224 research outputs found

    A Galois connection between Turing jumps and limits

    Full text link
    Limit computable functions can be characterized by Turing jumps on the input side or limits on the output side. As a monad of this pair of adjoint operations we obtain a problem that characterizes the low functions and dually to this another problem that characterizes the functions that are computable relative to the halting problem. Correspondingly, these two classes are the largest classes of functions that can be pre or post composed to limit computable functions without leaving the class of limit computable functions. We transfer these observations to the lattice of represented spaces where it leads to a formal Galois connection. We also formulate a version of this result for computable metric spaces. Limit computability and computability relative to the halting problem are notions that coincide for points and sequences, but even restricted to continuous functions the former class is strictly larger than the latter. On computable metric spaces we can characterize the functions that are computable relative to the halting problem as those functions that are limit computable with a modulus of continuity that is computable relative to the halting problem. As a consequence of this result we obtain, for instance, that Lipschitz continuous functions that are limit computable are automatically computable relative to the halting problem. We also discuss 1-generic points as the canonical points of continuity of limit computable functions, and we prove that restricted to these points limit computable functions are computable relative to the halting problem. Finally, we demonstrate how these results can be applied in computable analysis

    Completion of Choice

    Full text link
    We systematically study the completion of choice problems in the Weihrauch lattice. Choice problems play a pivotal role in Weihrauch complexity. For one, they can be used as landmarks that characterize important equivalences classes in the Weihrauch lattice. On the other hand, choice problems also characterize several natural classes of computable problems, such as finite mind change computable problems, non-deterministically computable problems, Las Vegas computable problems and effectively Borel measurable functions. The closure operator of completion generates the concept of total Weihrauch reducibility, which is a variant of Weihrauch reducibility with total realizers. Logically speaking, the completion of a problem is a version of the problem that is independent of its premise. Hence, studying the completion of choice problems allows us to study simultaneously choice problems in the total Weihrauch lattice, as well as the question which choice problems can be made independent of their premises in the usual Weihrauch lattice. The outcome shows that many important choice problems that are related to compact spaces are complete, whereas choice problems for unbounded spaces or closed sets of positive measure are typically not complete.Comment: 30 page

    Weihrauch goes Brouwerian

    Full text link
    We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the consecutive application of two closure operators in the appropriate order: first completion and then parallelization. The closure operator of completion is a new closure operator that we introduce. It transforms any problem into a total problem on the completion of the respective types, where we allow any value outside of the original domain of the problem. This closure operator is of interest by itself, as it generates a total version of Weihrauch reducibility that is defined like the usual version of Weihrauch reducibility, but in terms of total realizers. From a logical perspective completion can be seen as a way to make problems independent of their premises. Alongside with the completion operator and total Weihrauch reducibility we need to study precomplete representations that are required to describe these concepts. In order to show that the parallelized total Weihrauch lattice forms a Brouwer algebra, we introduce a new multiplicative version of an implication. While the parallelized total Weihrauch lattice forms a Brouwer algebra with this implication, the total Weihrauch lattice fails to be a model of intuitionistic linear logic in two different ways. In order to pinpoint the algebraic reasons for this failure, we introduce the concept of a Weihrauch algebra that allows us to formulate the failure in precise and neat terms. Finally, we show that the Medvedev Brouwer algebra can be embedded into our Brouwer algebra, which also implies that the theory of our Brouwer algebra is Jankov logic.Comment: 36 page

    SEARCHING FOR AN ANALOGUE OF ATR0 IN THE WEIHRAUCH LATTICE

    Get PDF

    Synthetic Philosophy of Mathematics and Natural Sciences Conceptual analyses from a Grothendieckian Perspective

    Get PDF
    ISBN-13: 978-0692593974. Giuseppe Longo. Synthetic Philosophy of Mathematics and Natural Sciences, Conceptual analyses from a Grothendieckian Perspective, Reflections on “Synthetic Philosophy of Contemporary Mathematics” by F. Zalamea, Urbanomic (UK) and Sequence Press (USA), 2012. Invited Paper, in Speculations: Journal of Speculative Realism, Published: 12/12/2015, followed by an answer by F. Zalamea.International audienceZalamea’s book is as original as it is belated. It is indeed surprising, if we give it a moment’s thought, just how greatly behind schedule philosophical reflection on contemporary mathematics lags, especially considering the momentous changes that took place in the second half of the twentieth century. Zalamea compares this situation with that of the philosophy of physics: he mentions D’Espagnat’s work on quantum mechanics, but we could add several others who, in the last few decades, have elaborated an extremely timely philosophy of contemporary physics (see for example Bitbol 2000; Bitbol et al. 2009). As was the case in biology, philosophy – since Kant’s crucial observations in the Critique of Judgment, at least – has often “run ahead” of life sciences, exploring and opening up a space for reflections that are not derived from or integrated with its contemporary scientific practice. Some of these reflections are still very much auspicious today. And indeed, some philosophers today are saying something truly new about biology..
    • …
    corecore