultaneously serving multiple groups of users, each with its own channel, by transmitting a stream of common symbols to each group. This scenario is known as physical layer multicasting to multiple co-channel groups. Extending the current state of the art in multigroup multicasting, the practical constraint of a maximum permitted power level radiated by each antenna is tackled herein. The considered per antenna power constrained system is optimized in a maximum fairness sense. In other words, the optimization aims at favoring the worst user by maximizing the minimum rate. This Max-Min Fair criterion is imperative in multicast systems, where the performance of all the receivers listening to the same multicast is dictated by the worst rate in the group. An analytic framework to tackle the Max-Min Fair multigroup multicasting scenario under per antenna power constraints is therefore derived. Numerical results display the accuracy of the proposed solution and provide insights to the performance of a per antenna power constrained system.Comment: Presented in IEEE ICC 2014, Sydney, AUS. arXiv admin note: substantial text overlap with arXiv:1406.755

    Multicast Multigroup Beamforming for Per-antenna Power Constrained Large-scale Arrays

    Get PDF
    Large in the number of transmit elements, multi-antenna arrays with per-element limitations are in the focus of the present work. In this context, physical layer multigroup multicasting under per-antenna power constrains, is investigated herein. To address this complex optimization problem low-complexity alternatives to semi-definite relaxation are proposed. The goal is to optimize the per-antenna power constrained transmitter in a maximum fairness sense, which is formulated as a non-convex quadratically constrained quadratic problem. Therefore, the recently developed tool of feasible point pursuit and successive convex approximation is extended to account for practical per-antenna power constraints. Interestingly, the novel iterative method exhibits not only superior performance in terms of approaching the relaxed upper bound but also a significant complexity reduction, as the dimensions of the optimization variables increase. Consequently, multicast multigroup beamforming for large-scale array transmitters with per-antenna dedicated amplifiers is rendered computationally efficient and accurate. A preliminary performance evaluation in large-scale systems for which the semi-definite relaxation constantly yields non rank-1 solutions is presented.Comment: submitted to IEEE SPAWC 2015. arXiv admin note: substantial text overlap with arXiv:1406.755

    Interferometric array design: optimizing the locations of the antenna pads

    Get PDF
    The design of an interferometric array should allow optimal instrumental response regarding all possible source positions, times of integration and scientific goals. It should also take into account constraints such as forbidden regions on the ground due to impracticable topography. The complexity of the problem requires one to proceed by steps. A possible approach is to first consider a single observation and a single scientific purpose. A new algorithm is introduced to solve efficiently this particular problem called the configuration problem. It is based on the computation of pressure forces related to the discrepancies between the model (as determined by the scientific purpose) and the actual distribution of Fourier samples. The flexibility and rapidity of the method are well adapted to the full array design. A software named APO that can be used for the design of new generation interferometers such as ALMA and ATA has been developed.Comment: 9 pages, 7 figure

    Sum Rate Maximizing Multigroup Multicast Beamforming under Per-antenna Power Constraints

    Get PDF
    A multi-antenna transmitter that conveys independent sets of common data to distinct groups of users is herein considered, a model known as physical layer multicasting to multiple co-channel groups. In the recently proposed context of per-antenna power constrained multigroup multicasting, the present work focuses on a novel system design that aims at maximizing the total achievable throughput. Towards increasing the system sum rate, the available power resources need to be allocated to well conditioned groups of users. A detailed solution to tackle the elaborate sum rate maximization multigroup multicast problem under per-antenna power constraints is therefore derived. Numerical results are presented to quantify the gains of the proposed algorithm over heuristic solutions. Besides Rayleigh faded channels, the solution is also applied to uniform linear array transmitters operating in the far field, where line-ofsight conditions are realized. In this setting, a sensitivity analysis with respect to the angular separation of co-group users is included. Finally, a simple scenario providing important intuitions for the sum rate maximizing multigroup multicast solutions is elaborated.Comment: Submitted to IEEE GlobeCom 2014, Austin, TX. arXiv admin note: substantial text overlap with arXiv:1406.7699, arXiv:1406.755

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure
    corecore