466 research outputs found

    A game theoretic approach for optimizing density of remote radio heads in user centric cloud-based radio access network

    Get PDF
    In this paper, we develop a game theoretic formulation for empowering cloud enabled HetNets with adaptive Self Organizing Network (SON) capabilities. SON capabilities for intelligent and efficient radio resource management is a fundamental design pillar for the emerging 5G cellular networks. The C-RAN system model investigated in this paper consists of ultra-dense remote radio heads (RRHs) overlaid by central baseband units that can be collocated with much less densely deployed overlaying macro base-stations (BSs). It has been recently demonstrated that under a user centric scheduling mechanism, C-RAN inherently manifests the trade-off between Energy Efficiency (EE) and Spectral Efficiency (SE) in terms of RRH density. The key objective of the game theoretic framework developed in this paper is to dynamically optimize the trade-off between the EE and the SE of the C- RAN. More specifically, for an ultra-dense C- RAN based HetNet, the density of active RRHs should be carefully dimensioned to maximize the SE. However, the density of RRHs which maximizes the SE may not necessarily be optimal in terms of the EE. In order to strike a balance between these two performance determinants, we develop a game theoretic formulation by employing a Nash bargaining framework. The two metrics of interest, SE and EE, are modeled as virtual players in a bargaining problem and the Nash bargaining solution for RRH density is determined. In the light of the optimization outcome we evaluate corresponding key performance indicators through numerical results. These results offer insights for a C-RAN designer on how to optimally design a SON mechanism to achieve a desired trade-off level between the SE and the EE in a dynamic fashion

    On the Efficiency tradeoffs in User-Centric Cloud RAN

    Get PDF
    Ambitious targets for aggregate throughput, energy efficiency and ubiquitous user experience are propelling the advent of ultra-dense networks. Intercell interference and high energy consumption in an ultra-dense network are the prime hindering factors in pursuit of these goals. To address the aforementioned challenges, in this paper, we propose a novel user-centric network orchestration solution for Cloud RAN based ultra-dense deployments. In this solution, a cluster (virtual disc) is created around users depending on their service priority. Within the cluster radius, only the best remote radio head (RRH) is activated to serve the user, thereby decreasing interference and saving energy. We use stochastic geometry based approach to quantify the area spectral efficiency (ASE) and RRH power consumption models to quantity energy(EE) efficiency of the proposed user-centric Cloud RAN (UCRAN). Through extensive analysis we observe that the cluster sizes that yield optimal ASE and EE are quite different. We propose a game theoretic self-organizing network (GT-SON) framework that can orchestrate the network between ASE and EE focused operational modes in real-time in response to changes in network conditions and the operator's revenue model, to achieve a Pareto optimal solution. A bargaining game is modeled to investigate the ASE-EE tradeoff through adjustment in the exponential efficiency weightage in the Nash bargaining solution (NBS). Results show that compared to current non-user centric network design, the proposed solution offers the flexibility to operate the network at multiple folds higher ASE or EE along with significant improvement in user experience

    The impact of base station antennas configuration on the performance of millimetre wave 5G networks

    Get PDF
    In this paper, two scenarios have been considered for millimetre wave base station configuration. In the first scenario, the approach of Distributed Base Station (DBS) with remote radio units (RRU) is chosen as the envisioned architecture for future 5G network. This approach is compatible with cloud radio access network (C-RAN), as it has easier scalability and compatibility with future network expansions and upgrades. RRU has been used in this work as a way to sidestep the limited coverage and poor channel condition, which characterise millimetre wave band. This will minimise the number of required sites installation for the same quality of service (QoS). The results of this approach have shown significant improvements in terms of User Equipment (UE) throughput, average cell throughput, and spectral efficiency. In the second scenario, optimising antenna element spacing is considered in the base station array. The results show significant improvement in the network performance and provide better performance for cell-edge users in terms of data throughput

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    NOVEL USER-CENTRIC ARCHITECTURES FOR FUTURE GENERATION CELLULAR NETWORKS: DESIGN, ANALYSIS AND PERFORMANCE OPTIMIZATION

    Get PDF
    Ambitious targets for aggregate throughput, energy efficiency (EE) and ubiquitous user experience are propelling the advent of ultra-dense networks. Inter-cell interference and high energy consumption in an ultra-dense network are the prime hindering factors in pursuit of these goals. To address this challenge, we investigate the idea of transforming network design from being base station-centric to user-centric. To this end, we develop mathematical framework and analyze multiple variants of the user-centric networks, with the help of advanced scientific tools such as stochastic geometry, game theory, optimization theory and deep neural networks. We first present a user-centric radio access network (RAN) design and then propose novel base station association mechanisms by forming virtual dedicated cells around users scheduled for downlink. The design question that arises is what should the ideal size of the dedicated regions around scheduled users be? To answer this question, we follow a stochastic geometry based approach to quantify the area spectral efficiency (ASE) and energy efficiency (EE) of a user-centric Cloud RAN architecture. Observing that the two efficiency metrics have conflicting optimal user-centric cell sizes, we propose a game theoretic self-organizing network (GT-SON) framework that can orchestrate the network between ASE and EE focused operational modes in real-time in response to changes in network conditions and the operator's revenue model, to achieve a Pareto optimal solution. The designed model is shown to outperform base-station centric design in terms of both ASE and EE in dense deployment scenarios. Taking this user-centric approach as a baseline, we improve the ASE and EE performance by introducing flexibility in the dimensions of the user-centric regions as a function of data requirement for each device. So instead of optimizing the network-wide ASE or EE, each user device competes for a user-centric region based on its data requirements. This competition is modeled via an evolutionary game and a Vickrey-Clarke-Groves auction. The data requirement based flexibility in the user-centric RAN architecture not only improves the ASE and EE, but also reduces the scheduling wait time per user. Offloading dense user hotspots to low range mmWave cells promises to meet the enhance mobile broadband requirement of 5G and beyond. To investigate how the three key enablers; i.e. user-centric virtual cell design, ultra-dense deployments and mmWave communication; are integrated in a multi-tier Stienen geometry based user-centric architecture. Taking into account the characteristics of mmWave propagation channel such as blockage and fading, we develop a statistical framework for deriving the coverage probability of an arbitrary user equipment scheduled within the proposed architecture. A key advantage observed through this architecture is significant reduction in the scheduling latency as compared to the baseline user-centric model. Furthermore, the interplay between certain system design parameters was found to orchestrate the ASE-EE tradeoff within the proposed network design. We extend this work by framing a stochastic optimization problem over the design parameters for a Pareto optimal ASE-EE tradeoff with random placements of mobile users, macro base stations and mmWave cells within the network. To solve this optimization problem, we follow a deep learning approach to estimate optimal design parameters in real-time complexity. Our results show that if the deep learning model is trained with sufficient data and tuned appropriately, it yields near-optimal performance while eliminating the issue of long processing times needed for system-wide optimization. The contributions of this dissertation have the potential to cause a paradigm shift from the reactive cell-centric network design to an agile user-centric design that enables real-time optimization capabilities, ubiquitous user experience, higher system capacity and improved network-wide energy efficiency

    Performance Optimization of Cloud Radio Access Networks

    Get PDF
    The exponential growth of cellular data traffic over the years imposes a hard challenge on the next cellular generations. The cloud radio access network (CRAN) is an emerging cellular architecture that is expected to face that challenge effectively. The main difference between the CRAN architecture and the conventional cellular architecture is that the baseband units (BBUs) are aggregated at a centralized baseband unit pool, hence, enabling statistical multiplexing gains. However, to acquire the several advantages offered by the CRAN architecture, efficient optimization algorithms and transmission techniques should be implemented to enhance the network performance. Hence, in this thesis, we consider jointly optimizing user association, resource allocation and power allocation in a two tier heterogeneous cloud radio access network (H-CRAN). Our objective is to utilize all the network resources in the most efficient way to maximize the network average throughput, while keeping some constraints such as the quality of service (QoS), interference protection to the devices associated with the Macro remote radio head (MRRH), and fronthaul capacity. In our system, we propose using coordinated multi-point (CoMP) transmissions to utilize any excess resources to maximize the network performance, in contrast to the literature, in which CoMP is usually used only to support edge users. We divide our joint problem into three sub-problems: user association, radio resource allocation, and power allocation. We propose matching game based low complexity algorithms to tackle the first two sub-problems. For the power allocation sub-problem, we propose a novel technique to convexify the non-convex original problem to obtain the optimal solution. Given the conducted simulations, our proposed algorithms proved to enhance the network average weighted sum rate significantly, compared to the state of the art algorithms in the literature. The high computational complexity of the optimization techniques currently proposed in the literature prevents from totally reaping the benefits of the CRAN architecture. Learning based techniques are expected to replace the conventional optimization techniques due to their high performance and very low online computational complexity. In this thesis, we propose tackling the power allocation in CRAN via an unsupervised deep learning based approach. Different from the previous works, user association is considered in our optimization problem to reflect a real cellular scenario. Additionally, we propose a novel scheme that can enhance the deep learning based power allocation approaches, significantly. We provide intensive analysis to discuss the trade-offs faced when employing our deep learning based approach for power allocation. Simulation results prove that the proposed technique can obtain a very close to optimal performance with negligible computational complexity
    corecore