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ABSTRACT

This thesis shows a viable machine learning model that detects
Indoor or Outdoor on smartphones. The model was designed as a
classification problem and it was trained with data collected from
several smartphone sensors by participants of a field trial conducted.
The data collected was labeled manually either indoor or outdoor by
the participants themselves. The model was then iterated over to lower
the energy consumption by utilizing feature selection techniques and
subsampling techniques. The model which uses all of the data achieved
a 99 % prediction accuracy, while the energy efficient model achieved
92.91 %. This work provides the tools for researchers to quantify
environmental exposure using smartphones.

Keywords: Environmental exposure, smartphone instrumentation,
machine learning, classification model, energy efficiency, battery
consumption, context aware applications, smartphones.
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FOREWORD

The aim of the thesis is to assess the viability of an energy efficient model to
predict environmental exposure using smartphone instrumentation. The process
was to first understand the state of the art, then design an experiment, collect
data, transform it and use it to produce a machine learning classification model
to predict either indoor or outdoor environments. Afterwards, energy efficiency
was taken into account, so measurements of battery consumption of the different
sources of information was collected and later used to iterate over the created
model and design a new one which was accurate and energy efficient. Lastly, the
robustness of the model was tested using data collected on extreme cases, and
the results were analyzed comparing them to previous attempts, available in the
literature, to predict environmental exposure.
This thesis is partially funded by the Academy of Finland (Grants 276786-

AWARE, 286386-CPDSS, 285459- iSCIENCE, 304925-CARE), the European
Commission (Grant 6AIKA-A71143-AKAI), and Marie Skłodowska-Curie
Actions (645706-GRAGE). As a result of this thesis and the work of Theodoros
Anagnostopoulos, Jorge Goncalves, Denzil Ferreira, Simo Hosio and Vassilis
Kostakos, the paper "Environmental exposure assessment using indoor/outdoor
detection on smartphones"[1] was published in the journal "Personal and
Ubiquitous Computing" in 2017.
Special thanks to Denzil Ferreira for all the support as the supervisor, as well as

to Zhanna Sarsenbayeva and Julio Mendoza who helped during the data collection
phase.

Helsinki, 22nd May, 2019

Juan Camilo García Hurtado



LIST OF ABBREVIATIONS AND SYMBOLS

AP Access Point
API Application Programming Interface
APIs Application Programming Interfaces
GPS Global Positioning System
GSM Global System for Mobile communications
NA Not Applicable
RF Radio Frequency
RFID Radio Frequency Identification
RSS Received Signal Strength
SVM Support Vector Machine

asu asu. Unit to measure GSM signal strength.
km kilometer. Unit to measure distance.
lx lux. Unit to measure luminance.
mbar millibar. Unit to measure atmospheric pressure.
min minutes. Unit of time.
mW milliWatt. Unit of power.
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1. INTRODUCTION

As the smart cities initiative grows, more data is available about what is
happening where, historic data is readily available, and hence, better decision
making can happen[2]. Sensors allow to record more information about the
conditions of cities as well as about the behaviour of the population, and even
individuals. Due to ethical reasons[3], the idea of this big data collection is to
avoid individual people tracking. And even if ethical reasons are discarded, a
complex algorithm that takes multiple inputs of data would need to be created
to get information about a specific individual. For the general purposes, having
information about a specific person is not very relevant, but, for medical reasons,
having accurate information of a patient can result in better outcomes [4]. Now a
days, not only cities are full of sensors, but smartphones are equipped with a wide
array of sensors that can get context information of an individual at a relatively
low cost. What this means, is that by leveraging these sensors, a more accurate
picture can be created and used, for example, for a better health care.
Indoor outdoor detection is a topic which is specially important for health

sciences usually related to patients’ environmental exposure [5]. Combining the
information of when and where a patient has been outdoors with the information
of the cities pollution could greatly benefit the analysis of Asthma and other
allergic diseases cases [6, 7]. Other areas of study which could benefit of this
kind of information focus on better understanding the link between pregnant
women exposure to pollution and birth size [8], infant intelligence [9], cognitive
development [10], and the advancement of puberty [11].
Studies that have tried to create models of environmental exposure have been

usually done from self-reported questionnaires, which may be unreliable and
inconsistent. An automated study, which is more reliable, could be carried out by
using the smartphones people carry on a daily basis [12], and the quantification
of environmental exposure could be greatly improved.
In this thesis, the viability of an energy efficient Indoor Outdoor detection

algorithm is assessed. The algorithm takes advantage of the sensors in
smartphones, and does not rely on instrumentation of the environment, like
installing beacons or tags, or on previous mapping of the environment. To create
the algorithm, sensor data was collected by several participants while ground-
truth of indoor and outdoor labels was tagged. The indoor outdoor detection
was achieved using a classification problem, and the trade off between power
consumption and prediction accuracy was analyzed.
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2. LITERATURE SURVEY

Not a lot of research has been done on environmental exposure using smartphones,
but there are several papers that can be used as a start. Localization techniques
for mobile technologies and how to use them in indoor and outdoor settings
has substantial literature [13]. Even though this is not strictly addressing
environmental exposure, characterizing the locations as indoor or outdoor would
be one way to close the gap.
Other related research is activity recognition techniques. These can be

extrapolated to environmental exposure if the activities can be classified into
indoor and outdoor. Some of them will be pretty straight forward, for example
"brushing teeth" is likely to be an indoor activity, but some others will be harder
or impossible to classify, like "walking". Location-based services is another area
of investigation that could be used to identify environmental exposure.
In all of these techniques, energy efficiency is an important topic to consider

when discussing smartphones. One way to improve this is by using periodic
sampling instead of continuous sensing, another is by using the sensors that are
less energy draining.

2.1. Localization

Several localizations techniques exist. Some use fingerprinting locations, while
others rely on calculating the distance to already known locations. Some
fingerprinting techniques use RFID (Radio Frequency Identification) [14] to
identify tags that are placed before hand in specific locations. Identification of
these tags gives the possibility to identify the fingerprinted location which then
also identifies the position of the user. Other methods use similar fingerprinting
techniques, but instead of using RFID tags they use Bluetooth tags [15], while
others use RSS (Received Signal Strength) to identify a location [16, 17, 18, 19].
For example, WiFi RSS for outdoor localization using fingerprinting has been
shown to work [20] and other methods, like the LocataNet system, show how
to extend the existing GPS (Global Positioning System) RSS locating method
to difficult environments by the use of additional hardware that broadcasts the
constellation information [21]. If a mapping between the fingerprinted location
and indoor and outdoor characteristics exist, then the environmental exposure
could be extrapolated.
Even though some localizations techniques try to replace the use of GPS, often,

indoor localization techniques still rely on GPS when available. A design of a
wireless mobile indoor/outdoor tracking system uses GPS when available, and
RF (Radio Frequency) [22] when not. Indoor location tracking is achieved by
uLocate by mixing WiFi and GPS data of elderly people [23].
When GPS is not used, WiFi is a very common system to rely on, but some

locations have sparse WiFi signal. Research has shown that by using sensors
that change due to user movement, like the accelerometer, the magnetometer
and the gyroscope, a robust localization algorithm that estimates the direction
of the movement of users can be created [24]. Aside from the classic additional
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hardware, like RFID or Bluetooth tags, other approaches have been studied, like
one using smartphones and synchronized acoustic beacons that emit non-invasive
audio [25].
Other systems that could be used to calculate the environmental exposure

are indoor navigation systems. It has been shown that using accelerometer,
gyroscope, magnetometer and WiFi, a reliable real time indoor navigation system
using smartphones can be created [26]. To achieve this, the system uses WiFi and
geomagnetic fingerprints of the area. In this environments, the use of a barometer
can also be used to give information about the elevation [27].

2.2. Activity recognition

As mentioned before, activity recognition could be used to extrapolate
environmental exposure, as long as a reliable conversion between activity and
environmental exposure can be detected.
Several algorithms have been created to investigate the viability of activity

recognition. For example, the system SurroundSense leveraged the microphone
and camera of the user’s smartphone to measure sound, light and color, and infer
the activity using an SVM (Support Vector Machine) [28] classifier. Another
approach was shown by the Jigsaw sensing engine, which used continuous sensing
of the accelerometer and microphone and periodic GPS sensing to infer the
activity by classifying the data with a J48 tree based classifier [29].
Semi-supervised machine learning models have also been used for activity

recognition by classifying cell signal, light and magnetic field data [30]. The
model uses a Naive Bayes classifier which was efficient on accuracy and energy
consumption. In this system, GPS was avoided to reduce the energy cost, but
it is not the only system to take energy cost into consideration. The SenseLess
system uses a dynamic approach by choosing the most energy efficient smartphone
sensors for activity recognition [31].

2.3. Location-based services

Location-based services literature is extensive, and as long as a reliable match
between a specific service and its environmental exposure associated exists, then
it would be possible to use them to extrapolate environmental exposure.
For example, a system using ultrasonic signal acquisition was proposed for

indoor location based services [32]. The system is based on ultrasonic beacons
placed in the ceilings of buildings. Another example, was a system for location
recognition and prediction designed to be used for location based services [33].
This system uses data gathered from smartphones’ GPS and WiFi sensors, and
combines it with machine learning techniques, leveraging k-Nearest Neighbors and
Decision Trees classifiers, to recognize the user’s location, and Markov models to
predict the the destination of the user.
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2.4. Environmental exposure

The methods mentioned above already researched have not directly tried to
quantify environmental exposure using smartphones, and hence they are not ideal
since they require either environment instrumentation, like installing beacons, or
a mapping of the environment. There is some literature that has tried to calculate
the environmental exposure and react to the user being either indoors or outdoors.
For example, an indoor and outdoor activity recognition system was attempted
by using the availability of GPS signal, assuming when GPS signal is available the
user is outdoors [34]. There is no detailed accuracy assessment, but environments
that might contradict the assumption are indoor environments with glass ceilings.
Another approach to indoor outdoor detection was a lifelog system that used

user’s position, activity, and experience to predict the user behaviour and switch
between indoor or outdoor activity detection based on the availability of GPS
and Bluetooth beacons that were previously installed [35].
Environmental exposure using smartphones has been explicitly addressed by

IODetector [36]. This system uses an Android application that classifies the
environment, with a model with a prediction accuracy of 85%, by using the light
sensor, magnetometer and cell tower signal strength. Since GPS was not used,
the system is relatively energy efficient. Other models have used GPS to predict
environmental exposure and have shown that by adding a light sensor [37] or a
magnetometer [38], the accuracy can be improved.
A GPS only system has also been designed to infer environmental exposure,

but instead of using the number of satellites or the location accuracy given by the
satellites, the system plots the visible satellites on the sky and the not visible but
expected satellites, and based on this plot, tries to determine the reason why the
satellites are not visible. For example, indoors is usually classified as no satellites
at the top but some satellites in the horizon [39].
Even though environmental exposure has been studied, energy efficiency has

been taken into account lightly. For example, it has been shown that a more
energy efficient model can be created by relying on lightweight smartphone sensors
or by reducing the duty cycle of them [40], but there is no analysis of the trade
off with the accuracy of the environmental exposure calculation.
Something important to mention about all the research that tried to asses

environmental exposure, is that the labeling of the data collected (indoor or
outdoor) is done in the same phone that is sensing the environment, which is
problematic since the act of labeling can affect the collected data and result in a
biased analysis.
To summarize, indoor activity recognition generally uses lightweight sensors

and avoids GPS, while activity recognition in both indoor and outdoor settings
uses GPS to detect which environment setting the user is on, which results in a
high power consumption. Some methods to save power have been subsampling,
but they have been adopted without feature selection, which then results in a
lower performance of the classifiers used. This thesis tries to detect indoor and
outdoor settings with a high accuracy and a low energy requirement, by selecting
a subset of sensors that optimize the requirements.
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3. EXPERIMENT DESIGN

To create an energy efficient indoor outdoor detection algorithm is a complex
problem. Following a deterministic approach, with fixed boundaries to classify
data, to design a classifier would be a very difficult process, that most probably is
not viable. Since it is not clear how to directly infer environmental exposure from
data available by the smartphone a user carries, a machine learning approach was
chosen.
To create a machine learning model a big amount of data is required to train

the algorithm. This data is composed of features that are extracted from the
information available by the target user’s device. A wide variety of information
can be obtained from a smartphone, but not all of it is related to the context the
user is on, and not all of the context related information will be necessarily helpful
to infer environmental exposure. The method how the features are extracted is
by prepocessing the available information into variables that can more easily be
included in a machine learning algorithm. After all the data is collected and
preprocessed, the machine learning model can be trained, and evaluated. An
overview of the whole system of data collection is available in Appendix 2.

3.1. Information sources

The information chosen for the machine learning model can be divided into two
groups. The first one is information coming from physical sensors in the device
that could be influenced by the environment. The second group is information
that comes either from external APIs (Application Programming Interfaces) that
could give relevant context of the user, or from the device’s status that can relate
to the current actions of the user or the physical state of the device. In the
following sections the sources of information used and why they were used are
explained.

3.1.1. Physical sensors

The following sensors are the ones chosen to collect data that might be related
to the environmental exposure of the user.

Light sensor: The light perceived by the smartphone can be used to infer
the availability of natural light versus artificial light. The sun provides around
110 000 lx (lux, measurement of light) when it’s shining fully [41], compared to
between 300 lx to 750 lx emitted by indoor lighting [42, 43], and between 0.27 lx to
1.0 lx provided by the moon under a clear sky [41]. Since this values mentioned are
in ideal conditions, additional information is needed to make the light information
more useful.
First, the phone might be in the pocket of the user, which would mean the light

sensor is obstructed and no light measurement is available. For this scenario,
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the proximity sensor was also included, and the idea is to determine when the
information of the light sensor is reliable.
Secondly, the clouds can significantly affect the amount of light received from

the sun. To address this issue, information about the weather was included. The
cloud coverage would correlate to how much light passes through the atmosphere
and can be used to compensate the light sensor’s readings.
Lastly, the sun is not available 24 hours a day. This changes depending on the

time and place the user is. To further improve the possibility to infer information
from the light sensor, information about the part of the day was collected. Even
though a simple approach would be to divide the day in 2, daytime and nighttime,
in places away from the equator there are seasons that can change the division
between nighttime and daytime in a matter of days. For this reason, it was
decided to divide the day in 3 parts of similar expected light: day, night and
twilight. As shown in Figure 1 twilight was used for both sunrise and sunset,
since the amount of light is the same.

Figure 1. Classification of part of the day

To calculate the section of the day the user was at, the date and location of the
user was gathered and the algorithm by the Almanac for Computers [44, 45] was
used to infer the astronomical sunrise and sunset as well as the official sunrise
and sunset. Before and after the astronomical sunrise and sunset respectively,
no light from the sun is perceivable in the atmosphere, which would mean that
any light perceived by the light sensor is artificial light or moon light. Between
the official sunrise and sunset the sun light is direct, which would help the model
to understand the light values better.

GSM (Global System for Mobile communications) antenna: GSM
signals are affected by structures, and crossing from an outdoor to an indoor
environment comes with a decrease in signal strength [36].

Accelerometer: With this sensor, information about the velocity of the user
can be calculated. Velocity can help determine the transportation and hence
extrapolate to an indoor or outdoor environment.

Magnetometer: The magnetometer is one of the main sensors used for
indoor navigation. This sensor is designed to measure the Earth’s magnetic
field to calculate the true north, which is useful in navigation applications.
The magnetometer is sensitive to disturbances caused by electronics, magnets
and metals [46], and hence, the magnetometer variance is a good indication of
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nearby structures and electronics, which happen mostly in an indoor environment.

Microphone: Sound acoustics are significantly different between indoor and
outdoor environments, so the decibel level and the frequency can be a good extra
data point to infer the environmental exposure.

GPS antenna: Even though GPS is the sensor with most energy consumption,
it is still a reliable sensor when it comes to differentiate between indoor and
outdoor environments. Since GPS needs to have a direct line of sight between the
satellite and the phone’s antenna, a smartphone inside an indoor environment
will have a harder time discovering satellites. The sensor was used to find the
number of satellites, but it was also used to find the location of the user to query
the weather as mentioned in the light sensor section.

WiFi antenna: Similar to the GPS train of thought, WiFi AP (access points)
are more prominent in indoor environments and the amount of them differ from
outdoor environments. Even though this might be changing with smart cities
development, it is worth investigating if the combination of the data provided
by the WiFi antenna with the other information collected might have a good
enough understanding of the context to infer the environmental exposure.

Barometer: Barometric pressure is a parameter that buildings with controlled
environments usually regulate to be either positive or negative depending on the
season of the year and the height of the building. For example, maintaining a
positive pressure would mean that less air comes in the building, which would
make the building cleaner and less contaminated.

Proximity: The proximity sensor, as mentioned earlier in the light sensor
section, was used as a helper sensor to give the machine learning model a better
chance to understand when the light sensor information is relevant and when it
is not.

3.1.2. Other sources

The following sources of information are the ones chosen to collect data that can
give extra information to extrapolate environmental exposure.

Activity of the user: Google’s Activity Recognition API (Application
Programming Interface) was used to obtain the activity. The activity the user is
doing is greatly correlated with the environment. For example, biking is most
probably an outdoor activity, while commuting in a bus or a car is, depending
on the definition of indoor and outdoor, an indoor activity.

Screen status: Screen status correlates to the usage of the smartphone,
which could also be related to the environmental exposure of the user itself.
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If there is a difference between the screen status between indoor and outdoor
environments, then it could be used in combination with the other data to infer
the environmental exposure.

Weather: Even though weather is of great influence to humans behaviour, in
this case there is no intention of using it directly to infer environmental exposure,
but more of a helper data point to use in combination with other data collected
by the light sensor and the GPS antenna, as mentioned in the previous section.

Time of day: As weather, this information is not used directly to infer
environmental exposure, even though for example, most people are indoors at
night, but mostly as a helper data point for the light sensor as mentioned before.

3.2. Data collection

3.2.1. Data specification

The data collected all came from the information sources mentioned previously.
Some of the sources provided multiple variables, and all of the data collected was
labeled with the context of the user based on manual input explained in the next
section. In Table 1, the variables collected with their respective sources, possible
values, units and frequency of collection are shown.
Some clarification is in order regarding what data and how the data was

collected. To avoid battery consumption, the information sources, activity of
the user, weather, time of day, microphone, GPS antenna and WiFi antenna,
which have a high battery impact were collected at a lower frequency.
The GSM signal strength and the neighbouring towers signal strength have

different units due to how the sensor’s API is implemented. It is relevant to note
that the relationship between asu and dBm is

1 dBm = −113 + 2 ∗ asu, (1)
which means that 0 asu is equivalent to −121 dBm or less, and 31 asu is

−51 dBm or more.
Regarding the accelerometer data, the values collected do not include the force

of gravity, which allows easier manipulation of the data in data processing. The
magnetometer data was collected on each axis (x, y, z) of the device. With
respect to the microphone, data was collected for 30 s and then processed with the
Ambient Noise Plugin from the AWARE platform [47], and the WiFi antenna’s
scan functionality was used to count how many AP were visible from the phone.
GPS data was a concern, since this sensor is the heaviest consumer of battery.

As mentioned in Table 1, the data was collected every 5 minutes. When the time
to collect data came, the GPS antenna was switched on for a minimum of 20 s
and a maximum of 40 s. This was done to guarantee enough time to calculated
the location of the user with enough accuracy even on cloudy days, but avoiding
having the sensor on for too long. When a fix was acquired within the time
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Table 1. Data collected specifications

Variable Source Range Units Frequency
Activity Google Activity in vehicle NA1 5 min

Recognition API bicycle
on foot
still
unknown
tilting

Barometric pressure Barometer NA2 mbar 5Hz
Ambient luminance Light sensor 0 to 100 000 lx 5Hz
Proximity Proximity sensor 0 and 1 NA On change3

Cloud coverage Weather API 0 to 100 % 5 min
Part of day Time of day night NA 5 min

twilight
day
unknown

GSM signal strength GSM antenna 0 to 31 asu4 On change5

GSM neighbouring GSM antenna −121 to 10 dBm On change6

towers signal strength
Acceleration Accelerometer NA7 m/s2 5Hz
Magnetic field Magnetometer NA8 µT 5Hz
Ambient noise Microphone NA dB 5 min
Noise frequency Microphone >= 0 Hz 5 min
Active satellites GPS antenna >= 0 NA 5 min
Screen status Screen status off NA On change

on
locked
unlocked

WiFi AP WiFi antenna >= 0 NA 5 min

1) NA (Not applicable).
2) The range of the barometer varied from sensor to sensor.
3) Whenever the value of the proximity sensor changes, the value is recorded.
4) asu (Arbitrary Strength Unit).
5, 6) Whenever the GSM antenna connected to a new GSM tower the value was

recorded.
7) The range of the accelerometer varied from sensor to sensor.
8) The range of the magnetometer varied from sensor to sensor.



15

parameters, the number of satellites used for the fix was stored and the location
was used to calculate the weather and the part of day information. If no location
was available then the number of satellites recorded was 0 and the part of day and
weather kept the previous recording. It is important to note that the location of
the user was never stored.

3.2.2. Procedure

The goal of the data collection procedure was to collect data from several
participants, avoiding human error when labelling the data. To do this, the
AWARE framework was used [47]. This framework contains a method to create
user studies and gather the data remotely, as well as allow changes to the study
on the fly. Additionally it provides several ready made plugins to collect certain
data, and also allows the creation of additional plugins for the study. For this user
study, the AWARE plugins Ambient noise, Google Fused Location and Google
Activity Recognition and the sensor collection framework for aware were used as
the information source. Furthermore, 2 extra plugins and an android application
were created to complete the information sources and allow the labeling of the
data.

Application development

The plugin for Indoor Outdoor collection was created as an additional source of
information needed for some data not present in the existing AWARE plugins.
This plugin did not require any user interaction aside from the installation
process, and it was in charge of being the information source for weather, time of
day, GSM antenna, GPS antenna, screen status and WiFi antenna. The Indoor
Outdoor collection plugin went through 9 iterations until it worked as expected.
All the other information was collected using AWARE.
Aside from the Indoor Outdoor collection plugin created specifically for this

study, another generic plugin was created to collect user traces. This Traces
Collector plugin was used to remove possible tampering of data when the user
wanted to label the information provided. How the plugin works, is it connects
via Bluetooth to another Bluetooth device which will provide information about
the traces. It requires user interaction after the installation. Initially it shows
the user a notification seen in Figure 2.

Figure 2. Traces Collector plugin notification
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Then the user starts the connection process and accepts the pairing as Figure
3 illustrates.

Figure 3. Traces Collector plugin pairing process

Afterwards, the plugin is in functional state and shows a permanent notification
with the current state of the connection to the remote device and provides a full
screen view of the status of the connection, shown in Figure 4.

Figure 4. Traces Collector plugin status notification and full view

A trial of the study was conducted, and it was clear that Bluetooth was not as
stable as expected. Due to this the functionality to reconnect automatically to
the remote device was added to the Traces Collector plugin. The creation of this
plugin went through 9 iterations until it was reliable for a real experiment.
Regarding the external device which connected via Bluetooth to the Traces

Collector plugin, a second smartphone was used. An Indoor Outdoor Remote
application was developed that provided a simple interface for the users to interact
with. It contained a setup screen visible in Figure 5 and a remote screen to change
the current environment between indoor and outdoor.
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Figure 5. Indoor Outdoor Remote setup

As seen in Figure 6 the remote view contained 3 options instead of just a switch.
This was implemented in one of the iterations since it was clear that participants
would forget to interact with the device. In this case the options of Now, 1 minute
ago and 5 minutes ago were implemented to give flexibility.
This was afterwards taken into account when the debriefing of the participants

happened and when the data analysis happened. The remote application always
showed a notification to remind the user to interact with it, and for convenience,
as shown by Figure 7, the notification contained actions so the user did not have
to open the application to change environments but could do it directly from the
notification screen.

Figure 6. Indoor Outdoor Remote
options

Figure 7. Indoor Outdoor Remote
convenience notification

It is important to note that the use of a secondary device was to avoid tampering
of the data collected by the main device. Movements like taking the phone out
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of the pocket, shifting its orientation, or unlocking it would impact the data
collected, which could then be a trigger for the machine learning model to train
on.

Participants’ process

The participants of the study with whom a meeting could be agreed upon were
given verbal instructions on how to collect the data, and all the initial setup was
done by the researcher, other participants received a set of instructions available
in Appendix 1. In all the cases, the initial phase was the setup of the devices,
which required the installation of the AWARE framework application in the user’s
smartphone, followed by the joining of the study, which required the additional
installation of the plugins mentioned earlier. Then the installation on the second
device, the remote to label the data, was handled, as well as the connection via
Bluetooth between the user’s device and the remote device.
Some clarification was necessary for the participants to label the data in a

uniform manner. This included explanations of several situations which could be
unclear to them. Since one of the main motivations to do this study is to provide
context for health sciences, one of the parameters taken into consideration to
classify places was the relative quality of air. For this reason, places like inside a
bus or a car were considered indoors, while open ended tunnels or balconies were
considered outdoors. Other situations that were unclear for some participants
were inner yards, which were classified as outdoors when no ceiling existed. Aside
from this pre-identified ambiguous locations, the participants were told to label
ambiguous places in a consistent manner.
Afterwards, the participants were instructed to label the transitions as soon as

they happened and to keep a log of forgotten labeling that was later used to either
re label the data collected or to remove data points which were unreliable. When
the data collection finished, the participants had a debriefing, where information
about their whereabouts as well as their activities was recorded in case it was
needed in the data processing and analysis.

3.2.3. Extreme cases

Aside from the data collected from participants in normal day to day conditions,
another data set was collected to test the machine learning model in extreme
cases to verify how robust it was. The model is expected to not work well on
this cases since it has not been trained to understand them. The cases were the
following:

Windowless basement: The basement had no GPS signal, no natural light
and no network signal.

Indoor location near a big window and glass walls: This meant there was
a high quantity of natural light as well as easy line of sight of GPS satellites.
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Urban canyon: This was an inner yard that was outdoors and surrounded
by tall walls. This meant only the satellites at the top would be visible by the
GPS antenna but none of the ones in the horizon would be. It would also have
a similar structure than an indoors environment, which would mean similar
readings for the magnetometer sensor.

Constant transitions: Frequent transitions between indoors and outdoors
with 30 seconds in between each transition.

Completely different environment: Data from a different country which
would mean a very different environment. For example, different atmospheric
pressure, earth’s magnetic field, structures and materials of buildings, and others.

From all except the different country, the data was collected half of the time
with the main device in the pocket and half the time with the main device in the
hand. The total time of data collection for each scenario was 30 minutes, except
for constant transitions and completely different environment. The data from a
different country was collected for 1 normal day (afternoon to afternoon) from
the participant, which included phone calls with a headset and without, frequent
outdoors biking, walking and commuting in a bus.

3.2.4. Energy consumption

Since one of the main goals of the project is to create an energy efficient model
that can predict the environmental exposure, data about how much energy do
the different information sources consume was necessary to collect. Qualcomm’s
Trepn Power Profiler [48, 49] was used to estimate the energy consumption values.
An LG Nexus 5, which was fully supported by Trepn’s hardware instrumentation,
was used as the measurement device for all the information sources to avoid
hardware variation bias. Data was collected during a 20 minute window with a
sampling rate of 100 milliseconds for each information source. During the profiling
phase, the device was without human interaction to reduce the variability of tasks
the smartphone had to do, and hence, try to capture the battery consumption of
the information source instead of other tasks. Data about the information source
turned off was also collected.
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4. DATA ANALYSIS

4.1. Data processing

The data collected needed to be transformed before it could be analyzed and
used in the creation of the machine learning models. It was processed as follows:

Activity: Coded as: 0 (in vehicle), 1 (bicycle), 2 (on foot), 3 (still), 4 (unknown),
and 5 (tilting).
Barometric pressure: No processing.
Ambient luminance: No processing.
Proximity: Coded as: 0 (obscured) and 1 (not obscured).
Cloud coverage: When no data was possible to collect, this feature was 0%.
This happened when no last known location of the user was available.
Part of day: Coded as: 1 (twilight), 2 (night), 3 (day), and -1 (unknown).
Unknown happened when no last known location of the user was available.
GSM signal strength: No processing.
GSM neighboring towers signal strength: The signal strength of all
neighboring towers visible by the smartphone were averaged.
Acceleration: No processing.
Magnetic field: The variance from the data collected in each axis was calculated
for an 18-second sliding window [36]. The total variance was also calculated by
summing each axis.
Ambient noise: No processing.
Noise frequency: No processing.
Active satellites: No processing.
Screen status: Coded as: 0 (off), 1 (on), 2 (locked), and 3 (unlocked).
WiFi AP: No processing.
Indoor/Outdoor labels: Coded as: 0 (indoor) and 1 (outdoor).

All the data was either upsampled or downsampled to 1Hz to create the models
based on this. Upsampling was achieved by replicating the last known value, while
downsampling was achieved by averaging the values. Additionally, all the labels
of indoor and outdoor were moved in time depending of the button pressed by the
users. "1 minute ago" was moved back 1 minute while "5 minutes ago" was moved
5 minutes back in time. For the cases of "5 minutes ago", during debriefing, the
participants were asked to explain the situation to identify possible errors logging
the data, and when more than 5 minutes had elapsed, the data was corrected
accordingly.

4.2. Data summary

4.2.1. Indoor outdoor data

Data from 11 participants recruited, averaging 27 years of age, was collected. All
participants were from Oulu, Finland. The whole data set contained 388 hours of
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data with 97 498 data points. The area covered spanned 81 km2. The participants
did 214 transitions between Indoor and Outdoor environments. The transition
labels were divided between 156 "now", 36 "1 minute ago" and 22 "5 minutes ago".
The summary of the collected data after processing can be seen in Table 2.

Table 2. Data collected summary

Variable Range Units Type
Activity 0, 1, 2, 3, 4 and 5 Net number Categorical
Barometric pressure 997 to 1009 mbar Continuous
Ambient luminance 0 to 10 000 lx Continuous
Proximity 0 and 1 Net number Categorical
Cloud coverage 0 to 100 % Discreet
Part of day −1, 1, 2 and 3 Net number Categorical
GSM signal strength 0 to 31 asu Discreet
GSM neighbouring −121 to 10 dBm Continuous
Acceleration 0.01 to 10.67 ms−2 Continuous
Magnetic Variance 1 to 9000 µT2 Continuous
Ambient Noise 13 to 56 dB Continuous
Noise frequency 8 to 310 Hz Discreet
Active satellites 0 to 13 Net number Discreet
Screen status 0, 1, 2 and 3 Net number Categorical
WiFi AP 0 to 22 Net number Discreet
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4.2.2. Battery analysis

Two sets of data were collected, the consumption of battery when the information
source was idle, and the consumption when it was active. Subtracting the
active measurement from the idle one would give the battery consumption of
the information source. The data collected can be seen in Table 3.

Table 3. Power consumption of collecting each variable

Variable Power consumption
(mW)

Activity 61.74
Barometric pressure 96.48
Ambient luminance 15.30
Proximity 14.10
Cloud coverage 67.39
Part of day 40.85
GSM signal strength 25.42
GSM neighbouring 25.42
Acceleration 86.31
Magnetic field 77.49
Ambient noise 40.37
Noise frequency 40.37
Active satellites 59.18
Screen status 0.75
WiFi AP 33.64

4.3. Machine learning model creation

Since what needed to be done was determine if the user is indoor or outdoor,
it made sense to treat the problem as a classification problem. The plan would
be to classify the environmental context of the user. The initial input would be
the features seen in Table 2, and for subsequent iterations, the features would be
selected. The output of the model would be either indoor or outdoor.
To create the models, the measurement of performance was the prediction

accuracy p which is

p = (tp + tn)/(tp + tn + fp + fn), (2)

where the variables are
tp = true positives,
tn = true negatives,
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fp = false positives, and
fn = false negatives.

Using a binomial test, a confidence interval for p was also calculated.
To create the models, Weka Machine Learning Toolbox in R was used. They

were built using the data set at a sampling rate of 1Hz but their accuracy was
measured for the full range of sampling rates to see the effect on accuracy of
subsampling, which is a good technique to reduce energy consumption. The
subsampling was done using steps of 2 to 100. For example, subsampling of 10
means only 1 record every 10 seconds is retained.

4.3.1. Model 1. Indoor outdoor classification

Since it is not possible to know a priori the best model for the data set collected,
some experimentation was in order. After trying several machine learning models,
J481 outperformed other models. Using J48, Model 1 was created using all the
features collected. It was validated using a 10-fold cross validation test. In
Figure 8, a prediction accuracy of 99 % without subsampling can be seen, while
after subsampling, the accuracy can drop to less than 40 %.

Figure 8. Prediction accuracy for Model 1

4.3.2. Model 2. Feature selection

Even though Model 1 performed very well, it uses all of the features collected. It is
important to remember, this features were selected base on literature review and
on reasoning of expected changes due to the environment, but it does not mean
they are actually useful for the model to determine the environmental exposure.

1A Weka implementation of C4.5.
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Moreover, the previous model is the model with highest energy consumption
possible.
Since one of the goals of this project is to include the battery impact in the

model created, multiple Weka feature selection algorithms were experimented
with to try to reduce the number of features to use, and potentially reduce
power consumption. The best results were achieved with the Consistency Subset
Evaluation model, with Genetic Search, and the features selected were: Activity,
Barometric pressure, Ambient luminance, Accelerometer, Magnetic variance and
Number of WiFi AP (6 out of 15).
As expected, this model is comparable in accuracy to Model 1. It was also

validated using a 10-fold cross validation test, and also subsampling was applied to
calculate the prediction accuracy on several sampling rates. Prediction accuracy,
shown in Figure 9, is 98.44 % without subsampling, and as Model 1, it can drop
to less than 40 % after subsampling.

Figure 9. Prediction accuracy for Model 2

4.3.3. Model 3. Energy efficient features

The model 2 also performed very well, and it uses a subset of the measured
features, which should decrease the energy consumption. However, the
features were selected to maximize prediction accuracy instead of reduce energy
consumption.
After experimenting further with the model, while trying to optimize for both

low energy consumption and prediction accuracy, Model 3 was created. The
parameters used to make decisions on which attributes to use were based on Table
3’s power consumption of each variable and on the importance of each feature
on the prediction accuracy. The attributes used for the model were Activity,
Ambient luminance, and Number of WiFi AP (3 out of 15). As with the other
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models, 10-fold cross validation was done, and prediction accuracy was estimated
for different levels of sampling rates.
As Figure 10 shows, the accuracy of the model is comparable to Model 1 and

Model 2. The prediction accuracy without subsampling is 92.91 %, and after
subsampling the accuracy could drop lower than 60 %.

Figure 10. Prediction accuracy for Model 3

4.4. Model results

As mentioned in the previous section, all 3 models created performed similarly, as
seen in Figure 11, but they used different attributes to train on. They all present
the expected result of lower prediction accuracy as subsampling happens.

4.4.1. Energy consumption

Models 2 and 3 were designed to reduce the energy consumption of the model,
but the data collected on energy consumption was based on the frequency of data
collected instead of the range of sampling rates shown in the prediction accuracy
results. To address this, Qualcomm’s Trepn Power Profiler [48, 49] was used again
to collect data on all different sampling rates.
As the previous battery consumption data collection, this one also had a 100ms

profiling rate, and the measurements were taken following the best practices
recommended [48]. Multiple versions of the collection software were created,
so that the sensors used were the ones needed by each model. Additionally, the
software turned on and off the sensors according to the full range of sampling
rates, from 1 Hz to 100 Hz, and it stayed in each sampling rate for 5 minutes.
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Figure 11. Prediction accuracy of all models

Figure 12 shows the results of power consumption of each model at all the
sampling rates used for prediction accuracy.

Figure 12. Models’ battery consumption at varying sampling rates

For Model 1, the power profiling was done on a version of the application
that collected simultaneously the barometric pressure, ambient luminance,
acceleration and magnetic variance. The processing of the data was done
locally on the device to take into account the extra processing power required.
Since the magnetic variance was created using an 18-second sliding window, the
magnetometer was only collected for sampling rates greater than 18. Since the
remaining sensors were only collected every 5 minutes, there was no need to
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measure their consumption again, since the frequency is lower than 1Hz, and we
already had their respective values in Table 3.
Regarding Model 2, the same process was followed as for Model 1. Since the

sensors used that required a higher frequency than 5 minutes were the same as
Model 2, the previous measurement was used as a baseline, but only the additional
variables used for this model were added to the power consumption from Table
3.
Finally, Model 3 required a different set of measurements. The only

measurement required was for ambient luminance. The rest of the battery
consumption came from Table 3.

4.4.2. Robustness

Since Model 3 had similar good results as the other models, but had a significantly
lower battery consumption, this is the model chosen to quantify environmental
exposure. Using the extreme cases data set collected earlier, the robustness of
the model was assessed. Important to note is that the model was not trained
using the data set, and as expected and shown in Table 4, the results were poor.
But the good news was that this extreme cases are not impossible to recognize,
since after training the model with the extreme cases data set and doing a 10-fold
cross validation test, the prediction accuracy greatly improved.

Table 4. Robustness results for Model 3

Environment Phone position
Prediction accuracy

(%)
Without training With training

Windowless basement
Pocket 24.86 100
Hand 43.55 93.33

Near big windows
Pocket 34.96 100
Hand 14.09 91.23

Urban canyon
Pocket 81.68 98.99
Hand 100 100

Constant transitions
Pocket 52.41 62.89
Hand 47.22 88.35

Different country Mixed 42.22 95.30

4.4.3. Comparison with other models

After analyzing the results of all the proposed models, it is necessary to compare
them with the models available in literature. Table 5 shows the prediction
accuracy without subsampling of the different models. There is also an estimated
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energy consumption of the models based on the sensors they used2. Additionally,
to give perspective of the predictive accuracy, the amount of time in a year (in
days) where a bad prediction would happen for each model, assuming 365 days
per year, was also calculated and shown.

Table 5. Comparison between models’ results

Model Accuracy Error Energy Information Sources(%) (days/year) (mW)
Model 1 99 0.8 680.76 All in Table 3
Model 2 98.44 1.0 370.96 Activity

Barometric pressure
Ambient luminance

Acceleration
Magnetic variance

WiFi AP
Model 3 92.91 14.2 110.68 Activity

Ambient luminance
WiFi AP

[36] 85 54.6 218.62 Acceleration
Proximity

Ambient luminance
GSM signal strength
Magnetic variance

[38] 86.1 to 96.5 12.8 to 50.8 136.67 GPS
Magnetic variance

[37] 90 36.5 > 211 GPS
Camera1

Ambient luminance
WiFi

GSM signal strength
Magnetic variance

1) Battery consumption for the Camera sensor was not taken, hence the
greater than sign in the Energy column.

2The energy consumption information was taken from Table 3
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5. DISCUSSION

The goal was to create a method to quantify environmental exposure of users using
smartphones, while considering accuracy and energy efficiency. Three models
were designed, initially giving priority to prediction accuracy, and then iterated
by adding more weight to the energy efficiency by using less energy hungry sources
as well as taking subsampling into account.
Assessment of the models has been done using the prediction accuracy which

allows comparison to other models in the literature, since it is a common
measurement in a priori work. Nevertheless, one of the motivations for this thesis
was to provide a model useful for health sciences, reason why confidence intervals
of the prediction accuracy were estimated using binomial experiment tests. An
overview of how the indoor outdoor detection would work is visible in Appendix
3.

5.0.1. Smartphone-based environmental exposure assessment

Even though the literature shows it has been challenging to create environmental
exposure detection due to the large quantity of work in this area [36, 35, 38,
34, 37], some methods have been created. Unfortunately, all of this methods
propose a solution that depend on unrealistic conditions that do not scale well.
For example, instrumentation of the environment or a priori mapping might be
useful in small environments, but a wider deployment does not seem viable.
Smartphones are now part of most people’s day to day life [12] and they

contain a wide array of sensors and capabilities which can be used to create
an environmental exposure detector with an accurate prediction rate. Thanks
to their ubiquity, scientist can now quantify environmental exposure using an
affordable method for longitudinal studies. In addition, cellular service providers
and scientist studying human mobility patterns could greatly benefit of this or
similar methods [36].
Having a meta sensor for indoor outdoor detection in most smartphones can

benefit users by increasing the possibilities of location-based services. Developers
will be able to come up with nice and useful ideas to take advantage of this new
context information.

5.0.2. Energy efficient machine learning models using smartphones

Traditional machine learning techniques deal with feature selection and prediction
accuracy, but it is important to take into account the expense of the data needed
for the prediction. One clear expense is battery, in the case of smartphones,
and Model 3 was created using a heuristic based on measurements of energy
consumption, taking into account that the sources of information can be turned
on and off. Further research should investigate the possibility of hybrid models
that sometimes receive data from all the possible information sources and at
others only a subset of those, as well as use different sampling rates to optimize
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for battery life. As an example, information about the battery status could easily
be used to determine when all sensors can be switched on (battery charging and
above a certain threshold) and when only key sensors should be turned on. Other
techniques to decrease battery life is piggy backing data collection and network
connections to other apps the user is already using, that way reducing the impact
the environment exposure inference has on the user’s battery. Sampling rate could
also be dynamic depending not only on the battery status but also on key sensors
data that might indicate no change of environment. For example, reaching an
activity of "still" means the previous prediction should not change until the user’s
activity changes to something indicating movement, and during this period all
other information sources could be switched off.

5.0.3. Limitations

The results for the extreme cases data set results show that a robust model that
performs under any condition seems not viable yet. The models were trained with
parts of the collected data sets and tested on the rest, and they performed pretty
well, which means some training would be required for each user that uses this
indoor outdoor detection method. This is probably due to differences in users’
behaviour, which can easily be solved with an initial calibration, but also due to
a different environment which definitely affected the results. Moreover, device
sensors themselves are a variable not taken into account. Can training a model
in one device for a user and environment apply to the same user in the same
environment but a different device? This are all interesting aspects to take into
account in future work.
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6. CONCLUSIONS

An indoor outdoor detection model was proven to be viable by utilizing
smartphones. The model was created as a classification machine learning model.
The inputs of the model were several features that change with the user’s
context, and the output was the indoor or outdoor label of the current context.
Additionally the model’s design took into account battery consumption, so it was
optimized for a high prediction accuracy as well as a low battery consumption.
Three models were designed, all using different features to assess their results
based on these metrics. They were also analyzed when subsampling was taken
into account to further decrease the battery consumption. There is a definite
relation between prediction accuracy and power consumption, and further work
needs to be done to improve the prediction at lower power consumption rates.
The most energy efficient model was tested against extreme cases to assess its
robustness, and it was clear that to provide an accurate model, an initial training
phase to the future circumstances of the user is necessary for now.



32

7. REFERENCES

[1] Anagnostopoulos T., Garcia J.C., Goncalves J., Ferreira D., Hosio
S. & Kostakos V. (2017) Environmental exposure assessment using
indoor/outdoor detection on smartphones. Personal and Ubiquitous
Computing 21, pp. 761–773.

[2] Chourabi H., Nam T., Walker S., Gil-Garcia J.R., Mellouli S., Nahon K.,
Pardo T.A. & Scholl H.J. (2012) Understanding smart cities: An integrative
framework. In: 2012 45th Hawaii international conference on system sciences,
IEEE, pp. 2289–2297.

[3] Kitchin R. (2016) The ethics of smart cities and urbanscience. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 374, p. 20160115.

[4] Stewart M.A. (1995) Effective physician-patient communication and health
outcomes: a review. CMAJ: Canadian Medical Association Journal 152, p.
1423.

[5] Monn C. (2001) Exposure assessment of air pollutants: a review on
spatial heterogeneity and indoor/outdoor/personal exposure to suspended
particulate matter, nitrogen dioxide and ozone. Atmospheric environment
35, pp. 1–32.

[6] von Mutius E. (2000) The environmental predictors of allergic disease.
Journal of Allergy and Clinical Immunology 105, pp. 9–19.

[7] Gilmour M.I., Jaakkola M.S., London S.J., Nel A.E. & Rogers C.A. (2006)
How exposure to environmental tobacco smoke, outdoor air pollutants, and
increased pollen burdens influences the incidence of asthma. Environmental
health perspectives 114, pp. 627–633.

[8] Patandin S., Koopman-Esseboom C., De Ridder M.A., Weisglas-Kuperus N.
& Sauer P.J. (1998) Effects of environmental exposure to polychlorinated
biphenyls and dioxins on birth size and growth in dutch children. Pediatric
research 44, p. 538.

[9] Patandin S., Lanting C.I., Mulder P.G., Boersma E.R., Sauer P.J.
& Weisglas-Kuperus N. (1999) Effects of environmental exposure to
polychlorinated biphenyls and dioxins on cognitive abilities in dutch children
at 42 months of age. The Journal of pediatrics 134, pp. 33–41.

[10] Baghurst P.A., McMichael A.J., Wigg N.R., Vimpani G.V., Robertson
E.F., Roberts R.J. & Tong S.L. (1992) Environmental exposure to lead and
children’s intelligence at the age of seven years: the port pirie cohort study.
New England Journal of Medicine 327, pp. 1279–1284.

[11] Howdeshell K.L., Hotchkiss A.K., Thayer K.A., Vandenbergh J.G. &
Vom Saal F.S. (1999) Environmental toxins: exposure to bisphenol a
advances puberty. Nature 401, p. 763.



33

[12] Dey A.K., Wac K., Ferreira D., Tassini K., Hong J.H. & Ramos J. (2011)
Getting closer: an empirical investigation of the proximity of user to their
smart phones. In: Proceedings of the 13th international conference on
Ubiquitous computing, ACM, pp. 163–172.

[13] Bill R., Cap C., Kofahl M. & Mundt T. (2004) Indoor and outdoor
positioning in mobile environments a review and some investigations on wlan
positioning. Geographic Information Sciences 10, pp. 91–98.

[14] Ni L.M., Liu Y., Lau Y.C. & Patil A.P. (2003) Landmarc: indoor location
sensing using active rfid. In: Proceedings of the First IEEE International
Conference on Pervasive Computing and Communications, 2003.(PerCom
2003)., IEEE, pp. 407–415.

[15] O’Neill E., Kostakos V., Kindberg T., Penn A., Fraser D.S., Jones T.
et al. (2006) Instrumenting the city: Developing methods for observing
and understanding the digital cityscape. In: International Conference on
Ubiquitous Computing, Springer, pp. 315–332.

[16] Gani M.O., OBrien C., Ahamed S.I. & Smith R.O. (2013) Rssi based indoor
localization for smartphone using fixed and mobile wireless node. In: 2013
IEEE 37th Annual Computer Software and Applications Conference, IEEE,
pp. 110–117.

[17] Leu J.S., Yu M.C. & Tzeng H.J. (2015) Improving indoor positioning
precision by using received signal strength fingerprint and footprint based
on weighted ambient wi-fi signals. Computer Networks 91, pp. 329–340.

[18] Wang F., Huang Z., Yu H., Tian X., Wang X. & Huang J. (2013) Eesm-based
fingerprint algorithm for wi-fi indoor positioning system. In: 2013 IEEE/CIC
International Conference on Communications in China (ICCC), IEEE, pp.
674–679.

[19] Yang Z., Wu C. & Liu Y. (2012) Locating in fingerprint space: wireless
indoor localization with little human intervention. In: Proceedings of the
18th annual international conference on Mobile computing and networking,
ACM, pp. 269–280.

[20] Zhang Z., Zhou X., Zhang W., Zhang Y., Wang G., Zhao B.Y. & Zheng H.
(2011) I am the antenna: accurate outdoor ap location using smartphones.
In: Proceedings of the 17th annual international conference on Mobile
computing and networking, ACM, pp. 109–120.

[21] Barnes J., Rizos C., Wang J., Small D., Voigt G. & Gambale N. (2003) High
precision indoor and outdoor positioning using locatanet. Journal of Global
Positioning Systems 2, pp. 73–82.

[22] Namineni P.K., Davey T., Siebert G. & Jacobus C.J. (2010), Wireless mobile
indoor/outdoor tracking system. US Patent 7,852,262.



34

[23] Chen K.Y., Harniss M., Lim J.H., Han Y., Johnson K.L. & Patel S.N.
(2013) ulocate: a ubiquitous location tracking system for people aging with
disabilities. In: Proceedings of the 8th International Conference on Body
Area Networks, ICST (Institute for Computer Sciences, Social-Informatics
and . . . , pp. 173–176.

[24] Waqar W., Chen Y. & Vardy A. (2016) Smartphone positioning in sparse
wi-fi environments. Computer Communications 73, pp. 108–117.

[25] Lopes S.I., Vieira J.M., Reis J., Albuquerque D. & Carvalho N.B. (2015)
Accurate smartphone indoor positioning using a wsn infrastructure and non-
invasive audio for tdoa estimation. Pervasive and Mobile Computing 20, pp.
29–46.

[26] Berkovich G. (2014) Accurate and reliable real-time indoor positioning
on commercial smartphones. In: 2014 International Conference on Indoor
Positioning and Indoor Navigation (IPIN), IEEE, pp. 670–677.

[27] Liu G., Iwai M., Tobe Y., Matekenya D., Hossain K.M.A., Ito M. & Sezaki
K. (2014) Beyond horizontal location context: measuring elevation using
smartphone’s barometer. In: Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication, ACM, pp. 459–468.

[28] Azizyan M., Constandache I. & Roy Choudhury R. (2009) Surroundsense:
mobile phone localization via ambience fingerprinting. In: Proceedings of the
15th annual international conference on Mobile computing and networking,
ACM, pp. 261–272.

[29] Lu H., Yang J., Liu Z., Lane N.D., Choudhury T. & Campbell A.T. (2010)
The jigsaw continuous sensing engine for mobile phone applications. In:
Proceedings of the 8th ACM conference on embedded networked sensor
systems, ACM, pp. 71–84.

[30] Radu V., Katsikouli P., Sarkar R. & Marina M.K. (2014) A semi-supervised
learning approach for robust indoor-outdoor detection with smartphones.
In: Proceedings of the 12th ACM Conference on Embedded Network Sensor
Systems, ACM, pp. 280–294.

[31] Ben Abdesslem F., Phillips A. & Henderson T. (2009) Less is more: energy-
efficient mobile sensing with senseless. In: Proceedings of the 1st ACM
workshop on Networking, systems, and applications for mobile handhelds,
ACM, pp. 61–62.

[32] Lindo A., del Carmen Perez M., Ureña J., Gualda D., García E. &
Villadangos J.M. (2014) Ultrasonic signal acquisition module for smartphone
indoor positioning. In: Proceedings of the 2014 IEEE Emerging Technology
and Factory Automation (ETFA), IEEE, pp. 1–4.



35

[33] Cho S.B. (2016) Exploiting machine learning techniques for location
recognition and prediction with smartphone logs. Neurocomputing 176, pp.
98–106.

[34] Ouchi K. & Doi M. (2012) Indoor-outdoor activity recognition by a
smartphone. In: Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, ACM, pp. 600–601.

[35] Mizuno H., Sasaki K. & Hosaka H. (2007) Indoor-outdoor positioning and
lifelog experiment with mobile phones. In: Proceedings of the 2007 workshop
on Multimodal interfaces in semantic interaction, ACM, pp. 55–57.

[36] Li M., Zhou P., Zheng Y., Li Z. & Shen G. (2015) Iodetector: A generic
service for indoor/outdoor detection. ACM Transactions on Sensor Networks
(TOSN) 11, p. 28.

[37] Xu W., Chen R., Chu T., Kuang L., Yang Y., Li X., Liu J. & Chen Y.
(2014) A context detection approach using gps module and emerging sensors
in smartphone platform. In: 2014 Ubiquitous Positioning Indoor Navigation
and Location Based Service (UPINLBS), IEEE, pp. 156–163.

[38] Okamoto M. & Chen C. (2015) Improving gps-based indoor-outdoor
detection with moving direction information from smartphone. In: Adjunct
Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2015 ACM International
Symposium on Wearable Computers, ACM, pp. 257–260.

[39] Cho H., Song J., Park H. & Hwang C. (2014) Deterministic indoor detection
from dispersions of gps satellites on the celestial sphere. In: The 11th
international symposium on location based services.

[40] Yao D., Yu C., Dey A.K., Koehler C., Min G., Yang L.T. & Jin H.
(2014) Energy efficient indoor tracking on smartphones. Future Generation
Computer Systems 39, pp. 44–54.

[41] Schlyter P. (2009) Radiometry and photometry in astronomy. Available:
stjarnhimlen. se/comp/radfaq. html 1.

[42] Klakegg S., Goncalves J., van Berkel N., Luo C., Hosio S. & Kostakos V.
(2017) Towards commoditised near infrared spectroscopy. In: Conference on
Designing Interactive Systems, pp. 515–527.

[43] EN 12464-1 C. (2002) Light and lighting - lighting of work places - part 1:
Indoor work places. Tech. rep., CEN.

[44] Doggett L., Tangren J. & Panossian S. (1990) Almanac for computers 1990.
Washington, DC: United States Naval Observatory .

[45] Sunrise/sunset algorithm. URL: http://williams.best.vwh.net/
sunrise_sunset_algorithm.htm.



36

[46] Jiang W., Ferreira D., Ylioja J., Goncalves J. & Kostakos V. (2014)
Pulse: low bitrate wireless magnetic communication for smartphones. In:
Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, ACM, pp. 261–265.

[47] Ferreira D., Kostakos V. & Dey A.K. (2015) Aware: mobile context
instrumentation framework. Frontiers in ICT 2, p. 6.

[48] Trepn power profiler - qualcomm developer network. URL: https://
developer.qualcomm.com/software/trepn-power-profiler.

[49] Trepn profiler - android. URL: https://play.google.com/store/apps/
details?id=com.quicinc.trepn.



37

8. APPENDICES

Appendix 1 Instructions for participants

Appendix 2 Architecture diagram of the data collection system

Appendix 3 Architecture diagram of the Indoor Outdoor detection system



Appendix 1. Instructions for participants 38

Instructions for participants

Follow this instructions to join the Indoor Outdoor data collection study. If a
step is unclear, please contact us.
1. Install on the second phone the .apk file named "Indoor Outdoor Remote.apk".
2. Install on your personal phone the .apk file named "Aware Framework".
3. On your personal phone open the application "Aware"
4. Click here:

5. Scan this QR code:

6. Click here:
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7. Wait. The application will close and it will start downloading 5 other
applications which will be running in the background collecting data. During the
download of the applications acceptance to install the applications will appear.
It will also request to turn on Bluetooth. Accept all the dialogs. This are the
screenshots of the installations.
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8. When everything is installed, the notification will appear in the notification
bar. This notification will be permanent during the whole duration of the study.

9. Click the notification (NOT the "Connect" button).
10. The second device will also have a notification, open it. The following screen
will appear:

11. Click connect on your personal phone. It will request to enable discoverable
mode.
12. Click connect on the second phone. A screen similar to the following should
appear on your personal phone.
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13. Click the device of the list. The pair messages of Bluetooth paring should
appear. Follow the pairing instructions on the devices.

14. The devices should be connected at this stage. On your personal device, click
Exit.
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A permanent notification should appear saying "Bluetooth connection stable".

When the devices get disconnected, the notification will change. The devices will
try to reconnect automatically, but in case of failure, you will need to connect
them again following the previous process.

15. Now the data collection begins. When you go outdoors or go indoors, the
corresponding buttons should be clicked. Based on the following image, if you
are indoors and are going outdoors, click the button "Now". If you forget, and
you estimate it was around a minute ago, press "1 min ago", or if you estimate 5
minutes then "5 min ago". If it was longer than 5 minutes, press "5 min ago" and
write down in a log the time of pressing the button as well as the time the real
transition occurred.

The previous process can also be done directly from the notification in the second
device.
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Notes: Since many sensors will be turned on, you might experience a faster
battery drain than usual, so please be prepared to charge your phone.

When the study finishes:
1. Open Aware on your personal phone and click here:

2. If you have a debriefing session, bring both phones to the debriefing. If you
do not have a debriefing, follow the next steps.

3. Extract the files from your personal phone located in the following folders.
- /sdcard/Android/data/com.aware/files/Documents/AWARE/
- /sdcard/Android/data/com.aware.plugin.ambient_noise/files/
Documents/AWARE/
- /sdcard/Android/data/com.aware.plugin.google.activity_recognition/files/
Documents/AWARE/
- /sdcard/Android/data/com.aware.plugin.google.fused_location/files/
Documents/AWARE/
- /sdcard/Android/data/com.aware.plugin.indoutdoor/files/Documents/
AWARE/
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- /sdcard/Android/data/com.aware.plugin.tracescollector/files/
Documents/AWARE/

4. Extract the following file from the second phone:
- /sdcard/Queue_Estimation/traces.csv

5. Uninstall Aware from your personal phone.

6. On your personal phone, go to settings, applications and uninstall the
following applications.

- Ambient Noise
- Google Activity Recognition
- Google Fused Location
- Indoor Outdoor
- Traces Collector

7. Uninstall the application "Indoor Outdoor Remote" from the second phone.

8. Send us the log you wrote about the transitions and wait for our confirmation
and additional questions.

Thank you for your participation in the study.
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