9 research outputs found

    Simplification logic for the management of unknown information

    Get PDF
    This paper aims to contribute to the extension of classical Formal Concept Analysis (FCA), allowing the management of unknown information. In a preliminary paper, we define a new kind of attribute implications to represent the knowledge from the information currently available. The whole FCA framework has to be appropriately extended to manage unknown information. This paper introduces a new logic for reasoning with this kind of implications, which belongs to the family of logics with an underlying Simplification paradigm. Specifically, we introduce a new algebra, named weak dual Heyting Algebra, that allows us to extend the Simplification logic for these new implications. To provide a solid framework, we also prove its soundness and completeness and show the advantages of the Simplification paradigm. Finally, to allow further use of this extension of FCA in applications, an algorithm for automated reasoning, which is directly built from logic, is defined.Funding for open access charge: Universidad de Málaga / CBUA This article is Supported by Grants TIN2017-89023-P, PRE2018-085199 and PID2021-127870OB-I00 of the Ministry of Science and Innovation of Spain and UMA2018-FEDERJA-001 of the Junta de Andalucia and European Social Fund

    A Fuzzy FCA-based Approach to Conceptual Clustering for Automatic Generation of Concept Hierarchy on Uncertainty Data

    No full text
    Abstract. This paper proposes a new fuzzy FCA-based approach to conceptual clustering for automatic generation of concept hierarchy on uncertainty data. The proposed approach first incorporates fuzzy logic into Formal Concept Analysis (FCA) to form a fuzzy concept lattice. Next, a fuzzy conceptual clustering technique is proposed to cluster the fuzzy concept lattice into conceptual clusters. Then, hierarchical relations are generated among conceptual clusters for constructing the concept hierarchy. In this paper, we also apply the proposed approach to generate a concept hierarchy of research areas from a citation database. The performance of the proposed approach is also discussed in the paper

    Hybrid fuzzy multi-objective particle swarm optimization for taxonomy extraction

    Get PDF
    Ontology learning refers to an automatic extraction of ontology to produce the ontology learning layer cake which consists of five kinds of output: terms, concepts, taxonomy relations, non-taxonomy relations and axioms. Term extraction is a prerequisite for all aspects of ontology learning. It is the automatic mining of complete terms from the input document. Another important part of ontology is taxonomy, or the hierarchy of concepts. It presents a tree view of the ontology and shows the inheritance between subconcepts and superconcepts. In this research, two methods were proposed for improving the performance of the extraction result. The first method uses particle swarm optimization in order to optimize the weights of features. The advantage of particle swarm optimization is that it can calculate and adjust the weight of each feature according to the appropriate value, and here it is used to improve the performance of term and taxonomy extraction. The second method uses a hybrid technique that uses multi-objective particle swarm optimization and fuzzy systems that ensures that the membership functions and fuzzy system rule sets are optimized. The advantage of using a fuzzy system is that the imprecise and uncertain values of feature weights can be tolerated during the extraction process. This method is used to improve the performance of taxonomy extraction. In the term extraction experiment, five extracted features were used for each term from the document. These features were represented by feature vectors consisting of domain relevance, domain consensus, term cohesion, first occurrence and length of noun phrase. For taxonomy extraction, matching Hearst lexico-syntactic patterns in documents and the web, and hypernym information form WordNet were used as the features that represent each pair of terms from the texts. These two proposed methods are evaluated using a dataset that contains documents about tourism. For term extraction, the proposed method is compared with benchmark algorithms such as Term Frequency Inverse Document Frequency, Weirdness, Glossary Extraction and Term Extractor, using the precision performance evaluation measurement. For taxonomy extraction, the proposed methods are compared with benchmark methods of Feature-based and weighting by Support Vector Machine using the f-measure, precision and recall performance evaluation measurements. For the first method, the experiment results concluded that implementing particle swarm optimization in order to optimize the feature weights in terms and taxonomy extraction leads to improved accuracy of extraction result compared to the benchmark algorithms. For the second method, the results concluded that the hybrid technique that uses multi-objective particle swarm optimization and fuzzy systems leads to improved performance of taxonomy extraction results when compared to the benchmark methods, while adjusting the fuzzy membership function and keeping the number of fuzzy rules to a minimum number with a high degree of accuracy

    Ontology Learning Using Formal Concept Analysis and WordNet

    Full text link
    Manual ontology construction takes time, resources, and domain specialists. Supporting a component of this process for automation or semi-automation would be good. This project and dissertation provide a Formal Concept Analysis and WordNet framework for learning concept hierarchies from free texts. The process has steps. First, the document is Part-Of-Speech labeled, then parsed to produce sentence parse trees. Verb/noun dependencies are derived from parse trees next. After lemmatizing, pruning, and filtering the word pairings, the formal context is created. The formal context may contain some erroneous and uninteresting pairs because the parser output may be erroneous, not all derived pairs are interesting, and it may be large due to constructing it from a large free text corpus. Deriving lattice from the formal context may take longer, depending on the size and complexity of the data. Thus, decreasing formal context may eliminate erroneous and uninteresting pairs and speed up idea lattice derivation. WordNet-based and Frequency-based approaches are tested. Finally, we compute formal idea lattice and create a classical concept hierarchy. The reduced concept lattice is compared to the original to evaluate the outcomes. Despite several system constraints and component discrepancies that may prevent logical conclusion, the following data imply idea hierarchies in this project and dissertation are promising. First, the reduced idea lattice and original concept have commonalities. Second, alternative language or statistical methods can reduce formal context size. Finally, WordNet-based and Frequency-based approaches reduce formal context differently, and the order of applying them is examined to reduce context efficiently

    CONCEPTUAL COST MODELING OF INNOVATIVE INDUSTRIAL ESTATES USING SYSML AND CASE-BASED REASONING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore