846 research outputs found

    Passive forward scatter radar based on satellite TV broadcast for air target detection: preliminary experimental results

    Get PDF
    The focus of this paper is on the detection of airborne targets and on the estimation of their velocity by means of passive forward scatter radar systems based on the DVB-S as transmitter of opportunity. Results related to an experimental campaign carried out near “Leonardo Da Vinci” airport (Rome, Italy) are shown. Particularly the Doppler signature spectrogram is analyzed for a single node FSR configuration and time delay techniques are analyzed for a multi-static configuration suitable for velocity estimation. Obtained results clearly show the feasibility of the DVB-S based FSR configuration to reliably detect aircrafts and the effectiveness of the proposed velocity estimation techniques even in the near field area

    A new peer-to-peer aided acquisition approach exploiting C/N0 aiding

    Get PDF
    The aim of this paper is to present an acquisition strategy for Global Navigation Satellite System (GNSS) signals exploiting aiding information provided by GNSS receivers in a Peer-to-Peer (P2P) positioning system. This work sheds light on the benefits of sharing information regarding the received satellite signal power: the Carrier-to-Noise density ratio (C/N0) estimated by aiding peers relatively close to each other, is used to optimize signal acquisition capability in terms of detection performance as well as Mean Acquisition Time (MAT). The proposed approach has been validated and assessed using real data collected with an experimental setup in light indoor conditions and by means of simulations. The performance obtained has also been compared with an Assisted-GNSS (A-GNSS) like acquisition strategy, showing the benefits of the availability of C/N0 aiding information in terms of MAT. ©2010 IEEE

    Design and theoretical analysis of advanced power based positioning in RF system

    Get PDF
    Accurate locating and tracking of people and resources has become a fundamental requirement for many applications. The global navigation satellite systems (GNSS) is widely used. But its accuracy suffers from signal obstruction by buildings, multipath fading, and disruption due to jamming and spoof. Hence, it is required to supplement GPS with inertial sensors and indoor localization schemes that make use of WiFi APs or beacon nodes. In the GPS-challenging or fault scenario, radio-frequency (RF) infrastructure based localization schemes can be a fallback solution for robust navigation. For the indoor/outdoor transition scenario, we propose hypothesis test based fusion method to integrate multi-modal localization sensors. In the first paper, a ubiquitous tracking using motion and location sensor (UTMLS) is proposed. As a fallback approach, power-based schemes are cost-effective when compared with the existing ToA or AoA schemes. However, traditional power-based positioning methods suffer from low accuracy and are vulnerable to environmental fading. Also, the expected accuracy of power-based localization is not well understood but is needed to derive the hypothesis test for the fusion scheme. Hence, in paper 2-5, we focus on developing more accurate power-based localization schemes. The second paper improves the power-based range estimation accuracy by estimating the LoS component. The ranging error model in fading channel is derived. The third paper introduces the LoS-based positioning method with corresponding theoretical limits and error models. In the fourth and fifth paper, a novel antenna radiation-pattern-aware power-based positioning (ARPAP) system and power contour circle fitting (PCCF) algorithm are proposed to address antenna directivity effect on power-based localization. Overall, a complete LoS signal power based positioning system has been developed that can be included in the fusion scheme --Abstract, page iv

    A review of the role of sensors in mobile context-aware recommendation systems

    Get PDF
    Recommendation systems are specialized in offering suggestions about specific items of different types (e.g., books, movies, restaurants, and hotels) that could be interesting for the user. They have attracted considerable research attention due to their benefits and also their commercial interest. Particularly, in recent years, the concept of context-aware recommendation system has appeared to emphasize the importance of considering the context of the situations in which the user is involved in order to provide more accurate recommendations. The detection of the context requires the use of sensors of different types, which measure different context variables. Despite the relevant role played by sensors in the development of context-aware recommendation systems, sensors and recommendation approaches are two fields usually studied independently. In this paper, we provide a survey on the use of sensors for recommendation systems. Our contribution can be seen from a double perspective. On the one hand, we overview existing techniques used to detect context factors that could be relevant for recommendation. On the other hand, we illustrate the interest of sensors by considering different recommendation use cases and scenarios

    Indoor outdoor detection

    Get PDF
    Abstract. This thesis shows a viable machine learning model that detects Indoor or Outdoor on smartphones. The model was designed as a classification problem and it was trained with data collected from several smartphone sensors by participants of a field trial conducted. The data collected was labeled manually either indoor or outdoor by the participants themselves. The model was then iterated over to lower the energy consumption by utilizing feature selection techniques and subsampling techniques. The model which uses all of the data achieved a 99 % prediction accuracy, while the energy efficient model achieved 92.91 %. This work provides the tools for researchers to quantify environmental exposure using smartphones
    • …
    corecore