4 research outputs found

    ANT colony optimization based optimal path selection and data gathering in WSN

    Get PDF
    A data aggregation is an essential process in the field of wireless sensor network to deal with base station and sink node. In current data gathering mechanism, the nearest nodes to the sink receives data from all the other nodes and shares it to the sink. The data aggregation process is utilized to increase the capability and efficiency of the existing system. In existing technique, the possibility of data loss is high this may leads to energy loss therefore; the efficiency and performance are damaged. In order to overcome these issues, an effective cluster based data gathering technique is developed. Here the optimal cluster heads are selected which is used for transmission with low energy consumption. The optimal path for mobile sink (MS) is done by Ant Colony Optimization (ACO) algorithm. It provides efficient path along with MS to collect the data along with Cluster centroid. The performance of the proposed method is analyzed in terms of delay, throughput, lifetime, etc.</p

    DESIGN OF A MINIMAL OVERHEAD CONTROL TRAFFIC TOPOLOGY DISCOVERY AND DATA FORWARDING PROTOCOL FOR SOFTWARE-DEFINED WIRELESS SENSOR NETWORKS

    Get PDF
    Software-defined networking is a novel concept that is ported into wireless sensor networks to make them more manageable and customizable. unfortunately, the topology discovery and maintenance processes generate high overhead control packet exchange between the sensor nodes and the central controller leading to a deterioration of the network's performance. In this paper, a novel minimal overhead control traffic topology discovery and data forwarding protocol is proposed and detailed. The proposed protocol requires some changes to the topology discovery protocol implemented in SDN-WISE to improve its performance. The proposed protocol has been implemented within the IT-SDN framework for evaluation. The results show reduced overhead control traffic and increase, of about 20%, data packet delivery rate over the protocol in SDN-WISE

    Energy and throughput efficient strategies for heterogeneous future communication networks

    Get PDF
    As a result of the proliferation of wireless-enabled user equipment and data-hungry applications, mobile data traffic has exponentially increased in recent years.This in-crease has not only forced mobile networks to compete on the scarce wireless spectrum but also to intensify their power consumption to serve an ever-increasing number of user devices. The Heterogeneous Network (HetNet) concept, where mixed types of low-power base stations coexist with large macro base stations, has emerged as a potential solution to address power consumption and spectrum scarcity challenges. However, as a consequence of their inflexible, constrained, and hardware-based configurations, HetNets have major limitations in adapting to fluctuating traffic patterns. Moreover, for large mobile networks, the number of low-power base stations (BSs) may increase dramatically leading to sever power consumption. This can easily overwhelm the benefits of the HetNet concept. This thesis exploits the adaptive nature of Software-defined Radio (SDR) technology to design novel and optimal communication strategies. These strategies have been designed to leverage the spectrum-based cell zooming technique, the long-term evolution licensed assisted access (LTE-LAA) concept, and green energy, in order to introduce a novel communication framework that endeavors to minimize overall network on-grid power consumption and to maximize aggregated throughput, which brings significant benefits for both network operators and their customers. The proposed strategies take into consideration user data demands, BS loads, BS power consumption, and available spectrum to model the research questions as optimization problems. In addition, this thesis leverages the opportunistic nature of the cognitive radio (CR) technique and the adaptive nature of the SDR to introduce a CR-based communication strategy. This proposed CR-based strategy alleviates the power consumption of the CR technique and enhances its security measures according to the confidentiality level of the data being sent. Furthermore, the introduced strategy takes into account user-related factors, such as user battery levels and user data types, and network-related factors, such as the number of unutilized bands and vulnerability level, and then models the research question as a constrained optimization problem. Considering the time complexity of the optimum solutions for the above-mentioned strategies, heuristic solutions were proposed and examined against existing solutions. The obtained results show that the proposed strategies can save energy consumption up to 18%, increase user throughput up to 23%, and achieve better spectrum utilization. Therefore, the proposed strategies offer substantial benefits for both network operators and users
    corecore