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Abstract—Large in the number of transmit elements, multi-
antenna arrays with per-element limitations are in the focus
of the present work. In this context, physical layer multigroup
multicasting under per-antenna power constrains, is investigated
herein. To address this complex optimization problem low-
complexity alternatives to semi-definite relaxation are proposed.
The goal is to optimize the per-antenna power constrained
transmitter in a maximum fairness sense, which is formulated
as a non-convex quadratically constrained quadratic problem.
Therefore, the recently developed tool of feasible point pursuit
and successive convex approximation is extended to account for
practical per-antenna power constraints. Interestingly, the novel
iterative method exhibits not only superior performance in terms
of approaching the relaxed upper bound but also a significant
complexity reduction, as the dimensions of the optimization vari-
ables increase. Consequently, multicast multigroup beamforming
for large-scale array transmitters with per-antenna dedicated
amplifiers is rendered computationally efficient and accurate. A
preliminary performance evaluation in large-scale systems for
which the semi-definite relaxation constantly yields non rank-1
solutions is presented.

Index Terms—Large-scale Multicasting; Successive Convex
Approximation;

I. INTRODUCTION & RELATED WORK

Highly demanding applications (e.g. video broadcasting)
stretch the throughput limits of multiuser broadband systems.
To provide for such requirements, the adaptation of the phys-
ical layer design of next generation multi-antenna wireless
communication systems to the needs of the higher network
layers is imminent. In this direction, physical layer (PHY)
multicasting has the potential to efficiently address the nature
of future traffic demand and has become part of the new
generation of communication standards. In-line with the recent
trends for spectrally efficient massive multiple input multiple
output (MIMO) wireless systems [1], the topic of multicasting
over large-scale antenna arrays arises. A brief review of the
state-of-the art in multicasting follows.

A. PHY Multicasting

The NP-hard multicast problem was defined and accurately
approximated by semi-definite relaxation (SDR) and Gaussian
randomization in [2]. Extending the multicast concept, a
unified framework for physical layer multicasting to multiple
co-channel groups, where independent sets of common data
are transmitted to groups of users by the multiple antennas,
was given in [3], [4]. In parallel to [3], the work of [5]

involved dirty paper coding methods that are bound to increase
the complexity of the system. Next, a convex approximation
method for the maxmin fair optimization was proposed in
[6], exhibiting increased performance as the number of users
per group grows, but for relatively low numbers of transmit
antennas. In the same context, a similar iterative convex
approximation method, this time for the total power minimiza-
tion under quality-of-service (QoS) constraints formulation,
was considered in [7]. In this case, the conservative convex
approximation of [8] was employed and a channel phase
based, user scheduling method was performed as a second step
towards increasing the tightness of the approximation. Finally,
in [9], the multicast multigroup problem, was solved based on
approximations and uplink-downlink duality.

The hitherto reviewed literature on multigroup multicast
beamforming has only considered sum-power constraints
(SPCs) at the transmitter side. Amid this extensive literature,
the optimal multigroup multicast precoders when a maximum
limit is imposed on the transmitted power of each antenna,
have only recently been derived in [10], [11]. Therein, a con-
solidated solution for the weighted max–min fair multigroup
multicast beamforming problem under per-antenna constraints
(PACs) is presented. This framework is based on SDR and
Gaussian randomization to solve the QoS problem and bisec-
tion to derive an accurate approximation of the non-convex
maxmin fair formulation. However, as detailed in [11], the
PACs are bound to increase the complexity of the optimization
problem and reduce the accuracy of the approximation, espe-
cially as the number of transmit antennas is increasing. These
observations necessitate the investigation of lower complexity,
accurate approximations that can be applied on large-scale
antenna arrays, constrained by practical, per-antenna power
limitations.

B. Successive Convex Approximation

Inspired by the recent development of the feasible point
pursuit (FPP) successive convex approximation (SCA) of
non-convex quadratically constrained quadratic problems
(QCQPs), as developed in [12], the present work aims at im-
proving the maxmin fair solutions of [11]. The FPP − SCA
tool has been preferred over other existing approximations (for
instance [13]) due to its guaranteed feasibility regardless of the
initial state of the iterative optimization [12].
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The rest of the paper is structured as follows. The generic
per-antenna power constrained multicast multigroup system
model is presented in Sec. II while the maxmin problem is
formulated and solved in Sec. III. In Sec. IV, the performance
of the design is evaluated for a specific system setup. Finally,
Sec. V concludes the paper.

Notation: In the remainder of this paper, bold face lower
case and upper case characters denote column vectors and
matrices, respectively. The operators (∙)†, | ∙ | and ⊗ corre-
spond to the conjugate transpose, the absolute value and the
Kronecker product respectively, while [∙]ij denotes the i, j-th
element of a matrix. An identity matrix of N×N dimensions is
denoted as IN and its k-th column as ek. Calligraphic indexed
characters denote sets. R+

M denotes the set of real positive M -
dimensional vectors.

II. SYSTEM MODEL

Assuming a single transmitter, let Nt denote the number of
transmitting elements and Nu the total number of users served.
The input-output analytical expression will read as yi =
h†

ix+ni, where h†
i is a 1×Nt vector composed of the channel

coefficients (i.e. channel gains and phases) between the i-th
user and the Nt antennas of the transmitter, x is the Nt × 1
vector of the transmitted symbols and ni is the independent
complex circular symmetric (c.c.s.) independent identically
distributed (i.i.d) zero mean Additive White Gaussian Noise
(AWGN) measured at the i-th user’s receive antenna. Focusing
on a multigroup multicasting scenario, let there be a total of
1 ≤ G ≤ Nu multicast groups with I = {G1,G2, . . .GG} the
collection of index sets and Gk the set of users that belong
to the k-th multicast group, k ∈ {1 . . . G}. Each user belongs
to only one group, thus Gi ∩ Gj =Ø,∀i, j ∈ {1 ∙ ∙ ∙G}. Let
wk ∈ CNt×1 denote the precoding weight vector applied to
the transmit antennas to beamform towards the k-th group. The
assumption of independent data transmitted to different groups
renders the symbol streams {sk}G

k=1 mutually uncorrelated
and the total power radiated from the antenna array is Ptot =∑G

k=1 wk
†wk. The power radiated by each antenna element is

a linear combination of all precoders Pn =
[∑G

k=1 wkw
†
k

]

nn
,

where n ∈ {1 . . . Nt} is the antenna index.

III. MULTICAST MULTIGROUP UNDER PACS

A. SDR Based Solution

1) Max-Min Fair Formulation:

F : max
t, {wk}G

k=1

t

subject to
1
γi

|w†
khi|2

∑
l 6=k |w

†
l hi|2 + σ2

i

≥ t,

∀i ∈ Gk, k, l ∈ {1 . . . G},

and to

[
G∑

k=1

wkw
†
k

]

nn

≤ Pn,

∀n ∈ {1 . . . Nt},

(1)

(2)

where wk ∈ CNt and t ∈ R+. The notation
∑

l 6=k states
that aggregate interference from all co-channel groups is
calculated. Problem F receives as inputs the PACs vector
p = [P1, P2 . . . PNt

] and the target SINRs vector g =
[γ1, γ2, . . . γNu

]. Its goal is to maximize the slack variable t
while keeping all SINRs above this value. Thus, it constitutes a
max-min problem that guarantees fairness amongst users. The
main complication of problem F lies in constraint (1), where a
multiplication of the two optimization variables takes place. To
reduce this formulation into the more tractable QCQP form,
the following considerations are emanated.

2) Per-antenna Power Minimization: A relation between
the fairness and the power minimization problems for the
multicast multigroup case under SPCs was firstly established
in [4]. As a result, by bisecting the solution of the QoS
optimization, a solution to the weighted fairness problem can
be derived. Nevertheless, fundamental differences between the
SPC formulation and the PAC problem F , complicate the
solution. In more detail, the PACs –i.e (2)– are not necessarily
met with equality. A more detailed discussion on this can be
found in [11]. Therefore, a per-antenna power minimization
problem has been proposed in [11], as

Q : min
r, {wk}G

k=1

r

subject to
|w†

khi|2
∑

l 6=k |w
†
l hi|2 + σ2

i

≥ γi,

∀i ∈ Gk, k, l ∈ {1 . . . G},

and to
1

Pn

[
G∑

k=1

wkw
†
k

]

nn

≤ r,

∀n ∈ {1 . . . Nt},

(3)

(4)

with r ∈ R+. Problem Q receives as input SINR constraints
for all users, defined before as g, as well as the per antenna
power constraint vector p of (2). The introduction of the slack-
variable r, constraints the power consumption of each and
every antenna. Subsequently, at the optimum r∗, the maximum
power consumption out of all antennas is minimized and this
solution is denoted as r∗ = Q(g,p).

Claim 1: Problems F and Q are related as follows

1 = Q (F (g,p) ∙ g,p) (5)

t = F (g,Q (t ∙ g,p) ∙ p) (6)

(for proof cf. [11]) �
3) Bisection: The establishment of claim 1 allows for the

application of the bisection method, as developed in [2], [4].
The solution of r∗ = Qr

(
L+U

2 g,p
)

is obtained by bisecting
the interval [L,U ] as defined by the minimum and maximum
SINR values. Since t = (L+U)/2 represents the SINR, it will
always be positive or zero. Thus, L = 0. Also, if the system
was interference free while all the users had the channel of the
best user, then the maximum worst SINR would be attained,
thus U = maxi{PtotQi/σi}. If r∗ < 1, then the lower bound
of the interval is updated with this value. Otherwise the value
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is assigned to the upper bound of the interval. Bisection is
iteratively performed until an the interval size is reduced to
a pre-specified value ε (herein, ε = 10−3). This value needs
to be dependent on the magnitude of L and U so that the
accuracy of the solution is maintained regardless of the region
of operation. After a finite number of iterations, the optimal
value of F is given as the resulting value for which L and U
become almost identical, providing an accurate solution for F .

4) Relaxation and Gaussian Randomization: The bisection
method, as previously discussed, overcomes the non-convexity
due to the multiplication of two variables, namely t and w in
constraint (1). However, problem Q still remains non-convex.
Based on the observation that |w†

khi|2 = w†
khih

†
iwk =

Tr(w†
khih

†
iwk) = Tr(wkw

†
khih

†
i ) and with the change of

variables Xi = wiw
†
i , one can easily identify that the non-

convexity of Q lies in the necessity to constrain variable X to
have a unit rank. By dropping this constraint, the non-convex
Q can be relaxed to Qr, which reads as

Qr : min
r, {Xk}G

k=1

r

subject to
Tr
(
hih

†
iXk

)

∑
l 6=k Tr

(
hih

†
iXl

)
+ σ2

i

≥ γi,

∀i ∈ Gk, k, l ∈ {1 . . . G},

and to
1

Pn

[
G∑

k=1

Xk

]

nn

≤ r

∀n ∈ {1 . . . Nt},

and to Xk � 0, ∀k ∈ {1 . . . G},

(7)

(8)

(9)

Following this relaxation, the derivation of the optimal value
w∗ requires a rank-1 approximation over X∗. The approxima-
tion with the highest accuracy is proven to be the Gaussian
approximation [14]. In summary, this procedure involves the
generation of precoding vectors drawn from a Gaussian dis-
tribution with statistics defined by the relaxed solution. After
generating a a number of instances and re-scaling them, the
solution with the closest performance to the relaxed upper
bound, as given by the optimal point of Qr is chosen. More
details on the SDR based solution under PACs, can be found
in [11].

B. Successive Convex Approximation

Problem Q belongs in the general class of non-convex
QCQPs for which the SDR technique is proven to be a
powerful and computationally efficient approximation tech-
nique [14]. However, the FPP − SCA, a recently proposed
alternative to SDR, is herein considered [12]. By defining
wtot = [w†

1,w
†
2 . . .w†

G]†, the i-th SINR constraint reads as

w†
totAiwtot ≤ −γiσ

2
i , (10)

where Ai = A(+)
i +A(−)

i with A(+)
i = γi (IG − diag{ek})⊗

hih
†
i and A(−)

i = −diag{ek} ⊗ hih
†
i , ∀i ∈ Gk. Assuming

a random point z, then by the definition of a semi-definite

matrix A(−)
i we have (wtot − z)† A(−)

i (wtot − z) ≤ 0. By
expanding this, a linear restriction of wtot around z reads as

w†
totA

(−)
i wtot ≤ 2Re

{
z†A(−)

i wtot

}
− z†A(−)

i z. (11)

Consequently, the SINR constraint (10) can be replaced by

w†
totA

(+)
i wtot + 2Re

{
z†A(−)

i wtot

}
− z†A(−)

i z ≤ −γiσ
2
i ,

in which the unknown variables are quadratic over a semi-
definite matrix. By adding slack penalties s ∈ R+

(Nu+1), the
the original QCQP problem Q can be approximated by

QSCA : min
r,wtot,s

r + λ||s||

s.t. w†
totA

(+)
i wtot + 2Re

{
z(j)†A(−)

i wtot

}

− z(j)†A(−)
i z(j) ≤ −γiσ

2
i + si

∀i ∈ Gk, k, l ∈ {1 . . . G},

and to
1

Pn

[
wtotw

†
tot

]

nn
≤ r + sNu+1

∀n ∈ {1 . . . Nt},

(12)

(13)

where r ∈ R+, λ ∈ R is a fixed input parameter and z(j)

is the j−th instance of the introduced auxiliary variable. In
each instance of the SCA algorithm, QSCA is solved and
the starting point is updated as z(j+1) = w(j)

tot. The iterative
process is repeated until the guaranteed convergence [12].

C. Complexity & Convergence discussions

An important discussion involves the complexity of the
employed techniques to approximate a solution of the highly
complex, NP-hard multigroup multicast problem under PACs.
Focusing on the SDR based solution of [11], the main com-
plexity burden originates from the relaxed Qr. The total worst
case complexity of the SDR based solution of F , as in detail
is calculated in [11], is summarised in the following. Initially,
a bisection search is performed over Qr to obtain the relaxed
solution. This bisection runs for Niter = dlog2 (U1 − L1) /ε1e
where ε1 is the desired accuracy of the search. Typically ε1
needs to be at least three orders of magnitude below the
magnitudes of U1, L1 for sufficient accuracy. In each iteration
of the bisection search, problem Qr is solved. This SDP has
G matrix variables of Nt × Nt dimensions and Nu + Nt

linear constraints. Moreover, in each iteration not more than
O(G3N6

t + GN3
t + NuGN2

t ) arithmetic operations will be
performed. Next, a fixed number of Gaussian random instances
with covariance given by the previous solution are generated.
The complexity of this process is linear with respect to the
number of Gaussian randomizations. More details on the total
complexity of the SDR based algorithm can be found in [11]
and are herein omitted for shortness.

As far as the FPP − SCA method is concerned, the iterative
process typically runs for a few iterations, especially for larger
values of λ. As in detail explained in [12], convergence is
guaranteed. Therein, λ was set to 10 while herein even greater
values are chosen, i.e. λ = 25 since the optimization problems
tackled involve a larger number of constraints. Therefore,
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In each iteration of the FPP − SCA, bisection search is
performed over QSAC . The later, is a second order cone
program with a worst case complexity of O((GNt + Nu)3.5).
This justifies the user of the FPP − SCA in scenarios with
large system dimensions.

IV. PERFORMANCE EVALUATION & APPLICATIONS

A. Uniform Linear Arrays

To the end of investigating the sensitivity of the proposed
algorithm in a generic environment, a uniform linear array
(ULA) transmitter is considered. Assuming far-field, line-of-
sight conditions, the user channels can be modeled using
Vandermonde matrices. For this important special case, the
SPC multicast multigroup problem was reformulated into a
convex optimization problem and solved in [15], [16]. These
results where motivated by the observation that in sum power
constrained ULA scenarios, the relaxation consistently yields
rank one solutions. Thus, for such cases, the SDR is essentially
optimal [2]. Nevertheless, the SDR of the PAC minimization
problem in ULAs is not always tight as shown in [11].

Let us consider a ULA serving 4 users allocated to 2
distinct groups. In Fig. 1, its radiation pattern for Nt = 8
antennas and for co-group angular separation θa = 35◦ is
plotted. A total power budget of P = −3 dBW is equally
distributed amongst the available antennas. For the Gaus-
sian randomization, Nrand = 100 instances are considered.
Clearly, the multigroup multicast beamforming optimizes the
lobes to reduce interferences between the two groups. The
beam patterns from both SDR and FPP − SCA solutions
are included in Fig. 1. The superiority in terms of minimum
achievable SINR of the latter solution is apparent. Hereafter,
the performance evaluation will be based on the minimum user
rate, since in the optimization all users are equally weighted.

Firstly, the performance with respect to the angular sep-
aration of co-group users is investigated, as θa is increased
for both groups in the fashion indicated in Fig. 1. In Fig. 2,
when co-group users are collocated, i.e. θa = 0◦, the highest
minimum rate is attained. As the separation increases, the rate
is reduced reaching a local minimum when interfering users
are placed in the same position, i.e. θa = 45◦. Then, the lowest
value is observed when co-group users are orthogonal, i.e.
θa = 90◦. In Fig. 2, the lack of tightness of the relaxation for
the SDR based solution is clear as the channel conditions are
deteriorating. The only exception is when θa = 60◦, where
the inherent symmetricity of the ULA transmitter is providing
sufficient conditions for a rank-1 solution to be easily obtained.
Interestingly, this is the only situation where the FPP − SCA
method provides a suboptimal solution. For all other instances,
the superiority of the lower complexity solution is clear.
Consequently, the FPP − SCA outperforms SDR, over the
majority of the span of the angular separations, for moderately
sized ULAs. In the same setting, the normalized simulation
time to compute each precoder is given in Fig. 3. Clearly, when
the SDR does not yield rank-1 solutions, the FPP − SCA
methods can not only provide more accurate solutions but also
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Fig. 1. ULA beampattern for PAC and re-scaled SPC solutions.
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Fig. 2. ULA performance in terms of minimum SINR per group, for
increasing co-group user angular separation.

at a significantly reduced time. Almost 50% of gains in terms
of simulation time are observed at θa = 80◦.

Finally, for an angular separation of θa = 60◦ where
the FPP − SCA solution performs worse, the minimum rate
versus an increasing number of transmit antennas is plotted in
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Fig. 3. Normalized simulation time for increasing co-group user angular
separation.
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Fig. 4. ULA performance in terms of minimum user rate versus an increasing
number of transmit antennas.
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Fig. 5. Normalized simulation time versus an increasing number of transmit
antennas.

Fig. 4, while all other simulation parameters remain unaltered.
Therein, the benefits of FPP − SCA as the number of anten-
nas is increasing are shown. The SDR solution, fails to provide
an accurate solution from 10 antennas onwards. Nevertheless,
the FPP − SCA methods provide a tight approximation to the
upper bound irrespective of the number of transmit antennas.
Impressively, the almost 20% of performance gains come also
at reduced complexity. As shown in Fig. 5, the simulation
time can be reduced by even 80%, for large-scale antenna
arrays. It should be clarified, that the simulation time figures
do not follow the complexity dependence given in Sec. III-C
simply because the considerations mentioned therein involve
worst case complexity. Existing solvers employed typically
exploit the specific structure of matrices thus reducing the
actual execution time.

V. CONCLUSIONS

Herein, the max−min fair multicast multigroup prob-
lem under PACs is solved for large-scale antenna arrays.
Impressively, the accurate and low complexity FPP − SCA
methods outperform existing SDR based approaches both in

terms of complexity as well as accuracy, as the number of
transmit antennas increases. Future extensions of this work
involve different optimization criteria such as the sum rate
maximization as well as robust formulations.
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