9 research outputs found

    Focusing in Asynchronous Games

    Get PDF
    Game semantics provides an interactive point of view on proofs, which enables one to describe precisely their dynamical behavior during cut elimination, by considering formulas as games on which proofs induce strategies. We are specifically interested here in relating two such semantics of linear logic, of very different flavor, which both take in account concurrent features of the proofs: asynchronous games and concurrent games. Interestingly, we show that associating a concurrent strategy to an asynchronous strategy can be seen as a semantical counterpart of the focusing property of linear logic

    Symmetry in concurrent games

    Get PDF
    Abstract—Behavioural symmetry is introduced into concurrent games. It expresses when plays are essentially the same. A characterization of strategies on games with symmetry is provided. This leads to a bicategory of strategies on games with symmetry. Symmetry helps allay the perhaps overly-concrete nature of games and strategies, and shares many mathematical features with homotopy. In the presence of symmetry we can consider monads for which the monad laws do not hold on the nose but do hold up to symmetry. This broadening of the concept of monad has a dramatic effect on the types concurrent games can support and allows us, for example, to recover the replication needed to express and extend traditional game semantics of programming languages. I

    Isomorphisms of types in the presence of higher-order references

    Full text link
    We investigate the problem of type isomorphisms in a programming language with higher-order references. We first recall the game-theoretic model of higher-order references by Abramsky, Honda and McCusker. Solving an open problem by Laurent, we show that two finitely branching arenas are isomorphic if and only if they are geometrically the same, up to renaming of moves (Laurent's forest isomorphism). We deduce from this an equational theory characterizing isomorphisms of types in a finitary language with higher order references. We show however that Laurent's conjecture does not hold on infinitely branching arenas, yielding a non-trivial type isomorphism in the extension of this language with natural numbers.Comment: Twenty-Sixth Annual IEEE Symposium on Logic In Computer Science (LICS 2011), Toronto : Canada (2011

    Strategies as Resource Terms, and their Categorical Semantics

    Full text link
    As shown by Tsukada and Ong, simply-typed, normal and eta-long resource terms correspond to plays in Hyland-Ong games, quotiented by Melli\`es' homotopy equivalence. The original proof of this inspiring result is indirect, relying on the injectivity of the relational model w.r.t. both sides of the correspondence -- in particular, the dynamics of the resource calculus is taken into account only via the compatibility of the relational model with the composition of normal terms defined by normalization. In the present paper, we revisit and extend these results. Our first contribution is to restate the correspondence by considering causal structures we call augmentations, which are canonical representatives of Hyland-Ong plays up to homotopy. This allows us to give a direct and explicit account of the connection with normal resource terms. As a second contribution, we extend this account to the reduction of resource terms: building on a notion of strategies as weighted sums of augmentations, we provide a denotational model of the resource calculus, invariant under reduction. A key step -- and our third contribution -- is a categorical model we call a resource category, which is to the resource calculus what differential categories are to the differential lambda-calculus.Comment: extended versio

    Isomorphisms of types in the presence of higher-order references (extended version)

    Full text link
    We investigate the problem of type isomorphisms in the presence of higher-order references. We first introduce a finitary programming language with sum types and higher-order references, for which we build a fully abstract games model following the work of Abramsky, Honda and McCusker. Solving an open problem by Laurent, we show that two finitely branching arenas are isomorphic if and only if they are geometrically the same, up to renaming of moves (Laurent's forest isomorphism). We deduce from this an equational theory characterizing isomorphisms of types in our language. We show however that Laurent's conjecture does not hold on infinitely branching arenas, yielding new non-trivial type isomorphisms in a variant of our language with natural numbers

    Calculus for decision systems

    Get PDF
    The conceptualization of the term system has become highly dependent on the application domain. What a physicist means by the term system might be different than what a sociologist means by the same term. In 1956, Bertalanffy [1] defined a system as a set of units with relationships among them . This and many other definitions of system share the idea of a system as a black box that has parts or elements interacting between each other. This means that at some level of abstraction all systems are similar, what eventually differentiates one system from another is the set of underlining equations which describe how these parts interact within the system. ^ In this dissertation we develop a framework that allows us to characterize systems from an interaction level, i.e., a framework that gives us the capability to capture how/when the elements of the system interact. This framework is a process algebra called Calculus for Decision Systems (CDS). This calculus provides means to create mathematical expressions that capture how the systems interact and react to different stimuli. It also provides the ability to formulate procedures to analyze these interactions and to further derive other interesting insights of the system. ^ After defining the syntax and reduction rules of the CDS, we develop a notion of behavioral equivalence for decision systems. This equivalence, called bisimulation, allows us to compare decision systems from the behavioral standpoint. We apply our results to games in extensive form, some physical systems, and cyber-physical systems. ^ Using the CDS for the study of games in extensive form we were able to define the concept of subgame perfect equilibrium for a two-person game with perfect information. Then, we investigate the behavior of two games played in parallel by one of the players. We also explore different couplings between games, and compare - using bisimulation - the behavior of two games that are the result of two different couplings. The results showed that, with some probability, the behavior of playing a game as first player, or second player, could be irrelevant. ^ Decision systems can be comprised by multiple decision makers. We show that in the case where two decision makers interact, we can use extensive games to represent the conflict resolution. For the case where there are more than two decision makers, we presented how to characterize the interactions between elements within an organizational structure. Organizational structures can be perceived as multiple players interacting in a game. In the context of organizational structures, we use the CDS as an information sharing mechanism to transfer the inputs and outputs from one extensive game to another. We show the suitability of our calculus for the analysis of organizational structures, and point out some potential research extensions for the analysis of organizational structures. ^ The other general area we investigate using the CDS is cyber-physical systems. Cyber-physical systems or CPS is a class of systems that are characterized by a tight relationship between systems (or processes) in the areas of computing, communication and physics. We use the CDS to describe the interaction between elements in some simple mechanical system, as well as a particular case of the generalized railroad crossing (GRC) problem, which is a typical case of CPS. We show two approaches to the solution of the GRC problem. ^ This dissertation does not intend to develop new methods to solve game theoretical problems or equations of motion of a physical system, it aims to be a seminal work towards the creation of a general framework to study systems and equivalence of systems from a formal standpoint, and to increase the applications of formal methods to real-world problems
    corecore