7,409 research outputs found

    A G2-subdivision algorithm

    Get PDF

    Finding an induced subdivision of a digraph

    Get PDF
    We consider the following problem for oriented graphs and digraphs: Given an oriented graph (digraph) GG, does it contain an induced subdivision of a prescribed digraph DD? The complexity of this problem depends on DD and on whether GG must be an oriented graph or is allowed to contain 2-cycles. We give a number of examples of polynomial instances as well as several NP-completeness proofs

    Restricted frame graphs and a conjecture of Scott

    Full text link
    Scott proved in 1997 that for any tree TT, every graph with bounded clique number which does not contain any subdivision of TT as an induced subgraph has bounded chromatic number. Scott also conjectured that the same should hold if TT is replaced by any graph HH. Pawlik et al. recently constructed a family of triangle-free intersection graphs of segments in the plane with unbounded chromatic number (thereby disproving an old conjecture of Erd\H{o}s). This shows that Scott's conjecture is false whenever HH is obtained from a non-planar graph by subdividing every edge at least once. It remains interesting to decide which graphs HH satisfy Scott's conjecture and which do not. In this paper, we study the construction of Pawlik et al. in more details to extract more counterexamples to Scott's conjecture. For example, we show that Scott's conjecture is false for any graph obtained from K4K_4 by subdividing every edge at least once. We also prove that if GG is a 2-connected multigraph with no vertex contained in every cycle of GG, then any graph obtained from GG by subdividing every edge at least twice is a counterexample to Scott's conjecture.Comment: 21 pages, 8 figures - Revised version (note that we moved some of our results to an appendix

    Permanents, Pfaffian orientations, and even directed circuits

    Full text link
    Given a 0-1 square matrix A, when can some of the 1's be changed to -1's in such a way that the permanent of A equals the determinant of the modified matrix? When does a real square matrix have the property that every real matrix with the same sign pattern (that is, the corresponding entries either have the same sign or are both zero) is nonsingular? When is a hypergraph with n vertices and n hyperedges minimally nonbipartite? When does a bipartite graph have a "Pfaffian orientation"? Given a digraph, does it have no directed circuit of even length? Given a digraph, does it have a subdivision with no even directed circuit? It is known that all of the above problems are equivalent. We prove a structural characterization of the feasible instances, which implies a polynomial-time algorithm to solve all of the above problems. The structural characterization says, roughly speaking, that a bipartite graph has a Pfaffian orientation if and only if it can be obtained by piecing together (in a specified way) planar bipartite graphs and one sporadic nonplanar bipartite graph.Comment: 47 pages, published versio
    corecore