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Abstract—Behavioural symmetry is introduced into concurrent
games. It expresses when plays are essentially the same. A char-
acterization of strategies on games with symmetry is provided.
This leads to a bicategory of strategies on games with symmetry.
Symmetry helps allay the perhaps overly-concrete nature of
games and strategies, and shares many mathematical features
with homotopy. In the presence of symmetry we can consider
monads for which the monad laws do not hold on the nose but
do hold up to symmetry. This broadening of the concept of monad
has a dramatic effect on the types concurrent games can support
and allows us, for example, to recover the replication needed to
express and extend traditional game semantics.

I. INTRODUCTION

In game semantics of programming languages a type of
a program is represented by a game, and the program itself
by a strategy in the game. The approach is very flexible:
game semantics has managed to capture accurately a wide
variety of features of higher-order programming languages,
including state, control, exceptions, and many others. Game
semantics follows the methodology of denotational semantics,
and interprets complex programs compositionally in terms of
interpretations of their components. Game semantics is also
operational: moves in a game correspond to computation steps.
As such it is increasingly exploited to provide a syntax-free
operational semantics for programming languages, a much
needed tool for the analysis and verification of programs.

Concurrency is a central concern in computer science.
Reflecting the traditions of concurrency theory, game seman-
tics for concurrent programs come in two styles: based on
interleavings and on partial-orders. Of these, the historical
focus has been on interleaving, giving models of various
programming languages [1], [2], even a model-checking tool
[3]. Partial-order methods have the strength of supporting
reasoning about dependency directly, but are at a more pre-
liminary stage. Abramsky and Melliès proposed in [4] a
framework for concurrent games based on closure operators,
re-understood later by Melliès and Mimram in terms of
asynchronous transition systems [5], [6]; Faggian and Piccolo
have also presented strategies as partial orders [7]. In [8],
Rideau and Winskel gave a new foundation based on event
structures, generalizing all previous approaches and allowing
nondeterminism. It is this framework we refer to as concurrent
games.

When developing a game semantics, one has to deal with
the low-level aspect of games—some identities that hold op-
erationally do not hold automatically in games. An important
example of such phenomena occurs in the replication of
resources in programming languages: whereas two accesses

to the same resource might be indistinguishable operationally,
they can correspond to different and unrelated events in
the game. In this sense, games are overly-concrete. In the
history of game semantics [9], this has been alleviated by
introducing symmetry into games. Informally, symmetry in a
game concerns when one play of a game is essentially the same
as another. Our treatment of symmetry in concurrent games,
where plays can be highly-distributed, stems from earlier work
on symmetry in event structures [10] and makes use of a
general method of open maps for defining bisimulation in
a variety of models [11]. Briefly, a symmetry in a game is
expressed as a bisimulation equivalence (given as a span of
open maps) that says when two plays are similar according
to the symmetry. This feature considerably enhances the
mathematical theory of concurrent games. Symmetry comes
to share many features with homotopy—symmetric plays are
like homotopic paths—which plays a role in its mathematical
development.

a) Contributions.: Firstly, we introduce concurrent
games with symmetry. This involves a new definition of the
copycat strategy and of composition, which now have to
respect symmetry. As in [8], we characterize strategies, for
which copycat behaves like an identity w.r.t. composition. This
leads to the construction of a bicategory (up to symmetry)
of concurrent games with symmetry and symmetry-respecting
strategies. Secondly, we give two illustrations of how this
framework can be used to model logics and programming
languages. The first is a presentation within concurrent games
of the construction of [12], using an adaptation of AJM games
[9] to model classical linear logic (CLL). The second is a
concurrent games presentation of HO games [13], giving a
concurrent and non-deterministic notion of innocent strategies
(in the sense of Hyland and Ong), and a new proof that
standard innocent strategies are stable under composition.

b) Related work.: In sequential games, the notion of
symmetry that is closest to ours is that of AJM games
[9], and in particular its variant in [12]. In asynchronous
games, Melliès expressed symmetry by giving groups acting
on the game [14], reindexing the events. Restricting to a
polarized deterministic setting, it should be possible to refor-
mulate Melliès’ approach in terms of concurrent games with
symmetry—left however for future work.

c) Outline.: In Section II, we present event structures,
and their extension with symmetry and polarity. In Section
III, we give the main contribution of this paper, the bicategory
of concurrent games with symmetry and concurrent strategies.
In Section IV we give two important applications: concurrent
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generalizations of AJM games and HO games, showing how
concurrent games with symmetry extend the games of tradi-
tional game semantics.

II. PRELIMINARIES

A. Event structures

An event structure comprises (E,≤,Con), consisting of a
set E, of events which are partially ordered by ≤, the causal
dependency relation, and a nonempty consistency relation Con
consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The (finite) configurations, C(E), of an event structure E
consist of those finite subsets x ⊆ E which are

Consistent: x ∈ Con, and
Down-closed: ∀e, e′. e′ ≤ e ∈ x Ô⇒ e′ ∈ x.

We say an event structure is elementary when the consistency
relation consists of all finite subsets of events. For X ⊆ E we
write [X]E for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure of
X; note if X ∈ Con, then [X]E ∈ Con is a configuration. In
games the relation of immediate dependency e _ e′, meaning
e and e′ are distinct with e ≤ e′ and no event in between,
will play a very important role. For configurations x, y, we
use x−⊂y to mean y covers x, i.e. x ⊂ y with nothing in
between, and x

e−Ð⊂y to mean x ∪ {e} = y for an event e ∉ x.
We sometimes use x

e−Ð⊂, expressing that event e is enabled
at configuration x, when x

e−Ð⊂y for some y.
A (partial) map of event structures f ∶ E → E′ is a partial

function f ∶ E ⇀ E′ from the events of E to the events of E′

such that for all configurations x ∈ C(E),

fx ∈ C(E′) & (∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2) .
Maps compose as functions. We say a map is total when it is
total as a function; then f restricts to a bijection x ≅ fx on
x ∈ C(E). Say a total map of event structures is rigid when
it preserves causal dependency. We write E (resp. Ep) for the
category of event structures with total (resp. partial). These two
categories have coproducts, binary products and pullbacks.

Proposition 1. Finite configurations of a product A × B
in E correspond to secured bijections θ ∶ x ≅ y between
configurations x ∈ C(A) and y ∈ C(B), such that the order
generated on θ by taking (a, b) ≤ (a′, b′) if a ≤A a or b ≤B b′
is a partial order. The correspondence respects inclusion.

Individual configurations inherit an order from the ambient
event structure and can themselves be regarded as finite ele-
mentary event structures. Viewed this way, an inclusion x ⊆ y
between configurations induces a rigid map x↪ y between the
configurations regarded as event structures. The configurations
of an event structure form a non-empty family of finite partial
orders closed under rigid inclusions. Conversely, given such a
rigid family, we can build an event structure:

Proposition 2. Let Q be a rigid family, a non-empty family of
finite partial orders closed under rigid inclusions, i.e. if q ∈ Q
and q′ ↪ q is a rigid inclusion (regarded as a map of event
structures) then q′ ∈ Q. The family Q determines an event
structure Pr(Q) =def (P,≤,Con):

● the events P are the finite partial orders in Q with a top
element (the primes),

● the causal dependency relation p′ ≤ p holds when there
is a rigid inclusion from p′ ↪ p;

● for any finite X ⊆ P , X ∈ Con iff there is q ∈ Q and rigid
inclusions p↪ q for all p ∈X .

If x ∈ C(P ) then ⋃x, the union of the partial orders in x,
is in Q. The function x ↦ ⋃x is an order-isomorphism from
C(P ), ordered by inclusion, to Q, ordered by rigid inclusions.

B. Symmetry

We endow event structures with symmetry. A relation of
symmetry on an event structure expresses when two configu-
rations are essentially the same and is expressed as a form of
bisimulation equivalence, based on open maps [11].

1) Open maps: Open maps are a generalisation of func-
tional bisimulations, known from transition systems. Let C be
a category with a distinguished subcategory P of path objects
with path-extension maps. A map f ∶ A → B in C is open if
it satisfies a path-lifting property:

p //
m ��

A
f��

q //

::u
u

u
B.

Any commuting square, with m ∶ p→ q in P , factors into two
commuting triangles as shown. Bisimulation is then expressed
as a span of open maps.

2) Event structures with symmetry: The way we equip
event structures with symmetry is an instance of the following
general construction. Let X be an object of a category C.
Recall that a relation on X is an object X̃ and pair of maps
lX , rX ∶ X̃ → X—so forming a span—which are jointly-
monic. A map between objects with relations f ∶ (X, X̃) →
(Y, Ỹ ) is a map f ∶ X → Y in C for which there is a
necessarily unique map f̃ ∶ X̃ → Ỹ in C such that flX = lY f̃
and frX = rY f̃ . If C has products, then a relation on X
can equivalently be given by a mono X̃ ↣ X ×X . If C has
pullbacks we can formulate diagrammatically the requirement
that X̃ be an equivalence relation—see the Appendix.

If C is equipped with a class of open maps, we say
that a relation lX , rX ∶ X̃ → X is a symmetry in X if
it is an equivalence relation with both lX and rX open;
this amounts to X̃ being a bisimulation equivalence. A map
f ∶ (X, X̃) → (Y, Ỹ ) necessarily preserves symmetry. We
obtain a category CS of objects with symmetry and symmetry-
preserving maps. Given two maps f, g ∶ (X, X̃)→ (Y, Ỹ ) they
are equal up to symmetry, written f ∼ g, if there is a necessarily
unique map h ∶ X → Ỹ in C such that f = lY h and g = rY h.
The category CS is more fully described as enriched in the
category of equivalence relations and so, because equivalence
relations are a degenerate form of category, as a 2-category in



which the 2-cells are instances of the equivalence. This view
informs the constructions in such categories which are often
very simple examples of the (pseudo- and bi-) constructions
of 2-categories. In particular, objects A and B are equivalent,
written A ≃ B, if there are maps f ∶ A → B and g ∶ B → A
such that fg ∼ idB and gf ∼ idA.

We can take advantage of the concrete nature of event
structures to give an explicit description of symmetries
there, a characterization which is independent of whether the
category of event structures carries rigid, total or partial maps,
though for definiteness assume the category is E . A symmetry
in an event structure E determines a mono Ẽ ↣ E ×E, thus
a subset of C(E × E), and so by Proposition 1 a family
of bijections between finite configurations of E. In this
way, a symmetry in an event structure E corresponds to
an isomorphism family comprising a non-empty family of
bijections θ ∶ x ≅E y between pairs of finite configurations of
E such that:

(i) for all identities idx ∶ x ≅E x, where x ∈C(E); if θ ∶ x ≅E y,
then the inverse θ−1 ∶ y ≅E x; and if θ ∶ x ≅E y and ϕ ∶ y ≅E z,
then their composition ϕ ○ θ ∶ x ≅E z.
(ii) for θ ∶ x ≅E y whenever x′ ⊆ x with x′ ∈ C(E), then there
is a (necessarily unique) y′ ∈ C(E) with y′ ⊆ y such that the
restriction θ′ ∶ x′ ≅E y′.
(iii) for θ ∶ x ≅E y whenever x ⊆ x′ for x′ ∈ C(E), there is an
extension of θ to θ′ so θ′ ∶ x′ ≅E y′ for some (not necessarily
unique) y′ ∈ C(E) with y ⊆ y′.

The isomorphism family makes precise the sense in which a
symmetry expresses when two configurations are essentially
the same. Note that (ii) implies that the bijections in the
isomorphism family respect the partial order of causal de-
pendency on configurations inherited from E; the bijections
in an isomorphism family are isomorphisms between the
configurations regarded as elementary event structures.

An event structure with symmetry A corresponds to an
isomorphism family ≅A of the underlying event structure of
A [10]. There are straightforward reformulations of what it
means for a map to preserve symmetry or for two maps to
be equal up to symmetry in terms of isomorphism families.
A total map f ∶ A → B preserving symmetry amounts to

x
θ≅A y implying fx

f̃θ
≅B fy, where f̃ θ is the composite

bijection fx ≅ x
θ≅A y ≅ fy; while f ∼ g, for two total

maps f, g ∶ A → B preserving symmetry, iff fx
ϕx≅B gx for all

x ∈ C(A), where ϕx is the composite bijection fx ≅ x ≅ gx.
We define the category ES (resp. ESp) to consist of event

structures with symmetry, with total (resp. partial) maps.

Proposition 3. Any map f ∶ A→ B in ESp has a partial-total
factorization as a composite

A
pV // (A↓V ) f1 // B

where: V =def {a ∈ A ∣ f(a) is defined} is the domain of def-
inition of f ; A ↓V =def (V,≤V ,ConV ) with v ≤V v′ iff v ≤A

v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ ConA & X ⊆ V ; its
isomorphism family is given by θ ∶ x ≅A↓V y iff θ extends to
θ′ ∶ [x]A ≅A [y]A; the map pV ∶ A → A ↓ V is the partial
map acting as identity on V and undefined elsewhere; and f1
is a total map acting as f on V . If f ∼ g ∶ A → B in ESp,
then the domains of definition of f and g are the same, V say,
and f1 ∼ g1 in their partial-total factorizations f = f1pV and
g = g1pV .

Through the addition of symmetry event structures can
represent a much richer class of categories than mere partial
orders. The finite configurations of an event structure with
symmetry can be extended by inclusion or rearranged bijec-
tively under an isomorphism allowed by the symmetry. In
this way an event structure with symmetry determines, in
general, a category of finite configurations with maps those
injections obtained by repeatedly composing the inclusions
and allowed isomorphisms. By property (ii) in the definition
of isomorphism family any such map factors uniquely as an
isomorphism of the symmetry followed by an inclusion.

3) Constructions: We review from [10] important construc-
tions in ES .

a) Products: First, ES has binary products.

Theorem 4. Let A and B be objects in ES . Their product in
ES is given by (A×B; lA×lB , rA×rB ∶ Ã×B̃ → A×B), based
on the product A×B in E , and sharing the same projections,
π1 ∶ A ×B → A and π2 ∶ A ×B → B. Let f, f ′ ∶ C → A and
g, g′ ∶ C → A in ES . If f ∼ f ′ and g ∼ g′, then ⟨f, g⟩ ∼ ⟨f ′, g′⟩.

b) Simple parallel composition: The operation of simple
parallel composition of event structures A∥B which juxtaposes
the two event structures A and B—with a finite set of events
consistent if its overlaps with A and B are consistent—and
acts similarly on maps, extends to a functor on ES . The
symmetry on A∥B is Ã∥B̃ with left and right maps lA∥lB
and rA∥rB .

c) Pseudo pullbacks: It will have great bearing on this
paper that, while ES does not have equalizers or pullbacks in
general, it does have pseudo equalizers and pseudo pullbacks.
We give their definition and refer the reader to [10] for proofs.

Maps f, g ∶ B → C have a pseudo equalizer i ∶ E → B,
i.e. fi ∼ gi and for any map i′ ∶ E′ → A such that fi′ ∼ gi′,
there is a unique map h ∶ E′ → E such that i′ = ih. The object
E can be described as having configurations those x ∈ C(B)
for which fx

ϕx≅C gx, where ϕx is the bijection induced by x;
its isomorphism family is the restriction of that on B.

Maps f ∶ A → C, g ∶ B → C have a pseudo pullback
given as the pseudo equalizer of fπ1, gπ2 ∶ A ×B → C. We
summarize its properties: The pseudo pullback comprises an
object D and maps π1 ∶ D → A and π2 ∶ D → B such that
fπ1 ∼ gπ2 which satisfies the further property that for any
object D′ and maps p1 ∶ D′ → A and p2 ∶ D′ → B such
that fp1 ∼ gp2, there is a unique map h ∶ D′ → D such that
p1 = π1h and p2 = π2h. The pseudo pullback is defined up to
isomorphism, and sometimes written A ×C B.

Concretely, a configuration in C(A×C B) corresponds to a



a triple

x, fx
θ≅C gy, y

where the composite x ≅ fx θ≅C gy ≅ y is a secured bijection
between x ∈ C(A) and y ∈ C(B) in the sense of Proposition 1.

4) Homotopy: We remark that the category ES has the
structure of a homotopy category. In particular it has path
objects. From the pseudo pullback

ÃlA
����� rA

��>>>

A

idA
  @@@ ∼ A

idA
��~~~

A

we recover Ã, the symmetry on A, but as an object in ES
itself equipped with symmetry ̃̃A. This universal property is
that associated with a path object generally written AI , where
I stands for (a generalization of) the unit interval: asserting
θ ∶ x ≅A y, that a bijection between two configurations is in
the isomorphism family of A, is analogous to specifying a
path from x to y. (There are also cylinder objects in ES .)

Later, in defining the copycat strategy we shall make es-
sential use of the fact that in (A, Ã), an event structure with
symmetry, the symmetry Ã itself possesses a symmetry ̃̃A.
Concretely, a configuration of Ã corresponds to an element of
the isomorphism family θ ∶ x≅Ay and a configuration of ̃̃A to
a pair ϕ1, ϕ2 in a commuting square mediating between θ1
and θ2 in the isomorphism family of A:

x1

≅ϕ1 A

≅A
θ1 y1

≅
ϕ2A

x2 ≅A
θ2 y2

Lemma 5. Let f ∶ A→ B and g ∶ B → C be maps in ES with
pseudo pullback P with maps π1 ∶ P → A and π2 ∶ P → B.
Then, P̃ , as an object in ES , with maps π̃1 and π̃2 is a pseudo
pullback of f̃ and g̃ in ES .

C. Adding polarity

Games and strategies will be represented in terms of event
structures where events are moves of Player or Opponent,
signified by events carrying a polarity, + for Player and − for
Opponent. Formally, an event structure with polarity comprises
an event structure A with a function polA ∶ A → {+,−}
assigning a polarity to each event. Maps are assumed to
preserve polarity.

The addition of polarity to an event structure A means that
the ⊆-order on its finite configurations is now obtained as
compositions (⊆− ∪ ⊆+)+ of two more fundamental orders,
where for x, y ∈ C∞(A),

x ⊆− y iff x ⊆ y & polA(y ∖ x) ⊆ {−} , and
x ⊆+ y iff x ⊆ y & polA(y ∖ x) ⊆ {+} .

More surprisingly there is a new partial order, the Scott order,
between configurations which is intimately related to copycat
strategies. The Scott order ⊑A is defined to be (⊇− ∪ ⊆+)+.

(We use ⊇− for the converse order to ⊆−.) The Scott order
possesses a unique factorization: for x, y ∈ C∞(A),

y ⊑A x ⇐⇒ ∃!z ∈ C∞(A). y ⊇− z ⊆+ x

—it is an easy exercise to show that z is necessarily x ∩ y.
Not only do the configurations of copycat strategies of A
correspond to pairs of configurations in the Scott order, but
also strategies in A correspond to certain, simply-described,
discrete fibrations over (C(A),⊑A)—see [15] for the full story.
Given this we can expect a variation on the Scott order to play
a role in strategies in games with symmetry.

An event structure with polarity and symmetry (henceforth
an e.p.s.) consists of (E, Ẽ), an event structure with polarity
also endowed with a symmetry Ẽ. The categories EPS and
EPSp of such objects have maps preserving both symmetry
and polarity, which are respectively total and partial.

The addition of polarity and symmetry brings a new richness
to the configurations of an event structure. The Scott order
becomes a Scott category, Scott(A), of an e.p.s. A, where now
maps between configurations are obtained as compositions of
(partial injections) ⊇−, ⊆+ and the isomorphism family ≅A.
Maps from y to x in Scott(A) have a unique factorization

y ⊇− y0
θ≅A x0 ⊆+ x .

The unique factorization follows from property (ii) of iso-
morphism families and uniqueness of the factorization of the
Scott order. A map f ∶ A → B in EPSp preserves ⊇−, ⊆+
and isomorphism families so extends directly to a functor
f ∶ Scott(A)→ Scott(B) making Scott a functor to Cat.

III. GAMES WITH SYMMETRY

A concurrent game with symmetry is represented by an
e.p.s. A. A pre-strategy in A is a total map σ ∶ S → A in EPS .
A map between pre-strategies, from σ ∶ S → A to σ′ ∶ S′ → A,
is a map f ∶ S → S′ in EPS such that

S

σ %%LLLLLL
f // S′

σ′��
A

commutes. We say the two pre-strategies σ and σ′ are equiv-
alent, and write σ ≃ σ′, and sometimes f ∶ σ ≃ σ′, when there
are maps f from σ to σ′, and g from σ′ to σ determining an
equivalence S ≃ S′, i.e. such that gf ∼ idS and fg ∼ idS′ ;
isomorphism σ ≅ σ′ occurs when gf = idS and fg = idS′ . A
weak map from σ to σ′ is a map f ∶ S → S′ such that the
triangle above commutes up to ∼ and analogously say σ and
σ′ are weakly equivalent when there are weak maps f and g
making S ≃ S′.

Simple parallel composition extends directly to a functor
A∥B on A and B in EPS . The dual of an e.p.s. A, written
A⊥, has the same underlying event structure with symmetry but
with a reversal of polarities.

Following Joyal [16], a pre-strategy from A to B is a
pre-strategy in the game A⊥∥B. In refining the notion of
pre-strategy to that of strategy we shall follow the guiding



principle of [8]: a strategy is a pre-strategy for which copy-
cat is an identity w.r.t. composition. The next few sections
make this precise and culminate in the definition of strategy
between concurrent games with symmetry.

A. Copycat

Let A be an e.p.s.. Configurations of CCA will correspond
to maps in Scott(A). Recall a map from y to x in Scott(A)
can be put into a unique form

y ⊇− y0
θ≅A x0 ⊆+ x .

Define q(x, θ, y) to be the partial order with underlying set
x∥y =def ({1}×x)∪({2}×y), causal dependency that inherited
from A⊥∥A with additional causal dependencies

{(a1, a2) ∈ x0 × y0 ∣ polA(a2) = + & θ(a1) = a2}∪
{(a2, a1) ∈ y0 × x0 ∣ polA⊥(a1) = + & θ(a1) = a2} .

That q(x, θ, y) is indeed a partial order follows as in [8]. The
set of all such partial orders forms a rigid family Q. We define
the event structure of CCA to be Pr(Q). Because Scott is a
functor, the operation CCA is functorial in A. We define the
symmetry on CCA as

CCA
CClA←Ð CCÃ

CCrAÐ→ CCA

Note, that in the construction of CCÃ we are using the fact
that Ã possesses a symmetry ̃̃A—see Section II-B4. The map
γA ∶ CCA → A⊥∥A takes a prime order to its top event.

Lemma 6. The construction (CCA, CClA ,CCrA ∶ CCÃ → CCA)
is an e.p.s. and γA a pre-strategy.

In future we shall overload CCA and write CCA for the
e.p.s. of Lemma 6. From the definitions, C̃CA = CCÃ .

B. Composition

Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be pre-strategies
between games A,B,C. To define their composition first form
the pseudo pullback

P
π1

xxqqqqqq
?�

π2

&&MMMMMM

S∥C

σ∥C &&
LLLL

∼ A∥T

A∥τxxrrrr

A∥B∥C

of the maps on the underlying event structures with symmetry,
ignoring polarities, viz. σ ∶ S → A∥B and τ ∶ T → B∥C. There
is an obvious partial map of event structures A∥B∥C → A∥C
undefined on B and acting as identity on A and C. The partial
maps from P to A∥C, given by following the diagram either
way round the pseudo pullback,

A ∥ T
A∥τ
''OOOOO

P

π2 <<xxxx

π1 ""FFFF ∼�
?

A ∥ B ∥ C // A ∥ C

S ∥ C σ∥C

77ooooo

are defined on a common subset V ⊆ P—Proposition 3. Form-
ing the partial-total factorization of either map (for preciseness
take the left/lowest) we obtain

P → P ↓V → A∥C .

The resulting total map gives us the composition

τ⊙σ ∶ T⊙S =def P ↓V → A⊥∥C

once we reinstate polarities to make τ⊙σ a map in EPS . The
projection operation P ↓ V hides all events not visible in A
and C.

From Lemma 5, regarding e.g. T̃ as itself an e.p.s., it follows
that T̃⊙S ≅ T̃⊙S̃ and τ̃⊙σ ≅ τ̃⊙σ̃.

C. Strategies

We are interested in necessary and sufficient conditions on
a pre-strategy σ ∶ S → A to ensure σ ≃ γA⊙σ. As we shall
see σ should be equivalent to a pre-strategy which is strong-
receptive, innocent and saturated. (If a pre-strategy σ ∶ S →
A⊥∥B satisfies these conditions, then σ ≃ γB⊙σ⊙γA.)

1) Necessity: We show that for any pre-strategy σ ∶ S → A
the pre-strategy γA⊙σ is necessarily strong-receptive, innocent
and saturated.

A pre-strategy σ is receptive iff for all x ∈ C(S),
σx

a−Ð⊂ & polA(a) = − implies ∃!s ∈ S. x s−Ð⊂ & σ(s) = a . The
pre-strategy σ ∶ S → A, as a map in EPS preserves symmetry,
so is associated with a map σ̃ ∶ S̃ → Ã. Say σ is strong-
receptive if σ̃, and so also σ, is receptive. A pre-strategy σ is
innocent when s _ s′ and (pol(s) = + or pol(s′) = −) implies
σ(s) _ σ(s′).

To specify when a pre-strategy σ ∶ S → A is saturated we
need some background. Form the pseudo pullback

S ×A A
π1

zzuuuuu ?�
π2

$$JJJJJ

S

σ $$JJJJJ ∼ A

idAyyttttt

A.

The operation taking σ to its saturation π2 is part of a monad
on pre-strategies in A. Clearly

S
idS
����� σ

��@@@

S

σ ��??? A

idA
��~~~

A

commutes. Hence there is a unique map η ∶ S → S ×AA such
that π1η = idS and π2η = σ—thus η is a map from σ to π2.
We say σ is saturated when η is part of an equivalence σ ≃ π2,
i.e. there is a map act ∶ S ×A A→ S such that

S ×A A

π2

##GGGGGGGGG
act // S

σ

��
A



commutes and act η ∼ idS with η act ∼ idS×AA. Concretely,
a finite configuration of S ×A A can be identified with a pair
(x, θ) where x ∈ C(S) and θ ∶ σx ≅A y. The action of act is
to transport the configuration x across θ it to a configuration
x′ =def act(x, θ) with ϕ ∶ x ≅S x′ and σ̃ϕ = θ.

Certain compositions are automatically saturated:

Proposition 7. . The composition τ⊙σ of pre-strategies σ ∶
∅ + //B and τ ∶ B + //C is saturated.

Proof. Adopt the notation of the diagram defining the com-
position τ⊙σ in Section III-B, with A = ∅. Let u ∈ C(T⊙S).
Its down-closure [u] is a configuration in the pseudo pullback
P , and so corresponds to a secured bijection x∥v

ϕ
≅ y where

x ∈ C(S), v ∈ C(C) and y ∈ C(T ). Because we define τ⊙σ
to be got via the left way round the pseudo pullback square
the configuration u is sent to v via τ⊙σ. Consequently, given
θ ∶ v ≅C v′ we can define act(u, θ) to be that configuration

u′ ∈ C(T⊙S) with down-closure x∥v′
x∥θ
≅ x∥v

ϕ
≅ y in the

pseudo pullback.

Lemma 8. γA is strong-receptive, innocent and saturated.

Proof. The construction of CCA directly ensures the inno-
cence and receptivity of γA. The way symmetry of copy-
cat is obtained from CCÃ makes γ̃A equal γÃ so receptive,
guaranteeing strong-receptivity of γA. To see γA is saturated
we require a map act ∶ CCA×A∥AA∥A→ CCA. A configuration
of CCA ×A∥A A∥A corresponds to a configuration of CCA, so
a map in Scott(A)

x ⊇+ x0
θ≅A y0 ⊆− y ,

and a configuration of A∥A, so a pair v,w, for which ϕ1 ∶ x ≅A
v and ϕ2 ∶ y ≅A w . This data and the factorization properties
in Scott(A) yield:

x

≅ϕ1 A

⊇+ x0

≅A
≅A
θ y0

≅

A

⊆− y

≅

ϕ2A

v ⊇+ v0 ≅A
θ′ w0 ⊆− w

We take the configuration of CCA got via act to be that
corresponding to

v ⊇+ v0 ≅A
θ′ w0 ⊆− w .

The map act together with η ∶ CCA → CCA ×A∥A A∥A
establishes the equivalence needed for γA to be saturated.

Lemma 9 (Necessity). γA⊙σ is strong-receptive, innocent and
saturated for any pre-strategy σ in A.

Proof. The composition γA⊙σ inherits innocence and recep-
tivity directly from that of γA. Now γ̃A⊙σ ≅ γ̃A⊙σ̃ ≅ γÃ⊙σ̃
whence γ̃A⊙σ inherits receptivity from that of γÃ, making
γA⊙σ strong-receptive. The composition is saturated for gen-
eral reasons—Proposition 7.

2) Sufficiency: We show the conditions strong-receptive,
innocent and saturated are sufficient to ensure that a pre-
strategy σ is equivalent to its composition with copycat γA⊙σ.

Lemma 10. Let σ ∶ S → A be a pre-strategy. There is a map
I ∶ S → CCA⊙S in EPS , unique up to symmetry, such that
σ = (γA⊙σ)I .

Proof. We sketch the existence part of the proof by describing
how I acts on configurations. Given x ∈ C(S), there is
a secured bijection x∥σx ≅ q(σx, idσx, σx)—the bijection is
that given by x ≅ σx between left components and idσx
between the right. The secured bijection corresponds to a
configuration z of the pseudo pullback (S∥A)×A∥ACCA. The
result of the projection operation is to hide all those events
not above the right component in A∥A, so from z yields a
configuration of CCA⊙S with image σx under γA⊙σ.

Lemma 11. If a pre-strategy σ is strong-receptive, innocent
and saturated, then I ∶ σ ≃ γA⊙σ is an equivalence.

Proof. We require a map K ∶ CCA⊙S → S that with I
establishes an equivalence γA⊙σ ≃ σ. Let u ∈ C(CCA⊙S).
Its down-closure [u] is a configuration in the pseudo pullback
(S∥A) ×A∥A CCA:

(S∥A) ×A∥A CCA
π1

vvnnnnnn ?�
π2

((PPPPPP

S∥A

σ∥A ((QQQQQQQ ∼ CCA

γAvvnnnnnnn

A∥A

As a configuration of the pseudo pullback, [u] corresponds to
a triple, a configuration in S∥A and a configuration in CCA,
mediated by an element of the isomorphism family of A∥A—
see Section II-B3c. A configuration of S∥A corresponds to a
pair of configurations x of S and w of A; a configuration of
CCA to configurations of A in the relations z1 ⊇+ z′1 ≅A z′2 ⊆−
z2; and the mediating element of the isomorphism family to
a pair σx ≅A z1 and w ≅A z2. From this data we obtain the
composite map

σx ≅A z1 ⊇+ z′1 ≅A z′2 ⊆− z2 ≅A w

in Scott(A). This factors uniquely into

σx ⊇+ y1
θ≅A y2 ⊆− w .

From innocence it follows (see Lemma 1 of [15]) that there
is a unique x1 ∈ C(S) for which x ⊇+ x1 and σx1 = y1.
Now, the pair x1 and θ ∶ y1 ≅A y2 can be identified with a
configuration of S ×A A. Hence we can apply act to obtain
act(x1, θ) ∈ C(S) with σact(x1, θ) = y2.

Define p(u) =def act(x1, θ). By considering how it acts on
isomorphism families, p extends to a monotonic function

p̃ ∶ C(C̃CA⊙S)→ C(S̃)

such that

∀u ∈ C(CCA⊙S). σ̃ p̃(u) ⊆− γ̃A⊙σ u .



Using Lemma 23 of [8] and the strong-receptivity of σ, we
obtain a unique total map K ∶ CCS⊙S → S such that ∀u ∈
C(CCA⊙S). p(u) ⊆− Ku and γA⊙σ = σK. On checking KI ∼
idS and IK ∼ idCCA⊙S we have the desired equivalence.

Define a strategy to be a pre-strategy which is strong-
receptive, innocent and saturated.

A strategy σ ∶ S → A induces a fibration σ ∶ Scott(S) →
Scott(A). In fact, ⊇− and ⊆+ maps in Scott(A) have cartesian
liftings again as ⊇− and ⊆+ maps, respectively, in Scott(S) be-
cause σ is receptive and innocent [15]—with strong-receptivity
ensuring the appropriate uniqueness—while ≅A maps have
cartesian liftings in ≅S because σ is saturated.

Lemma 12. If σ and τ are strategies, so is τ⊙σ.

Proof. The composition inherits innocence and receptivity
from σ and τ . Because τ̃⊙σ ≅ τ̃⊙σ̃ it also inherits strong
receptivity. Its saturation obtains via Proposition 7 and the
saturation of τ .

3) A ∼-bicategory of games with symmetry: Combining the
above results, we do not quite obtain a bicategory but rather
Strat, a “bicategory up to symmetry” in the following sense:
● its objects are e.p.s.’s—the games;
● its arrows from A to B are strategies σ ∶ A + //B related
by maps of pre-strategies—Strat(A,B) is thus a category
enriched with equivalence relations ∼;
● horizontal composition is given by composition of strategies
⊙, which extends to functors Strat(B,C) × Strat(A,B) →
Strat(A,C) via the universality of pseudo pullback;
● there is a natural isomorphism (derived from the univer-
sality of pseudo pullback) to express the associativity of
composition, but only natural equivalences (derived from the
equivalence of Lemma 11) for left and right identity laws;
● of the usual coherence axioms for bicategories, that for
identity only commutes up to ∼.

Because categories of event structures with symmetry are
degenerate 2-categories, the above describes a special case of
weak 3-category, which we call a ∼-bicategory as it is morally
a bicategory but where the axioms hold up to ∼.
Strat is rich in structure. Observe the duality: a strategy

σ ∶ A + //B corresponds to a strategy σ⊥ ∶ B⊥ + //A⊥. There
is a bijective correspondence between strategies A∥B + //C
and strategies A + // (B⊥∥C), making Strat monoidal closed,
and in fact compact closed, in an extended sense.

To be more precise, and to relate to standard game seman-
tics, we can quotient out the higher-dimensional structure to
obtain a category. The category Strat/≃ has e.p.s.’s as objects,
and ≃-equivalence classes of strategies σ ∶ S → A⊥ ∥ B as
morphisms from A to B. The ∼-bicategorical structure ensures
that equivalence of strategies is preserved by composition, so
we get a category Strat/≃.

Proposition 13. The category Strat/≃ is compact closed, with
tensor product ∥ and dual (−)⊥.

The compact closed structure of Strat/≃ is not so surpris-
ing: the category is defined in a similar fashion to Joyal’s

category of Conway games [16], which is compact closed as
well. As compact closed categories, they are ∗-autonomous
and hence models of Multiplicative Linear Logic (MLL) [17].

4) Weak strategies: A weak strategy is a pre-strategy which
is weakly equivalent to γA⊙σ; so, directly from this definition,
any weak strategy is weakly equivalent to a strategy. (We do
not have a direct characterization of weak strategies.)

As we shall see, it is sometimes convenient to work with
weak strategies (which need not be saturated) and then com-
pose with copycat to obtain the strategies they represent.

Another potential advantage of weak strategies is that they
are closed under a more general composition than that of
strategies. We can build a ∼-bicategory of weak strategies—
biequivalent to the ∼-bicategory of strategies—in which in-
stead composition is based on a choice of bipullbacks rather
than pseudo-pullbacks. (See [10] for the definition of bipull-
backs of event structures with symmetry.) This extra latitude
in the choice of definition of composition is likely to have
technical advantages when working with sub ∼-bicategories
of games, for which the saturation of strategies seems unnec-
essary or unnatural.

Lemma 14. If two saturated pre-strategies are weakly equiva-
lent they are equivalent. A fortiori, if two strategies are weakly
equivalent they are equivalent.

IV. APPLICATIONS

Once we have symmetry in games we can support a rich
repertoire of (pseudo) monads on e.p.s.’s, and e.g. all the
monads of [10] are undisturbed by the presence of polarity.
Monads to support copying w.r.t. maps of e.p.s.’s can often
translate to monads w.r.t. strategies, and so by duality also
to comonads w.r.t. strategies. Following Girard’s work on
linear logic [18], this opens up the possibility of modelling
programming languages that are not resource-sensitive, in that
(copies of) the same resource can be used multiple times.
We describe, in particular, how AJM games [9] and HO
games [19] generalize and can be recovered from concurrent
games. The (co)monads involved rely pivotally on the presence
of symmetry. Their structure lifts from simple structural maps.

A. Maps as strategies

A structural pair f = (fL, fR) ∶ A→ B comprises
● fL ∶ A→ B, a total map of e.p.s.’s, as left component, and
● fR ∶ B → A, an injective, partial map of event structures,
not necessarily preserving symmetry, as right component,
such that fR ○ fL = idA. (Such pairs correspond to Kahn and
Plotkin’s rigid embeddings if we ignore symmetry.)

A structural pair f ∶ A → B, lifts to a strategy f ∶ S(f) →
A⊥∥B, obtained via a rigid family Q. Whenever

x ⊇+ x′ f
L

↦ fL x′
θ≅B y′ ⊆− y ,

with x,x′ ∈C(A) and y, y′ ∈C(B), define a typical q(x, θ, y) ∈
Q to have underlying set x ∥ y, and causal dependency that



inherited from A⊥ ∥ B with additional causal dependencies

{(a, θ(fLa)) ∈ x′ × y′ ∣ polA⊥(a) = −}∪
{(θ(fLa), a) ∈ y′ × x′ ∣ polA⊥(a) = +} .

The event structure S(f) is then defined as Pr(Q), and the
strategy-as-map f ∶ S(f) → A⊥∣∣B by f(q) = a, where a
is the top element of the prime q ∈ S(f). Elements of the
isomorphism family of S(f) correspond to isomorphisms

x1

≅ϕ1 A

⊇+ x′1

≅ϕ2 A

f↦ f x′1
≅f ϕ2 B

θ
≅B y′1 ⊆−

≅ϕ3 B

y1

≅ϕ4 B

x2 ⊇+ x′2
f↦ f x′2

θ
≅B y′2 ⊆− y2 .

This induces an isomorphism family because fL preserves
symmetry, which by construction is preserved by f . Addition-
ally, one can check that f is strong-receptive, innocent and
saturated, so a strategy. Note that this lifting operation also
preserves equivalence: if f ∼ g then it is easy to show that f
and g are weakly equivalent, so equivalent by Lemma 14.

The following lemma relates composition of maps to that
of their lifts as strategies.

Lemma 15. Let σ ∶ T → A be a strategy and f ∶ A→ B be a
structural pair. Then the pre-strategy fL○σ ∶ T → B is weakly
equivalent to the strategy f ⊙ σ ∶ S(f)⊙ T → B.

From this lemma it follows easily that lifting is functorial.
We also need to examine the composition of a strategy with the
dual of one lifted from a structural pair. A right map fR ∶ B →
A of a structural pair does not necessarily preserve symmetry,
but it does preserve a sub-symmetry, in the sense that the set

of isomorphisms x
θ≅B y, such that fRx

fRθ
≅A fRy, forms an

isomorphism family. Then A can be restricted to make fR a
total map preserving symmetry. Write (A ↾ fR) for the event
structure with events those on which fR is defined and with
isomorphism family that part preserved by fR. Obviously, fR ∶
(A ↾ fR)→ B is a total map preserving symmetry.

Lemma 16. Let σ ∶ T → A be a strategy and f ∶ B → A a
structural pair. Then fR ○ σ preserves a sub-symmetry, and
fR ○ σ ∶ (T ↾ fR ○ σ) → B is a strategy equivalent to the
strategy (f)⊥ ⊙ σ ∶ S(f)⊙ T → B.

B. AJM games

We have not assumed that games are polarized, i.e. that
initial moves share the same polarity, a condition imposed in
most presentations of games. Non-polarized games are useful
because they permit an account of negation as just polarity-
reversal, and hence model directly the involutive negation
of Classical Linear Logic. In contrast, polarized games lose
involutive negation and are restricted to modelling “polarized”
logics, such as Intuitionistic Linear Logic (ILL). Through
concurrent games we can give a concurrent version of the
construction in [12] of a non-polarized adaptation of AJM
games [9] to model CLL.

A categorical model of Multiplicative Exponential Linear
Logic (MELL) is a ∗-autonomous category (C,⊗) (such as

Strat/≃) with a linear exponential comonad, i.e. a monoidal
comonad (!, ε, δ,m) with monoidal natural transformations
eA ∶ !A → 1 and dA ∶ !A → !A ⊗ !A such that each
(!A, eA, dA) is a commutative comonoid, eA and dA are coal-
gebra maps and any coalgebra map between free coalgebras
is also a comonoid morphism. We aim to build this structure
on Strat/≃. There is one proviso however. Just as in [12], the
absence of polarization means that the naturality of weakening
eA ∶!A + // I will be missing, so we model CLL in the sense of
[12] and not quite MELL. If we restrict to negatively polarized
games the naturality of eA is recovered at the cost of self-
duality, yielding a model of ILL.

From a game A, we form the game !A comprising ω similar
copies of A. Its events are pairs (i, a) where a ∈ A and i ∈ ω,
with causal dependency

(i1, a1) ≤ (i2, a2)⇔ i1 = i2 & a1 ≤A a2

and consistency relation

Con!A =⋃
i∈I

{i} ×Xi ,

where I is a finite subset of ω, and for each i ∈ I , Xi ∈ ConA.
Polarity is inherited from A. We describe its symmetry as
an isomorphism family. If x, y ∈ C(!A), we have x

θ≅!A y if,
writing x = ⋃i∈I{i}×xi and y = ⋃j∈J{j}×yj with each xi and

yj nonempty, there is a bijection π ∶ I ≅ J so xi
θi≅A yπ(i) for

each i ∈ I , where θ((i, a)) = (π(i), θi(a)) for all (i, a) ∈ x.
The construction extends to a functor on EPS: if f ∶ A→ B

then !f ∶ !A→ !B sends (i, a) to (i, f(a)). It is convenient to
investigate the monad/monoid structure of ! in EPS first, their
duals will be eventually deduced by duality in Strat. In EPS ,
we have:

ηA ∶ A→ !A eA ∶ 1→ !A
µA ∶ !!A→ !A mA ∶ !A ∥ !A→ !A

qA,B ∶ !(A ∥ B)→ !A ∥ !B

where ηA sends any event a to (0, a); µA tracks an arbitrary
bijection between ω×ω and ω; qA,B is the obvious distribution
map; eA is the empty map; and mA tracks an arbitrary
bijection between ω + ω and ω. All these maps are natural
in their parameters in the category EPS . In particular, (!, η, µ)
forms a monad on EPS .

The functors ∥ and ! on EPS extend to functors on strategies
written ∥S and !S for disambiguation: given strategies σ1 ∶
S1 → A⊥1 ∥ B1 and σ2 ∶ S2 → A⊥2 ∥ B2, we have σ1 ∥S σ2 ∶
S1 ∥ S2 → (A1 ∥ A2)⊥ ∥ (B1 ∥ B2) given by the obvious map
of EPS . To define !Sσ, the obvious choice is the composition
qA⊥1,B1

○ !σ ∶ !S → !A⊥1 ∥ !B1, which we must then compose
with copycat to obtain a strategy. These yield a bifunctor ∥S
and a functor !S on strategies, using the fact that ! and ∥
preserve pseudo-pullbacks.

The natural tranformations above all have adjoints together
with which they form structural pairs. By the techniques of
Section IV-A, lifting maps to strategies, they become (apart
from eA) natural as families of strategies:



Lemma 17. The strategies εA, δA, dA and qA,B are natural
in A,B in the category Strat/≃.

Proof. Each of these maps f has an adjoint f● making (f, f●)
a structural pair. By Lemmas 15 and 16 the compositions
involved in the naturality squares can be computed by simple
composition of maps, and the equivalences then amount to
elementary verifications.

The monoid and monad laws follow from those in EPS
by functoriality of lifting. The fact that algebra morphisms
between free algebras (!A,µA) satisfy the laws needed to be
morphisms of monoids follows from a simple diagram chase,
using that µA is an invertible monoid morphism and that this
property remains true of µA.

We have established that the natural transformations above
define the dual of a linear exponential comonad, short of the
naturality of eA. By self-duality of Strat/≃, we have:

Theorem 18. The category Strat/≃ with ! is a model of CLL
in the sense of [12].

C. HO games and HO-innocence

In this last section, we sketch an application of concurrent
games with symmetry to construct a notion of concurrent
games with pointers, obtaining a concurrent generalization of
HO games. An e.p.s. A is negative when all its minimal events
have negative polarity.

1) Concurrent games with pointers: An arena is a count-
able forest (A,≤A,polA) with polarities (but without symme-
try), which is also alternating in the sense that if a1 _ a2 then
polA(a1) ≠ polA(a2) and negative in the sense that if a ∈ A is
minimal for ≤A, polA(a) = −. Arenas are closed under ∥ and
support the usual arrow arena construction of [13]. We adopt
the notation of [20] and denote it by A−−⊞B, with

● events, (∥b∈min(B) A) ∥ B where min(B) denotes the
set of minimal events of B, and

● causality, that of ∥b∈min(B) A⊥ ∥ B enriched with
{((2, b), (1, (b, a))) ∣ a ∈ A & b ∈ B}.

● polarity, inherited in B and reversed in A.

From an arena A, we now define a game !?A understood
as “A with pointers”. Its definition requires the notion of an
exponential slice: a slice for an event a is a function α ∶ [a]→
ω, so gives a copy index for each event on which a depends.
For two slices α ∶ [a]→ ω and α′ ∶ [a′]→ ω, we write α ⊑ α′
when a ≤ a′ and α(b) = α′(b) for all b ≤ a. The game !?A has:

● events, pairs (α,a) where α ∶ [a]→ ω,
● causal dependency, (α,a) ≤ (α′, a′) iff α ⊑ α′,
● consistency, all finite subsets of !?A,
● polarity, inherited from A, and
● isomorphism family, bijections θ ∶ x ≅ y such that for all

(α,a) ∈ x there is α′ ∶ [a]→ ω with θ(α,a) = (α′, a).

To convey the similarity with plays with pointers of HO games,
we could say that (α,a) “points to” (α′, a′) when α′ ⊑ α
and a′ _ a. However !?A leaves duplicated events causally
unrelated whereas they would appear in some chronological

order in a play with pointers. Configurations of !?A are more
closely related to the thick subtrees of Boudes [21].

An e.p.s. A is well-threaded iff [a] has one minimal event
for any a ∈ A. A strategy σ ∶ S → A is negative or
well-threaded when S is. This well-threadedness condition is
analogous to the single-threadedness condition of HO games
ensuring there that strategies are comonoid morphisms [22]
and hence form a cartesian closed category—it will serve a
similar purpose here. An HO-strategy on arena A is a negative
well-threaded strategy σ ∶ S → !?A. An HO-strategy from A to
B is an HO-strategy on the arena A−−⊞B.

2) A cartesian closed category: In order to compose HO-
strategies, we rely on the following:

Proposition 19. For any arenas A,B there is a one-to-
one correspondence ΦA,B preserving equivalence between
negative, well-threaded strategies σ ∶ S → !?(A−−⊞B) and
negative, well-threaded strategies σ′ ∶ S → !?A⊥ ∥ !?B.

Using this correspondence, we define the HO copycat
strategy as Φ−1

A,A(γ!?A) ∶ CC!?A → !?(A−−⊞A) and define
the composition of strategies σ ∶ S → !?(A−−⊞B) and
τ ∶ T → !?(B −−⊞C) as Φ−1

A,C(ΦB,C(τ) ⊙ ΦA,B(σ)). The
function Φ preserves equivalence of strategies, therefore arenas
and HO-strategies inherit from the compact closed structure of
Strat/≃ a symmetric monoidal closed structure; we write the
corresponding category as HOStrat.

All objects of HOStrat are comonoids. Indeed, we have
maps of event structures mA ∶ !?A⊥ ∥ !?A⊥ → !?A⊥ and eA ∶
1 → !?A⊥ satisfying monoid laws up to symmetry, and the
lifting operation yields negative well-threaded strategies mA

⊥ ∶
!?A + // !?A ∥ !?A and eA

⊥ ∶ !?A + // 1 in Strat/ ≃, satisfying
comonoid laws. By the isomorphisms !?(A ∥ B) ≅ !?A ∥ !?B
and !?1 ≅ 1 and the correspondence Φ, these correspond to HO-
strategies on A−−⊞(A ∥ A) and A−−⊞1 satisfying comonoid
laws. Moreover, analogously to sequential HO games we have
by well-threadedness and saturation:

Lemma 20. HO-strategies are comonoid morphisms.

It follows (see e.g. Corollary 17 in [17]) that HOStrat
is cartesian closed, hence is a model of the simply-typed λ-
calculus. It has in fact much more structure and we hope to
be able to recast and generalize within it various games model
of programming languages. In this paper though, we will only
show that it contains (a nondeterministic generalization of) the
usual HO category of innocent strategies.

3) Sequential HO-innocence: An HO-strategy σ ∶ S → !?A
on an arena A is sequential HO-innocent (or a HOIS-strategy)
if for any s ∈ S,
(1) the prime configuration [s] is a total order, and
(2) if [s] extends by distinct positive events s1, s2, then [s]∪

{s1, s2} /∈ ConS .
Intuitively, a prime configuration [s] corresponds to a P-view:
just like a P-view, a prime configuration of a HOIS-strategy
cannot contain two negative events s1, s2 whose mapping to
!?A “point” to the same event (α,a): by innocence s1 and
s2 would have to be concurrent in [s], which is impossible



by condition (1). So similarly to standard HO innocence the
condition (1) expresses that the strategy σ is blind to Opponent
duplications: every Player event contains in its causal history
at most one Opponent event pointing to a specific Player event.

Proposition 21. Arenas and sequential HO-innocent strategies
form a subCCC, HOISStrat of HOStrat.

Note in passing that condition (1) is stable under composi-
tion on its own, but is too restrictive to be a satisfactory notion
of concurrent HO-innocence as it forbids natural concurrent
strategies such as that for the parallel or. We leave for future
work the design and study of a more satisfactory notion
of concurrent HO-innocence. We now go on and isolate a
deterministic subcategory of HOISStrat, isomorphic to the
usual category of arenas and innocent strategies [13].

An HO-innocent strategy σ ∶ S → !?A is deterministic iff
whenever x

ϕ
≅S y and x

+−Ð⊂x′ and y−Ð⊂y′, then x′ ⊆ x′′ and
y′ ⊆ y′′ for some x′′, y′′ ∈ C(S) with ϕ′ ∶ x′′ ≅S y′′ such that
ϕ ⊆ ϕ′—this is a generalization of the notion of deterministic
concurrent strategies [23] in the presence of symmetry.

Theorem 22. The subcategory of HOISStrat having se-
quential arenas as objects and deterministic sequential HO-
innocent strategies as morphisms is isomorphic to the usual
category of arenas and innocent strategies.

Sketch. Let σ ∶ S → !?A be a deterministic HOIS-strategy. For
s ∈ S positive, the prime configuration [s] needs to be a chain

s−0 _ s+1 _ s−2 _ . . . _ s+ ,

by condition (1) of HOIS-strategies along with innocence
and the alternation and negativity conditions of arenas. This
induces a sequence of moves of A:

π2σ(s0)π2σ(s1) . . . π2σ(s)

In turn, immediate dependency in A equips this sequence with
pointers such that (by innocence) Opponent always points to
the previous move. In other words, this is a P-view.

Applying this operation to all prime configurations in S
we get a set of P-views that is O-branching by receptivity,
condition (2) of HOIS-strategies, the extension operation on
S̃ and determinism; so we get a deterministic innocent strategy
in the sense of HO games.

This operation has an inverse up to equivalence of strate-
gies and preserves composition, yielding an isomorphism of
categories with standard innocent strategies.

V. CONCLUSION

Concurrent games with symmetry have proved versatile
enough to accommodate and extend in a single framework two
radically different fundamental games models: the saturated
AJM games model of CLL and the HO innocent games
model of the simply-typed λ-calculus, with a generalization
to nondeterminism—in the past, providing a notion of non-
deterministic HO innocence has proved challenging [22]. The
framework is grounded in the mathematically-versatile setting

of event structures with symmetry, with potentially fruitful
connections to homotopy.

In future, we intend to exploit the framework introduced
here to develop concurrent-games models for various
programming languages. Its versatility and its proximity to
traditional game semantics suggests that it is adequate to
give precise partial-order semantics to complex concurrent
programming language, including such features as higher-
order procedures and shared memory—features which, to
our knowledge, have only been modelled through interleaving.
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APPENDIX

Assume a category with pullbacks. A pair of maps l, r ∶
R → E forms an equivalence relation provided it is
Jointly monic: for all maps x, y ∶ D → R, if lx = ly and
rx = ry, then x = y;
Reflexive: there is a (necessarily unique) map ρ such that
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Symmetric: there is a (necessarily unique) map σ such that
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Transitive: there is a (necessarily unique) map τ such that
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