164 research outputs found

    Viability of Numerical Full-Wave Techniques in Telecommunication Channel Modelling

    Get PDF
    In telecommunication channel modelling the wavelength is small compared to the physical features of interest, therefore deterministic ray tracing techniques provide solutions that are more efficient, faster and still within time constraints than current numerical full-wave techniques. Solving fundamental Maxwell's equations is at the core of computational electrodynamics and best suited for modelling electrical field interactions with physical objects where characteristic dimensions of a computing domain is on the order of a few wavelengths in size. However, extreme communication speeds, wireless access points closer to the user and smaller pico and femto cells will require increased accuracy in predicting and planning wireless signals, testing the accuracy limits of the ray tracing methods. The increased computing capabilities and the demand for better characterization of communication channels that span smaller geographical areas make numerical full-wave techniques attractive alternative even for larger problems. The paper surveys ways of overcoming excessive time requirements of numerical full-wave techniques while providing acceptable channel modelling accuracy for the smallest radio cells and possibly wider. We identify several research paths that could lead to improved channel modelling, including numerical algorithm adaptations for large-scale problems, alternative finite-difference approaches, such as meshless methods, and dedicated parallel hardware, possibly as a realization of a dataflow machine

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Advanced Diagnosis Techniques for Radio Telescopes in Astronomical Applications

    Get PDF
    The performance of radio telescopes in astronomical applications can be affected by structural variations due to: 1. Misalignment of the feeding structure, resulting in a lateral or axial displacement of the receiver; 2. Wind stress; 3. Gravitational distortion as the antenna is tilted; 4. Thermal distortion with ambient temperature or sunlight. Diagnosis methods are necessary to estimate any deviation of the antenna system from its nominal behavior in order to guarantee the maximum performance. Several approaches have been developed during the years, and among them the electromagnetic diagnosis appears today as the most appealing, because it allows a relatively simple measurement setup and a reduced human intervention. Electromagnetic diagnosis is based on the acquisition of the antenna Far Field Pattern (FFP), with the Antenna Under Test (AUT) working in receiving mode. A natural radio star or a satellite beacon provides the signal source. The acquisition of the FFP typically requires a very large number of field samples to get the complete information about the AUT, and the subsequent measurement process may span over several hours. A prolonged acquisition has significant drawbacks related to the continuous tracking of the source and the inconstancy of the environmental conditions. The purpose of the PhD activity has been focused on an optimized formulation of the diagnosis of radio telescopes aimed at reducing the number of field samples to acquire, and so at minimizing the measurement time. A diagnosis approach has been developed, based on the Aperture Field method for the description of the AUT radiation mechanism. A Principal Component Analysis (PCA) has been employed to restore a linear relationship between the unknowns describing the AUT status and the far field data. An optimal far field sampling grid is selected by optimizing the singular values behavior of the relevant linearized operator. During the activity, a computational tool based on Geometrical Optics (GO) has been developed to improve the diagnosis approach. Indeed, once the Aperture Field is recovered from the inversion of the measured FFP, an additional step is required to assess the AUT status from the phase distribution. Obviously, the computation of the phase distribution should be based on efficient algorithms in order to properly manage electrically large reflectors. The developed GO technique relies on the Fast Marching Method (FMM) for the direct solution of the eikonal equation. A GO approach based on the FMM is appealing because it shows a favorable computational trend. Furthermore, the explicit solution of the eikonal equation opens the possibility to set up an inverse ray tracing scheme, which proves particularly convenient compared to direct ray tracing because it allows to easily select the minimum number of rays to be traced. The FMM is also amenable for parallel execution. In particular, in the present work, the Fast Iterative Method has been implemented on Graphics Processing Units (GPUs). Moreover, the FMM has been accelerated by introducing a tree data structure. The tree allows to manage the mutual interactions between multiple scattering surfaces and the parallelization of the ray tracing step. The method has been numerically tested on simple canonical cases to show its performance in terms of accuracy and speed. Then, it has been applied to the evaluation of the Aperture Field phase required by the reflector diagnosis. During the research activity, the problem of validating the diagnosis algorithms has been also faced. Obviously, a numerical analysis can been carried out to test the model employed to describe the system and to evaluate the performance of the algorithm. To this end, a reliable commercial software exploited to simulate reflector antennas has been exploited. However, to complete the analysis, the experimental validation becomes mandatory, and an experimental outdoor far field test range is required. Accordingly, a test range has been set up thanks to the collaboration with Istituto Nazionale di Astrofisica (INAF) of Naples, Italy. Its realization has involved the full development of the software to drive an Alt-Azimuth positioner and to remotely control the instrumentation. In addition, an upgrade of the internal connections of a Vector Network Analyzer has been performed in order to allow the interferometric acquisition

    Propagation Modelling for Urban Source Localization and Navigation

    Get PDF

    Підвищення ефективності розрахунку стаціонарних періодичних режимів електронних кіл на основі спектрального аналізу сигналів

    Get PDF
    Спектральні характеристики сигналів лежать в основі вибору кроку їх дискретизації у часі, якщо для обчислення цих сигналів застосовується метод аналізу стаціонарних періодичних режимів нелінійних елект-ронних кіл на основі ряду Котельникова-Шеннона. Оскільки отримання самих сигналів і є метою застосування цього методу, виникає замкнене коло: щоб отримати сигнали, необхідно визначити крок дискретизації у часі, а щоб визначити крок дискретизації, необхідно знати спектральні властивості сигналу, а саме верхню граничну частоту, яка обмежує його частотний спектр. У роботі запропонований метод визначення кроку дискретизації сигналу на основі обчислення часткової реакції схеми на пробний сигнал у вигляді функції Хевісайда. Реакція визначається будь-яким чисельним методом, придатним для розв'язування систем нелінійних диференціальних рівнянь першого порядку. За спектральною густиною енергії реакції визначається верхня гранична частота і крок дискретизації сигналу у часі, який визначає необхідну кількість відліків. Наведені приклад застосування запропонованого методу та його порівняльна ефективність.A key problem in the periodic steady-state analysis of electronic circuits is that the duration of transient pro-cesses in a circuit might be much larger than the period of a steady-state response. Thus, application of traditional transient methods becomes ineffective due to a huge amount of redundant computations, and special periodic-steady state methods should be used. The method for periodic steady-state analysis using the Kotelnikov-Shannon series is a time-domain method that has proved to be effective for a such type of circuits. In this method the unknown signals are expanded in the Kotelnikov-Shannon series and the derivatives of these signals are calculated as the derivatives of the series. A matrix form of the derivatives approximation leads to simple matrix expressions in a mathematical model. When using the method for periodic steady-state analysis of non-linear circuits using the Kotelnikov-Shannon series to find the steady-state response of a circuit, a time discretization step is chosen based on the spectral characteristics of the signals. As far as the goal of the method is to calculate the unknown signals in a circuit, a vicious circle occurs: to calculate the signals, the time discretization step has to be chosen, and to choose the time discretization step, the spectral characteris-tics of the signals have to be known, namely the upper frequency in these characteristics. In order to choose the time discretization step, we propose to calculate a partial transient response of a circuit for an input signal of the form of the Heaviside step function, which is usually used to obtain a step response of a linear circuit. The response is calculated with any method, suitable for solving a system of non-linear ordinary differential equations, which usually represents the mathematical model of a circuit. The upper frequency in the spectral characteristic of the partial transient response depends on the duration of the computational domain. The upper frequency versus the dura-tion of the computational domain dependency can be approximated with a hyperbolic function. Thus, calculating few values of the upper frequency at different durations of the computational domain, the value of the upper frequency when the duration of the computational domain is equal to the period of a steady-state response can be forecasted using the hyperbolic approximation

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Hybrid Spectral Ray Tracing Method for Multi-scale Millimeter-wave and Photonic Propagation Problems

    Get PDF
    This thesis presents an efficient self-consistent Hybrid Spectral Ray Tracing (HSRT) technique for analysis and design of multi-scale sub-millimeter wave problems, where sub-wavelength features are modeled using rigorous methods, and complex structures with dimensions in the order of tens or even hundreds of wavelengths are modeled by asymptotic methods. Quasi-optical devices are used in imaging arrays for sub-millimeter and terahertz applications, THz time-domain spectroscopy (THz-TDS), high-speed wireless communications, and space applications to couple terahertz radiation from space to a hot electron bolometer. These devices and structures, as physically small they have become, are very large in terms of the wavelength of the driving quasi-optical sources and may have dimension in the tens or even hundreds of wavelengths. Simulation and design optimization of these devices and structures is an extremely challenging electromagnetic problem. The analysis of complex electrically large unbounded wave structures using rigorous methods such as method of moments (MoM), finite element method (FEM), and finite difference time domain (FDTD) method can become almost impossible due to the need for large computational resources. Asymptotic high-frequency techniques are used for analysis of electrically large quasi-optical systems and hybrid methods for solving multi-scale problems. Spectral Ray Tracing (SRT) has a number of unique advantages as a candidate for hybridization. The SRT method has the advantages of Spectral Theory of Diffraction (STD). STD can model reflection, refraction and diffraction of an arbitrary wave incident on the complex structure, which is not the case for diffraction theories such as Geometrical Theory of Diffraction (GTD), Uniform theory of Diffraction (UTD) and Uniform Asymptotic Theory (UAT). By including complex rays, SRT can effectively analyze both near-fields and far-fields accurately with minimal approximations. In this thesis, a novel matrix representation of SRT is presented that uses only one spectral integration per observation point and applied to modeling a hemispherical and hyper-hemispherical lens. The hybridization of SRT with commercially available FEM and MoM software is proposed in this work to solve the complexity of multi-scale analysis. This yields a computationally efficient self-consistent HSRT algorithm. Various arrangements of the Hybrid SRT method such as FEM-SRT, and MoM-SRT, are investigated and validated through comparison of radiation patterns with Ansoft HFSS for the FEM method, FEKO for MoM, Multi-level Fast Multipole Method (MLFMM) and physical optics. For that a bow-tie terahertz antenna backed by hyper-hemispherical silicon lens, an on-chip planar dipole fabricated in SiGe:C BiCMOS technology and attached to a hyper-hemispherical silicon lens and a double-slot antenna backed by silica lens will be used as sample structures to be analyzed using the HSRT. Computational performance (memory requirement, CPU/GPU time) of developed algorithm is compared to other methods in commercially available software. It is shown that the MoM-SRT, in its present implementation, is more accurate than MoM-PO but comparable in speed. However, as shown in this thesis, MoM-SRT can take advantage of parallel processing and GPU. The HSRT algorithm is applied to simulation of on-chip dipole antenna backed by Silicon lens and integrated with a 180-GHz VCO and radiation pattern compared with measurements. The radiation pattern is measured in a quasi-optical configuration using a power detector. In addition, it is shown that the matrix formulation of SRT and HSRT are promising approaches for solving complex electrically large problems with high accuracy. This thesis also expounds on new measurement setup specifically developed for measuring integrated antennas, radiation pattern and gain of the embedded on-chip antenna in the mmW/ terahertz range. In this method, the radiation pattern is first measured in a quasi-optical configuration using a power detector. Subsequently, the radiated power is estimated form the integration over the radiation pattern. Finally, the antenna gain is obtained from the measurement of a two-antenna system
    corecore