1,376 research outputs found

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    CREATING A BIOMEDICAL ONTOLOGY INDEXED SEARCH ENGINE TO IMPROVE THE SEMANTIC RELEVANCE OF RETREIVED MEDICAL TEXT

    Get PDF
    Medical Subject Headings (MeSH) is a controlled vocabulary used by the National Library of Medicine to index medical articles, abstracts, and journals contained within the MEDLINE database. Although MeSH imposes uniformity and consistency in the indexing process, it has been proven that using MeSH indices only result in a small increase in precision over free-text indexing. Moreover, studies have shown that the use of controlled vocabularies in the indexing process is not an effective method to increase semantic relevance in information retrieval. To address the need for semantic relevance, we present an ontology-based information retrieval system for the MEDLINE collection that result in a 37.5% increase in precision when compared to free-text indexing systems. The presented system focuses on the ontology to: provide an alternative to text-representation for medical articles, finding relationships among co-occurring terms in abstracts, and to index terms that appear in text as well as discovered relationships. The presented system is then compared to existing MeSH and Free-Text information retrieval systems. This dissertation provides a proof-of-concept for an online retrieval system capable of providing increased semantic relevance when searching through medical abstracts in MEDLINE

    Semi-automated co-reference identification in digital humanities collections

    Get PDF
    Locating specific information within museum collections represents a significant challenge for collection users. Even when the collections and catalogues exist in a searchable digital format, formatting differences and the imprecise nature of the information to be searched mean that information can be recorded in a large number of different ways. This variation exists not just between different collections, but also within individual ones. This means that traditional information retrieval techniques are badly suited to the challenges of locating particular information in digital humanities collections and searching, therefore, takes an excessive amount of time and resources. This thesis focuses on a particular search problem, that of co-reference identification. This is the process of identifying when the same real world item is recorded in multiple digital locations. In this thesis, a real world example of a co-reference identification problem for digital humanities collections is identified and explored. In particular the time consuming nature of identifying co-referent records. In order to address the identified problem, this thesis presents a novel method for co-reference identification between digitised records in humanities collections. Whilst the specific focus of this thesis is co-reference identification, elements of the method described also have applications for general information retrieval. The new co-reference method uses elements from a broad range of areas including; query expansion, co-reference identification, short text semantic similarity and fuzzy logic. The new method was tested against real world collections information, the results of which suggest that, in terms of the quality of the co-referent matches found, the new co-reference identification method is at least as effective as a manual search. The number of co-referent matches found however, is higher using the new method. The approach presented here is capable of searching collections stored using differing metadata schemas. More significantly, the approach is capable of identifying potential co-reference matches despite the highly heterogeneous and syntax independent nature of the Gallery, Library Archive and Museum (GLAM) search space and the photo-history domain in particular. The most significant benefit of the new method is, however, that it requires comparatively little manual intervention. A co-reference search using it has, therefore, significantly lower person hour requirements than a manually conducted search. In addition to the overall co-reference identification method, this thesis also presents: • A novel and computationally lightweight short text semantic similarity metric. This new metric has a significantly higher throughput than the current prominent techniques but a negligible drop in accuracy. • A novel method for comparing photographic processes in the presence of variable terminology and inaccurate field information. This is the first computational approach to do so.AHR

    The crustal dynamics intelligent user interface anthology

    Get PDF
    The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has, as one of its components, the development of an Intelligent User Interface (IUI). The intent of the IUI is to develop a friendly and intelligent user interface service based on expert systems and natural language processing technologies. The purpose of such a service is to support the large number of potential scientific and engineering users that have need of space and land-related research and technical data, but have little or no experience in query languages or understanding of the information content or architecture of the databases of interest. This document presents the design concepts, development approach and evaluation of the performance of a prototype IUI system for the Crustal Dynamics Project Database, which was developed using a microcomputer-based expert system tool (M. 1), the natural language query processor THEMIS, and the graphics software system GSS. The IUI design is based on a multiple view representation of a database from both the user and database perspective, with intelligent processes to translate between the views

    Text Mining Promise and Reality

    Get PDF
    • …
    corecore