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ABSTRACT 

The superiority of the human brain in information retrieval (IR) tasks seems to come firstly 

from its ability to read and understand the concepts, ideas or meanings central to documents, in 

order to reason out the usefulness of documents to information needs, and secondly from its 

ability to learn from experience and be adaptive to the environment. In this work we attempt to 

incorporate these properties into the development of an IR model to improve document 

retrieval. We investigate the applicability of concept lattices, which are based on the theory of 

Formal Concept Analysis (FCA), to the representation of documents. This allows the use of 

more elegant representation units, as opposed to keywords, in order to better capture 

concepts/ideas expressed in natural language text. We also investigate the use of a 

reinforcement leaming strategy to learn and improve document representations, based on the 

information present in query statements and user relevance feedback. Features or concepts of 

each document/query, formulated using FCA, are weighted separately with respect to the 

documents they are in, and organised into separate concept lattices according to a subsumption 

relation. Furthen-nore, each concept lattice is encoded in a two-layer neural network structure 

known as a Bidirectional Associative Memory (BAM), for efficient manipulation of the 

concepts in the lattice representation. This avoids implementation drawbacks faced by other 

FCA-based approaches. Retrieval of a document for an information need is based on concept 

matching between concept lattice representations of a document and a query. The learning 

strategy works by making the similarity of relevant documents stronger and non-relevant 

documents weaker for each query, depending on the relevance judgements of the users on 

retrieved documents. Our approach is radically different to existing FCA-based approaches in 

the following respects: concept formulation; weight assignment to object-attribute pairs; the 

representation of each document in a separate concept lattice; and encoding concept lattices in 

BAM structures. Furthermore, in contrast to the traditional relevance feedback mechanism, our 

learning strategy makes use of relevance feedback information to enhance document 

representations, thus making the document representations dynamic and adaptive to the user 

interactions. The results obtained on the CISI, CACM and ASLIB Cranfield collections are 

presented and compared with published results. In particular, the performance of the system is 

shown to improve significantly as the system learns from experience. 
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CHAPTER 1- INTRODUCTION 

1.1 WHY IR? 

"Information" plays an inevitably vital role in today's information society. The invention 

of electronic media for storing huge amounts of information in tiny electronic media and 

the invention of the computer for processing enormous amounts of information stored in 

such electronic media are the major contributors for today"s electronic information society. 

The amount of infon-nation being handled by various organisations in today's world is 

huge and management of them without a computer is unimaginable. These facts have 

raised major challenges for Information Management tasks such as efficient storage of 

information for easy access, efficient transmission of information and efficient retrieval of 

information. 

Seeking for desired information for individual needs has ever been a challenging task for 

mankind. The challenge has never been fully met even with the latest developments and 

inventions of electronic and communication technologies that support storage of vast 

amounts of information, data communication and faster information processing. Instead 

aspects of the problem seem to have slowly transferred from the unavailability of 

information (sources) for access to the difficulty of extracting desired information from 

available sources. The latest advancements of electronic and communication technologies 

has only solved, in part if not fully, the primary problem faced in the past "the 

unavailability of informationfor access". Today we are privileged to live in a world rich of 

infon-nation in which most, if not all, information we need is available at our fingertips and 

ready to be used. The consequences of this information flood have led to the return of 

irrelevant, often distracting, data in response to our information rNuests. The user is 

confused with where to begin his search, when to end, whether he has got the correct and 

latest infomiation during his search and also what he has got is all that is available or 



whether there is more useftil information. In other words, the dIfficulty of accessing 

desired information has grown with the growth of the availability of information and as a 

result today we are suffering from lack of sufficient tools to help maximum use of 

available information [Amati & Crestani 1999, Lagus et al. 1996, Fuhr & Buckley 19911. 

Historically, the growth of textual material such as books and articles in libraries along the 

centuries has demanded efficient mechanisms to locate and refer to them. The early 

techniques such as abstracting, indexing and use of subject classifications have marked the 

birth of the "Information Retrieval" research discipline. There have been tremendous 

efforts ever since, as evident in the literature, for developing ways and means to find out 

desired information effectively and efficiently from large collections of textual material. 

"History of IR is long and fraught", van Rijsbergen 1979. 

The latest advancements of electronic media for document storage and communication 

have made the task of searching for information more challenging and demanding than 

ever before. Even though the continual efforts of IR researchers have endowed the field 

with a rich set of sophisticated tools, the sophistication of the tools for creation and 

transmission of information far outstrips the sophistication of tools for automating and 

managing information. 

1.2 CORE PROCESSES OF INFORMATION RETRIEVAL 

The core processes of searching for information are well described by R. K. Belew in his 

book "FOA- Finding Out About" [Belew 2000]. He surnmarised the entire process under 

three key processes: "Asking a Question", "Constructing an Answer" and "Assessing the 

Answer". The first of these has much to do with human cognition in which he defines an 

information need as a desire to fill a gap in the user's knowledge. Forming a clearly posed 

question corresponding to an information need that arises in the user's mind is known to be 

the hardest part of answering it. The state of mind of the user may be such that he either 

knows exactly what he needs or he only has a vague thought about what he needs. A user 
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may or may not be able to define fully the characteristics of the "answer" (the information 

need) he seeks even if he knows without any doubt what information he needs. This 111- 

defined internal cognitive state is then turned into an external expression in some language 

and is termed as the "Query". 

The job of "Constructing an Answer" is the responsibility of the answerer or in case of a 

computer the Information Retrieval System (IRS). The problems inherent to machines 

make this task much more difficult to an IRS than to a human answerer. Some of these 

inherent problems include the lack of intelligence for understanding the problem and 

searching for solutions, lack of background knowledge to understand the problem and also 

to provide the answer with adequate detail for the user to understand it and lack of 

intelligence to cope with ambiguities of natural language text. A detailed discussion of 

these problems and issues of IR is given in Chapter 2. 

The last phase "Assessing the answer" involves the user assessing the answer(s) (in his 

mind) to decide how relevant they are for his information need. The process may end here 

ideally if the user is fully satisfied with the answer or else the user assessment(s) can lead 

to re-thinking and re-defining of the information need by the user himself, a process that 

occurs outside of the IRS. Within the IRS, user assessments can be used as user feedback 

to re-formulate the query or/and to initiate a learning process. The IR researcher has little 

control over such user-oriented issues that are external to the IRS. Nevertheless it is 

essential that he is aware of the external issues as he is expected and is responsible for 

designing and creating sensitive and flexible IR systems that are tolerant to those external 

issues. 

1.3 TEXT RETRIEVAL 

The concept "Infon-nation Retrieval", as described above (by Belew) applies to seeking a 

broad spectrum of information bearers such as books, reports, letters, images, drawings, 
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movies and sounds from any form of an information source (collection). Salton and McGill 

[Salton & McGill 1983] defined the concept of "Infonnation Retrieval" as: "one concemed 

with the representation, storage, organisation, and accessing of information items". There is not 

much difference between these definitions as far as the major components are concerned. 

In practice, these definitions of IR have ahnost been synonyms for keyword-based 

querying of textual databases. 

Despite the presence of sources with different forms of inforination expression or 

presentation formats, retrieval of which is covered under this same definition(s), the main 

emphasis in the field over the years has been on text retrieval. This is mainly due to the 

fact that majority of digital information resources contain more textual information than 

anything else. Due to the success of the Internet and its services such as the WWW, email, 

News groups, Bulletin boards etc., and the widespread PC users who create and access 

these resources, a large portion of the information being made available for use today is in 

the form of text. Interestingly, researchers in IR have long recognised the importance of 

text, and have focused primarily on development of techniques for representing and 

retrieving text documents. The high popularity and high emphasis given to the retrieval of 

textual material have made it distinctly recognised as "Text Retrieval" or "Document 

Retrieval" within IR community. A Text Retrieval system is distinguished from a 

traditional information storage and retrieval system (ISAR) mainly by the unstructured 

nature of data items (textual material) to be searched and the unstructured nature of query 

statements. A text retrieval system is required to have a component for acquisition of the 

needs of specific users approaching the system with unstructured and imprecise query 

statements [Tyrvdinen 1984, pp 13]. Only a ranking list of documents that appear to contain 

some relevant information is produced by a text retrieval system as opposed to an exact 

answer produced by an ISAR for a given infonnation need. 
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A primary problem of any automated application that deals with textual inputs is 

processing text and creating a useful form of representation of the content to support 

machine understanding of the content. Enabling computers to understand text documents 

by their content allows the automation of information management tasks such as document 

retrieval, document routing, web information discovery, story understanding and email 

sorting etc. This problem, which involves substantial text analysis effort, is an unsolved 

problem [Kohle & Merkl 1996] in Natural Language Understanding (NLU) research. 

However, it is generally conceded that many of the tasks do not need complete 

understanding of text in a natural language sense, but it is only necessary that text be 

understood well enough to be correctly manipulated. 

"... complete understanding of the text may not be necessary for IR ... it may suffice to 
have a shallow and partial representation of the content of documents" 

[Evans & Zhai 1996] 

For instance, majority of the successful Text Retrieval models only manage with meanings 

at keyword (individual terms or phrases) level rather than meanings at the levels of 

sentence, paragraph or entire document. The common practice of document retrieval is to 

create document surrogates by extracting useful information (Knowledge Acquisition) 

P-- - from text items (documents) and representing them in a form that supports the underlying 

retrieval mechanism. Thus, it is the combination of Knowledge Acquisition, Knowledge 

Representation (KR) and Retrieval Mechanism (operating on the underlying KR) that 

makes up an IR system. From this perspective, the problem of text retrieval can be seen as 

a problem of defining the relations of the representations and the central concepts of 

reasoning out "aboutness" of text to information needs. 

However, despite the success of keyword-based representations, such as tenn frequency- 

inverse document frequency Qflidj) based representations, the increased volumes of 

infon-nation items, diversity of writing styles, usage of different vocabularies, ambiguity of 

natural languages and various other parameters such as length differences 
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[Singhal et al. 1996] of individual text docw-nents, etc have made it increasingly difficult to 

reach higher accuracy levels using poorly represented and thus poorly understood text 

material. 

Currently, computers have little ability to manipulate text, based on content and are limited 

instead to manipulations based on format tags or other explicit labels such as file names, 

file formats, keyword labels, web meta-tags or mark-up codes and email subject lines. The 

small number of labels they typically use and the difficulty of creating such labels, either 

manually or automatically, impose limitations on these approaches. Moreover, standards of 

using such labels are not well defined and even the defined standards are not strictly 

followed. Hence, they do not provide a comfortable platform for a generic retrieval system 

to base upon. On the other hand, systems that can read and understand natural language 

text in unconstrained contexts do not exist. Even in restricted narrow domains, written 

documents are difficult due to the complexity of natural language. 

Nevertheless, there have been many attempts to use more comprehensive meanings 

(concepts) instead of simple keywords, and a variety of techniques and theories have been 

tried to deal with the problems associated with extracting, representing and learning correct 

meanings of textual material. Some of these techniques such as Semantic Networks are far 

Ir__ - from manageable for real world applications. Despite these efforts, text-based information 

retrieval remains challenging owing to the unstructured nature of natural language text, the 

subtle nature of conveying meaning by sentences, the ambiguity of understanding meaning 

of words and phrases, the large problem space, and implicit contextual information. These 

challenges have directed the IR researcher to structure the information carefully into 

knowledge structures (e. g. ontologies) with manageable level of complexity and use this 

knowledge for IR. Without representing the natural ontological knowledge in a machine 

understandable way, computers have little chance of understanding correctly what is stated 

explicitly and implied or left unsaid. 
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The reasons outlined above motivated us to investigate into techniques for representation 

and learning meanings of textual material at a manageable level that can operate 

effectively in information management tasks (IR in particular). 

We have identified the problems of text representation (Chapter 2), reasons for problems 

and in particular the need for understanding the contents of documents adequately enough 

to create meaningful document representations in order to improve the IR task. Thus, we 

paid substantial attention to feature extraction from textual material for the representation 

of document contents during this research. 

1.4 THE TEXT RETRIEvAL EXPERIMENTS: TRADITION AND PRACTICE 

Traditionally, text retrieval experiments were conducted on free text documents as opposed 

to structured /formatted databases of records. A typical text retrieval system goes through a 

text-processing phase before any text can be retrieved. This includes extraction of text 

structures, generation of content identifiers (indexing), or classification of a text etc. 

requiring a substantial text analysis effort. The result of this is an internal representation of 

documents and queries in the IR system. In case of full text indexing, all the words in the 

content of a document except noise words (i. e. words that say little about the document's 

content) are used in the representation. 

Two basic approaches used for concept extraction are: (1) Statistical approaches, and 

(2) Language Analysis approaches. Statistical approaches are based on frequency counts of 

term or phrase occurrences. Automating such operations as finding occurrences of 

individual words or phrases is relatively easy compared to language analysis approaches 

which needs an in-depth investigation into the syntactic structures and semantic meanings 

of natural language. Different schemes and approaches used in IR for text representation 

are detailed in Chapter I 
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The representations, thus created at the text processing phase, are compared between a 

query and a document and a Retrieval Status Value (RSV) is computed. Based on RSV 

values, documents are ranked according to a Ranking Principle and the ones in the top 

beyond a pre-decided threshold value are returned to the user as retrieved documents. The 

retrieval process may not end here. As described above, it is very difficult and impossible 

in most cases to transform the infon-nation needs that occur in our brains into language 

symbols, to describe them using the particular query language used by the fR system. 

Therefore, it is very unlikely for the initial query formulation to retrieve only desirable 

documents. This is where the relevance feedback techniques have been useful. In relevance 

feedback, the user decisions are used for refonnulating the query or enhancing the query 

representations (see [Salton & McGill 1983] for more detail of relevance feedback). The 

user has the opportunity to re-think his information need and/or reformulate the query by 

himself, or in case of systems with automatic query reformulation by relevance feedback, 

he can simply give his feedback by indicating which are useful to him and which are not 

(binary feedback) or by ranking each document according to its usefulness in a pre-decided 

scale of values. The first case involves a cognitive process in the user's brain in which he 

has to re-think what exactly his infonnation need is and how he can refonnulate his query 

accordingly. Results of the last retrieval give guidance as to whether he is in the correct 

direction and provide appropriate ten-ninology to be used. In the second case, it is the IRS 

that refon-nulates the query based on the user feedback. 

Figure 1.1 shows a schematic diagram of the traditional IR setup. The three processes 

shown in the figure, namely the Representation, Comparison and Evaluation model the 

essence of the three core processes of IR mentioned above (described by Belew (2000)). 

The effectiveness of an IR system depends on all three processes and the relationship 

between them. 
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Figure 1.1 : The Conventional IR Processes 

Experimental Evaluation 

Evaluation of the effectiveness of IR systems is typically conducted experimentally rather 

than analytically. This is in accord with the in-deterministic nature of the IR problem in 

which, though the problem is well understood in general terms, it is hard to give a formal 

specification for the problem. In addition the traditional experimental evaluation is defined 

and developed for measuring effectiveness rather than efficiency (time and space 

requirements) of IR systems. This may be partly due to the difficulty of measuring 

efficiency in a machine independent way. Nevertheless, the efficiency requirement remains 

important especially in evaluating interactive IR systems, and therefore it is desirable that 

it be measured in conjunction with effectiveness. 

The traditional evaluation model is based on the notion of Relevance, a notion of how 

useful a retrieved item to the user, and its measurement by two figures, Recall and 

Precision. Precision calculates the proportion of retrieved documents that are relevant and 

recall calculates the proportion of relevant texts that are retrieved. In an experimental 

setting in which the sets of quenes and documents are known and the relevance 

judgements are defined for each query-document pair, an aggregated measure of relevance 

is reported by (usually non-interpolated) average precision and recall. Precision- Recal I 

curves (P-R curves) are also commonly used to compare the performances of IR systems. 

However, comparison between two IR systems can only be made when evaluated on the 

same document collection using the same performance measures under the same 

9 



operational conditions. For further detail, erred to the Cr infied model reader is ref ai 

[Cleverdon et al. 1966, Cleverdon 1991], the best exemplar around for experimental 

evaluation of IR. 

The appropriateness of recall and precision for the measurement of relevance has been 

questioned and criticised by a number of researchers [Schamber et al. 1990] mainly for its 

ignorance of the user involvement. Nevertheless, precision-recall based evaluation model 

has been widely accepted by a large majority of IR researchers and has been the primary 

evaluation model in IR research, in particular, due to its simplicity and practicality. 

1.5 RESEARCH IN IR 

Research in the IR field is varied. Each stage of the IR process leads to one or more sub- 

disciplines of research. Content extraction, index ing/representation, comparison/matching, 

evaluation and query re-fon-nulation/relevance feedback are a few examples. Van 

Rijsbergen [Rijsbergen 1979] subdivided IR research into: (1) Content Analysis, (2) 

Information Structures, and (3) Evaluation. Content Analysis is concerned with describing 

the contents of documents in a form suitable for computer processing (Representation). 

Information Structures are concerned with exploiting relationships between documents in 

the view of improving effectiveness of retrieval and Evaluation is concerned with the 

measurement of the effectiveness of retrieval. We can choose one or more of these sub- 

disciplines to investigate and make use of existing well-established theories, techniques 

and mechanisms for other components. For instance, one can make use of the Vector Space 

Model and work on a Query Reformulation strategy. In our case, however, since we start 

from scratch by defining the information unit (concept) rather differently, we cannot re-use 

any existing implementations of IR components. Instead we have developed our own 

method of content extraction to support the representation mechanism we have chosen, our 

own weighting scheme for concept weighting, our own strategy to compare documents 
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with queries for computing RSV values and our own learning strategy based on user 

feedback for learning document representations. 

1.6 RESEARCH DIRECTION (Aims AND OBJECTIVES) 

In this work, we restricted ourselves to the domain of text. The underlined primary 

hypothesis of our research is to investigate whether a more comprehensive 

meaning/concept matching would help in improving Text Retrieval. We took an 

experimental approach in which we investigated a concept lattice based document 

representation scheme that is capable of representing the content of a document in terms of 

formal concepts. For concept matching between queries and documents, a matching 

strategy was developed utilising the relationships between concepts in hierarchical 

representations of concepts in concept lattices. 

We define a concept, a meaning or a thought according to the theory of FCA as having two 

sets -a set of objects and a set of properties common to all the objects in the first set. 

Obviously, such a structure (a formal concept) carries a more comprehensive meaning than 

individual keywords or key phrases, due to its use of two related components. In addition, 

the chances of misinterpretation of such a formal concept is less, as it involves more than 

one term/word and a relationship between them, i. e. some of them are interpreted as 

objects and others as attributes or properties of objects. We organise the concepts extracted 

from each information item (text document) into a separate conceptual lattice structure 

according to the subsumption order relation defined in FCA. Query concepts are also 

structured in the same manner. Our main goal is to match Query and Document concepts 

between such conceptual structures and rank the documents according to the degree of 

similarity between them. More precisely, we are looking for the presence of query 

concepts in the document concept structures and the similarity of a document to a query is 

computed based on the common or matching concepts/features. 



A secondary objective of our work is to investigate the impact of continuous learning of 

concepts in document representations, based on retrieval perf ormance. Due to the inherent 

ambiguities of the meanings of words in natural language and the difficulty of extracting 

relations between words, it is always difficult to create complete representations to carry 

the correct and complete meaning of the overall content of a document 

[Croft& Turtle 1992] in one pass, as normally done by the indexing processes of 

conventional IR systems. Therefore, such a static representation of text is unlikely to help 

perfect retrieval. Instead, an adaptive representation that is continuously updated or that 

learns through experience is desirable. We use a leaming strategy based on 

(66 re-inforcement leaming" to make documents learn their representatlons as they are 

retrieved for user queries. The goal of our leaming strategy is two fold, (1) to leam a sort 

of "complete" document representation by including any concepts that would have been 

there, yet have not been extracted and included at the time of first creating the 

representation, (2) to tune the significance weights of concepts in document representations 

in such a way that the concepts that are likely to help retrieval of desired documents to the 

users have higher significance values, and those concepts that are common to many 

documents and hence do not help identifying desired documents distinctly have lower 

values. 

An operational simulation of the model was implemented and tested on three public 

domain document collections according to the well-established traditions and practices of 

IR research. The document collections used for evaluation were CISI, CACM and 

Cranfield (available to download at http: //ýýr. dcs. gla. ac. uklresourcesltest collectionsl and 

ftp: //fltp. cs. cornell. edulpublsniart). Details of these collections are given in Table 9.1 

(Chapter 9). Precision averages at different retrieval points were computed, and compared 

against results published by Carpineto and Romano [Carpineto & Romano 20001. Also, 

average precisions and P-R curves were used to demonstrate the effectiveness of the 
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learning strategy over time, as the system gains more experience as it comes across more 

queries. Effectiveness of the two components of the learning strategy - weight learning and 

concept addition- were also examined over training iterations. The improvements shown 

by the system as it learns were quite impressive. Also, the system shows near perfect 

results for the case of known or already seen queries. One of the requirements for effective 

learning (by our strategy) is to have sufficient overlaps of queries and documents judged as 

relevant to those queries. The results degrade to the level of keyword-based models or even 

below when this requirement is not met by the document collection. Also, sufficiently long 

natural language query expressions, rather than of short keyword type queries are desirable 

to help creating sufficiently Inforinative representations. These requirements are further 

described in Section 9.1.1. Their impact on performance and possible directions for 

improvements are discussed further in Chapter 10. 

1.7 OUR CONTRIBUTION AND NOVELTY 

The primary objective of our research is to investigate for a possible improvement of the 

effectiveness of IR by utilising more comprehensive and informative units/concepts than 

simple keywords, for representation and comparison between queries and documents. The 

comparison unit we used to achieve this objective is the simplest unit of a formal concept: 

an object- attribute pair (Section 7.1.1). Each of the object-attribute pairs is assigned a 

weight with respect to the document it appears in (Section 7.2.1.1), allowing the same 

object-attribute pair to have different significances in different documents. This is a 

completely different approach to that of existing IR models. The novelty here is two fold: 

1. the use of object-attribute pairs (unit-concepts) instead of keywords or keyphrases, and 

2. the assignment of significances for such pairs with respect to the documents they appear. 

Although attempts have been made in the past by some researchers to employ FCA in 

information retrieval, the way a concept is defined in those models is quite different to ours 

(Section 5.4 and Section 5.5). For instance, objects in those approaches are documents 
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(document identification numbers) rather than objects (physical or conceptual) that the 

documents are talking about (in their content). 

In addition, our method of encoding concept lattices in Bidirectional Associative Memory 

(BAM) structures, and also the way we use concepts according to their 

specificity/generality relationships are new. The capability of a BAM to learn concept 

lattices, proposed and proved by Radim Be'lohlavek [Be'lohlavek 2000] has not been used 

in IR research before. The reason for using BAMs for encoding concept lattices in our 

approach is mainly to reduce lattice building and node traversing overheads. 

Finally, the way we update document representations with concepts, in user-formulated 

queries, based on relevance judgements is novel (Section 7.2.2 and Section 8.5). There are 

models that update document representations in terms of weight modifications/estimations 

through relevance feedback (e. g. Maron & Kuhns's work [Maron & Kuhns 1960]). In 

contrast to them, what is new in our model is the addition of query concepts that are judged 

as relevant to the query by the user, to document representations. This idea which adds 

additional information to the original document representation may lead to a controversy as 

it leads to modification of the original content of the document. Our objective, however, is 

to fine-tune the document representation according to what users think the document is 

about, rather than what the writer originally intended. By this, we implicitly retain the 

important user decisions and allow the document representations learn from experience. 

The contribution to RSV values by original concepts and the ones that were added later to 

the document representation through reinforcement learning can be controlled at the 

implementation level by differently weighting the two sources of concepts. 

The most common approach of using user feedback has been to reformulate the query with 

adding terms from relevant documents and re-running the enhanced query rather than using 

it for learning document representations. This approach neither retains the important user 
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decisions nor leams anything from them for future use. The important decisions of the 

users are only available for a single query session and are lost thereafter. As a result, the 

system needs to go through the same query reformulation process each time the same 

query is encountered. In contrast, by allowing the document representations to learn, we 

not only make use of the previous user interactions to influence retrieval of documents for 

the subsequent queries, but also avoid having to repeat the retrieval process for the 

information needs that the system has encountered before. 

1.8 DEFINED TERMS, ABBREVIATIONS AND CONVENTIONS 

In this work, the term "text" is used alternatively to refer to any piece of natural language 

text and also to separately identifiable piece of textual entity, for example a text document 

or a query description. The terms "information retrieval", "text retrieval" and "document 

retrieval" are altematively used as synonyins throughout this report to refer to retrieval of 

textual documents for given query descriptions in text form. Also, the terms "information 

need", "user request", "user query" and "query" are alternatively used to refer to what the 

user wants to find. The terms "concept" and "formal concept" are alternatively used mainly 

to refer to a fon-nal concept as defined in FCA. We use the convention 

(<objects>) 4 J<attributes>) to write a fonnal concept, where there can be any (finite) 

number of objects and attributes (respectively) in the two components. 

Following are the abbreviations used in this text. 

Object -a label with one or more terms that refers to a physical or conceptual object 

found in text (usually a noun) 

Attribute -a label with one or more terms that describes a property of an object 

Unit-concept -a pair of an object and a related attribute 

Keyword -a single-term keyword or a keyphrase with more than one adjoining terms 

IR - Information Retrieval 

TR - Text Retrieval 

KR - Knowledge Representation 

RSV - Retrieval Status Value 
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IRS - Information Retrieval System 

NN - Neural Network 

NLP - Natural Language Processing 

NLU - Natural Language Understanding 

FCA - Formal Concept Analysis 

BAM - Bidirectional Associative Memory 

1.9 OVERVIEW 

The dissertation starts by giving a brief overview of IR, Text Retrieval (TR) and the 

traditional practice of TR in the early part, and the aims and objectives and our 

contribution/novelty at the later part of this Chapter (Chapter 1). The problem domain, 

problems, issues and needs of IR are detailed in the next chapter (Chapter 2). One of our 

major design strategies was to use a more infon-native representation scheme for IR. Hence 

it was thought that it would be useful to include a brief review of document 

characterisation techniques (indexing) in Chapter 3. A review of well-known IR models 

and approaches follows next in Chapter 4. This includes reviews on classic IR models such 

as VSM and probabilistic IR, as well as other more recent models and approaches that 

make use of diverse techniques including connectionist and fuzzy logic based approaches. 

The main theory on which our research is grounded upon is the Formal Concepts Analysis 

(FCA). Chapter 5 is devoted to presenting FCA theory and its analogy to certain properties 

of the way the human brain might structure information. Chapter 6 presents the specific 

NN architecture called the BAM and details of how it can be used to learn concept lattices. 

In Chapter 7 we describe the design of our model at a conceptual level, and 

implementation detail follows in Chapter 8. Experiments conducted and the results of these 

experiments are reported in Chapter 9 to give a fort-nal evaluation of the model. Finally, 

Chapter 10 concludes the thesis with final conclusions and proposals for future work. 
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CHAPTER 2- THE PROBLEM DOMAIN, 
PROBLEMS, ISSUES AND NEEDS 

The problem domain of text retrieval is essentially natural language text. The richness of 

natural language causes many text retrieval problems. In addition to natural language 

oriented problems, each individual approach made to solve the IR problem has its own set 

of problems, limitations and issues to address due to the particular theories, techniques and 

strategies used. Solutions to the key problems require certain needs (such as the need for 

better representations, the need for learning for adaptivity etc. ) to be satisfied. In this 

chapter, we look at the core problems, limitations and issues that hamper text retrieval. We 

start with problems caused by natural language, and then move onto the other key 

problems inherent to IR processes, followed by a discussion of the requirements a solution 

might need to possess. 

2.1 THE PROBLEM DOMAIN - UNSTRUCTURED TEXT 

An IR researcher can restrict his work to a particular domain in which case he will be 

working in a "controlled" environment, where usage of each term would have a specific 

meaning with respect to the context. Alternatively, he can leave the domain unrestricted. In 

the domain of unrestricted text there are no context boundaries. The vocabulary or the 

search space is unrestricted. In addition, if the structures of the source documents are 

ignored, any textual material can be taken into account. Examples of such unrestricted 

search spaces include collections of books in libraries, collections of news stones, e-mail 

collections and the World Wide Web. However, as soon as restrictions to the vocabulary 

are lifted, we run into a dimensionality explosion, which increases the ambiguity of word 

meaning. It requires capturing the conceptual knowledge of all possible contexts/domains 

in the world. 

The amount of background knowledge necessary to resolve the word ambiguity 

problem is immense - Croft & Thompson 1987. 
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Nevertheless, if we are to develop generic search engines or retrieval systems for large 

collections of documents that come from diverse domains such as collection of books in 

digital libraries or news wire collections etc. we cannot restrict ourselves to work on a 

selected domain. 

2.2 NATURAL LANGUAGE AND IR 

Natural languages provide the means for us to interact with the environment. It is the 

medium we use to describe things in the environment, exchange ideas between us and 

document them. A "word" is the most basic linguistic building block of natural language 

[Allen 1988], at least for the IR researcher. A set of words (vocabulary), together with a set 

of syntax rules, makes up a language. Expressing an idea or defining a concept usually 

involves arranging one or more words according to a defined or agreed syntax. Such 

arrangements create semantic relationships among words and among ideas. 

Computer processing natural languages requires the text to be in the form of full, 

grammatical sentences [Soderland 1997]. Therefore, in principal, understanding written 

text is simpler for machines (also for humans) compared to understanding a spoken 

conversation, owing to the fact that the defined syntaxes of languages are usually not 

strictly followed during speaking. Yet, the flexibility of syntax rules in natural language, 

the size of the vocabulary and the lexical ambiguities etc. have caused machine 

understanding of natural language impossible at the present time. 

The rules of natural languages are so flexible to the extent that they allow us to express the 

same thought in different word assemblies, possibly using the same or different words. 

Also, the contextual interpretation of a given expression may result in a different meaning 

in different contexts. Even though we have evolved a wide range of strategies and 

expertise for understanding natural language, it is often difficult, even for us, to read and 

understand certain expressions correctly, especially in unfamiliar contexts. For a machine, 

no context may be familiar. Therefore, machine understanding of natural language is far 
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from a reality for computer manipulation [Croft & Turtle 1992, Kohle & Merkl 19961. 

especially in unrestricted domains in which the dimensionality or the size of vocabulary is 

high, the diversity of domain knowledge is great and the ambiguities of words are large. 

2.2.1 Natural Language Processing (NLP) 

Natural Language Processing is the title given to the study of language manipulation by 

computers. Two major wings of NLP are Natural Language Generation (NLG), which 

studies the creation of grammatically correct and meaningful statements; and Natural 

Language Understanding (NLU), which explores the issues of interpreting meaning of 

natural language statements. IR researchers are mainly interested in Natural Language 

Understanding: we never attempt to create natural language statements in text retrieval, but 

to understand the concepts and meanings of textual material to an extent that allows us to 

search whether the concepts or meanings of a query are present in a corpus. However, 

there are certain sub-disciplines within IR, such as question answering, that require forms 

of NLG. 

2.2.1.1 Language Analysis 

Languages are analysed by linguists under a number of interconnected subdivisions 

namely: Phonology, Morphology, Syntax, Semantics and Pragmatics. In NLP, these 

subdivisions are treated as a set of independent layers, i. e. they are processed one level 

after another [Allen 1988, Tyrvainen 1984]. Although this approach is rather simplified 

and deeply criticised [Fauconner 1990], it could still be used as an outline of NLP. 

Phonology considers the formation and combination of phonemes - how words are reallsed 

as sounds. This is of less interest to us as we are not concerned of sound or speech. 

Morphology deals with the forms of individual words - how words are constructed out of 

more basic units (base-forms) called morphemes. The word form determines, to some 

extent, the type and the function of the individual words. A word can be decomposed into 

word stems and affixes. One word stem may have several inflected forms. In English there 
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are some 75 prefixes and 250 suffixes. Typically, word stems are stored in a dictionary or a 

lexicon. An entry in a lexicon used for morphological analysis contains a word stem or 

base-form and additional morphological information, such as the lexical word category or 

categories, for each interpretation of the stem. Each entry may also contain additional 

information, such as syntactic and semantic descriptions for each word sense and 

references to other entries. Also, some lexicons include multi-word phrases [Allen 1988, 

Karlsson et al. 1990,1991 (as cited in Tyrvdinen 1984)]. 

Syntaxes deal with the structural properties of natural language - formation of sentences 

from phrases and individual word forins. Various techniques have been employed to 

describe the syntax of well-formed text statements, e. g. grammars based on theory of 

formal languages, automata, constraints and statistical methods. The most popular method 

to represent the structure of an individual sentence has been a tree structure, with a 

sentence label S in the root and the individual words in the leaves. If the syntax is 

described by a set of syntactical rules, each of the rules describes the expansion of a leaf in 

the tree to a new level of nodes [Allen 1988, Karlsson et al. 1990,1991(as cited in 

Tyrvdinen 1984)] 

Semantics concern the meaning of expressions - what words mean and how their meanings 

combine in the meaning of sentences. Pragmatic concerns the use of expressions or 

sentences in different contexts, and their interpretation within those contexts. This needs 

use of world knowledge: the general knowledge about the structure of the world that 

language users must have in order to communicate with other human beings [Allen 1988, 

Karlsson et al. 1990,19911 

2.2.2 Natural Language Understanding (NLU) 

There are three main approaches for understanding text: (1) structural, (2) reasoning-based, 

and (3) statistical. The level of language analysis required vanes depending on the 

particular approach taken. Structural methods deal with representing and analysing 
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structural components of sentences to help in understanding meaning. A few examples of 

the structural approach are part-of-speech tagging for determining the category or type of 

words as nouns, verbs or preposition; grouping words in sentences into noun or verb 

phrases; and parse trees to represent and analyse the grammatical structure of sentences. 

Reasoning-based approaches deal with encoding schemes for capturing the knowledge of 

language and making inferences on them. They are used to bring knowledge to language, 

to resolve ambiguities of the natural language. Statistical approaches use numerical tools to 

examine the relationships between features in text in order to help resolve ambiguities. 

They have also been used to learn numerical irregularities in text. In particular, they have 

been successful in creating parsers and part-of-speech taggers at the sentence level. 

Statistical approaches have long been used in IR to classify and retrieve documents. Most 

IR models use weighted term or word frequencies as features for representing documents, 

ignoring the rich grammatical structures and inter-word relationships. Structural methods 

and reasoning-based approaches are rarely used for text representation and understanding, 

perhaps due to the dominance of statistical and probabilistic approaches in the field, 

difficulty of structural analysis of natural language text, and the conunon understanding 

that complete understanding of the meanings of textual material is not required for text 

retrieval. More details of these approaches are given in Chapter 3. 

2.3 KEY PROBLEMS AND COMPLEXITIES IN NL THAT HAMPER IR 

Recent research in IR suggests that significant improvements in retrieval performance 

require techniques that, in some sense, "understand" the content of documents and quenes 

[Monarch & Carbonell 1987]. The most fundamental and central problem of natural 

language text is that its semantics is not well represented by surface features, such as 

individual words [Croft 1993]. This hampers the performance of retrieval systems that rely 

on matching surface features between the query and the documents. For instance, the user 

is generally not interested in retrieving documents NN-Ith exactly the same words, but with 
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the concepts that those words represent. The problems related to pragmatics and world 

knowledge, for instance, are inherently extremely difficult or even impossible to solve. 

"From the point of view of hermeneutics, the possibility of formalising mental 

processes behind understanding and interpreting text is still an open issue" 

[Tyrviiinen 1984] 

e Mismatch Problem 

The statistical examination of text documents has utilised "keywords"' as the basic unit of 

the problem space for the characterisation of textual material in IR. The use of words as 

features, in particular, may result in features that are redundant, irrelevant, or even 

conflicting [Boons 2000]. For instance, suffixes and prefixes of terms and use of synonyms 

cause mismatches between queries and documents. In addition, the difficulty of using the 

vocabulary in expressing information needs and characterizing documents leads to word 

mismatches. Selecting the right words to formulate a query is a difficult task to achieve, 

since an average user has no idea of how the documents are indexed and what keywords 

have been used. This "word mismatch" problem results in relevant documents being 

missed out from retrieval, and thus leads to poor recall. On the other hand, existence of 

terms in different meanings (polysemy) and the differences between the term relationships 

within and between queries and documents may cause irrelevant texts to be retrieved. The 

use of acronyms and anaphors, typically pronouns, also causes misses when certain words 

are searched. Extra hits are caused by use of analogy or metaphorical expressions and 

negations. The inability to recognise structures containing many words causes problems 

when trying to find texts containing several words, such as parts of a compound word or an 

expression. The use of more general and broader expressions leads to the retrieval of a 

great deal of unnecessary text, while the use of more specific expressions leads to a failure 

to hit relevant documents. 
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Dimensionality 

The curse of dimensionality of the problem space is another factor of text domains that 

limits the abilities of machine understanding, manipulation and learning of text. Each 

individual word in the vocabulary represents one dimension of the problem space. For 

instance, the dimension of the vector representation of a document is the number of 

features (words) in the vocabulary or the domain concerned. The number of words in a 

natural language is immense and depends on the language. The following statistics and 

numerical analysis (extracted from [Boons 2000, pp. 18-19]) illustrate the severity of the 

dimensionality problem in the English language. The number of words in unrestrIcted text 

exceeds 150,000 for the English language. In addition to this, there are technical tenns 

specific to various technical, scientific and other domains that should be counted. 

However, it is conceded that only a small set of words is sufficient to understand the 

majority of spoken and written terms. A vocabulary of only 750 words will be sufficient to 

recognise 75% of the words in speech, and 1000 words will recognise 80% of the words in 

written language [Fishler & Firschein 1987, Boons 2000]. However, even with these 

reduced vocabularies, the space of possible sentences remains too large. For instance, with 

only 1000 words, 1022 possible 20-word strings can be formed. Although syntactic 

structures make ftu-ther constraints on the possible combinations, there are still too many 

sentences to be tractable. It has been estimated that, on average, there are 10 possible word 

choices at any position in a grammatically correct and sensible sentence [Pinker 1997]. 

This only reduces the possible 20-word sentences to 1020 . The problem is even more severe 

in machine learning of text. For instance, with typical vocabularies containing thousands of 

wordsq learnIng spaces based on words can have extremely high dimensionality, in the 

order of 104 to 107 dimensions [Lewis 1992]. These factors undoubtedly make perfect 

retrieval impossible. A number of dimensionality reduction techniques has been tried to 

solve the problem of high dimensionality of the text domain. A good example is the Latent 

Semantic Indexing (LSI) approach (Section 4.1-5) by [Deerwester et al. 19901. However, 
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reduction of dimensionality is usually achieved at the expense of losing information. In 

addifion, dimensionality reduction is an expensive task, and has its own dra, %N-backs such as 

the need for re-computation in the event of new additions etc. 

2.4 OTHER INTRINSIC PROBLEMS IN IR 

The non-deterministic nature of the goal causes a major problem in IR. Uncertainty, 

imprecision and vagueness are present in the entire retrieval process. These are partly 

caused by the involvement of human cognition at different stages of retrieval, augmented 

by the ambiguities of natural language. This imprecise nature of the IR process makes the 

quantification of parameters and reasoning difficult and imprecise. These, together with the 

high dimensionality of the problem space, have made text retrieval to be a computationally 

expensive and in some cases intractable task. 

2.4.1 Cognitive Aspects 

As defined by Belew (2000), the need for information is a "thought"'; a vague notion that 

arises in the user's mind. Often the user is uncertain of what exactly he needs. At the next 

step, he needs to express this ill-posed question either in natural language or in a specific 

query language used by the system. The process of the transformation of the original vague 

notion of the infon-nation need to a formal language causes a loss of information, making 

the query expression imprecise. The degree of imprecision depends on the complexity of 

the infonnation need, the degree of vagueness about the information need in the user's 

mind, and the ability of the user to transform it into the query language. Even if the user is 

relatively sure of the kind of documents he wants, it is still difficult if not impossible, to 

inform the retrieval system so that it understands exactly what documents are desired. The 

information retrieval system works on this uncertain imprecise expression of the query. 

Furthcrmore, the judgments of the usefulness of retrieved documents for the user's need 

affect systems that use those judgements for learning and query reformulation. Most often, 

no document -vvill contain all the information the user is looking for, i. e. no document will 
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be 100% relevant. Certain documents will contain more useful information while certain 

others contain less useful information. Deciding which are useful, which are not, and 

reporting the level of usefulness are uncertain cognitive processes that take place in the 

user's mind. 

User judgements depend also on the expectations of the individual users. The expectations 

of different users for the same query statement vary depending on the depth of the 

knowledge they possess about the subject/topic of the search and what they really mean by 

the query expression. As a result of different expectations, different users may decide the 

relevancy of retrieved documents differently. Even the same user might respond differently 

to the retrieved set of documents for the same query expression on two different occasions. 

This may be caused by the slightly different aspects of the information he might be looking 

for at the second time, or by the inherent uncertainty of human cognition that he is 

uncertain of the relevance of a retrieved document to his information need. This result not 

only affects the fulfilment of the user need, but also the subsequent processing that might 

rely on the user feedback. This is severe particularly in the systems that require the user to 

give a binary relevance feedback, as the user has only two options in this case. 

In any case, no machine would be able to cater for different expectations of different users 

given an identically expressed information need. One approach to solve this problem 

would be to let the system learn from the relevance judgements given by the users in the 

past for the retrieved documents, and make use of this learrit knowledge to decide which 

documents are retrieved or ranked the highest based on a majority function. Another 

approach is to use individual user profiles to enhance queries according to the preferences 

of the users defined in their profiles. We take the first approach in this research. 
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2.4.2 Computational Aspects 

* Representation 

IR systems typically operate on document representations rather than on the original 

documents. Therefore, the richness of the representation certainly affects the effectiveness 

of retrieval. However, losing information is unavoidable during the process of creating 

document representations from their source documents. As a result, no document 

representation is as ric as the original document. For instance, the use of keywords to 

represent documents loses the underlying semantics and hence hampers the understanding 

of the message a document expresses. No current representation technique completely 

captures the meaning of a piece of textual material (document or information need) 

[Croft& Turtle 1992]. A fundamental problem therefore is to create an appropriate 

representation that represents reasonably well what the document is about. 

* Acquisition 

Acquisition of infon-nation from natural language source documents is a secondary 

problem related to representation. This is easier with simple keyword-based 

representations. However, more complex representation schemes, such as semantic 

networks, need sophisticated tools to acquire underlying syntactic and semantic 

relationships in natural language expressions. Currently, there are limitations of acquisition 

of information due to the inherent ambiguities of NL and the high dimensionality of the 

problem space detailed above. In addition, hardware limitations such as processing power 

and memory limitations may demand us to operate on simple representations, rather than 

on more complex and comprehensive representations. The IR researcher is bounded by 

these limitations to find efficient structures to represent the contents of documents of high 

dimension with a lot of ambiguities in a rather limited operational environment, using 

limited tools for information extraction from natural language documents. 

26 



* Background Knowledge 

In addition to the information present in the content of documents, external sources such as 

knowledge bases, dictionaries and thesauri have been used as additional knowledge 

sources to help create effective document representations. The use of knowledge bases, in 

particular, has been primarily to give application domain knowledge to the IR system. 

They help in disambiguation of concept understanding in order to create correct 

representations. However, creating domain-specific knowledge bases is a human intense 

task that requires gathering expert knowledge in the corresponding domain, which in many 

cases has found to be impractical. Attempts have been made to develop mechanisms for 

the automatic creation of knowledge bases, but they suffer from the same difficulties that 

natural language processing and understanding suffer. On the other hand, the use of 

thesauri in information retrieval has been primarily to obtain synonyms to help word 

mismatch problems, and to enhance queries with broader/narrower terms. See 

[Chen et al. 1993] for a detailed discussion of using thesauri, and the problems of 

developing and using them. 

9 Search Strategy 

The central process of an IR system is to match concepts in query representations against 

concepts in document representations and reason out the usefulness or relevance of 

documents to user queries. This task needs some criteria to compare queries with 

documents and quantify how similar they are or how well the document satisfies the user 

need. The complexity of the matching criteria depends on the complexity of the 

representation scheme and the reasoning mechanism used. The early best-match search 

models adopted a simple rule in which a concept was a keyword or a term and the 

documents having most matching keywords were considered the most useful ones. This 

approach had a number of drawbacks in that each keyword was treated as equally 

important, and that it did not help in ranking documents. Also, related concepts may not 

match if they were described in semantically related ten-ns. A solution for the problem of 
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different importance was to assign significance values to keywords and use the 

significances of matching keywords to compute a retrieval status value (RSV). The RSV 

values decide the position of the document in the rank list. A range of search strategies 

used by different models is indicated in Chapter 4 under the corresponding model. 

9 Concept Weighting 

IR systems typically weight the importance of search terms/concepts according to 

document and collection statistics. For example, the tflidf scheme [Section 3.3.1.3] uses 

frequency counts of words within the document Qf factors) and presence counts of words 

across the documents (idf factors) in the collection to compute significances of keywords. 

It increases the weight of words that occur frequently in a document but infrequently in the 

document collection. The effect is to emphasise the words that are the most suitable for 

unique identification of the document, while reducing common words that are likely to 

mislead the retrieval. Although this works moderately well, it can easily go wrong in case 

of unusual or deliberate repetition of keywords in documents. For instance, a well-known 

trick to get search engines to rank a web page highly is to deliberately repeat keywords in 

it. 

The significance of a concept in a document is a relative measurement. It depends on the 

complexity of the concept itself; how much it is related to the overall context of the 

document; how good it is in communicating or representing the main topic of the 

document; how useful it is in retrieving the document; and, more importantly, the 

likelihood of it being used by the end user for formulating queries targeting that document. 

For keyword concepts, a single document contains a number of concepts, but for an 

arbitrary user, only a few of them may be important. Moreover, there may be a lot of 

overlaps of these concepts between documents. These make the significance measurements 

(concept weighting) difficult and imprecise regardless of how you compute them. The 

reasoning process has to rely on this imprecise and vague measurement, thus resulting in 

imprecise outcomes. Various techniques have been tried to model the uncertainty and 
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impreciseness of the significance of concepts. The use of probability theory, fuzzy logic 

and machine learning are a few examples for such techniques. A particular approach that 

interests us is the one based on the assumption made by Maron and Kuhns 

[Maron & Kuhns 1960] that "term weights for a document can be estimated on the basis of 

relevance information from a number of queries with respect to the specific document". 

Coincidently, our reinforcement learning strategy is also based on a similar idea in which 

the significance of concepts is detennined solely based on the relevance of retrieved 

documents to user queries. 

o Relevance Feedback 

Later IR systems viewed the retrieval process (of a single user need) as a continuous 

process that goes through a number of passes of retrieval and query reformulation stages. 

The user retries the system by modifying his query statement based on the infon-nation he 

has received from his previous attempt until he is satisfied with the retrieved documents. A 

complete set of passes from the original query to a point at which the user is satisfied with 

the retrieved documents is termed a "query session". It allows the user to understand his 

information need better and thereby express it better using appropriate terminology. The 

documents he receives at each pass give some sort of direction with regard to which terms 

to use and which tenns to avoid. This is a fon-n of user leaming process that helps to 

alleviate the gap of knowledge and the differences of the vocabularies between the user 

and the authors. The well-known automatic relevance feedback technique is simply an 

automated version of this process. An attempt to automate relevance feedback requires two 

problems to be addressed: (1) how to obtain the user feedback and in what form, and (2) 

how to use it effectively to support fR. 

In the simplest form of automated relevance feedback method, the terms of the first few 

best-ranked documents are added into the query statement and the query is re-run. In this 

case, it is the system's matching and ranking algorithms that decide the best documents for 

obtaining concepts from, for query reformulation. A better method is to get the user to rank 
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the retrieved documents according to their usefulness to the user, and then use the concepts 

of those documents that are most useful, for query reformulation. 

The main drawback of query reformulation with user feedback information is that it does 

not retain the past user feedback information. The user decisions obtained are only 

available during that query session. For instance, the same user for the same information 

need would have to go through the same process again if he does not remember the way he 

formulated the query at his last successful attempt. Instead, if the user decisions were 

retained, it would not only help the same user but also be of help to other users with similar 

information needs. This indeed was one of the primary goals in our reinforcement learning 

strategy used in this work (Chapter 7). 

* Query Language and Global Search Space 

Two other practical problems faced by the user are the complexity of the query language 

and lack of knowledge about the global search space. In practice, conventional IR systems 

typically have different query languages and notations for operations. The facilities 

provided for the user vary from system to system and in some cases require more learning 

than is usually expected. Also, the users have difficulties in realizing the size and contents 

of the database, which is usually invisible to the user. The users are not able to estimate the 

recall based on the responses of the system and are thus uncertain whether they have 

already received the most useful documents or whether they should redefine the query and 

try again. For instance, if you know for sure the presence of a particular book in a library, 

you would continue searching until you found it. If not, you would probably decide the 

book is not available in the library having not found it after a few attempts. 

2.5 NEEDs FOR BETTER PERFORMANCE 

The word sense ambiguity and variability problems caused by synonymy and polysemy in 

particular, should be tackled by developing better representations with sufficient 

knowledge by capturing the central concepts from text material. For this, retrieval based on 

30 



concepts and relations between them would be needed [Croft & Turtle 1992. 

Appel et al. 1988, Rada & Hafedh 1989], including both hierarchical relations to support 

decisions about conceptual similarity and non-hierarchical relations for describing other 

relations. Such representations with the central concepts of the subject domain should be 

efficient to build and use for text indexing and retrieval. 

Capturing the user need as precisely as possible despite the vagueness in the user's mind 

about his information need and the imprecision involved in expressing it in a query 

language are two other major needs in IR. Attempts have been made to solve these 

problems by enhancing the query in various ways. Relevance feedback is the first to 

mention. In addition, external knowledge bases have been used to provide background 

domain knowledge to help clear and correct understanding and formulation of information 

needs, as well as thesauri to help reduce word mismatches. Systems with more natural 

language origin have used more complex NLP to help word disambiguation. Anaphor 

resolution can be cited as an example of such complex processing. 

The comprehensiveness of the basic unit of the problem space, the "concept", and the 

level of knowledge included in the representation of the information items (documents) 

within the computer provide the basic infrastructure for effective retrieval. This is 

described in detail in Section 3.5 with a more formal definition of the notion of the 

"concept". The word-mismatch problem (of keyword matching) and most other problems 

mentioned above demand a better information unit that is able to capture underlying 

semantic relationships between words for the creation of well -representative document 

surrogates. This task requires tools that support the acquisition of such information units or 

concepts from natural language text. The importance of developing such tools does not 

seem to have been well recognised and researched by the IR community. 
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However, there is a trade-off between the complexity of the representation and the 

efficiency of its building, manipulation and maintenance by computers. FIndIng a rich 

representation that operates on low computational requirements is a fundamental challenge 

to the IR researcher. 

Learning, Adaptation and Background Knowledge 

Adaptation achieved through learning can help alleviate most of the problems caused by 

the ambiguities of natural language text and insufficient background knowledge. Various 

strategies have been tried for making systems learn and adapt. Most of these are query 

adaptation/reformulation mechanisms that are based on relevance feedback. Ontologies 

and knowledge bases have been employed for incorporating domain knowledge in order to 

help understand the content of documents and queries. 

Conventional relevance feedback mechanisms, as used in query reformulation 

mechanisms, provide a form of user adaptation to system responses in addition to adapting 

the query representation with terms/concepts picked up from relevant documents. System 

adaptation in this case is temporal, as the important feedback information given by the user 

is used only within the current retrieval session. In some automatic relevance feedback 

mechanisms (blind relevance feedback), the top ranked documents are considered as 

relevant and terms/concepts obtained from those documents are used for query 

reformulation. In contrast to system adaptation, the user also gets feedback from the sets of 

documents the system retrieves as he interacts with the system. This lets the user learn 

from the retrieved documents, for example, which terms to use and which terms to avoid in 

order to directing his search session successfully. This user adaptation though may not be 

permanent, stays longer as the user may use the knowledge he has gained in the past in 

subsequent search attempts. However, this learning is local to individual users. Instead, in 

our work, we are interested in a long term system adaptation. This requires systems to 

learn from past experiences and retain the learnt knowledge for future use. A conventional 

approach for system adaptation is to learn information filtering rules or knowledge 
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representation rules from a given set of (training) data set as in traditional NN leaming. 

Crestani's model [Crestani 1994, Crestani & van Rijsbergen 19971 is an example for 

learning information filtering rules through a set of training samples in which a neural 

network learns rules from training data to respond to queries (Section 4.5.3.2). In this 

approach, learning is done prior to the deployment of the system, and therefore the 

knowledge learnt is fixed thereafter. It does not make a system continuously adaptive to 

the enviromnent. In addition, the result of learning depends on how good and how 

representative are the training samples and their relevance assessments (user judgments). 

As a result, changing user interests and changing users are not dealt with by this approach. 

Note that, a surprisingly little overlap has been found between relevant document sets that 

different users have indicated relevant for the same information need [McGill et al. (1979) 

as cited in Lee 1998]. In addition, the meanings of descriptors are subject to change with 

time. Therefore, NNs trained prior to deployment require retraining when new documents 

are added. Instead, the use of a learning strategy that keeps learning interactively as users 

interact with the system would be a preferable approach, especially, given the dynamic 

nature of IR environments. The reinforcement learning strategy that we use in this work 

learns interactively from user feedback, and retains the learnt knowledge for future use. In 

addition, its adaptive feature lets the system forget (in time) the importance of documents 

that users found useftil in the past but no longer do so. 

Despite the advantages indicated above, learning knowledge through experience, or, to be 

precise, through user feedback, is bound to have certain limitations and in most cases takes 

time to build. Also, the knowledge learnt might not be sufficient, accurate or consistent as 

it depends on the knowledge, views and expectations of its past users. Alternatively, rather 

formal knowledge can be incorporated to an IRS through the use of domain specific 

knowledge bases or ontologies. HoNvever the lack of knowledge bases or ontologies in 

certain domains mak-es such an approach unsuitable in such domains. On a larger scale, the 
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unavailability of generic ontologies that cover all domains (in general) makes the use of 

knowledge bases impractical for a generic IR system. 

2.6 SummARY 

The primary problem in IR is to deal with the uncertainty, imprecision and vagueness that 

exist in all components of the IR task. In this chapter we first discussed the problems 

caused by various complexities and ambiguities of natural language and then the cognitive 

and computational aspects of the causes that make the problem uncertain, imprecise and 

vague. The key issues and needs for improving the effectiveness of IR were identified. 

The role of an IR researcher is to create a computational model to deal with these issues. In 

our work we paid considerable attention to the problems, issues and needs discussed in this 

chapter to find a solution(s) for the IR problem within the framework of FCA. 

It should be mentioned that in addition to the core problems and issues of IR mentioned in 

this chapter, IR researchers are also faced with an additional set of problems and issues 

with regard to the evaluation of their models. These include the lack of evaluation 

strategies and supporting test collections, especially for evaluating adaptive IR models; the 

difficulty of creating such test collections with a sufficient amount of queries and user 

assessments; the impracticality of experimenting on huge collections such as TREC (Text 

REtrieval Conference) collections due to computational overheads; and the suitability of 

performance measurements such as precision and recall etc. These are not discussed in 

detail in this thesis. 
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CHAPTER 3- TEXT/KNONVLEDGE 
REPRESENTATION 

Content-based document retrieval systems require the contents of documents to be 

extracted and represented in an efficient way that helps their retrieval for user queries. 

Despite the limitations of "keywords" in representing contextual "concepts", the majority 

of today's operational IR systems use keyword-based representation schemes. Instead, in 

our work, considerable effort was devoted to creating a text representation embedding a 

form of conceptual knowledge extracted from textual material to help concept matching. In 

this chapter, we give a review of well-known text/knowledge representation methods used 

in IR. The aim is to understand what representation languages are being used, how they are 

implemented, what are the problems associated with them in terms of both the level of 

representation power and practical implementation and tractability. The representation 

language used in our work is not discussed in detail in this chapter as Chapter 5 is 

dedicated to this purpose containing details of the theoretical foundation of the 

representation methodology and the rationale of using it. 

3.1 KNOWLEDGE REPRESENTATION IN IR 

Davis, Schrobe and Szolovits [Davis et al. 1993] describe each knowledge representation 

technology as a trade-off between the following five basic roles they play: (1) a surrogate; 

(2) a set of ontological commitments; (3) a fragmentary theory of intelligent reasoning; 

(4) a medium for efficient computation; and (5) a medium of human expression. All 5 roles 

are equally important in the context of knowledge representation in IR. Document or query 

representations inside IRS are indeed surrogates for their real partners that exist in the 

physical world. When we select a particular representation technology to use (for instance 

a bag of keywords), we make commitments about what the world (problem space) of the 

system looks like and what to look for in it (keywords in this case). The reason for 

creating/using a representation in IR is mainly for efficient computation to help reasoning 
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which documents are useful to user queries. Deciding the relevancy of documents to the 

user involves making intelligent decisions based on the content of the document. Thi is 

requires a mechanism to match concepts between the query and the documents and 

quantify the useftilness of them to the user. Matching concepts between textual materials in 

general is not possible if we do not know what to match. Attempting to match all terms 

(words) of a query with all terms of a document is not a sensible approach as a "word" in 

natural language does not necessarily represent a "concept" and is prone to word 

mismatch. Therefore, a way of representing documents in terms of more meaningful 

concepts is required. The result of such an attempt is a document surrogate with a 

conceptual representation of knowledge in the document. 

In IR, the user's information needs, which exist in their mind merely as ideas rather than in 

textual form, need to be mapped to the document representations that fulfil the user's need. 

The mapping processes utilise explicit representations of the information needs and 

representation of world or domain knowledge, as well as representations of the documents. 
4 

The information needs may be mapped against taxonomies of the system represented using 

111.11 abbreviations and knowledge representations, such as domain classifications and index 

tenus. A major design constraint for IR systems therefore is the choice of an effective 

representation language (scheme) for both describing information problems and 

characterisation of text. A representation language provides a vocabulary based on a 

particular view of the world. Inadequate capabilities to represent and exchange common 

conceptual knowledge of the domain between the retrieval system and users are a primary 

problem in IR. Most IR systems describe documents and queries using the same view of 

the world (i. e. using the same representation language) in order to help direct exchange of 

knowledge between the user and the system, and also to help direct comparison of query 

representation units with document representation units. 
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3.2 Two LEVELS OF REPRESENTATION iN IR(A-N OVERVIEW) 

Tyrvdinen [Tyrvdinen 1984] describes two levels of representation used in IR: 

(1) knowledge representation; and (2) text representation. Knowledge representation 

contains representations at the idea level (less string-dependent structures than tenns or 

phrases); their properties and organisation serve as a collection of common knowledge 

describing the structure and concepts of the world or domain from a commonly accepted 

point of view. This provides a common grounding for the users to unify their information 

needs with the ideas of the authors by mapping them to the common concepts at the 

knowledge representation level. As a result of this, the gap between reader's and authors' 

mental models of the subject information domain is reduced to the mapping between 

readers' mental models and the representations of the system's explicit model. 

The text representation level contains representations extracted from the texts with formal 

(syntactic) methods such as content representatives extracted from natural language text 

using NLP and statistical methods, document structures, and formal properties extracted 

utilising mark-up information. The effectiveness and the complexity of content 

representatives extracted from text with statistical or NLP methods vary a lot depending on 

the level of processing used. At the beginning of the NLP scale there are strings limited by 

space characters, i. e. the technique of traditional inverted files with the use of all words of 

a text as its content representatives. The next level includes using truncated words and 

word base-forms, compound words and phrases etc. At the other end of the scale there are 

normalised knowledge representations extracted from the text using morphological, 

syntactical and semantic processing. These representatives could reach the level of 

knowledge representations when pragmatic issues about the context are also taken into 

account. Typically the text representatives extracted automatically ftom text do not reach 

this level [Tyrvdinen 19841. 
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The scope of our work with respect to representation is to extract conceptsfeatures from 

local documents and use them to create abstract representatives of their content. We use 

some NLP techniques for extracting features and relations between them to create text 

representations, but do not attempt explicitly to create representations of common 

background knowledge of the world or domain. According to the definitions given above, 

our representation strategy can be categorised as a form of text representation. However, 

our attempts to use a conceptual structure and in particular the relationships between 

concepts gives it a flavour of knowledge representation properties as well, thus leaving it 

in between text and knowledge representation. 

Two conflicting ways of characterizing documents have been identified for retrieval. 

1. Using local information, i. e. each document is represented by using its own content 
independently from other documents in the collection (locality). 

2. Discriminating each document from others by taking into account the contents of 

all the documents (globality). 

Different representation approaches have different levels of locality and globality. In 

reality, there is a trade-off between the two and therefore a balance between the two is 

practised. For instance, the tflidf approach (Section 3.3.1.3) can be considered as an 

approach that attempts to control the balance between these two extremes via its tf (term 

frequency) and idf (inverse document frequency) components. 

3.3 INDEXING -A REVIEW 

Indexing is the process of extracting important concepts from textual material and creating 

a representation to support subsequent processing. Representation of a document should 

enable it to be retrieved in response to requests of infori-nation needs (queries) if the 

document contains useful information to help the user. It was in this manner that 

documents were traditionally characterised by human indexers when index terms were 

assigned to documents. It is the task of the indexer to anticipate index terms that a user 

would be likely to use in his query expression to retrieve each document. Van Rijsbergen 
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viewed this as constructing a set of potential queries for which the document is relevant 

[Rijsbergen 1979]. 

Two important factors that govern the effectiveness of an indexing language are the 

exhaustivity of the indexing and the specificity of the indexing language. Indexing 

exhaustivity is defined as the number of different topics indexed and the index language 

specificity is the ability of the index language to describe topics precisely 

[Rijsbergen 1979]. These two factors are assumed to be vaguely related to the distribution 

of index terms in the collection. Exhaustivity is assumed to be related to the number of 

index terms assigned to a given document and specificity to the number of documents to 

which a given term is assigned in a given collection [Rijsbergen 1979]. It has been 

recognised that a high level of exhaustivity of indexing leads to high recall and low 

precision and vice versa. 

The unit of representation for indexing could simply be single terms or more complicated 

constructs with multiple terms. In fact, the choice of terms in the indexing units (single 

terms, phrases or ten-ns/phrases with relations etc. ) to represent documents depends on the 

context in which they are going to be interpreted. The target audience (users) who are 

going to access the document is also a major factor. 

3.3.1 Bag-of-Keywords Representation 

3.3.1.1 Binary Indexing 

Binary indexing is one of the oldest indexing schemes pioneered by Luhn [Luhn 1958], 

within which each document and request is represented by a set of keywords without 

weights. Similarity measure between a document and a request was given by the number of 

terms they have in common (known as Naive Keyword Hypothesis), i. e. we assume that "if 

a querý, and document have a kepi, ord in common, then the document is about the query to 

some axtent" 
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3.3.1.2 Term Weighting 

Binary logical restrictions may often be too restrictive for document and query indexing. It 

is not always clear whether a given document should be indexed by a given tenn. In 

addition, the binary indexing representation method ignores the variability of the 

importance of different keywords in a given document and also the variability of a given 

keyword in different documents. It treats all the keywords as equally important. This 

obviously is an incorrect assumption as certain keywords in a document are more 

important than others in representing the document with respect to the contextual 

relevance. An improved version of binary indexing, known as term weighting, is to use the 

frequency of occurrence (term frequency Y) of these words in the body of the text to 

indicate the degree of significance of each keyword. This provides a simple weighting 

scheme for the "keywords" in each bag making a document representative in the form of a 

-weighted keyword description" [Rijsbergen 1979]. It creates a distinction among terms 

and increases indexing flexibility. Similarity between a document and a query is decided 

based on the number of terms they have in common, weighted by the component ýf 

3.3.1.3 TF-IDF 

Salton [Salton & McGill 1983] pointed out that those terms occurring very frequently in 

the collection do not help to discriminate between relevant and non-relevant items. He took 

into account a term's frequency in the collection (inverse document frequency idj) in order 

to find the significance of a token in the document. The idf gives a large weight to more 

sparsely used words and a smaller weight to more frequently used ones. This gives terms 

appearing often in a given document and rarely in other documents in the collection a 

higher weight. 

A "good" weighting formula obviously should take into account the document lengths as 

well, so that shorter documents are not penalised against longer ones. In this case, a match 

on a short document will be treated as more valuable than a match on a longer document. 
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This is achieved by document size normalisation which prevents ranking a document either 

too high or too low simply because of the number of terms in the document. Thus, in ýf-ldf, 

tf and Of information on ten-ns is used to compute a weight for each term in each document 

normalised for the size of the document. The ýflidf weight computation is illustrated below. 

Let N be the total number of documents in a collection, ni be the number of documents in 

which the keyword ki appears, and freqij be the raw frequency of the keyword ki in the 

document dj. The factorfreqij quantifies the importance of the keyword ki to the document 

d (i. e. the term frequency Y) and the factor log(7VIni) quwitifies the importance of the j 

keyword ki as a discriminating factor for the whole document collection (the inverse 

document frequency idj). The ten-n-document weight wij is computed as 

wij =-freqij x log(Nlni) and the temi-query weight wiq as wiq =freqiq x log(Nlni), wherefreqiq 

is the raw frequency of the keyword ki in the text associated with the query q. Given the 

sets of weights wij and wiq, the weighted query and document vectors q and dj are 

represented by q= (Wlq9W2qg 
... Wtq) and dj = (wlj, w2j, ... wy), where t is the total number 

of keywords in the system. 

3.3.1.4 Drawbacks of Keyword-based Representations 

Keyword-based representation schemes fail to capture the syntactic and semantic 

information present in natural language text and also suffer from a number of problems 

originating ftom "language variation". The following are reported in 

[Arampatzis et al. 1998] as drawbacks of keyword-based representation schemes: 

1. They do not handle cases where different words are used to represent the same 

meaning or concept in queries and documents (lexical variation or synonymy 

problem). 
2. They do not distinguish cases where single words have multiple meanings due to 
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senianti . cal variation" (polysemy problem). 
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I They do not deal sufficiently with the problem of "syntactical variation", e. g. a 
document saying "near the the river, air pollution is a major problem" is not about 
"river pollution" 

4. To make matters worse, keywords can, due to "morphological variation", appear in 
different numbers, for instance "woman" and "women", or different cases, like 
((man"') and "man'S". 

3.4 ORGANISED FILE STRUCTURES 

Early experiments with document retrieval systems used serial file organisation for 

keeping document representations. This was sufficient for early batch processing systems, 

but was proved to be inadequate in real time processing. Later on, the need for logically 

structured files to keep document representations, referred to as an information structure, 

was recognised to be important. One of the most popular such organisations for keyword- 

based representations is the inverted index file structure. Another organisation 

demonstrated as superior for on-line retrieval is the clusteredfiles produced by automatic 

classification methods. 

3.4.1 Inverted Index 

Typically, IR systems that are based on keywords build an inverted index to store and 

access terms in a document collection efficiently. An inverted index consists of two 

components: a list of distinct terms referred to as the index and a set of lists referred to as 

posting lists (see Figure 3.1). The posting list is simply a linked list that holds information 

about the documents with which that index term is associated. The structure of a posting 

list entry does vary from implementation to implementation. It always includes the 

document number but can also include entries for term frequency, term weight, and 

possibly position data, such as the location of the term in the document (e. g. word, 

sentence, paragraph) to facilitate a proximity search. 
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Building an inverted index is an expensive task that involves parsing each document in the 

collection and computing the required statistics Qf etc. ). Usually, inverted index files are 

built only once for a given document collection before the system is put into operation. 

%%% 

+ 
Long Posting List 

%% 

Indev 
Due to size, posting lists will 
have to be stored on disk 

Best when this fits in 
main memory 

Figure 3.1 : Structure of an Inverted Index 

For example, if one document (say Doc#l) in a given document collection contains five 

occurrences of the tenn computer and two occurrences of the terrn apple and another 

document (say Doc#2) contains three occurrences of computer and one occurrence of 

apple, then the part of the inverted index (for these two documents) would be: 

computer 4 (1,5), (2,3) 
apple 4 (1,2), (2,1) 

Note that only document numbers and term frequencies are shown in posting lists for 

simplicity. 

This information structure supports any representation scheme that makes use of tenn 

frequencies and document frequencies. Tenn frequency (Y) of a given term in a given 

document can be obtained directly from the corresponding list entry. Inverse document 

frequencies (Idj) for each term can be calculated by scanning the entire list of unique terins. 

A study of efficiently generating an inverted index (including parallel processing) and 

compressing an inverted index for efficient storage etc- is reported in [Frieder et al. 1999]. 
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3.5 HIERARCHICAL ORGANISATIONS AND CONCEPTUAL INDEXING 

The notion of a "concept" is central to all methods and mechanisms that attempt to 

represent knowledge. In keyword-based approaches, a "keyword" is considered as a 

"concept" that represents an idea. A major problem with keyword-based representation 

schemes is that they implicitly assume that the keywords or concepts are independent of 

each other. They do not attempt to capture the semantic relations between them. 

Organising concepts according to some form of a structure that captures the underlying 

semantic relationships between individual concepts is extremely useful in understanding 

the meaning of a concept with respect to the context, as well as reducing ambiguities in IR 

[Sanderson & Croft 1999]. This indeed is one of the main goals of recent information 

retrieval research. 

Techniques developed for creating hierarchical organisations of concepts attempt to 

capture forms of hierarchical relationships or categorisations of keywords/concepts. The 

standard way of organising inforination in libraries, encyclopedias and in the indexes at 

the backs of books by manually organising topics into a fixed hierarchy or listing topic 

phrases in alphabetical order can be regarded as a basic form of hierarchical organisation. 

The simple alphabetical ordering of lists of topics has serious limitations due to the 

difficulty of guessing the exact sequence of words used by the scheme to describe a topic. 

Guessing incorrectly can lead to looking for the desired information in the wrong place. 

Although hierarchical topic trees are useful for outlines and tables of contents of books, 

they start to break down when applied to whole library collections (such as the Dewey 

decimal classification system or the Library of Congress (LQ classification system) or 

topic lists in online information services when they contain more than a few levels of depth 

in thousands of topics [Woods 1997]. 

"Strict hierarchi . cal systems like Dewey and LC are unable to fully capture all of the desired 

relationships because of the necessity to place each concept in exactly one place in the 

hierarchy"- Woods 1997. 
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There have been many other attempts to develop more elaborate techniques for effective 

representation of relationships between concepts in different structural forms (hierarchical 

or other). Among them semantic networks and its descendents are the most important. 

3.5.1 Semantic Networks 

Since their introduction by Quillian [Quillian 1968], semantic networks have played a 

significant role in knowledge representation research. They express knowledge in tenns of 

concepts, their properties, and the hierarchical sub-super class relationships between 

concepts. Concepts and their properties are represented by nodes in the network. The 

hierarchical relationships between concepts (and properties) are depicted by connecting 

appropriate concept nodes via relationship links, such as "is-a" or "instance-of'. Nodes at 

the lowest level denote individuals whilst nodes at the higher levels denote classes or 

categories of individuals. Concepts get more abstract as one moves up the "is-a" hierarchy. 

am ýisa 

pers n 
is a is a 

h 

is 

ostrich 

canary 

as color 

ye low 

Figure 3.2: A Semantic Network Representation 
(Reproduced with modifications from [Crestani 19971 with permission C 1997 KJuwer) 

Typically, a property is attached at the highest concept in the conceptual hierarchy which 

possesses it. If a property is attached to a node , it 
is assumed that it applies to all nodes that 

are descendants of that node. An example is given in Figure 3.2. 

Although this fonnalism is highly expressive and has a great deal of potential to represent 

almost any kind of knowledge, it is too unconstrained and places the burden of 

constructing appropriate sets of facts and rules on the programmer [Luger 2002]. 
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Semantic Nets in IR 

The form of semantic networks used in IR, however, has often been a far more general 

forrn of "Associative Network" than that described above [Crestani 1997]. This Is a genenc 

network of information items in which nodes represent information items, and links 

express associative relations among them. These links are sometimes undefined and 

unlabelled. In recent applications, however, the links that represent relationships among 

infon-nation items are assigned weights to express the strength of associations. These 

weights are calculated based on statistical techniques during the indexing phase. 

Almost all the networked representations, including Bayesian networks, self-organising 

maps and other neural network methods, conceptual graphs and concept lattices can be 

regarded as simplified semantic networks. Despite the attempts made using different 

network representations with different levels of representation capabilities, the difficulty of 

automatic network creation and the difficulty of developing efficient mechanisms for 

concept matching between semantic network representations of documents and queries 

restrict the use of such more elaborate network representations in IR. 

3.5.2 Scripts and Frames 

Natural language understanding needs a large amount of background knowledge to 

understand even the simplest conversation. In particular, any ambiguities in NL 

expressions are resolved in a way consistent with the contextual knowledge. For instance, 

if the subject of a story changes abruptly, there is evidence that people pause briefly in 

their reading, presumably to change knowledge structures. Also, when the subject of a 

conversation changes abruptly, people seem to get confused over which context to use in 

resolving pronoun references and other ambiguities in the conversation [Luger 2002]. 

It is evident that humans organise this knowledge into structures corresponding to typical 

situations [Luger 2002]. The "script" representation technique is based on this idea. It is a 

structured representation describing a stereotyped sequence of events in a particular 
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context, designed as a means of organising "conceptual dependency" structures into 

descriptions of typical situations. The elements of the script, the basic "pieces" of semantic 

meaning, are represented using conceptual dependency relationships. Placed together in a 

frame-like structure, they represent a sequence of meanings or an event sequence. 

Frames are similar to scripts in many ways. They support the organisation of knowledge 

into more complex units that reflect the organisation of objects in the domain. A frame is 

viewed as a static data structure used to represent well-understood stereotyped situations. It 

is a remembered framework with default values that can be adapted to fit reality by 

changing details as necessary. Frames allow the organisation of our own knowledge of the 

world. We adjust to every new situation by calling up the information structures built in 

our memory by past experiences and revising the detail according to the new situation. We 

could represent these high-level structures directly in a semantic network by organising it 

as a collection of separate networks, each of which represents some stereotypic situation. 

However, frames and scripts have not been used for representing documents/queries in 

mainstream IR research, possibly due to the difficulty of automatically generating them 

and the difficulty of applying them in unrestricted domains. 

3.5.3 Conceptual Graphs 

Conceptual graphs (CGs) [Sowa 84] are a system of logic, based on the existential graphs 

of Charles Sanders Peirce and the semantic networks of artificial intelligence 

[Luger 2002]. Their purpose is to express meaning in a forin that is logically precise, 

humanly readable and computationally tractable. Conceptual graphs are formally defined 

as a graph or network of two kinds of nodes: Concepts and Relations. The nodes have 

directed (unlabelled) arcs between them. Concept nodes represent either concrete or 

abstract objects in the world of discourse. Concrete concepts are concepts which can form 

an image of in our minds (mainly physical objects, such as a cat, telephone, or restaurant), 

while abstract concepts include ideas or feelings, such as love, beauty and loyaltý, that do 
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not correspond to images in our minds (conceptual objects). Conceptual relation nodes 

indicate a relation involving one or more concepts. Because conceptual graphs are 

bipartite, concepts only have arcs to relations, and vice versa. In conceptual graphs, every 

concept/node is a unique individual of a particular type. Each concept box is labelled with 

a type label, which indicates the class or type of individual represented by that node. Types 

are organised, into a hierarchy. Each concept box is labelled with the name of the type and 

the the name of the individual concept. The type hierarchy is a partial ordering of the set of 

types; thus a type may have one or more supertypes as well as one or more subtypes. In 

fact, the type hierarchy of a conceptual graph representation is a lattice, a common form of 

multiple inheritance system. In Concept Lattices (see Chapter 5), types in a type hierarchy 

may have multiple parents and children. However, to be a true lattice, the type hierarchy of 

a conceptual graph representation requires a "universal" supertype of all types and an 

"absurd" subtype of all types [Luger 2002]. 

Since each conceptual graph represents a single proposition, a typical knowledge 

representation will contain a number of conceptual graphs. For instance, a conceptual 

graph representation of the contents of a document requires a collection of conceptual 

graphs, one for each proposition in the document, as opposed to the single network of 

concepts usually used in a semantic network representation. 

3.5.4 Concept Lattices 

In our research we use concept lattices as defined in the theory of Formal Concept 

Analysis (FCA) [Ganter & Wille 1999] to represent documents/queries in the fon-n of 

hierarchical concept structures (concept lattices) which are built by the concepts extracted 

lr__ - from the text. Since a detailed treatment of Concept Lattices is given in Chapter 5, they are 

not discussed here to avoid duplication. 
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3.6 CITATION INDEXING A. ND HYPERIANKS 

The main purpose of having hyperlinks in a web page (at least for the user) is to let the 

user navigate the search space. For IR researchers and system developers, hyperlinks are 

additional informative entities that give relationships between web pages. T'his is the same 

concept as citation indexing used in IR to identify relationships between scientific papers 

by using bibliographic reference information. Citation indexing is based on the assumption 

that bibliographic references give credit to related work. However, the practice of citation 

has been based on more complex motives than citing other pertinent documents 

[Liu 1993]. Liu's studies have shown that, on average, about half the references in a paper 

are not connected with the main problem of the paper. Work on citation/hyperlink schemes 

for improving searching can be found in [Kleinberg 1998, Bharat & Henzinger 1998, 

Brin & Page 1998, Dean & Henzinger 1999]. 

3.7 PROBLEMS WITH KNOWLEDGE/TEXT REPRESENTATION IN IR 

In addition to the drawbacks of keyword-based representations discussed in 

Section 3.3.1.4, two major problems of text representation are identified with respect to 

conceptual indexing. Firstly, the source documents, in general, lack sufficient contextual or 

domain knowledge for a computer system to resolve ambiguities in word meanings based 

on the content of the document alone. A solution for this would be to use external 

knowledge sources to assist the IR system with world knowledge. Ontologies, thesaun, 

dictionaries and other domain-specific knowledge bases have been tried for this purpose. 

This approach has limitations due to the domain specificity of external knowledge sources 

and is therefore suitable only for IR systems that operate in restricted domains. It is not 

appropriate for domain independent information retrieval. In addition, more exhaustive 

knowledge representation techniques, such as semantic networks, suffer from the difficulty 

of building and handling them efficiently in a computer system. Infon-nation retrieval is a 

time-critical application that calls for efficient access to the concepts in document 
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surrogates in real time. For this reason, semantic network representations have not been 

recognised as a practical solution for text representation in I. A more practical soluti RI ion 

would therefore be to incorporate a learning mechanism on a computationally lighter 

representation scheme and allow the system to learn document representations through 

experience. 

3.8 SummARY 

In this chapter a review of text/knowledge representation techniques used mainly in IR 

were described and the distinction between knowledge representation and text 

representation was emphasised. The traditional bag-of-keywords and tf-idf based 

representation mechanisms are mainly text representation mechanisms that depend only on 

the presence of words and phrases in the text. Despite their drawbacks (Section 3.3.1.4), 

they have been very popular in the development of practical IR systems due to their 

simplicity and efficiency. More elaborate conceptual knowledge representation 

mechanisms, such as conceptual graphs and semantic networks, on the other hand, encode 

contextual meaning in a given context or domain by means of objects and the relationships 

between them. Typically, a hierarchy of objects as well as a hierarchy of relations are 

assumed. Acquisition of such knowledge requires consultation of domain experts and 

extraction of contextual domain knowledge from the entire collection. Not only is the 

acquisition of such knowledge expensive and sometimes impossible, but it is also 

expensive in terms of both storage and access, and thus is inefficient to implement in a 

computer. However, given the inadequate semantics of keyword-based indexing, ways of 

creating efficient means for text representation are required. Such a representation should 

be enriched with sufficient semantic knowledge. In this regard, we find the concept lattice 

a suitable candidate for text/knowledge representation for IR tasks, given the fact that it 

lies in between the spectrum of keyword and conceptual indexing. Although concept 

lattices may not be as powerful, flexible or representative as semantic nets or conceptual 

graph representations, they share some of the important properties of these two techniques 
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and are computationally more efficient and tractable. Chapter 5 presents a detailed 

treatment of concept lattices and the underlying theory of Formal Concept Analysis. 

Before that, a review of IR approaches, their underlying theories and techniques is 

presented in the next chapter (Chapter 4) for the sake of the completeness of this thesis. 
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CHAPTER 4-A REVIEW OF IR APPROACHES 

This chapter reviews various IR models and their underlying techniques. A vast number of 

research attempts in IR over the past half a century have resulted in an incredible amount 

of publications available within M. Although each of these publications reports something 

new, it is impossible, and is not intended to review them all here. We restrict this review to 

the most popular text retrieval approaches, leaving numerous variations of the key 

approaches and their application to other sub disciplines of IR research, such as indexing, 

clustering, text filtering, IR in the Web etc. out of our discussion. 

The chapter begins with short reviews of the more conventional and well known 

approaches such as Boolean, Vector (VSM) and Probabilistic models followed by more 

detailed reviews on more relevant connectionist approaches. Advantages and shortcomings 

of each approach are indicated. Research most related to that described in this thesis, 

however, is based on conceptual structures, in particular, the application of formal concept 

analysis (FCA) and concept lattices into IR. Since the understanding of these models 

requires some knowledge of the basics of the theory of FCA and concept lattices, we only 

briefly mention the work on concept lattice-based IR in this chapter. A detailed review is 

given on the next chapter (Chapter 5) after the theory of FCA and concept lattices are 

presented. 

4.1 CONVENTIONAL APPROACHES 

4.1.1 Boolean approach 

The traditional "Boolean Search Strategy" is the oldest of all the conventional IR models. 

Old library systems are classic examples that have a long history of Boolean retrieval. It 

allows the user to formulate a structured Boolean query according to the formalisms of 

Boolean algebra using index ternis (keywords) and logical Boolean connecti-ves AND, OR, 

and NOT. It retrieves only the documents that exactly satisfy the Boolean conditions of the 
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query. As a result it is too selective. In addition to the word mismatch and other problems 

common to the models based on keywords (discussed in Section 2.3) 
, it suffers from 

another two major inadequacies : (1) it treats each keyword as equally important, and (2) 

the basic Boolean model is incapable of ranking documents. Furthermore, the complex 

query language used by the Boolean model makes it difficult for an inexperienced user to 

formulate his information need. However, Boolean search model is recognised for its 

strength to make very restrictive searches to obtain exact and specific information for an 

experienced user. 

4.1.2 Extended Boolean Approach(s) 

As a remedy to the two major problems of the naYve Boolean model pointed out above, it 

has later been extended with various term weighting schemes. This has enabled it to 

compute an RSV value for each document based on the weights of the terms and thereby 

rank documents according to their RSV values. These improved weighted boolean models 

are discussed under the tenn "Extended Boolean Model" in the IR literature. Most of these 

extensions take a probabilistic nature (e. g. the p-norm model) due to the way weights are 

computed and RSV values are computed [Salton et al. 1983]. Losee (1998) has shown, 

using the ranking provided by individual boolean operators, that the extended boolean 

model is a special case of probabilistic retrieval. 

A fon-n of extended boolean model, reported by van Rigsbergen, uses a structured 

hierarchy of keywords to allow the user to narrow or broaden the search 

[Rigsbergen 1979]. Another modification reported in [Rigsbergen 1979] takes into account 

the actual number of terrns the query has in common with a document, which is referred to 

as the co-ordiiiation level, and uses partial ranking by the coordination levels based on a 

simple matching strategy. However, based on experimental evaluations, the P-norm model 

has been recognised as the best performing extended boolean model [Lee 1995 as cited in 

de Vries 2000]. Because of its success, features of the p-norm model have later been 
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incorporated in other models, such as in the inference network architecture 

[Greiff et al. 1997, Losada & Barreiro 1999]. Analytical comparisons of the performance 

of boolean and term weighting systems can be found in [Losee 1998 & Yang 2000]. 

4.1.3 The Probabilistic Model 

The probabilistic model is based on the principle that given a user query q and a document 

d, the model tries to estimate the probability that the user find the document dj interesting j 

(i. e. relevant). It assumes that this probability of relevance depends on the query and the 

document representations only, and that there is an optimal set Rq of documents that 

maximises the overall probability of relevance to the user. Documents in the set R. are 

considered relevant to the query q and others are considered not relevant. The model works 

by iteratively guessing/estimating the set of relevant documents Rqand thereby improving 

the guess at each trial (retrieval) [Rijsbergen 1979, Ribeiro et al. 2000]. 

The probabilistic model represents queries and documents as sets of keywords with binary 

weights. The probability that the keyword ki is present in a document randomly chosen 

from the set Rq is P= P(ki =IIR, ), and the probability that the keyword ki is not i, Rq 

r 
Rq q). 

The similarity of a document present in Rq (i. e. it is in Rq ) is P, - = P(ki =IIR dj to a 

query q is defined as: P(Rq dj) 
sim(q, dj )=- 

P(Rq dj) 

where P(Rqld) is the probability that document dj is relevant to query q, and P(Rq I dj) is 

the probability that dj is not-relevant to q. Taking this ratio as the degree of relevance of 

the document dj with regard to the query q, the average probabilistic error is minimised 

[Ribeiro et al. 2000]. 

By applying Bayes rule, assuming the independence of keywords and other order 

preserving transformations such as logarithms, the estimation of similarity measure is 

simplified to the following classic expression for ranking in the probabilistic model. 
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Pi. R 
pi. 

R 
sim(q, dj) wq where o5 In t- In --- andW#, WiE(0,1) X Wij X 45ilR I ilR 1- Pi, R 

I- Pi, -R 

[Rijsbergen 1979, Chapter 6][Ribeiro et al. 2000, Fuhr 1992] 

Advantages and Disadvantages 

Probabilistic models are efficient to implement, more effective than boolean queries (exact 

matching), have a sound theoretical basis [Croft& Turtle 1992] and independent of 

domain [Croft & Thompson 1987]. One major obstacle with probabilistic IR models is that 

of finding methods for estimating the probabilities used to evaluate the probability of 

relevance that are both theoretically sound and computationally efficient 

[Crestani et al. 1998]. For the simplicity, term independence assumption is made in 

practice. 

4.1.4 Vector Space Model (VSM) 

The VSM model is based on a spatial representation of both documents and queries in a 

multidimensional space defined by the entire set of terms used in the collection. Each term 

has its own dimension in this space (i. e. distinct keyword vectors ki of the keywords define 

the space) in which queries and documents are represented as points or vectors 

[Salton 1971]. These keyword vectors are assumed to be pair-wise orthogonal, 

i. e. i=j =; > ki. kj = 0, implying that they occur independently within documents and queries. 

A weight associated with each keyword (computed according to the tflidf weighting 

scheme) expresses the significance that the keyword has in synthesising the information 

content of the document. Given the sets of weights wij and wiq, the weighted query and 

document vectors q and dj are represented by q == (Wlq, W2q,,. .., w,, q) and dj = (wj, w2j,... wj), 

where t is the total number of keywords in the system, and each wij (wiq) weight is 

associated with a ki vector. Similarity between a document and a query representation 

(vectors) depends on how close the two vectors are in the t-dimensional space. A document 

that is very similar to the query tends to have its document vector at a small angle to the 
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query vector, while documents less similar to have larger angles. The similarity, therefore, 

is usually computed as the Cosine angle between the document and query vectors or 

vanants of the Cosine angle such as Dice and Jaccard functions. 

The most well-known and well-studied implementation of the VSM model is the SMART 

system developed by Salton [Salton 1971]. Later work on the VSM model has been in the 

direction of finding better similarity computation, better weight computations, and efficient 

data structures and algorithms for using VSM model in large-scale document collections. 

A more elaborate adoption to the vector retrieval model has been to assume term 

dependency [Losee 1998]. 

Advantages and Disadvantages 

Vector space model is similar to the probabilistic model in many ways, except that it lacks 

a sounder theoretical base [Croft & Turtle 1992]. Also, VSM ranks documents according 

to a measure of similarity with the query, instead of probability of relevance to the user's 

information need as does by probabilistic models. Although the vector model has been 

criticised as an "ad hoc" model, it is one of the few most influential classical IR models 

which has been well-studied and well-accepted. 

4.1.5 Latent Semantic Indexing Model (LSI) 

The Latent Semantic Indexing (LSI) [Deewester et. al. 1990] model uncovers truly 

orthogonal basis axes or factors for indexing. It attempts to explicitly model the 

interrelationships between terms using the truncated Singular Value Decomposition (SVD) 

and exploit this to improve retrieval. SVD is a mathematical technique that computes the 

singular vectors so that the vector corresponding to the largest singular value accounts for 

the direction of maximum variation in the data. 

In the LSI model, the terni equency by docunient matrix (A) is decomposed by us' fr ing 

SVD into three components, USVr, w-here U and V are orthogonal matnces containing the 
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left and right singular vectors of X, and S is a diagonal matrix of singular values of X. 

These matrices reflect a breakdown of the original relationships into linearly independent 

vectors of factor values. The rows of U and V are considered the term and document 

vectors respectively [Dumais et al. 1991 ]. These matrices are then truncated to the columns 

containing the k largest singular values, i. e. to use only k factors, allowing both terms and 

documents to be represented in k-space. 

Retrieval proceeds by using the terins in a query to identify a point (Vector) in the k-space. 

One way to achieve this is by representing the query q as a vector in k-dimensional space 

Tu V by q=q kk; here q is simply the (column) vector of words in the users query 

multiplied by the appropriate term weights. qT Uk represents the sum of the k-dimensional 

term vectors, and the right multiplication by Sk-1 differentially weights the separate 

dimensions. Thus the query vector is located at the weighted sum of its constituent term 

vectors [Deerwester et al. 1990]. The similarity between the query and document vectors is 

computed by the cosine of the angle between the two vectors as in VSM. 

One advantage of using SVD in the LSI model is that the representational power can be 

controlled by choosing the number k of dimensions. In addition, it has the preferred 

property (in IR) of representing both documents and terms simultaneously in the same 

space. Moreover, the truncated SVD carries out dimensionality reduction. The LSI model 

partially overcomes the problem of variability in human word choices by automatically 

organising objects into a "semantic" structure [Dumais et al. 1991]. The truncated SVD, in 

one sense, captures most of the important underlying structure in the association of ten-ns 

and documents, yet at the same time removes noise or variability in word usage that 

plagues word-based retrieval methods. Intuitively, since the number of dimensions k, is 

chosen to be much smaller than the number of unique terms ni, minor differences in 

ten-ninology will be ignored. Terms, which occur in similar documents, for example, will 

be near each other in the k-dimensional factor space even if they never co-occur in the 
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same document. It has been shown [Berry et al. 1995] that these statistically den ved 

conceptual indices (factors/singular vectors) are more robust indicators of meaning than 

individual terms. 

4.2 BAYMAN NETWORK MODELS 

A Bayesian network is a directed acyclic graph that compactly represents a probability 

distribution [Saham et al. 1998]. In such a graph, each random variable Xi is denoted by a 

node. A directed edge between two nodes indicates a probabilistic influence (dependency) 

from the variable denoted by the parent node to that of the child. Consequently, the 

structure of the network denotes the assumption that each node Xi in the network is 

conditionally independent of its non-descendants, given its parents (ndve Bayesian 

approach). 

Document classification and filtering have been the major areas in IR to which the 

Bayesian network model has been successfully applied [Ribeiro et al. 2000, 

Sahani et al. 1998, Yang et al. 1998]. The Bayesian classifier is simply a Bayesian network 

with a node C representing the class variable and a node Xi for each of the features 

(keywords). Given an instance x (i. e. given valuesX/,, X2,, ... x, of the feature variables), the 

probability P(C=ck I X=x) for each possible class Ck (i. e. how much similar a class is to a 

given set of terms) can be calculated according to the Bayes theorem as: 

P(C =- Ck I X: = X) = 

P(X =X1C= CJP(C = Ck) 

P(X = X) 

The assumption of the conditional independence of features given the class variable 

simplifies this tOP(X =XIC= Ck) = 
fjP(Xi 

= Xi IC= Ck)' the one used in the classic 
i 

Naive Bayesian Classifier of Good [Good 19651. 

More recently, there has been a great deal of work on leaming much more expressive 

Bayesian network's from data. These later approaches relax the restrictive feature 
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independence assumptions to some extent allowing a limited form of dependence between 

them. Out of all the varied Bayesian network approaches, -the inference netivork modeT* 

and the "belief network moder' are of important to us due to their application into IR. 

4.2.1 Inference Network Model 

The inference network model introduced by Turtle and Croft [Croft & Turtle 1992] 

associates random variables to the keywords, documents and to the user queries, and 

represents them as nodes of a Bayesian network. A random variable associated with a 

document dj represents the event of observing that document. The observation of the 

document dj induces a belief upon the keywords of that document. Edges directed from a 

document node to its keyword nodes indicate that the observation of the document yields 

improved belief on its keyword nodes. A random variable associated with the user query 

models the event that the information request specified by the query has been met. The 

belief in this (query) node is a function of the beliefs in the nodes associated with the query 

terms. Thus, edges are directed from the keyword nodes to the query node. The following 

figure illustrates an inference network for a user query q. 

Figure 4.1 : Basic Inference Network Model 
(Reproduced from [Ribeiro et al. 2000] with permission @ Springer-Verlag 2000) 

The additional query related nodes q, and q., are used to model (alternative) Boolean 

fonuulations if any additional infon-nation (e. g. in the fonn qj= ((k, , k2) v kj)) is available 

in the query. In this case the nexv user infonnation need *T' is supported by these 

additional nodes. 
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In the inference network, all random variables (i. e., d., ki, and q) are binary. The ranking of 

a document dj with respect to a query q is a measure of how much evidential support 

(belief) the observation of dj provides to the query q. Such ranking is computed as P(qAd. ). 

where q and dj are short representations for q=I and d, = 1, respectively. In general, the 

ranking is obtained by basic conditioning and application of Bayes' rule as given below. 

P(qAdj) P(q I k)xP(k I dj)xP(dj) 
'Vk 

P(qAdj) =I- P(qAdj) 

The variable k is a short representation for the state of the ki variables. Notice that, 

P(qldjAk) = P(qlk), because the ki nodes separate the query node q from the document node 

d. Also, the notation qAd is a short representation for -(qAdj) vi 

The instantiation of a document node dj (i. e., the observation of the document) separates its 

children keyword nodes making them mutually independent (see Bayesian theory for 

details). Thus, the degree of belief asserted upon each keyword node ki by instantiating the 

document node dj can be computed separately. This implies that the probability P(kldj) can 

be computed in product form as: 

P(k I d, ) = fl P(k, 
Vilg, (k)=l 

where g, ýk) retums the state 

and P(k, I dj. ) =I- P(k, I dj). 

dj) x fl P(kj I dj) 
Vi1g, (k)=O 

(0 or 1) of the ki node according to k, 

The inference network can cover a wide range of useful infonnation retrieval ranking 

strategies through proper specification of the probabilities P(qlk), P(kjjdj), and P(dj). Turtle 

and Croft [Croft & Turtle 1992] show how the inference network model can be used to 

subsume both the probabilistic and the boolean models, and also how it can be used to 

represent ýf-iqfbased ranking strategies. Their evaluation results have shown that given 

equivalent document representations and query forms, the inference network model 

performs better than conventional probabilistic models. Tzeras and Hartmann 
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[Tzeras & Hartmann 1993] show that the network can be applied to automatic indexing in 

large subject fields with encouraging results. The best operational example for the 

inference model is the INQUERY retrieval system of Callan et al. [Callan et al. 1992]. 

4.2.2 Belief Network Model 

The belief network model is derived from a probabilistic argument based on a clearly 

defined sample space (universe of discourse) U. It is the set of all the keywords that makes 

up U in the context of IR. A random variable is defined for each keyword ki (also denoted 

by ki). A subset u of U (u e U) is a concept in U. Queries and documents are represented 

as subsets of keywords in U (i. e. concepts in U). The probability P(c) associated with a 

generic concept c in the space U is defined as P(c) =I P(c I u)P(u), where P(u) is a prior 
u 

probability associated with each concept u in U. P(clu) defines a coverage relationship 

between the concepts c and u in the space U and thus interpreted as the degree of coverage 

of the space u by c. The ranking computation is based on interpreting the similarity 

between a document dj and the query q as a coverage relationship between the concepts dj 

and q. The degree of coverage of the concept dj, given the concept q, is given by the 

probability P(djlq) = P(djA #P(q) (by Bayes Law). Here P(q) is a constant for all 

documents and P (djAq) can be computed by the expression 

P(dj Aq) = I: P(dj, q I u)P(u). Instantiation of the keywords ki (the root nodes) 
u 

d-separates q and dj making them mutually independent, i. e. P(dj, qlu)=P(dj ju) P(qlu) 

[Ribeiro et al. 2000]. 
I 

query side 

I 

document side 

Figure 4.2 : Belief Network for a Query q given by the Keywords ki and k,, 
(Reproduoed from (Ribeiro et al. 2000] with permission 0 SprkW-Vedag 2000) 
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Ribeiro [Ribeiro et a] - 2000] used the genenc expression 

P(dj I q) = i7Z P(dj I u)P(q I u)P(u) for calculating the rank of a document dj with 
U 

regards to a query q, and represented the three classic IR models (Boolean, VSM and 

Probabilistic) in the framework of the Bayesian network. q, in this expression is a 

normalisation constant. 

4.3 KNONVLEDGE-BASED TECBNIQLTES 

Knowledge-based systems attempt to incorporate semantic domain knowledge into IR 

systems to better represent and understand the meaning of concepts that the user is 

searching for. Some systems make use of external knowledge sources (commonly available 

sources or specially tailored for the task) such as Thesauri or Dictionaries. Some others 

make use of Rule Bases within the system to represent the knowledge. Yet another class of 

systems learns knowledge on the fly and represents it in different forms of hierarchical 

or/and semantic network structures [Ginsberg 1993]. 

[Chen et al. 1993] gives a good review of the attempts made to capture expert domain 

knowledge for information retrieval. CoalSORT [Monarch & Carbonell 1987], a 

knowledge-based interface, facilitates the use of bibliographic databases in coal 

technology. A frame-based semantic network, representing an expert's domain knowledge 

(in its cognitive Organisation), embodies the system's intelligence. The GRANT system, 

developed by Cohen and Kjeldsen [Cohen & Kjeldsen 1987], is an expert system for 

finding sources of funding for given research proposals. Its search method, constrained 

spreading activation in a semantic network, makes inferences about the goals of the user 

and thus finds not only the inforniation that the user explicitly requests but also the 

information that is likely to be useful. Shoval's expert system [Shoval 1981] for suggesting 

search terms is composed of two components: (1) a knowledge base, represented as a 

semantic network in which the nodes are words, concepts, or phrases, and links express the 
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semantic relationships between the nodes; and (2) a set of rules or procedures which 

operate upon the knowledge-base analogous to the decision rules of work patterns of the 

infon-nation specialist. Fox's CODER system [Fox 19871 consists of a thesaurus that was 

generated from the "Handbook of Artificial Intelligence" and Collin's Dictionary. 

CANSEARCH [Pollitt 1987] is a thesaurus presented as a menu for selecting terms for 

formulating queries by browing the through the menu. The "Intelligent Intermediary for 

Information Retrieval" (13 R) developed by Croft and Thompson [Croft & Thompson 1987, 

Croft et al. 1989], consists of a group of "experts" that communicates via a common data 

structure, called the blackboard. The system consists of a user model builder and a query 

model builder, a thesaurus expert, a search expert (suggesting statistics-based search 

strategies), a browser expert and an explainer. Chen and Dhar [Chen& Dhar 1991 ] 

incorporated a portion of the Library of Congress subject headings into the design of an 

intelligent retrieval system. Their system adopted a branch-and-bound spreading activation 

algorithm to assist users in articulating their queries. 

NLDB [Jacobs 1993], WorldViews [Ginsberg 1993] and JUSTICE 

[Osborn & Sterling 1999] are a few other knowledge-based implementations in IR. NLDB 

automatically assigns categories to news stories for dissemination, retrieval and browsing. 

WorldViews was developed for processing electronic news articles, as well as abstracts of 

technical reports from Bell Labs and other organisations. JUSTICE is a legal 

knowledge-based system that can identify heterogeneous representations of concepts 

across all major Australian Jurisdictions, and some concepts within US and UK cases. 

The bottleneck in the design of knowledge-based systems is the (manual) knowledge 

acquisition process, which demands extensive effort on the part of knowledge engineers, 

who need to interact with subject experts in order to extract their knowledge and expertise 

in detail and completeness. In addition, a knowledge-base needs to represent the complete 

knowledge in the document collection and keep up-to-date with its underlying database. 
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However, the manual knowledge acquisition approach is not practical mostly due to the 

lack of human experts in various areas and the difficulty of cooperating with them. A 

complementary approach to manual knowledge creation is the automatic thesaurus 

generation. The attempts made in the past for automatic thesaurus generation systems are 

based mainly on the statistical co-occurrence of word types in text [Chen et al. 1993]. 

Machine learning is a newer approach that has been recognised as one of the promising 

techniques for automatically acquiring knowledge from examples. 

4.4 LOGICAL APPROACH TO IR 

The logical approach to IR is based on defining and using non-classical logic to provide a 

representation of information and its semantics. The model assumes that the queries and 

documents can be represented effectively by logical formulas. In order to retrieve a 

document, the IR system has to infer the formula that represents the query from formulae 

that represent the document. This inference process works upon the information present in 

the document itself and external information such as user knowledge. 

The logical model introduces logic to cope with the intrinsic uncertainty present in IR. The 

logical uncertainty principle proposed by van Rijsbergen was the first attempt to make an 

explicit connection between non-classical logics and IR uncertainty modelling. It says: 

"Given any two sentences x and y, a measure of the uncertainty of y-4x related to a given 
data set is determined by the minimal extent to which we have to add information to the 

data set, to establish the truth of y4 x" - van Rijsbergen 1979. 

Application of this principle requires the combination of a logic formalism and uncertainty 

theory. The generality of the principle has made the choice of the appropriate logic and 

uncertainty mechanisms a main research theme in logical IR modelling. Various Logical 

approaches can be described under two broad classes: (1) approaches that make use of non- 

classical logic combined with a theory of uncertainty (Logical Models); and (2) approaches 

that use a theory of uncertainty defined in terms of a non-classical logic (Logical 
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Uncertainty Model). An extensive review of logical models and various uncertainty 

theories used in logical approaches can be found in [Crestani & Lalmas 2000]. 

4.5 SOFT INFORMATION RETRIEVAL 

Soft Information Retrieval refers to a class of approaches that aim at applYing techniques 

for dealing with vagueness, uncertainty and imprecision of the IR process. The principle 

methodologies and techniques of Soft Computing include fuzzy logics, neural networks, 

probabilistic reasoning, evolutionary computing, chaotic computing and other machine 

learning theories. The major contributions (in IR), however, according to the literature, 

have been from connectionism (spreading activation (SA) and neural networks (NN)). In 

the following we give a review of a selected set of models that we thought significant, due 

to the space limitations. They cover the use of genetic algorithms, fuzzy logic and 

connectionism (SAs and NNs) in IR. 

4.5.1 Genetic Algorithms in IR 

Genetic algorithms (GAs) were developed by John Holland [Holland 1975] based on the 

principle of genetic evolution. It belongs to the class of stochastic optimisation methods, 

and provides self-adaptability properties. The GA works within a space of possible 

solutions (individuals) to a given problem. An individual or a potential solution is 

represented by a set of genes. In a GA, a set of starting potential solutions (initial 

population of individuals) undergoes an evolution through a sequence of operations of 

reproduction, crossover and mutation [Goldberg 1989]. During this process, these 

individuals strive for survival through the selection scheme that is biased towards selecting 

fitter individuals and producing the individuals for the next generation. After some number 

of generations, the program converges to the best individual representing the optimum 

solution. 

In IR, the GA is mainly used for feature subset selection for finding either an optimal 

query or optimal document representations. An initial population of documents or query 
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representations is allowed to compete with each other based on a fitness function to obtain 

a better collection of concepts (keywords) fo r indexing (representation) 

[Chen 1995, Gordon 1988, Vrajitoru 2000, Boughanem et al. 2000]. In the design of 

document representation optimisations, a gene represents a keyword, a document's list of 

keywords represents an individual (chromosome) and a collection of documents initially 

judged relevant by a user represents the initial population. Based on Jaccard's score 

matc ing nction (fitness measure), the initial population evolves through generations and 

eventually converges to an optimal population -a set of keywords that best describes the 

documents. These "optimised" keywords can then be used by an IR system to suggest 

relevant documents to the user. This process can be repeated as a relevance feedback 

mechanism by using the user decisions on the suggested documents to create an initial 

population, and re-apply the GA processes until the search is completed or user decides to 

stop. In contrast, Boughanem et al. [Boughanem et al. 2000] presents a query formulation 

technique in which the GA generates several queries that explore different areas of the 

document space. The above-mentioned designs make use of only binary term weights, but 

designs that make use of non-binary term weightings do exist. For instance, 

[Kraft et al. 1994, Petry et al. 1993] applied genetic programming to a weighted Boolean 

query formulation to improve search perfon-nance. [Yang & Korfhage 1993] applied the 

GA to query optimisation by re-weighting the document term indexing without expanding 

the query. 

Moreover, Yu and Liddy [Yu & Liddy 1999], and Chen and Kim [Chen & Kim 1994] 

report hybrid approaches by combining the GA with neural networks (NNs). Yu and 

Liddy's model uses the GA as a mechanism to select the best (or optimal) feature set for 

NNs. They used the Baldwin effect [Baldwin 1896] to guide and improve the GA-based 

evolution of the feature subsets. NNs constructed dynamically corresponding to optimal 

feature sets obtained by the GA evaluate the classification perfonnance of the feature sets. 

In Chen and Kim's model (GANNET) [Chen & Kim 1994], concepts optimised by the GA 
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are used to perform concept exploration in a large network of related concepts through the 

Hopfield Network's parallel relaxation procedure. During concept exploration, the 

Hopfield network produces other relevant concepts (new genes suggested by nature). 

These are then included in the GA for the next concept optimisation and the process 

repeated until there is no further improvement. 

The work described above provides evidence of the viability of the GA for deriving good 

feature sets for document or query representations. Specific results of these experiments 

include: (1) the choice of the fitness function has a significant effect on perfon-nance 

[Petry et al. 1993], (2) larger populations, in general, tend to improve the effectiveness of 

retrieval [Vrajitoru 2000] and (3) queries converge to their relevant document 

representations within a few (-six) generations [Boughanem et al. 2000]. 

4.5.2 Fuzzy Information Retrieval Models 

A fuzzy set allows the characterisation of its elements by means of the concept of 

'graduality', which lets a class of elements be described in more precise terms when the 

nature of the elements themselves do not support sharp boundaries of memberships 

[Koczy & Gedeon 2000]. This key feature has influenced IR researchers to employ fuzzy 

set theory to model vagueness and imprecision that exists at different levels in the IR 

processes, mainly to reduce the incompleteness and deal with the imprecision of the 

indexing process, to manage the user's vagueness in queries, and to deal with 

discriminated answers by allowing partial relevance of the documents. The main 

applications of the theory of fuzzy logic found in the IR literature include: extending the 

boolean model by flexible indexing and representation of documents and query language 

(fuzzy indexing); defining associative mechanisms such as fuzzy thesaun and fuzzy 

clustering; defining knowledge-based models of IR; and defining fuzzy measures for 

evaluating the effectiveness of IRS in ternis of recall and precision. An extensive review of 

the application of fuzzy set theory to IR can be found in [Bordogna & Pasi 20001. 
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4.5.3 Spreading Activation and Connectionism 

Spreading activations of nodes through links in a network of nodes is the basis for 

connectionism or in particular neural networks (NNs). A NN is considered as an improved 

form of the basic SA model due to its use of a non-linear activation function and a learning 

procedure to modify the weights on links so that the spreading of the activations over the 

network reflects some desired patterns [Crestani 1997]. This section reviews applications 

of both the basic SA model and NNs in IR. A more comprehensive survey of the literature, 

P-- - from which some of the present material is drawn, may be found in [Crestani 1997]. 

4.5.3.1 Spreading Activation (SA) 

The SA model is inspired by the mechanisms of human memory. In the "original" SA 

model, nodes in the network model ob . ects or features of the real world and links model 9 

relationships between nodes as in a semantic network. A link usually has a direction, a 

label and a weight assigned according to a specific direction. The connectivity pattern 

between nodes reflects the relationships between objects or between objects and their 

features. Processing is done by iterating a sequence of actions (a "pulse"). A pulse in the 

basic SA model consists of an optional preadjustment phase, a spreading phase and an 

optional postadjustment phase. The preadjustment and postadjustment phases are used to 

avoid retention of activation from previous pulses by applying some form of activation 

decay in the active nodes. The spreading phase consists of a number of passages of 

activation waves from one node to all other nodes connected to it. A simplest and 

frequently used form of the spreading activation forinula to compute the activation level of 

a node is the surn of weighted outputs (activities) from incoming (connected) nodes 

(Ij = jOiN. 
- ). The output of the node is determined by a threshold function such as a 

i 

step function, a linear function or a sigrnoid function. It is this new output that is fired 

(spread) to the connected nodes at the next iteration. 
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Since the spreading of the activations in this pure SA model is not controlled, they tend to 

spread all over the network, and the model does not use the rich semantics (labels) of the 

associations to help making inferences. The Constrained Spreading Activation (CSA) 

model, an improved form of the SA model, uses a range of constraints (rules) to restrict the 

spreading of activations and also to define heuristics to process links differently according 

to their semantics, distance from initially activated node and connectivity density of the 

node(s). 

Spreading Activation in IR 

SA techniques adopted into IR systems differ from the pure SA models mainly by the way 

activation weights are assigned, and the specific rules (constraints) are used to control 

spreading of activation over the network and also to embed some form of inference in the 

process of association retrieval. The SA network in IR is essentially a map of relations 

between concepts, information items (documents) or any other entities of the problem 

domain (Figure 4.3). For instance, a node in the network can represent terms (concepts), 

documents, articles, journals, subject classifications or authors. Links between nodes 

indicate the associations between them. This representation structure is dependent on the 

purpose and the domain of the application, as the node and link types are determined based 

on the data in the target domain. 

term 
thesaurus 

ItLm 

classificAtion 

citation 
dass 

Figure 4,3: A Document Collection Representation in a SA Network 
(Reproduced from [Crestani 1997) with permission 0 1997 IQuwer) 

Nodes (terms, documents etc. ) corresponding to a query formulation or result of an earlier 

search operation are activated by placing a specific activation level on them and the 
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activations are allowed to spread through the network according to defined constraints 

(rules). Activation levels of documents at the end of the spreading process (triggered by a 

given termination condition) are used to compute the relevance levels of each document. 

SA has been employed in IR mainly to expand the search vocabulary and to complement 

the retrieved document sets [Salton& Buckley 1988]. Most designs use hand-made 

semantic network structures of nodes and links to represent the objects (documents and 

concepts) and associations between them, while few others make use of static or dynamic 

thesauri to automatically construct the network representation structures. For instance, the 

13 R [Croft & Thompson 1987], GRANT [Kjeldsen & Cohen 1987] and Preece's 

[Preece 1981] models use hand-made semantic networks and, the AIRS 

[Kimoto & lwadera 1990] and Shoval's model [Shoval 1981] use thesauri for automatic 

network constructions. Some of these models incorporate feedback mechanisms into SA. 

Feedback can arrive from another process or can be user evaluations of the activation 

levels of some nodes. It is also possible to enable the user to modify the activation of some 

nodes according to his requirements or to indicate some particular spreading path so that 

activation can follow based on directions given by the user. A brief summary of these 

models is given below, and the interested reader is referred to [Crestani 1997] for an 

extensive review. 

One of the pioneers to use associative search by SA is Preece (see his PhD 

thesis [Preece 1981]). He showed how the classical IR approaches such as boolean and 

vector models can be explained in terms of different SA processing techniques on a 

network representation of the document collection. In addition, using relevance feedback, 

he has showed how SA can be used for automatic classification, indexing and for concept 

building. 

Shoval [Shoval 1981] reports an implementation of an interactive query expansion system 

using a thesaurus-based semantic network (a knowledgebase). In addition to the common 
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types of relations used by thesauri (such as hierarchical relationships and sýmonymous 

relationships), he used two special types of links to combine source/generic words to multi- 

words (as of "information" and "systems" to "information systems") and to link a word 

with a component of its meaning (as of "business" to "organisational area"). The model 

works by expanding user (query) terms along the semantic network links in order to 

suggest better representative set of terms for the query. The direction of search (for terms) 

is guided by interactive feedback coming from the user about the relevance of suggested 

terms. The most advantageous feature of this model is its automatic construction of the 

network representation structure (given a thesaurus). The model is recognized to have the 

strength to operate independently of specific domain knowledge if based on a generic 

thesaurus. A disadvantage is the excessive amount user interventions that it rquares. 

The GRANT system of Kjeldsen and Cohen [Kjeldsen & Cohen 1987] may be the best 

working example for the application of constrained SA in IR. It operates on a semantic 

network of knowledge about research proposals and funding agencies to suggest funding 

agencies for research topics. A specific feature of GRANT is that it uses a large number of 

path constraints in the form of "path endorsements" in addition to other commonly used 

constraints. These are essentially inference rules created for the particular application for 

which GRANT was designed. The model works by first activating nodes correspond to a 

query (one or more research topics or funding agencies) and then spreading them 

according to defined constraints. Experimental results (in its own domain) have shown 

better performance of GRANT over simple keyword-based search systems. One of the 

limitations of GRANT however, is that it needs the parameters of the path endorsements to 

be well tuned to the domain in which the system will operate. This is a difficult task which 

requires an in-depth analysis of the domain determining the appropriate concepts and 

relationships to build in the network, and preferences to give paths of activation spreading 

over them. 
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The 13 R system of Croft and colleagues [Croft & Thompson 1987, Croft et al. 1989] is an 

implementation of a document retrieval model (by plausible inference) as a form of 

constrained SA. The system uses the domain knowledge represented in a semantic network 

to infer concepts that are related to those mentioned in the query. A particular processing 

technique of interest used in 13R (out of several others) uses top-ranked documents from a 

probabilistic search as its starting point, and spreads the activations of the corresponding 

nodes initially through strongest plausible relationships between documents (nearest 

neighbours and citations) and then through nearest neighbours, only. Weights on the links 

(specified as "credibility" values associated to inference rules representing the existence 

re ations ps between nodes) are used to evaluate the activation levels of the nodes. This 

implementation is considered to be of the type "multi source of evidence" in which the 

relevancy of a document is supported by many different clues. 

Kimoto and Iwadera's AIRS system (Associative Information Retrieval System) 

[Kimoto & Iwadera 1990] incorporates SA in a dynamic thesaurus. It produces "term 

information" based on the user's interest in his sample of relevant documents and they 

(tenn information) are used to construct a dynamic thesaurus, a network of nodes and 

links. Selection of tenns to build the dynarnic thesaurus is done based on their frequencies 

and locations in a set of relevant documents provided by the user, and links between 

ten, n-nodes are created based on co-occurrence of terms. Term information in the dynamic 

thesaurus is used together with a static thesaurus to generate associated keywords to 

expand the query at the time of retrieval. The structure of the dynamic thesaurus resembles 

more an associative network than a thesaurus and differs from the classical connectionist 

network architecture. The relations between terms (link types) are of a single type and 

there is no activation function, no learning procedure and the weights are on nodes rather 

than on links. 
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Fahlman [Fahlman et al. 198 1] encoded a semantic network as a massively parallel 

network of simple processing (hardware) elements in his NETL system. It uses marker 

passing to perform simple inferences based on set intersection and transitive closure 

operations. The intersection operation locates items that share a set of properties whereas 

the transitive closure operation handles inheritance as well as closure of relations like 

"part-of'. These operations are performed in parallel and allow the system to conduct a 

very fast search. The use of small numbers of discrete markers (Boolean conditions) for 

communication between network elements and the inability of the network elements to 

detect more than just the presence or absence of a marker in the input have been pointed as 

drawbacks of the model that limits its processing power. 

Drawbacks of the SA Approach 

SA is based on a networked representation of objects and relations between objects in the 

particular domain of the application. Success of the SA process critically depends on the 

"representativeness" of the representation. Building networks to represent underlying 

semantics of the data is known to be a difficult problem. If applYing in a specific domain 

this requires in depth application domain knowledge that only experts in the application 

domain can provide. One alternative to manual construction is to use an existing thesaurus 

or a knowledge base on the same domain for automatic construction of the representation 

network. However, knowledge bases do not exist for many domains. Another alternative is 

to use machine learning for automatic creation of the representation. A second drawback is 

the high computing power needed for processing large network representations. These 

problems have limited the application of SA to smaller scale research prototypes rather 

than commercial systems. 

4.5.3.2 Neural Networks (NNs) in IR 

Artificial neural networks, which were inspired by the structures and functions of the 

human brain, are implementation realisations of connectionist modeling. They attempt to 
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achieve the primary objective of Al: to develop computational models that perfonn equallý, 

or better than humans in the tasks that humans are good at [Becker 1991]. Formal neurons 

of an information processing NN represent IR objects such as keywords, references, 

document excerpts or document classes. Knowledge is represented by a single layer of 

interconnected neurons (feature maps) or by a multi-layered network. The formal synapses 

(connections) are implemented through weighted links that represent the relevance levels 

of the associations that may be learned between the formal neurons. 

Based on the learning paradigm used, NNs can be divided into two major categories, 

namely supervised NNs and unsupervised NNs. Supervised learning is used mainly in 

multi-layered NNs to implement spreading activation searches [Salton & Buckley 1988] in 

which the learning is guided by desired outputs of the training inputs. Spreading of the 

activation is via the excitatory and inhibitory links between nodes. Unsupervised learning 

procedures, on the other hand, use a "winner-take-air' approach. They rely only upon local 

inforination and internal control, and learn by capturing regularities in the input patterns. 

Self-Organizing Maps (SOM) and the Adaptive Resonance Theory (ART) networks are the 

most popular unsupervised NN architectures. In this section we summarise some of the 

innovative research in the application of NNs in IR. A good survey of the literature from 

which some of the present material is drawn can be found in [Crestani & Pasi 1999]. 

Supervised NN Models 

One of the pioneer applications of NNs to IR is Mozer's Parallel Distributed Processing 

(PDP) Model [Mozer 1984]. In this model, each document and descriptor was represented 

by a node (Figure 4.4). The activation level of a document node indicates the system's 

belief in the relevance of the document. The weights between nodes were binary. Each 

document was connected with inhibitory links (with a constant weight) to all other 

documents allowing documents to compete each other. This helps to keep their activation 

levels under control dunng retrieval phase and to control the level of associativity among 
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Figure 4.4: Mozer's Inductive IR Model 
(Reproduced from [Mozer 1994] with permission from M. C. Mozer) 

them. Activation of a set of (initial) descriptors causes a set of new descriptors to be 

activated. These descriptors in turn activate a set of new documents, and also reinforce the 

activation of the already active ones. The result is that it suggests other potential 

descriptors that may help the search and other documents (other than the ones activated by 

the initial query descriptors) that may be relevant to the query. Indexing documents with a 

highly correlated set of descriptors help the model to gain semantic relationships between 

terms through their overlapping relationships with documents. However, the use of binary 

weights on links (all descriptors are of same importance), lack of a learning procedure 

(performance remains the same over time) and lack of links among descriptors (ignores 

direct inter-term semantics) have been identified as drawbacks of the model. Feasibility of 

applying this model to larger collections was later demonstrated by the experimental 

results of Bein and Smolensky [Bein & Smolensky 1988]. The model was further 

improved by incorporating relevance feedback into it by Hingston and Wilkinson 

[Wilkinson & Hingston 1991]. A similar approach (to Mozer's) for document retrieval 

was implemented by Stanfil and Kahle [Stanfil &Kahle 1986] on a Connection 

Machine (CM I- 

Belew's AIR [Belew 2000] is considered the most influential work in employing NNs into 

IR. It is a three layer NN of authors, index ten-ns (descriptors) and documents. A document 

is connected to each of its descriptors and also to each of its authors via two links 

A massively parallel supercomputer with 65.536 processors 
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Figure 4.5: Network Representation of a Single Book in Belew's AIR Model 

(Reproduced from [Belew 20001 with permission 0 Cambridge University Press M) 

(bidirectional). Weights of the links, initially computed based on an inverse frequency 

weighting scheme, are modified on the fly from the first user session by means of 

relevance feedback. Thus, as in our model (Chapter 7), AIR's representation results from 

the combination of two completely different sources of evidence: the word frequency 

statistics underlying its initial indexing and the opinions of its users. The sum of the 

weights on all links going out from a node is forced to be a constant (one). Figure 4.5 

shows part of the network corresponding to the representation of the book "Parallel Models 

of Associative Memory" by G. E. Hinton and J. A. Anderson. The initial network is 

constructed from the superposition of many such document representations. The model 

works according to the basic SA principal by propagating activations of the nodes 

corresponding to the features of the query. Response of the system is the set of nodes that 

becomes active over a certain threshold during this propagation. A leaming process, 

derived from the Hebbian rule and based upon relevance feedback, creates new 

connections between documents and descriptors resulting in a representation of the 

consensual meaning of descriptors and documents shared by some group of users 

[Crestani & Pasi 1999]. This work was carried forward by Rose and Belew (1991). and a 

hybrid connectionist and symbolic model called SCALIR [Rose& Belew 19911, a legal 

information system, was built. 

Kwok's three-layer network [Kwok 1995] (Figure 4.6) uses a modified Hebbian Leaming 

rule to reformulate probabilistic information retrieval. Nodes in the layers represent 

(Kintou &ad Andors<m 1904) 
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Figure 4.6: Kwok's Model 
(Reproduced from [Kwok 1995] with permission 0 1995 by ACM Inc) 

queries, index terms and documents respectively. Connections between nodes are 

bi-directional and asymmetric with no lateral connections. A weight on a connection is 

computed according to the classical probabilistic IR measure as the probability of presence 

of an index term given a particular query or document (i. e. wk,, and Wki) or as the evidence 

that if the index term k is isused, it will be dealing with the contents of that query or 

documents (i. e. WakandWik). The weight computation has been criticised as too complex 

and thus far from reality. 

Crestani [Crestani 1993, Crestani 1995] developed an adaptive IR system using a feed- 

forward NN. Figure 4.7 shows its three components: Query Processor, Matcher and 

Document Processor. The task of the query/document processor is to transform 

queries/documents into binary vector representations of diminutions equal to the number of 

input/output nodes in the Matcher. During training, binary vectors of queries and 

documents are trained in a 3-layer feedforward NN (the Matcher) using the 

Query Processor Document Processor 

IR System (Matcher) 
----------------------------------- 

Figure 4,7: Crestani's Adaptive IR Model 
(Reproduced from [Crestani 1997) with permission 0 1997 KJuwer) 
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backpropagation learning algorithm. The hidden layer learns associations between the 

terms in queries and terms in documents. At retrieval, the NN produces a new query 

representation on its output layer, better representing the given query according to the 

application domain knowledge it has learnt at the training phase. A ranked list of 

documents is then computed (by the Matcher) based on the activations of the output 

(document) layer nodes using Dice's coefficient. Crestani uses three different learning 

strategies (total learning, horizontal learning and vertical learning) in his experiments, out 

of which vertical learning (in which only a subset of the known relevant documents for 

each query was used for training) has shown best performance, comparatively similar to 

that provided by probabilistic relevance feedback. This system was later integrated into a 

more general network model for adaptive IR by Crestani and van Rigsbergen 

[Crestani & Rigsbergen 1997]. 

Jung and Raghava ([Jung & Raghavan 1990], as cited in [Crestani & Pasi 1999]), 

constructed a thesaurus like knowledge representation structure (a pseudo-thesaurus) using 

a single layer NN, and used it in conjunction with the vector space model to perfonn the 

ranking and document retrieval. Terms in the NN are represented as real numbers, and are 

deten-nined by means of a learning procedure with relevance feedback from past users. The 

symmetry assumption of the relationships between terms has been identified as a major 

drawback of this model. 

Chen et al [Chen et al 1999] reported a design of a NN for search engines within an index 

database. The engine uses the network, trained through user feedback, to classify the 

documents in its internal database, and ranks and returns those classified documents to the 

users. Any misclassifications reported by the user are fed back to the NN in order to learn 

the hidden nodes with proper refinements, and a new refined list of documents are returned 

to the user. Documents are represented as vectors of attributes of some dimension (d) in 

which each attribute may have a number (N) of discretised values. The network was 
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designed for learning any collection of documents represented by disjunctions of attributes. 

The goal of the training process is to fmd values for the attributes. For each real variable 

at each dimension, N "virtual variables" are introduced (Figure 4.8) according to 

Maass and Warmuth [Maass & Warinuth 1995]'s virtual variables concept. The objective 

of the search is to find out those unknown weights for the virtual variables and the 

unknown threshold of the output layer node. For training the NN, the Elimination and 

Promotion strategy (of Littleatone's, find reference in Chen et al. 1999) based on relevance 

feedback is proposed. This strategy, which works well for smaller values of d and N. 

becomes computationally complex for large values. A three-layer NN version (Figure 4.8), 

in which the virtual variables are clustered into "blocks" by an additional layer, is proposed 

as a remedy for the dimensionality problem. 

Vimml Variables 

IhýI - Represents a Document 

Figure 4.8 : Chen's Search Engine Model 
(Reproduced from [Chen et al. 1999] with permission@ 1999 IEEE) 

A simple three layer backpropagation NN model called COSIMIR was proposed by Mandl 

[Mandl 2000] to directly calculate and output a similarity value for a given pair of a query 

and a document representation. Both query and document representations are given as 

input to the network. It does not use explicit mathematical similarity functions to compute 

similarity values (RSV) for a query-document pair, and neither does it assume term 

independency. The activation value of the output neuron (of the output layer) is interpreted 

as the similarity value (RSV). The high dimensionality of the input (document 

representation + query representation) is a major drawback of the model. Yang and 

colleagues [Yang et al. 1998] employed a fast constructive learning algorithm (knoNA-n as 

DistAI) for classification in their information learning agents. DistAI adds hidden neurons 
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one at a time based on a greedy strategy to ensure that the hidden neurons correctly 

classifies a maximal subset of training patterns belonging to a single class. 

Boughanem's "Mercure" [Boughanem et al. 2000] is a multilayer network consisting of an 

input layer, a term neuron layer, a document neuron layer and an output layer (Figure 4.9). 

A document neuron corresponds to a document and a term neuron to an index term. Tficy 

are interconnected by bi-directional weighted links that represent indexing links. 

Activations of the output layer neurons result in a ranked list of documents for a given 

query. The model has a query optimisation strategy based on relevance feedback. It works 

NN (Mercwc) GA 

tr" quay Q- Sywim T. Prj" 

New Quano 

Figure 4.9: Architecture of Mercure 
(Reproduced from [Boughanem et. al. 2000] with permission @ 2000 Physica-Verlag) 

by back-spreading the user judgments (relevance values) from the output layer to the input 

layer creating a new vector (new refonnulated query) at the input layer. An alternative 

query refonnulation strategy reported in the same paper uses the GA for generating a 

population of queries and then selecting the one that best matches the user's need. In this 

case, the NN model is used to evaluate each query separately in order to create a final 

response by merging the results of the best quenes. Experiments conducted on rather small 

document collections have shown improvements over VSM model on single pass search. 

Unsupervised Learning Techniques 

Self-Organizing Maps 

The Self-Organizing Map (SOM) forrns a nonlinear projection from a high-dimensional 

data manifold onto a low-cliniensional (usually 2D) grid. A representative "model" (sav inj 

of some subset of data is associated %N, -Ith each gnd point. This process, which Icads to the 
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computation of an optimal collection of models, is carried out by: (1) approximating the 

data in the sense of some error criterion; and (2) taking into account the similarity relations 

of the models. This error criterion also involves the "spatial ordering '). of the models in 

which the most similar models shall be found at adjacent grid points, and the more 

dissimilar ones shall be located farther away from each other on the grid [Kohonen 1998]. 

Some pioneer work on unsupervised learning for information processing tasks was 

reported by MacLeod and Robertson [TvlacLeod &Robertson 1991 ]. They designed an 

unsupervised NN model to perform document clustering by feature extraction. Their 

experimental results, obtained from clustering and subsequent querying on a classical test 

collection were comparable to that of hierarchical (sequential) clustering algorithms. Lin et 

al [Lin et al. 1991 ] used a Kohonen feature map for clustering 140 documents from the 

artificial intelligent literature. The documents which were represented by manually 

encoded 25-dimentional vectors were trained to an SOM of 10 x 14 (i. e. 140) neurons. 
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Figure 4.10: Lin's Document Map 
(Reproduced from [Lin et al. 1991] with permission 0 1991 ACM Inc. ) 

The numbers on Lin's map (Figure 4.10) shows the number of documents mapped onto 

each node and the regions show concept areas. The sizes of the regions correspond to the 

frequency of occurrence of the terms in that area. Despite the success shown by this model, 

it has not been evaluated either for the quality of clustering or for the retrieval 

effectiveness. Also the manual selection of index terms is a drawback in its 

implementation. 
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MerkI [Merkl 1995a] applied an SOM for clustering textual descriptions of C- library 

components. Document vectors (of 498-dimention) were constructed by extracting terms 

from respective parts of the manual and trained onto a 10 x 10 (a 100-node) SOM 

(Figure 4.11). The evaluation results have shown that this approach is more effective than 

the clustering approach of the complete linkage method (often used clustering approach in 

IR), in the special category of the documents on which it was evaluated. 
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Figure 4.11: Merkl's Map of the NIH Class Library 
(Reproduced from [Merkl 1995) with permission from D. Merkl) 

Scholtes's "neural filter" and the "neural interest map" [Scholtes 1991] consist of Kohonen 

feature maps trained with natural language queries (interests) to derive an internal 

representation of the text. Documents are selected depending on the activity patterns they 

generate on the network, as they are passed through the trained network (feature map). 

Evaluation results (on Pravda CD-ROM) have shown better precision and recall figures 

than those of traditional statistical IR techniques. Troina and Walker 

[Troina & Walker 1996] constructed another Kohonen feature map for clustering index 

terms extracted from text documents. This map was used for query expansion and 

document classification. Terms picked from the same cluster as of a query term are 

considered similar and are used for query expansion. Documents are classified into 

subject-related groups based on the analysis of patterns of term occurrences in the 

document vector. Bordogna and Pasi [as cited in Crestani & Pasi 19991 have proposed a 

Neural Relevance Feedback model in which a neural network is dynamically constructed 

based on evidence of user's interests Oudgments) on documents retrieved. In this network, 

neurons represent the most significant terms in the selected documents and the synapses 
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represent the relations between pairs of terms. At steady state, the terms corresponding to 

active nodes are considered meaningful and the degrees of the connections between these 

nodes and those corresponding to the original query terms indicate the strength of the 

associations between concepts of interest. A rule-based super-structure is then used to 

expand the original query evaluation with the meaningful terms by avoiding the explicit 

construction of a new query. 

The WEBSOM [Honkela et al. 1998, Kohonen 1998, Lagus et al. 1996] is a considerably 

large project that uses an SOM to create a document map to support explorative full-text 

infonuation retrieval and browsing. One of the interesting aspects of this project is its 

radically different document representation mechanism. Each word is encoded as an 

n-dimensional vector of random-number components to fonn a sparse representation of 

words. Then an average context vector (Xi ER 
3n) is created for each word based on the 

preceding and following words in the text. 

Ejx, 
-, 

I x,, where E denotes the estimate of the 
Xi exi expected value evaluated over the text 

I x, )_ corpus and se is a small scalar number 

These average context vectors are then used as inputs to an SOM to form a word category 

map based on the co-occurrences of words in documents. The SOM learning procedure 

tends to organise strongly related words that have similar contexts close to each other. 

The SOM word category map is calibrated after the training process by inputting the Xj s 

once again to SOM and labelling the best-matching nodes with corresponding xi parts 

(words) of Xj s. Each node may be labelled with several words, often synonymous or 

belonging to the same closed category, thus forming "word categories" in the nodes. 

Figure 4.1 -1 illustrates how the WEBSOM model works. 

The word category map thus created is used for encoding documents by mapping their text, 

word by word, onto the word category map forming a histogram of the "hits" on it. These 
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Figure 4.12: The Architecture of the WEBSOM Model 
(Reproduced from [Honkela et al. 1997] with permission @ 1998 Elsevier) 

histogram representations of the documents are trained to a second SOM allowing them to 

self-organise resulting in a Document Map. A new document (query) can be mapped onto 

the document display and the position (node) it is mapped can be used as a starting point 

for exploring related documents in the nearby area [Honkela et al. 1998]. 

Hierarchical Feature Maps 

Realizing the limitations of a 2-dimentional map metaphor for document space 

visualisation, Merkl and Rauber [MerkI & Rauber 2000] suggested the use of an "atlas" of 

feature maps each tuned to different portion of the full map at some level of resolution. 

This was realised using a hierarchical setup of multiple layers where each layer consists of 

a number of independent SOMs (Figure 4.13). At the root of this structure is only one 

w 

Figure 4.13: Architecture of a Three-layer Hierarchical Feature Map 
(Reproduced from [Merkl & Rauber 2000] with permission @ 2000 Physica-Vedag) 

SOM representing a summary of the full map and every unit in this map is filrther 

expanded by an associated SOM located at the next layer of the hierarchy. This process can 
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be repeated to create third and further layers. The training process in this model results in a 

hierarchical arrangement of the document collection, where SOMs from higher layers of 

the hierarchy represent the overall organisation of the parts of the document archive 

represented by their siblings. Maps at the lower layers of the hierarchy provide 

fine-grained distinction between individual documents. This hierarchical feature map 

model has shown better evaluation results over the standard SOM on the CIA World Fact 

Book collection. The architecture of the network of this model is data dependent and 

therefore a prior knowledge of the input data is required to build an appropriate network 

before training begins. 

Drawbacks of SOMs 

One of the major shortcomings of self-organizing maps is the remarkable computational 

demand of its learning process. Possible solutions for this problem, as suggested in the 

literature, include the use of the biologically motivated concept of lateral inhibition at the 

level of the learning rule, and using a lower dimensional representation strategy to 

represent documents. Some work with regard to the first of these is described in 

[Merkl 1995b, Miikkulainen 1991 ]. Latent semantic indexing and principal component 

analysis (PCA) are examples of the second. [Bayer et al. 1996] reports the use of PCA in 

the area of document processing. Neural network realisations of the PCA can also be found 

in the literature [Oja 1982, Oja 1989]. 

Adaptive Resonance Theory (ART) 

Most of the supervised learning algorithms suffer from catastrophic forgetting or 

interference as new patterns are accommodated. This demands that all the training 

examples be retrained once a new category of patterns is encountered. Adaptive Resonance 

Theory (ART) [Carpenter & Grossberg 1987] provides a way of learning new patterns 

without affecting the representation of previously learned patterns. Dunbar [Dunber 1999) 

reports an application of ART in the study of word meaning in which the model derives 

lexical relations between words from indirect subjective property rating judgments 
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provided by native speakers. An analogue version of the ART network, ART2, 

[Carpenter& Grossberg 1987] that is capable of learning analogue input is the most 

popular one. The ART2 network architecture has two interconnected layers with recurrent 

links between them. Resonance is achieved when the response of the recurrent links 

matches the input. Resonance determines the classification of a pattern. If the initial 

response does not create resonance, then an alternative category is tried and if there are no 

alternative categories left then a new one is created. [Vlajic & Card 1999] proposed a 

modified version of ART2 which is based on a recursive learning procedure with a 

dynamically changing vigilance parameter. This model has proven stability in hierarchical 

clustering, by means of which highly efficient multi-level document retrieval can be 

achieved. In their (Vlajic and Card's) work on the application of ART2 to Adaptive 

Hypertext Clustering, each web page was encoded in two separate representations; one 

based on the (words) content and the other based on the hyperlinks. The two 

representations were simultaneously processed in their own spaces, and the overall 

similarity of two web pages was computed in a compound function. The model is reported 

to have better identified both the main thematic categories and functional subgroups within 

them. 

4.6 LATTICE-BASED RETRIEVAL 

The use of lattice structures for infort-nation retrieval, though small in numbers, date back 

to Fairthome (1956), followed by Mooers (1958), Salton (1968) and Soergel (1967) [as 

cited in Priss 2000b]. These applications were mainly for deriving a mathematical 

formalisation of a query language. They have not been well accepted by mainstream 

infonnation retrieval community, perhaps due to difficulties in their practical utilisation. 

However, the invention of Formal Concept Analysis by Ganter and Wille (1999) has 

triggered concept lattices regain lost interest among IR researchers. A number of Concept 

Lattice based IR models has been developed by various researchers, including Godin 

[Godin et. al. 1993], Carpineto and Romano [Carpineto & Romano 1996,1998,2000], Priss 
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[Priss 1997,2000b) and Cole, Eklund and Sturnme [Cole & Eklund 1996, Cole et al. 2000, 

Becker et al. 2002]. Most of these models are based on navigating a lattice structure (AKA 

Galois Lattice [Ganter & Wille 1999]) for browsing. We do not detail these approaches 

here in this chapter, as a detailed description of the FCA formalism; the theory of concept 

lattices and a review of their application to document retrieval are given in the next chapter 

(Chapter 5). 

4.7 SummARY 

In this chapter, the traditional Boolean, VSM, Probabilistic and Logical models were 

summarised first, and then the more recent approaches such as Inference nets, Bayesian 

nets, GAs, Fuzzy theoretical approach, Spreading activation, Neural network and 

Knowledge-base approaches were reviewed. The main objective was to review innovative 

IR models, and their underlying theories and techniques that have enriched the field over 

the past half a century. Each of these approaches has been aimed at improving the 

effectiveness of IR by addressing one or more of the key problems discussed in Chapter 2. 

Each approach has its merits and drawbacks. Our intention was not to evaluate them 

against each other, but to present different approaches rendered to solve the IR problem 

and their underlying theories and techniques to give a good synthesis of the subject. 
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CHAPTER 5- FORMAL CONCEPT ANALYSIS 

In this chapter, we lay the foundation to our model by presenting the theory of Formal 

Concept Analysis (FCA) [Ganter & Wille 1999], the technique fundmental to our work. 

FCA in combination with lattice theory gives a hierarchically organised lattice structure of 

fonnal concepts known as a "Concept Lattice". It is these concept lattice structures that we 

use for representing documents and queries in our model. In the following, we first give a 

brief introduction to lattice theory, the underlining algebra on which FCA is based upon. 

We then define formal concept analysis and describe how formal concepts are organised 

into concept lattice structures according to a defined subsumption order relation. The 

analogy between the representation of formal concepts in concept lattices and the 

representation of ideas (concepts) in the human brain in the process of human 

understanding is then analysed. Finally, previous attempts made by various researchers to 

employ concept lattices into IR are reviewed. 

5.1 LATTICE THEORY 

5.1.1 Partially Ordered Set (poset) 

A Partially Ordered set or poset <P,:! ý> is composed of a set of elements P and a 

subsumption relation : ý:, defined on that set. The subsumption relation must posses the 

reflexivity, anti-symmetry and transitivity properties, i. e. for all xi, Xi. XkE P: 

i. Xi :5 Xi 

ii. xi: 5 xj and xj: 5 xi => xi = xj 

xj:! ý, ýj and xj:! ý xk ---: > Xi :! ý Xk 

5.1.2 The Hasse Diagram 

Hasse diagrams (Figure 5.1) are used to visually represent posets. The Hasse diagram has 

the property that if one element is subsumed by another different element then the 

subsumed element will be positioned lower to that of the subsuming element. 
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The Hasse diagrarn can be drawn for any finite poset by calculating the covering relation 

(defined below in Section 5.1-4) and drawing lines between two elements if one covers the 

other. The elements are positioned so that if one element covers another then the covering 

element is placed above the covered element. 

Figure 5.1 :A Hasse (Line) Diagram 

The Hasse diagram given in Figure 5.1 illustrates an example of a poset with elements 

Aq Bq C, D, E, F. The subsumption relations are indicated by the paths between elements. 

Here A subsumes every element in the set while C subsumes both E and F and itself An 

important feature of a poset, as can be seen in the above figure, is that an element may 

have multiple parents rather than one parent as is the case in Tree Diagrams. This makes 

posets a generalisation of a tree structure. 

5.1.3 Down Set 

The Down set of a subset of a partially ordered set is the set of elements which are less 

than all elements in the subset. Formally, let <P,:! ý > be a partially ordered set, then the 

down set of an element e EP is the set (aEP Ia:! ý e). The down set of ScP is the set 

(aeP I (VeES, a:! ý e)). 

5.1.4 Covering Relation 

The covering relation indicates the children of the elements. If <P, :! ý > be a poset and x, x. 

e P, then the covering relation defined on P is a relation CZ such that x, Cz xj iff x, :! ý xj and 

there is no xk (*. ý, )EP such that x, ": ý Xk ! ý- Xj - 
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5.1.5 Lattice 

A Lattice is a partially ordered set with the special property that each pair of elements 

always has a least upper bound Ooin) and a greatest lower bound (meet). The following 

definitions will help understanding this. 

* Maximal and Minimal Elements 

If P be a partially ordered set and ScP, then xE S is maximal if for all Y E: - S, y !ýx. 

Similarly x E=- S is minimal if for all y E=- S, x:! ý y. The maximal and minimal elements of a 

subset S are known as the greatest and the least elements respectively. 

* Lower Bound and Upper Bound 

If P be a partially ordered set and ScP then an element xEP is an upper bound of S if 

s:! ý x for all scS. Similarly a lower bound is defined dually. S" and ý denote sets of all 

upper bounds and all lower bounds of S respectively. 

0 Least Upper Bound and Greatest Lower Bound 

If P be a partially ordered set and ScP and if S" has a least element then that element is 

called the least upper bound of S. If Sý has a greatest element then that element is called the 

greatest lower bound. 

0 Join and Meet of Elements 

The join of two elementsX], X2 (=-P denoted by x, V X2 (if it exists) is the least upper bound 

Of IXI, X21 -Similarly the meet of the two elements, denoted by x, A X2 is the greatest lower 

bound of the two elements. 

5.1.6 Complete Lattice 

If the greatest lower bound and least upper bound exist for all ScP then P is called a 

complete lattice. 
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5.2 FoRmAL CONCEPT ANALYsis (FCA) 

Formal Concept Analysis (FCA) was proposed by Rudolf Wille in 1982 

[Ganter & Wille 1999, Wille 1997] as a mathematical framework for performing data 

analysis. It provides a conceptual analytical tool for investigating and processing given 

information explicitly. FCA structures data into units that are formal abstractions of 

"concepts" of human thought allowing meaningful and comprehensible interpretation. 

FCA models the world as being composed of objects and attributes. An incident relation 

connects objects to attributes. The choice of what is an object and what is an attribute is 

dependent on the domain in which FCA is applied. Information about a domain is captured 

in a "fonnal context". 

5.2.1 Formal Context 

The theory of Formal Concept Analysis begins with the definition of a Formal Context 

based on objects and attributes as its elementary units. A formal context is merely a 

formalisation that encodes only a small portion of what is usually referred to as a 

"context". A formal context can be considered as (a mathematical model of) a table, which 

relates objects and attributes of a "real situation" [Burmeister 1998]. The following is a 

formal definition of a formal context. 

A fonnal context is a triplet <GMj> consisting of two sets G and M and a relation I 

between G and M (i. e. defined on Gx Al), where G is a set of objects and M is a set of 

attributes, gIm denotes that object g has attribute m, i. e. (g, m) EI. 

Note : 1. this is not a partially ordered set as a partially ordered set is defined on a single set 

with an order relation. 

2. it is not mandatory for a relationship to exist between every pair of elements in 

GxM. 
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5.2.2 Formal Concept 

FCA defines a Formal Concept on a Formal Context. A formal concept consists of a pair of 

sets (AB), where A is a set of objects and B is a set of attributes. In this concept (i. e. the 

pair (AB)), attributes in B are maximally possessed by the set of objects in A, and 

consequently the objects in A are the maximal set of objects possessing the set of attributes 

in B. A fonnal definition is given below. 

A pair (AB) of sets in which A (-- G and BcM is a formal concept if AI=B and Bi =A 

(completeness constraint), where A' =Im EM I gIm for all gEA) (i. e. the set of 

attributes common to all the objects in A) and BI =(g E=- GI gIm for all m E=- B) (i. e. the 

set of objects which have all attributes in B). Al is known as the intent of the set of objects 

in A, and BI the extent of the set of attributes in B. 

The set of all fonnal concepts of a context (GMI) is denoted by B(G, MI). This set 

consists of all pairs (AB), where A (-- G and BcM, such that A= BI and B= Al. 

An Important result: 

For every set of objects AcG, Al is an intent of some concept in B(GNI), and (AIIA) is 

always a concept. All is the smallest extent containing A. Consequently, a set A c: G is an 

extent of a concept if and only if A= A'I. 

5.2.3 The Subsumption Relation and Sub/Super Concepts 

FCA models the specificity and generality relationships between two related concepts by 

means of a sub-super order relationship. This sub-super concept relationship is fori-nally 

defined as: 

If (A1, Bj) and (A2,, B2) are concepts of a context, then (AI, Bl) is called a sub concept of 

(A29, B2), if A/ g A2 (or (BI ;? B). In this case (A,, B2) is a super concept of (A 1, Bl), and this 

sub-super order relation is written as (A 1, Bl) < (, 4,, B, ). 

92 



This means a sub concept actually is a concept with fewer objects than any of its super 

concepts; equivalently, a subconcept is a concept with more attributes than any of its super 

concepts. 

5.2.4 Concept Lattice 

A set of all concepts of the context (GMI) (i. e. B(G, MI) ) when ordered with the order 

relation < (the subsumption relation) defined above fonns a concept lattice of the context, 

and is denoted by &GMI). Recall that a lattice is an ordered set V with an order relation 

in which for any given two elements x and y, the supremum and the infimum elements 

always exist in V (Section 5.1.5). Furthermore, such a lattice is called a "complete lattice" 

if supremum. and infirnum. elements exist for any subset X of V (Section 5.1.6). 

5.2.4.1 Fundamental Theorem on Concept Lattices 

The fundamental theorem of FCA states that the set of all the formal concepts created from 

a formal context forms a complete lattice (see Ganter & Wille 1999 pp20-22 for a proof). 

This complete lattice, as it is composed of formal concepts, is called a concept lattice. 

Properties of a concept lattice include: 

1. A concept lattice arranges its elements in a structured manner, showing the sub-super 

concept (order) relationships. 
2. A concept lattice can be illustrated in a Hasse (Line) diagram (recall, every finite 

ordered set can be represented by a Hasse (Line) diagram). 

3. A node in the line diagram of a concept lattice structure represents a formal concept 

(i. e. it consists of a set of objects A and a set of attributes B such that A= BI and 

At) 

4. A node connected to a second node is: 

-a sub concept of the second node if it appears below the second node in the 

Hasse diagram of a lattice structure. 

-a superconcept of the second node if it appears above the second node. 

i. e. the concepts that are in the lower part of the lattice are more specific 

concepts and the concepts that are in the upper part are more generic concepts 

(note that the concepts in the upper part cover concepts in the lower part). 
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An example of a formal context (Table 5.1) and its concept lattice structure (Figure 5.2) 

(extracted with permission from Ganter & Wille 1999) are given below. The context of the 

example is based on an educational film "Living Beings and Water". 

Attributes Attributes Attributes >ý (A 

> 

\ 

C =V a 

10 rA 

> 
"0 "0 

0 
CA E 

. 2.5 
yC Z Z C C) U - =8 0c bjects Cd .0 

d 0 .6ý A; t6.; ob 
-C . -; 

0 

I Leech x x x 
2 Brearn x x x x 
3 Frog x x x x x 
4 Dog x x x X 
5 Spike-weed x x x x 
6 Re, -A ed x x x x x 

7 Bean x x 
8 Maize x x x x 

Table 5.1 : Formal Context of the Film 'Living Beings and Water' 

a 

'45678 

ag 
1234 

ac ab 5678 ad 

agh 
34 12 

adf 
23 678 356 568 

acgh ab acd 
abdf 34 123 

36 
abc 678 56 

a gh 68 df 

ac abc acde abcdf 
4376 

Figure 5.2 : Concept Lattice of the Context in Table 5.1 
(Reproduced from Ganter & Wille 1999] with permission 0 1999 Springer-Verlag) 

The line diagram given above (in Figure 5.2) indicates the intents and extents of all the 

concepts. However, the labelling can be simplified by writing each element 

(object/attribute) only once in the diagram as shown below in Figure 5.3. 

The extent of a given node (a node/circle represents a concept) consists of the objects 

located at this circle or the circles which can be reached by descending line paths from this 

circle. Correspondingly, the intent can be found by following all line paths going upward 

from the circle and noting down the attributes assigned to these circles. 
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needs water to hve 

can move around,, ý Uves. on/ ýv 
needs chlorophyll Ian watiý, 

ý ý141 
)ýl 

er 
has fimbe 

suddes its 

dog 

leech 

two seed leaves 
boon -, "- reed 

one seed leaf 

spike-weed 

Figure 5.3: Concept Latfice with Simplified Labelling 
(Reproduced from [Ganter & Wille 1999] with permission 0 1999 Springer-Vedag) 

5.2.5 Join and Meet Concepts 

The concepts of the join and meet of concepts inherit from the join and meet elements 

defined in Lattice Theory (Section 5.1.5). Concepts at the nodes from which two or more 

lines run up are called meet concepts (i. e. nodes with more than one parent) and concepts at 

the nodes from which two or more lines run down are called join concepts (i. e. nodes with 

more than one child). An interesting feature of concept lattices is that we do not need to 

know all meet and join concepts explicitly in order to build the complete lattice. They can 

be inferred from the set of concepts. A join (parent) node is inferred given all of its child 

nodes and a meet (child) node is inferred given all of its parent nodes (Figure 5.4). 

A join concept ---- 

s fins 
Dog, 

Flqure 5.41: Example Concept Lattice 

5.2.6 Object Concepts and Attribute Concepts 

An object concept is the most specific concept present in a concept lattice containing a 

given object. Conversely. an attribute concept is the most generic concept containing a 

given attribute. For instance, the object concept of the object 'ftog" in the above concept 
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lattice (Figure 5.4) is {frog) -4 Ilives in water, lives on land, can move, has lifel, and the 

attribute concept of the attribute lives in water is {/rog, fish 141 lives in water, can move, 

has lifel. We use these two properties in our work to extract most specific concepts from 

lattice representations of queries and documents to match between. 

5.3 CONCEPTUAL SCALING 

Conceptual Scaling is a process of turning many-valued contexts into a number of 

one-valued formal contexts or scales [Prediger & Wille 1999, Ganter & Wille 1999, 

Sturnme 1996]. Many valued contexts are the ones in which objects may have different 

values for the same attribute (e. g. the attribute "colour" can contain any colour value). 

These many-valued contexts are modelled with an additional set W that, for instance, 

contains all the permissible coloursn and written as (GA WI), where the relation I is now 

a triplet (g, m, w) EI and Ic GxMx W. The attribute m can be viewed as a partial function 

from G to W, written as m(g) = w. A concept lattice cannot be defined on a multi-valued 

context; instead a multi-valued context is translated into a one-valued context(s) and a 

concept lattice(s) created. The translation process may result one or more one-valued 

contexts which are called "conceptual scales". A concept lattice of combined scales can 

then be embedded in the direct product of the concept lattices of the individual scales, and 

be organised into a nested line diagram. A formal definition of a conceptual scale is as 

follows: 

A conceptual scale for a set YcM is a one-valued context S= (G,, MJ, ) with 

xmEy m(G) c Gs 

The derived relation J, cGxM, is defined by 

(g, n) EJs 4* ((wm) 
mE yn) E I, with (9, M, W,,, ) EI for all ME Y [Sturnme 19961. 

Conceptual scaling has also been used in single-valued contexts to reduce the number of 

attributes involved in a single investigation [Prediger & Wille 1999, Cole et al. 20031. In 

Toscana and ToscanaJ [Becker et al. 2002], for instance, one can choose a list of scales 
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((St)tET. where T is a set of index terms), and the nested line diagram of the concept lattice 

of the context will be displayed on the screen. 

This idea in particular has strength in visualising parts of the full concept lattice for 

browsing purposes. Although we do not use conceptual scaling in our work, it deserves 

mentioning, and is useful in understanding related work. More detail of conceptual scaling 

can be found in the book by Ganter and Wille (1999), pp 36-56. 

5.4 TOWARDS CONCEPTS (IDEAS) EXPRESSED IN NATURAL LANGUAGE 

The formal concept analysis and the concept lattices, defined and described above, present 

an interesting formal framework for representing and analysing formal concepts defined on 

formal contexts. In this research, we investigated the suitability of this framework in the 

representation and analysis of ideas (concepts) extracted from free text documents (in the 

context of IR). A number of questions have to be addressed before employing formal 

concepts in IR tasks. These include: what is an object; what is an attribute; what is a 

concept (an idea); how can we extract objects and attributes from textual material and form 

formal concepts; what is the analogy between the order relationship defined for formal 

concepts and the ideas (concepts) extracted from textual documents; what are the roles of 

join and meet concepts in the human understanding of natural language text etc. This 

section attempts to answer these questions. The objective is to justify the suitability of 

FCA formalisations for representing concepts (ideas) written in natural language, and thus 

for representation of textual material in terms of formal concepts in an IR setup. 

5.4.1 Abstracting Ideas (Concepts) in Human Understanding 

The theory of concept lattices has been founded based on the traditional understanding of 

concepts, by which a concept is deten-nined by its extent and intent. The extent of a 

concept (e. g. dog) is the collection of all objects covered by the concept (the collection of 

all dogs), while the intent is the collection of all attributes (e. g. has tail, can bark, is a 
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mammal etc. ) covered by the concept. This interpretation of a concept can be employed 

directly in representing concepts expressed in natural language. The formation of an idea 

or a concept in the human mind during the understanding of natural language text may 

initially be triggered by the objects (real or abstract objects) and attributes (properties) of 

objects present in the text. The overall context of the subject being read and the reader's 

background knowledge of the subject are secondary means that help clarifying ambiguities. 

5.4.2 Why Two Entities: Objects and Attributes? 

In general, an object corresponds to the subject or topic (or the main participants of an 

idea) of the context, and the attributes modify the meaning of the object to express the 

intention or the context in which the object is being used. For instance, a particular set of 

attributes associated with the object "dog" may deal with the context of say eating habits 

of dogs while another set of attributes may deal with say the sleeping habits of dogs. The 

human thought (understanding) process should necessarily be able to understand these two 

entities or features (i. e. objects and attributes or more precisely extensions (participants) 

and intentions) in order to make sense of natural language expressions. Therefore, it is 

important to capture them separately in order to formulate an abstraction of human 

thought. FCA captures these two important aspects, the subject and the context by its two 

entities, objects and attributes, respectively, in the definition of a formal concept. This 

makes FCA a suitable candidate for abstracting human thoughts (concepts) for computer 

manipulation. 

5.4.3 Super-Sub Order Relationship in Formal Concepts and Natural 
Ideas 

In FCA, a sub concept is defined as a concept with fewer objects and more attributes than 

its super concepts. This means we need more attributes (or properties) to define something 

specific, compared to few attributes needed to define something generic. We can argue that 

this property holds in human understanding as well, since the more generic an idea is, the 
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more examples we can find to support it (i. e. a broader category is defined when a few 

generic properties are specified). On the other hand, a specific idea within this broader 

category needs a specific example with at least one additional more specific property to 

distinguish it from the rest. 

Concepts stored in human mind may be structured in a similar manner whereby we need 

more specific detail to learn, understand or express a more specific idea. For instance, to 

define a bird, we need to say it can fly and it has a beak, in addition to the information 

necessary to say that it's an animal. However, the frequently used generic attributes (in this 

case the attributes to specify that a bird is a living animal) are usually not explicitly 

mentioned by humans to express an idea during normal human communication. This is 

because they are implicit, and an average human brain has gained all the necessary 

background knowledge to understand frequently used common ideas when expressed just 

by the referent (textual label) of the main object. For instance, we never define what an 

6-6animal" is during conversations; instead we simply use the term "animar'. Everyone 

knows what an animal is. At some point during our learning process (implicit or explicit) 

we have absorbed all the necessary attributes to understand what an animal is. It is 

obvious, however, that encoding concepts (ideas) in a computer requires all the 

inforniation necessary to distinctly identify a particular idea (concept) to be explicitly 

specified. These background general ideas (concepts) are analogous to the super concepts 

and the sub ideas/categories of them or more specific cases of them are analogous to the 

sub concepts defined in the FCA fonnalisation. In other words, sub concepts correspond to 

specific ideas and super concepts correspond to general ideas. 

5.4.4 What does More/Less Objects in a Concept Mean? 

In FCA, objects having the same set of attributes are categonsed together and a single 

formal concept with all such objects sharing the same set of attributes is formed. Each 

object in such a concept, together with its associated set of attributes, represents the 
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concept. Additional objects (in the extent of the same formal concept shanng the same set 

of attributes) only say that those objects also comply for the same concept, and thus help 

its correct interpretation, i. e. having more objects in the extent of concept help clarifying 

any ambiguities of the interpretation (of meaning) of the concept attributed by that 

particular set of attributes. Therefore, having more objects in a concept can be regarded as 

having more examples or evidence to understanding clearly the concept (idea) that it 

represents. 

5.4.5 The Roles of Join and Meet Concepts in Human Understanding 

Categorising common objects (or ideas) together is a natural phenomenon in the human 

understanding. For instance, if you are asked to name some animals you can give a vast 

number of different animals as examples of animals. If you are then asked to name some 

carnivorous animals, you certainly have no problem of naming a set of animals that eat 

meat. You may have given names of some of these carnivorous animals as examples of 

animals for the first question as well. This means your brain knows how to categorise the 

same set of objects depending on the context, i. e. depending on the attributes that each 

object possesses. This categorisation is not rigid in which a given object may be 

categonsed into more than one category. For instance, a frog may be categorised into an 

animal living in land as well as living in water. It is this very same phenomenon that the 

meet and join concepts fonnulate in FCA. The concept of "animar' is a join of all 

categories of living beings (such as birds, reptiles, mammals, fish etc. ). However, as of 

ftogs (see Figure 5.4), certain animals belong to more than one sub category of animals. 

The similarities between the properties of FCA and ideas or concepts of human 

understanding discussed above suggest that the way that humans formulate concepts, 

structure them and use them in the process of understanding and expressing ideas is 

analogous to the way concepts are fonnulated in FCA and are structured in a Concept 
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Lattice. This motivated us to base our IR model (Chapter 7) on an FCA-based 

representation scheme. 

5.5 RELATED WORK - APPLICATIONS OF FCA IN IR 

Concept lattices, which have originally been created as a data visualisation and analysis 

tool, have later been employed in information retrieval tasks such as browsing, 

categofisation and document retfieval/ranking. Use of a conceptual map, which is 

structured according to generalisation and specialisation relationships between formal 

concepts, makes FCA naturally suitable for user interface design to help the user navigate 

through the concept lattice to locate desired documents. As a result, most of the past 

research have been on developing browsing mechanisms for domain specific IR 

[Cole et al. 2003, Kim & Compton 2001, Becker et al. 2002]. However, a drawback of this 

approach is that as the documents in the search space grow, the size of the lattice structure 

grows and it becomes impossible to display the entire structure on a computer screen. A 

number of researchers have used conceptual scaling (Section 5.3) as a remedy for this 

problem. Previous applications of FCA can therefore be described under two categories: 

(i) those that generate one large concept lattice; and 

(ii) those that employ conceptual scaling. TOSCANA [Becker et al. 2002], CEM 

[Cole et al. 2000], Kim and Compton's Web-based browsing mechanism 

[Kim & Compton 20011 and the Cole and Eklund's work [reported in 

Cole & Eklund 1993,1996] are few examples of browsing systems that use conceptual 

scaling while Carpineto's retrieval model [Carpineto & Romano 2000] is an example for 

the first category. It is also an example of a conventional type of an IR model, which is not 

based on browsing but produces ranked list of documents to a given query. A detailed 

review of this work is given below. Association Rule Mining [Jitender et al. 1998, 

Pasquier et al. 1999] is another application area related to information processing for which 

Concept Lattices have been applied successfully, but discussion of it is outside the scope of 

our work. 
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Godin et al. [Godin et al. 1993] implemented a lattice-based retrieval method known as the 

Galois Lattice Retrieval Method. In their work, the advantage of the lattice method against 

hierarchical classification was analysed, and the retrieval perfonnance was evaluated 

compared to a conventional boolean retrieval. No significance performance difference has 

been reported, but the lattice structure was suggested as being an attractive alternative 

because of the potential advantages of lattice browsing. The objects of the concepts were 

documents (Doc IDs) and attributes were keywords (controlled terms) extracted from the 

documents. The user interacts with the system by navigating through the vertices of the 

lattice. The navigation can be done by either directly selecting a neighbouring vertex in the 

graph or by specifying (adding) a new tenn refining the current query. Addition of a new 

term results in a direct jump to the smallest vertex containing all the terms in the current 

vertex plus the new term. The interface of this model showed only the direct neighbours 

(of the current vertex) in the lattice. 

Carpineto and Romano [Carpineto & Romano 1996,1998] used a thesaurus as background 

knowledge to formulate browsing and presented experimental evidence that adding a 

thesaurus to a concept lattice improves its retrieval performance. The interface ULYSSES 

developed by Carpineto and Romano (1995 as cited in Priss 1997) showed the lattice graph 

similar to a fisheye view [Furnas 1986] of individual nodes. As in Godin's work 

[Godin et al. 1993], controlled terms of a database were employed to construct the lattice. 

In a separate attempt, Carpineto [Carpineto & Romano 2000] implemented another IR 

model in which the whole document collection is represented in a single concept lattice 

structure using only the keywords/attributes extracted from the contents of the documents 

(no thesauri is employed in this work). In this work, each document is characterised by the 

set of (controlled) terms it contains. The extent of a concept consists of documents (IDs) 

and the intent consists of terms/keywords. The concept lattice is automatically built from a 

document-term matrix (inverted index) using Godin's incremental lattIce-building 
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algorithm called GALOIS. A query, also characterised by the set of terms it contains. is 

then mapped onto the document lattice. The query will either exactly map on to an existing 

node (in the case if there is a node in the lattice containing exactly the same attributes as of 

the query) or it will cause a new node to be created for the query (otherwise) at the 

appropriate position determined according to the terms present in the query (Figure 5.5). 

The distance (in terms of links in the shortest path) of a document (document node) to the 

query node determines a score (similarity measure) of the document to the query. 

Documents most similar to the query are the ones that appear in the extent of the same 

node as of the query (if the query were mapped onto an existing node), or the documents 

that appear in the extents of the nodes which are closest (by distance of one), i. e. directly 

linked to the newly created query node (otherwise). The following line diagram 

(Figure 5.5) illustrates the mapping of a query with terms "NNS" and "FINANCE" into the 

concept lattice of the context shown at the left. 

Pir 
___ L! 

DID2D35 T'D-5= 
Neural-Network-Systcms xxxx 
Knowledge-Based- Systems xxxx 
Credit xxx 
Finance xxx 
Account xx 
Bank xxxx 
River x 
Waters x 
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3 NN3 
»K 
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(04 
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NNIS NNS 
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CREDIT SAW 
KBS ACCOUNT 
(DT) (01) 

Figure 5.5: Carpineto's Model (Reproduced from [Carpineto & Romano 2000) with permission 0 2000 John Wiley Sons Inc. ) 

An important distinction of this similarity measure, to that of other best match similarity 

measures, is that this is a conceptual distance within the concept space rather than one 

based on common term counts. The number of terms common to the concepts of two 

linked nodes can vary depending on the data used for building the concept structure and 

therefore do not say much about the closeness of them in the concept space. For instance. 

there may well be two near nodes (concepts) in the lattice that differ by a larger number of 

temis than more distant concepts do. 

103 



Experimental results from this model have shown better performance compared to cluster- 

based and best match approaches when the top retrieved documents (i. e. top 5,10 & 20 

retrieved documents) were considered. Also, the ability of the model to rank documents 

that did not match the query is shown to be superior over the other two approaches 

[Carpineto & Romano 2000]. 

Christian Lindig [Lindig 1995] applied FCA for building a simple IR prototype to retrieve 

software components. Objects are names of software components and attributes are 

keywords extracted (manually) from the documentation of the software. The software 

concepts are then organised in a concept lattice and retrieved by the user forinulating a 

query with a set of keywords selected from a list of permissible keywords. The interface of 

the implementation shows interactively the software components that contain the selected 

set of keywords as the user selects keywords. 

The ANACONDA and TOSCANA [Becker et al. 2002] are two of the most widely used 

FCA-based programs developed by the Darmstadt research group. ANACONDA is an 

editor for creating and managing concepts, and TOSCANA is a tool for visually displaying 

the underlying conceptual structure(s) (created with ANACONDA) and interactively 

browsing on them. TOSCANA uses conceptual scaling for displaying the user with only a 

part of the full concept lattice structure, and allows the user to explore it by expanding the 

concepts with a list of scales. TOSCANA has recently been re-Implemented in Java 

(TOSCANAJ) using a new file format based on the www consortium (W3C) specifications 

of XML. 

Cole and Eklund [Cole & Eklund 1996] incorporated a medical language thesaurus known 

as SNOMED (Systematized Nomenclature of Medicine) [http: //www. snomed. orgý for the 

retrieval of medical discharge summaries. Medical concepts in SNOMED are described by 

a set of phrases and are structured according to a subsumption relation corresponding to a 

specialisation/generalisation hierarchy. The medical discharge summaries, indexed with 
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SNOMED concepts, are used to construct a concept lattice to represent the document 

collection. In this work, documents (IDs) are considered objects and medical concepts of 

SNOMED are considered attributes. A particular SNOMED concept is assigned to a 

document if that concept (string) is found in that document. The 

general isation/special isation hierarchy of concepts of SNOMED are imposed on the 

document lattice by assigning the documents with all the concepts (as indices) in the 

SNOMED that are more general to each of the found (SNOMED) concepts (Figure 5.6). 

Therefore, the structure of the concept lattice well reflects the specialisation/generalisation 

infon-nation present in SNOMED. 
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Figure 5.6 : SNOMED Concept Hierarchy and Assignment of Concepts 
(Reproduced from [Cole & Eklund 1996] with permission @ 1996 Springer-Verlag) 

Note that, the dark shaded area in Figure 5.6 shows the concepts that exist in the document, 

and the lightly shaded area shows the additional concepts that are included by the 

generalisation. The user formulates a query by navigating through the SNOMED hierarchy 

specifying the level of specialisation for each concept he is interested in. The documents 

that are at the "meet" of the maximal elements of each SNOMED concept on the boundary 

of the region of selected concepts are the ones that are retrieved (Figure 5.6). Hence the 

retrieved documents contain the specialised concepts specified by the user and all the 

generalised concepts (in the SNOMED hierarchy) of them. 

In this work, incorporation of expert knowledge (through SNOMED) for document 

representation and also for query formulation is considered advantageous for the retrieval 

of the documents in the particular domain it is designed for. A disadvantage of this 
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approach is that it cannot be used in domains in which such domain specific thesauri are 

not available for indexing the documents. 

This work has later been extended [Cole et al. 1997] to deal with large contexts by using 

conceptual scaling. In this work, instead of the SNOMED, they used the thesaurus MeSH 

(Medical Subject Headings of the National Library of Medicine) for indexing. During 

query fon-nulation, the user partitions the MeSH concepts by assigning one of a group of 

colours to each concept (Figure 5.7 left). This partitioning defines a number of different 

conceptual scales. Each conceptual scale defines a context of interest containing all 

medical documents with only those indicated attributes. The various contexts of interests, 

formulated as conceptual scales, are then combined in a nested line diagram 
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Figure 5.7 : Scale Assignment (left) Nested Line Diagram with an Expanded Scale (Right) 
Reproduced from [Cole et al. 1997] with permission @ 1997 Springer-Verlag) 

(Figure 5.7 right) reducing the visual and computational complexity. This allows a larger 

number of attributes to be explored. The underlying theory used (Conceptual Scales) in this 

model is the sarne as in TOSCANA and ANACONDA, but the way conceptual scales are 

created is different. In this model, the implications that exist in the scale are restricted to 

those that exist in MeSH's medical taxonomy, whereas in ANACONDA conceptual scales 

are generated by user-inserted arbitrary implications. This is a dynamic approach in which 

the user creates scales. examines derived concept lattices, and changes the composition of 
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the scale iteratively, whereas in TOSCANA the scales are created separately in advance 

(using ANACONDA), prior to the combination of the scales in nested line diagrams. 

A further extension of this work is notable for its application to analysing a collection of 

email [Cole & Eklund 1999]. In this work however, instead of a domain specific thesauri a 

hierarchy of classifiers were used for concept extraction. These classifiers extract useful 

terms referred to as "catchwords" (e. g. "conference" or "organisation") from the email, 

and encode known implications. The relations are generated and assigned in a semi- 

automatic process, in which the user assigns the relations either by accepting the 

suggestions made by the system (extracted catchwords) or modifying them, or even 

attaching his own attributes. The result of classification (tenn extraction) is stored in an 

inverted index and a hierarchy is defined by a set of subsumption rules defined by the user. 

In order to see the ways in which attributes (the user is interested in) combine in the email 

collection, the user first searches for attributes either by their location in the hierarchy or 

by their description, by entering into a text search phase and then selecting the ones he 

needs to add to the scale from the search results. This scale is then used to construct a 

concept lattice showing the concepts generated by the email and attributes selected by the 

user. Further development of this work (by Cole, Eklund and Stumme) has resulted two 

email storage and retrieval models called the CEM (Conceptual Email Manager) 

[Cole et al. 2000] (Figure 5.8) and HIERMAIL [Cole & Eklund 2001]. The main objective 
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Figure 5.8: Scale, Catchwords and Concept Lattice of CEM 
(Reproduced from [Cole et al. 2000] with permission from R. Cole) 
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of these two tools has been to use a concept lattice based data structure to store email in 

"virtual folders". Navigation space in this case is a concept lattice instead of a tree of 

dis oint, folders and the fon-nal concepts replace the folders. This set-up allows users to j 

follow different paths by using different combinations of the "catchwords" or descriptors 

to reach the same desired email as well as to store the same email under more than one 

virtual folder. 

Kim and Compton [Kim & Compton 2001] reported a browsing mechanism for 

incrementally developed domain-specific document retrieval using FCA. In this model, a 

hierarchical conceptual clustering of the documents is built dynamically with the results 

corresponding to the user's query. Similar to Godin's approach [Godin et al. 1993], display 

of the lattice graph is restricted to only the direct neighbours and the graph is displayed 

using hyperlinks. A concept lattice is built with documents as objects and their keywords 

as attributes. The concept lattice is then scaled up (using conceptual scaling) with other 

attributes such as author, proceeding title and publication year and a nested structure is 

formed. The system has two modes of operation; a general search mode with Boolean 

queries and a lattice-based retrieval mode. The general search mode can be used in 

conjunction with the lattice-based retrieval mode to initially move on to a portion of the 

concept lattice associated with the user's query. An implementation of a working prototype 

on a test domain (papers presented at the Banff Knowledge Acquisition Workshops in 

recent years) can be found on the web (http: //Pocka. cse. unsw. edu. aulservletsISearch). 

Priss [Priss 1997, Priss 2000a] reports a graphical interface similar to Godin's and 

Carpineto & Romano's for information browsing. In this model, a knowledge base or 

thesaurus of knowledge structures also fon-nulated as a lattice is used in conjunction with a 

lattice representation of the document database. The role of the thesaurus is to incorporate 

common sense semantic knowledge into the system. Additionally, many-valued attributes 

(such as publication year of books) are also included in the document representation. This 

108 



model was later improved by using a faceted-thesaurus and the '*FaIR" fR system 

[Priss 2000b] was developed. A facet here is simply a scale, not created for a selected set 

of attributes of the data, but a hand crafted structure of common knoýý ledge. A faceted 

thesaurus is a collection of complete (i. e. all necessary combinations are enumerated in the 

facet) concept lattices (facets) constructed by partitioning a set of terms. Documents are 

indexed using the concepts of the thesaurus. A prototype of FaIR that has been 

implemented as an interface for a small knowledge base can be found at 

http: //`kb. indiana. edul. 

Van der Merwe and Kourie [Merwe & Kourie 2001] have proposed a lattice-based data 

structure, referred to by them as "compressed lattice", for scaling down a concept lattice to 

a two-layered graph with fewer nodes [see Figure 5.9 left]. It is a bipartite graph with an 

embedded- I atti ce achieved by removing concepts in a concept lattice in such a way that the 

resulting structure retains the desirable properties of the lattice. In their paper, the data 

structure is described in reference to query operations on a database represented as a 
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(Reproduced from [Merwe & Kourie 2001 j with permission C 2001 Taylor & Francis Group) 

bipartite graph as well as a concept lattice. It shows how a concept lattice can be 

compressed down to a bipartite graph and also how a compressed bipartite graph can be 

expanded to obtain the original concept lattice, using the defined operations. The answer 

for a query is computed based on the set of meets (in the compressed lattice) of all the 

subsets of the query terms. In this set up, removing concepts containing more than k 

109 



attributes from the graph results in the return of the minimal concepts that have at most 

of the n (k < n) query terms in common with the documents [see Figure 5.9 right]. 

A fully compressed concept lattice, compressed down to a bipartite graph ývith no 

intermediate nodes, is equivalent to the BAM data structure we use in our implementatioil. 

The difference is that, in our work, we embed the concept lattice in a bipartite graph by 

calculating appropriate weights between the two layers of nodes in the BAM rather than 

explicitly defining operators to do it. By doing this, we avoid the need to use expensv-, e 

lattice building algorithms, but at the expense of an additional set of weights to be 

computed and stored. We achieve the same final compression (as of van der Merwe's 

work) in a two-layer graph structure with less computational effort. 

Another interesting work that is worth mentioning is Wille's attempt to combine the FCA 

and Conceptual Graphs (Semantic Networks) [Wille 1997] to make use of the benefits of 

both disciplines. Both conceptual graphs (semantic networks) and FCA have been used for 

knowledge representation and processing, and so it is desirable to combine them together. 

He showed how conceptual graphs and FCA may be combined to obtain a formalisation of 

Elementary Logic which is useful for knowledge representation and processing. In the 

paper [Wille 1997], he describes a process of translating conceptual graphs to concept 

lattices via formal contexts. 

5.6 SUMMARY 

In this chapter, the theory of FCA was presented with sufficient detail to understand the 

underlying principles of our approach. An analogy with natural language understanding by 

humans was discussed, and the suitability of FCA to represent concepts vvi-itten in natural 

language text for the purpose of representing them in a computer for IR tasks was justified. 

Finally, a detailed literature review of the FCA-based IR models was given. 
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In all the approaches reviewed above, except van der Merwe's work, a concept is 

fon-nulated in such a way that objects in its extent are documents (document identities) and 

attn utes in its intent are keywords (controlled terms) present in the documents. In contrast 

to this approach, we attempt to capture concepts analogous to how the human brain might 

work, by defining objects of a concept as natural language textual symbols (i. e. tenns or 

phrases) of real or abstract objects that are present in the content of the document, and 

attributes as the properties of those objects as mentioned in the text. This is similar to how 

van der Merwe has formulated concepts. The two-layer structure that van der Merwe 

obtained by compressing a concept lattice can be regarded as the one most related to the 

way we encode them in two layered data structures (the differences were highlighted 

above). 

In addition, most of the reported models work by creating a single large concept lattice, 

based on one-valued contexts with or without conceptual scaling. Using a large single 

concept lattice demands high memory requirements and computational power for creating, 

traversing and maintaining the lattice (see [Kuznetsove & Ob"edkov 2001 ] and 

[Hemkemeier & Vallentin 2000] for reviews of complexity of Lattice building algonthms). 

The need for high computational power and the difficulty of automatic or manual 

extraction of formal concepts have restricted the application of concept lattices to small- 

scale document collections. Even though the use of conceptual scaling has helped to 

overcome the sizing problem to some extent, it is only a solution for partial display of the 

full concept lattice. A major drawback of conceptual scaling as it is used in the reported 

models is that the scales have to be pre-computed. In contrast to the existing approaches, 

we represent each individual document by a separate independent concept lattice. 

Therefore, at any time during processing we interact with only one of those smaller 

concept lattices. In addition, each concept lattice is encoded in a two-layer neural network 

called a Bidirectional Associative Memory (BAM) to overcome lattice building and 



navigation overheads. The next chapter is devoted to descnbe what a BAM is and how a 

concept lattice could be embedded in a BAM network. 
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CHAPTER 6- BIDIRECTIONAL ASSOCIATIVE 
MEMORIES (BAMS) 

One of the major problems that limit application of concept lattices to real world problem 

solving is the complexity of lattice building algorithms. A number of algorithms, both 

incremental and non-incremental, can be found in literature for generating concept lattices 

[Godin et al. 1995, Kuznetsov & Ob"edkov 2001, Hemkemier & Vallentin 1998]. The 

complexity of these algorithms increases with the sizes of M, G and L (the size of the 

concept lattice). The algorithm which has the smallest time complexity is the Nourine 

algonthm with 0((IGI+IMI)IGIILI) [Kuznetsov & Ob"edkov 2001]. In addition, as the 

concept lattice becomes bigger, it takes longer to traverse the lattice to extract specific 

concepts of interest. Therefore, it is our best interest to find a solution that can access the 

desired concepts in the lattice efficiently, while avoiding the use of a complex and 

expensive lattice building algorithm. We achieve this goal by embedding concept lattices 

of document/query representations in BAM structures. In this section, we describe what a 

BAM is, how a concept lattice can be embedded in a BAM structure, and how specific or 

generic concepts of a given set of objects or attributes can be extracted from a concept 

lattice encoded in a BAM without the burden of traversing the lattice. 

6.1 WHAT IS A BAM? 

Associative memories represent a class of neural networks that aim at modelling the 

association phenomenon. Based on the early models of Amari [Amari 1972] and Hopfield 

[Hopfield 19841, Kosko [Kosko 1987, Kosko 1988] proposed a bi-directional associative 

neural network called a Bidirectional Associative Memory (BAM). A BAM consists of 

two layers of neurons (Figure 6.1). The states (activities) of the first and the second layers 

(say containing k and I neurons respectively) are denoted by xi k) and i,. -j 

The states. vi and. vj- can be encoded in either binary (0 or 1) or bipolar (+1 or -1) encoding. 

Each (i th ) neuron of the first layer is connected to each (ith ) neuron of the second layer by a 
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4h connection weight. A real threshold 0, '(0-') is assigned to the i neuron of the first laver 

-th neuron of the second layer). A number of different weight computation methods have 

been suggested for setting up the connection weights. Amongst these are the ones proposed 

by Kosko the originator of BAMs [Kosko 1987] and B61ohldvek [Wohldvek 2000]. In this 

work, the latter one is used due to the reasons mentioned later in this chapter. 

Layerl 

Layer2 

Figure 6.1 : Structure of a BAM 

6.2 DYNAMICS OF A BAM 

Y., 0,11 kX Given a pair (0,1 of patterns of signals, the 

signal X is fed to the first layer to obtain a new pair <X, )'ý>, then 1ý to the second layer to 

obtain and so on. The dynamics is given by the formulas: 

for kwx> 0' 1 for I]' 
I 
ox li=l 

11 11 , j=lwuyj 
> 

y jyj 
kX 

=oy f fior 7 
X, = x, for wy =0' 

"4ýi=l 
wyii 

J=j yiI 

0 for kwx< 0), 0 for wuy, < o" 

The pair of patterns <XY> is called a stable point if the states of neurons, when set to 

<. k', Y>, do not change under the defined dynamics. Using an appropriate energy ftinction, 

[Kosko 1988] proved that such a network is stable for any weights w. and anN- 

thresholds 0, ', Oý" 
- 

Stability means that given any initial pattern <X, K> of signals, the net 

eventually stops after a finite number of steps (feeding signal from layer to layer back and 

tI orth). 

The aim of learning in the context of associative memories is to set the parameters of the 

network so that a prescribed training set of patterns is related in some way to the set of all 

stable points. However. not all training patterns (pairs) become stable points. Kosko 
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proposed a form of Hebbian learning, by which the weights wij are determined from the 

training set T= I<XP, yv> lp EPI by wj=lbi p(yjp), where bipomapsltol 
., 

p(xi -bi 
PEP 

and 0 to 4, i. e. changing the binary encoding to a bipolar one, and P= 11,2,3...., number 

of patterns in 71. Thresholds of all nodes are set to zero. 

Using this encoding, Kosko showed that the minimal two-layer nonlinear feedback 

network that achieves the task of storing and recalling paired-data associations (AjBj) is the 

BAM [Kosko 1988]. 

6.3 A REVIEW OF RESEARCH ON BAMS 

Kosko's original BAM suffers from low storage capacity, low recall reliability, and highly 

spurious memories [Shi et al. 1998]. Many efforts have been made to improve the 

performance of the original BAM, since its publication by Kosko [Kosko 1987, 

Kosko 1988]. Theese improvements have been mainly in the directions of developing new 

learning algorithms [Wang & Don 1995] and enhancing the original architecture by adding 

dummy neurons, more layers, or interconnections among neurons inside each layer 

[Wang 1996] (find more references in Shi et al. 1998 and in Wang 1996). They attempt to 

achieve high storage capacities, high quality recall from noisy patterns and low spurious 

memories [Shi et al. 1998, Wang 1996]. Hardware implementations of the BAMs have also 

been proposed [find references in Leung et al. 1997]. 

Most of these models assume logical symmetry of interconnections, that the weights from 

one layer to the other are the same as the weights from the latter layer to the former layer. 

This symmetry of interconnections hampers the efficiency of the BAMs capability in 

pattern storage and recall and limits their use for knowledge representation and inference 

[Shi et al. 1998]. Xu and all [as cited in Shi et al. 1998] have proposed an asymmetrical 

BAM model (ABAM) to overcome this drawback, but its requirement of linear 

independence among stored patterns limits its storage capacity [Shi et al. 1998]. Shi, Zhao, 
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and Zhuang [Shi et al. 1998] propose another general model for a BAM that does not 

assume this linear independence requirement. 

Wang [Wang 1996] designs two BAMs, a linear BAM and a nonlinear BAM, by using an 

optimal associative memory matrix in place of the commonly used Hebbian or quasi- 

correlation matrix. He shows that the introduction of a nonlinear characteristic enhances 

the ability of the BAM to suppress the noise occurring in the output patterns, and reduces 

largely the problem of spurious memories. 

In addition to the drawbacks discussed above, the restriction to binary or bipolar pattern 

pairs and the limitation to two input/output patterns have led BAMs to be less popular and 

less utilised, as most applications require to operate on more (more than two) real-valued 

input/output patterns. Various researchers have investigated these issues to overcome the 

limitations. Abedin and Ahsen [Abedin & Ahson 1993] propose a new coding strategy that 

enables the BAM to operate on real-valued inputs and Humpert [find reference in 

Kulkami & Yazdanpanahi 1993] has suggested a generalisation of the BAM to a 

bi-directional associative memory with several input/output patterns (called BAMg). 

Kulkarni and Yazdanpanahi [Kulkami & Yazdanpanahi 1993] investigated the 

interconnections and updating of neuron fields of a number of different BAMg 

architectures in the image processing domain to store and retrieve sets of images, and 

achieved good perfonnance. 

Despite the limitations discussed above, BAMs have been used in several application 

domains successfully. Bavarian [Bavarian 1988] reports the use of BAMs in intelligent 

systems, Mathai and Upadhyaya [Mathai & Upadhyaya 1989] report the use of BAMs in 

spectral signature recognition, and Wu et al. [Wu et al. 1990] report the use of BAMs in 

image classification to name a few. 
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6.4 BAMS FOR ENCODING CONCEPT LATTICES 

It is conceived that, in general, the concept interpretation of the patterns of states is not 

possible as there can be stable points that cannot be interpreted as formal concepts. The 

following example by B61ohlavek 2000 [B61ohlavek 2000] illustrates this fact. 

E. g. Consider k--I, 1=2, w11=1 andW]2=-2 and all thresholds set to zero. Then J<O, <O, O>>, 

<0, <O, I>>, <0, <I, I>>, <1, <I, O>>l is the set of all the stable points. Now consider the 

pairs <, 41, Bl> = <0, <O, O>> and <, 42, B2> =<I i< 
I 

, 
O>>- We have A, c A2 but B, k B2, which 

contradicts the rule for subsumption relation (valid for formal concepts) that the more 

common objects there are, the fewer the common properties. 

On the other hand take for example, k--1=2, WII=W22=1,, W]2=W2, =-3 and all thresholds set 

to -1/2. Then the set (<<O, O>, <1,1>>, <<O, O>, <0,1>>, <<I, O>, <1,0>>, <<I, I>, <0,0>>) 

is the set of all the stable points (denoted by Stab(W, 0) ). It can be verified easily that this 

set of stable points correspond exactly to the concept lattice defined by the given 

concepts/stable concepts. 

This had raised the question whether there is a BAM corresponding to each concept lattice 

L! (G, M, I) such that the set of all concepts of L! (G, MI) is precisely the set of all the stable 

points of the BAM. Using the weighting scheme given below, B61ohlavek 

[B61ohldvek 2000] has proved that there is a BAM given by the weights W and thresholds 

0 such that Stab(W, 0)=(<AB> I <A, B> E B(G, M, I) I corresponding to the concept lattice 

given by the context <GM, I> with G and M finite. This is an interesting and useful 

property of the BAM that drew our attention to use BAMs for encoding concept lattices. 

Following is the weight training/computation formula used by B61ohlavek: 
1 if <gigMj >EEI 

Wii 
q if <g�mj >EI for i=I,..., k, j=I,..., 1 

where q= ntaxtkl)+I. All the thresholds are set to -1/2. 
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6.5 A TRAINING SET FOR A BAM To LEARN A CONCEPT LATTICE 

A training set T consists of a set of concepts in the form (AB), where elements of A come 

r__ - from the set of objects G and elements of B from the set of attributes M of the context 

(G, M, I). Here the set G contains all the objects necessary to define the extents A of the 

concepts (A, B) in the training set and M contains all the attributes necessary to define the 

intents B of the concepts (AB) in the training set. This means the elements in Tare defined 

on (GM, ]). However, a set of training pairs T=I (APBP) Ip E=- P, Pc N) needs its training 

patterns to obey the fundamental rule (completeness constraint) of the formal concept 

A'=B and BI =A, in order for it to be a conceptually consistent training set to form a 

concept lattice. This condition, as described before, is what defines the subsumption 

relation (<-) to fonn the sub-super concept hierarchy between fonnal concepts. It ensures 

that the set of forinal concepts in the training set are storable in the BAM. B61ohldvek has 

stated (Theorem 2 of B61ohlavek 2000) the necessary and sufficient conditions for a 

training set T to be conceptually consistent as: 

Ap =IgEGIVMEBp3p'E P: gE Ap', mEBP') 

BP = IM EMI Vg E AP3p'E P: gE Ap' MEBP') 

Any given set of arbitrary concepts (a training set 7) which satisfies the above condition 

defines a concept lattice on the context (GNI) formed by all the ob ects and attributes of j 

the concepts contained in T. This training set is a subset of B(GMI) (set of all the concepts 

of the context (GMI)). It also is a subset of the concept lattice A(GMI) of the context 

(G, M, ]). 

Described above is theoretically what a training set should comply to. However, 

B61ohlavek's weighting scheme does not need to pay explicit attention to the above 

description. It only needs to know all the individual objects in the context and all of the 

attributes possessed by each of them. Given this information, we can simply set the 

weights between object nodes and attribute nodes to +1 if the object possesses the attribute 
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or -q (where q=max(kl)+I) if it does not posses the attribute. An example of weight 

settings necessary for learning a given concept lattice is shown in Figure 6.3. 

6.6 WHAT ACTUALLY A BAM LEARNS AND RETURNS ? 

6.6.1 Learning 

Given a set of training pairs of object sets and attribute sets, that satisfy the completeness 

constraint (i. e. they are fonnal concepts in a given context), a BAM learns the underlying 

concept lattice. As mentioned before, join and meet concepts that are inferred by the 

patterns in the training set are automatically detected and learnt by the BAM. For example, 

given four training patterns, one for each object: dog, cat, frog and fish (with all of their 

corresponding attributes as indicated in Figure 5.4) the concept lattice given in Figure 5.4 

is derived. 

6.6.2 Stable Points 

Stable points are just the nodes in the underlying concept lattice that the training set infers. 

This indeed is what Be'lohlavek reports in his paper [Be'lohldvek 2000]. In terrns of training 

patterns, it creates stable points for the patterns or concepts that are conceptually consistent 

(as stated in Section 6.5) and concepts that are inferred from them (i. e. join and meet 

concepts). 

An arbitrary pair consisting of a set of objects and a set of attributes extracted from text 

does not necessarily become a stable point in a BAM, as it might not comply with the 

completeness constraint and so will not form a node in the concept lattice. It may however 

be a part of a concept represented by a node. The example given below illustrates this 

further. 

E. g. consider the sample context of planets given in Table 6.1. A list of objects (names of 

planets) and their properties that can be extracted from this context is given below. 
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<(Me), (ss, sn, mn)>, <(V), (ss, sn, mn)>, <(E), (Ss, dn, my)>, <(Ma), (ss, dn, my)>, <(J), (sldfmy)>, 

<(S), (sl, df, my)>, <(U), (sm, dfmy)>, <(N), fsm, dfmy)>, <(P), (ss, dfmy)> 

This list can be used as a training set for a BAM to learn the underlying concept lattice 

(Figure 6.2) using the B61ohldvek's algorithm. As can be seen in Figure 6.2, except for 

Planet Size Distance 
from Sun 

Moon 

small medium large near far yes no 
Mercury x x x 
Venus x x x 
Earth x x x 
Mars x x x 
Jupiter x x x 
Saturn x x x 
Uranus x x x 
Pluto x x x 
Neptune x x x 

Table 6.1 : Context of the Planets 

V, E, Ma, J, S, U, N, P) 4 () 

(Me, V, E, Ma, P) -4 (,, 

(Me, VEMa) -; ý 

(Me, V) 4 

(ss, my) 

my) \, d 

(P) -: /ýfss, 

Ma, J, S, U, N, P) --; ý (my) 

, 
S, U, N, P) --, ý (df, my) 

(J, S) -t(sl, dfl 
(U N) -91 (sm, df, my) 

4 fss, sm, sidn, dfmymn) 

Figure 6.2 : Concept Lattice of the Context of Planets 

<jPj, jss, df, my)> no node is explicitly created (i. e. no stable point is created) for 

representing other training patterns. This is because those patterns are not conceptually 

consistent. Therefore, one cannot use them (as they are) to train a BAM if Kosko's 

algorithm (Section 6.2) is used. They need to be pre-processed to create a consistent set of 

patterns in this case. On the other hand, the following set of patterns are conceptually 

consistent, and therefore they can be used to train a BAM with the given concept lattice 

using Kosko's algonthm. 
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<(Me, Vg, fss, dn, mn)>, <(EMaj, fss, dn, my)>, <(P), fssdfmy)>, <(U, N), fsm, dfmy)>, 

"I'- (J, S), fs/, df, my) 

As can be seen in Figure 6.2, these correspond to nodes in the concept lattice and are stable 

points in the BAM. Other nodes in Figure 6.2 (e. g. (Me, VEMa) 4 Iss, dn)) can be 

derived from this set of training patterns. They also become stable points even though they 

are not present explicitly as training patterns in the original training set. 

6.6.3 An Important Property of a BAM 

Unlike purely feed-forward neural network architectures, BAMs can accept input patterns 

from either layer. We can present a pattern wIth objects to the first layer (referred to as the 

object layer) or a pattern with attributes to the second layer (referred to as the attribute 

layer). The BAM returns the most specific concept containing all the objects of the input 

pattern in the first case and the most generic concept containing all the attributes of the 

input pattern in the second case. A fon-nal proof of this property is given below. We use 

this interesting property for retrieving specific/generic concepts during the extraction of 

candidate concepts from query and document BAMs to match between them 

(Section 7.1.3). Notice that, a given input to a BAM may lead to retrieving an inferred join 

or meet concept instead of a concept/pattern used for training the BAM. 

Proof: 

Lets take B(GMl) be the set of all concepts of the context <GMI>, where G is the set of 

all objects in the context, M is the set of all attributes in the context and I is the incident 

relation. Let us assume that a BAM is trained with the concept lattice of this context. Then 

the stable points in the BAM represent (with one-to-one correspondence) all formal 

concepts (A, B) of the context <G, MI>, and thus they hold the completeness constraint 

. 41=B and Bi =A, 

where A1=I niEMjVgEAs. t. <g, m>EIj andB'=(gEGIVMEBs. t. <g, m>EII 
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Now, take an arbitrary object g,. Assume, without loss of generality, that the BAM gives 

lgo, gi) 4 Jm,, myJ when the object go is presented to the object layer of the BAM. This 

means (g,,, gi) 4 (mmy) is a formal concept. Then by the completeness constraint (A I=B 

an B =A), we get: 

I 
---------- (1) and Jm,, myj = {g,,, gil ---------- (2) 

Now we will prove that no other formal concept more specific to that of tg,,, gi) 4 Im, m,, I 

exists in the concept lattice containing the object g, 

By definition, a formal concept which is more specific to a second formal concept should 

contain either less objects or/and more attributes to that of the second formal concept. We 

will prove that no such subconcept containing the object g,, can exist in the lattice, given 

the assumption that the BAM returns (g,,, gil 4 (m,, my) for the input (g,, 1. 

There are three possible forms that a subconcept of a given concept can take. 

1. a concept with less objects and same attributes 

2. a concept with same objects and more attributes 

3. a concept with fewer objects and more attributes. 

Proving non-existence of a subconcept under the first two cases is straightforward. Given 

the assumption that (g,,, gil 4 Im., my) is a formal concept, we can easily prove that the 

above two ( (1) and (2) ) are not formal concepts in the given context and therefore they do 

not exist in the lattice. 

Case 1: 

Lets take (g,, j 4 tm,,, myj> to be a formal concept in the concept lattice. This is more 

specific to the concept jg,,, gj) --) Im,, my) as it satisfies the subsumption relation A19A2 

(and Blz)B2) (Section 5.2.2). 

Since this was taken to be a formal concept, from the completeness constraint we get: 

Im. "MY) 
I= tgol ------------- (3) 
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(2) and (3) leads to a contradiction, meaning that cannot be a formal 

concept of the context given the assumption that Ig,,, gil --) (m,,, my) is a formal concept. 

Case2: 

Now take Ig,,, gi) 4 (m,, my, m, I to be a formal concept of the context. This is more speci fic 

to the concept {g,,, gjj --) Jm,, myj as it satisfies the subsumption relation BIQB2 (and 

Alg: A2)- 

Since this was taken to be a formal concept, from the completeness constraint, we get 

fg, "gil 
I= tm.,, mym, l ------------ (4) 

(1) and (4) leads to a contradiction, meaning that fggil 4 (m.,,, mY. mzj cannot be a formal 

concept of the content given the assumption that {g,,, gi) 4 Im,, my) is a formal concept. 

Case 3: 

Finally, take without loss of generality, that Ig,, 14 Im,, my, m, ) to be a formal concept in 

the concept lattice. This does not lead to a contradiction with the conditions (1) and (2) as 

in the first two cases and hence is a potential candidate to be a formal concept that can 

possibly exist in the lattice. Also this is a more specific concept to (g,,, gi) 4 (m,, my) as it 

satisfies the subsumption relation Bl=-2B2 (and AlýýAA 

Now, we will prove that, this formal concept cannot exist in the lattice given the 

assumption that the concept (g,, gi) 4 tmimj) exists and is returned when the object 

(only) is presented to the object layer. 

Since Ig,,, gi) 4 was assumed to be a formal concept, both g,, and gi must possess at 

least the attributes m, and m,,. The concept says that the object 

possesses niz as well. 

Let us see what the BAM returns according to the dynamics of the BAM. Note that we use 

B61ohlavek's weight computation rule given in Section 6.4. Recall, a weight between an 
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ob ect and an attribute nodes are set to one (+I) if the object possesses the attribute. j 

Otherwise the weight is set to the negative value of the maximum number of nodes in 

either layer +I (see Figure 6.3). A node fires if the weighted sum of incomes (Ix, iv, ) 

exceeds-1/2. 

Forward Pass 

Backward Pass 

Figure 6.3 : BAM with Weight Settings for Case 3 of the Proof 

1"' Forward pass: 

g, is presented to the object layer (i. e. g, =I and g, = 0) 

=> only the nodes correspond to m,, my and m, fires. 

lst Backward pass: 

(m.,,, my and m, are presented to the attribute layer) 

=> only the node correspond to g,, is fired. 

Dynamics of the BAM does not change thereafter, and so ( 1,0) 4(1,1,1 ) is a stable state, 

i. e. the BAM returns when g,, is presented. This contradicts with our 

very first assumption that the BAM returns (g,,, gj)4(m,, my) for the input object g, 

Hence, if the BAM returns the concept fggiJ41m,, my) for the input object (gJ as we 

first assumed, then the concept {g,, ) 41m, m.,, m, I cannot exist in the concept lattice. 

The cases 1,2 and 3 prove that given an input object (g,, ) a BAM returns the most specific 

concept in the lattice containing the given input object (g. ). This property holds even for a 

given any subset of objects and the proof is the same. 

With a similar argument we can prove that given a set of attributes as the input to the 

attribute laycr of a BAM returns the most generic concept containing the given set of 

attributes (proof is not given here) 
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6.7 A BAM IN OPERATION - AN EXAMPLE 

The following two figures (Figure 6.4 and Figure 6.5) illustrate the BAM's action to learn 

the associated concept lattice given in Figure 6.2 based on the context given in the 

Table 6.1. Firstly, Figure 6.4 illustrates what the nodes represent and how the weights are 

set between object nodes and attribute nodes. Note that, the nodes in grey are the active 

(firing) nodes, dashed-lines represent links with negative (-q) weights, and solid lines 

represent links with weight +1. Secondly, Figure 6.4 and Figure 6.5 together show how the 

BAM works in its forward pass and backward pass. Initially, the object Ma is given as the 

input to the BAM (i. e. activity of Ma is set to +1). This makes the attributes ss, A and iny 

fire in its forward pass and those attributes in turn make both Ma and E active in its 

backward pass. The recurrent process stops here (i. e. further recurrences will not cause any 

change to its current state). Lastly, Figure 6.4 and Figure 6.5 together demonstrate the 

OOOE)OOOOO Object Layer 

+1 10 -10 

ss 

jo +1 --, -10 

dn (D M, Attribute 

Figure 6.5: BAM in Operation - Forward Pass 

Okiect Layer 

Attribute Layer 

Figure 6.5: BAM in Operation - Backward Pass 

property that for a given set of input objects (in this case a pattern with only Ma active), 

the BAM retums the most specific concept available in the lattice containing the given 

input objects (Ma) in its extent (in this case (EMal --) Iss, dri, my)). The reverse of this, 
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i. e. given a set of attributes the BAM returns the most generic concept containing the given 

input attributes, can be demonstrated similarly (not shown here). Note that only the links 

from active node(s) in question are shown. 

6.8 ADDING NEW CONCEPTS TO AN EXISTING (TRAINED) BAM 

Adding new concepts into a concept lattice, in general, involves updating many nodes and 

therefore is a computationally expensive process. However, the task is much easier and 

faster with a BAM, in particular with B61ohldvek's weight-setting mechanism. It only 

needs a node to be added to the corresponding layer for each new object or attribute and 

links recalculated. The following example illustrates how this takes place. 

Consider a reduced context (Table 6.2) obtained by removing the objects Me and V from 

the context given in Table 6.1. The concept lattice of this context (Table 6.2) is given in 

Figure 6.6. 

Planet Size Distance from Sun Moon 

small medium large near fa r yes no 
Earth x x x 
Mars x x x 
Jupiter x x x 
Saturn x x x 
Uranus x x x 
Pluto x x x 
Neptune x x x 

Table 6.2 : Context of the Planets Excluding Mercury and Venus 

(E, Ma, J, S, U, N, P) --. ý (my) 

fee 
1ýýPmyj ); ý(J, S, U, N, P) 4 (df, my) 

(E, Ma) ess, dn, my) NJ/(J, S) dfmA 
(P) -9,4, df, my) 

0 (U, N) -4 (sm, df, my) 

4 O, srn, sldn, dfmymn) 

Figure 6.6: Concept Lattice of ft Context in Table 6.2 
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A BAM that learns this (reduced) concept lattice do not have nodes in the object laver for 

Me and V, and in the attribute layer for mn. Negative weight values of the BAM in this 

case are -8 (i. e. -q = -(max(k, 0+1) = -8). 

Let us consider adding the planet Me (mercury) first; i. e. add I Me) 4ý ss. dn. mn) into the 

BAM which has already learnt the lattice shown in Figure 6.6. This requires tNvo nodes to 

be addeded into the BAM, one to the object layer for representing the object Afe and the 

other to the attribute layer for representing the attribute mn (shown in dotted circles in 

Figure 6.7 below). Then, the weights of the links between the node Me and its attribute 

nodes ss, dn and mn are set to one (shown in solid lines), and the weights of the links from 

the node Me to the other attributes are set to -(rnax(k, ý+I) (shown in scattered lines). Also., 

the weights of the links from other object nodes (other than the node being added) to the 

attribute nodes that they do not possess should be updated with -(max(k, ý+I) as they do 

depend on the number of nodes in the BAM. But, weights of the links from other object 

nodes to the attribute nodes that they possess remain the same and so do not need updating. 

Me' 
OGOOOOO 

ObjectLayer 
***a*** 

+1 
+1 

ss mn '% Attribute Layer dn 

Figure 6.7: Updafing a BAM 

Adding Venus (i. e. adding <( V) 4 (ss, dn, mn I >) needs the addition of only one node to the 

ob . ect layer to represent V as all the attributes that it possesses are already present in the 9 

BAM. Weights of the links are updated in the same ý, vay as described above. 

6.9 SUMMARYOF IMPORTANT POINTS 

The points listed below summarise the important properties that one should kno,, v when 

using BAMs to represent concept lattices. 

127 



I- An arbitrary training pattern does not necessarily become a stable point in the 

BAM. Only the patterns generated by enforcing completeness constraint (A I =B and 

BI =A) become stable points in the BAM. 

2. A storable set of training patterns should consist only of patterns that satisfy the 

condition AI =B and BI =A. 

3. A BAM learns a complete concept lattice, not just a set of training patterns, i. e. in 

addition to the stable points created for each of the (conceptually consistent) 
training patterns, a BAM also creates stable points for meet and join concepts that 

are inferred by those training patterns. 

4. When an input pattern consisting of some objects is presented to the object layer of 

a BAM, it returns the most specific concept as its output containing all the input 

objects in its extent. Conversely, when an input pattern consisting of some 

attributes is presented to the attribute layer of a BAM, it returns the most generic 

concept containing all the input attributes in its intent. 

5. It is possible for a BAM to return a concept with no objects and all attributes, or a 

concept with all objects and no attributes. (These represent the lowermost/mmimal 

and uppermost/maximal elements of the concept lattice). 

6.10 SummARY 

In this chapter, we described Bidirectional Associated Memories and how a concept lattice 

could be embedded in a BAM structure by training it with a set of training patterns (formal 

concepts). B61ohlavek's weight setting algorithm (Section 6.4) enables a BAM to learn 

exactly all the formal concepts in a given concept lattice as its stable points. This is an 

interesting and useful feature of the BAM that helps us to avoid using complex lattice 

building algorithms. In addition, the ability of a BAM to return the most specific or generic 

concept that exists in the learrit concept lattice, given a set of objects or attributes , is an 

extremely useful property of the BAM, in particular, it helps avoiding the use of 

conventional lattice traversing algorithms for searching desired concepts. How these ideas 

are used to design our IR model is described in the next chapter. 
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CHAPTER 7- THE CONCEPTUAL, MODEL 

This chapter is intended to present the design of our conceptual model. Describing the 

design of an IR system involves explaining how the documents in the target source are 

characterised; how the queries are formulated and presented to the system (Query 

Language); how the core process of comparing queries with documents is carried out to 

find out which documents to retrieve (matching strategy); how and in which order the 

documents found to be useful (by the system) are presented to the user (ranking); and how 

the decisions of the user about the relevance of the retrieved documents are used for 

learning or query reforinulation. These issues should be described in the context of what 

the model is intended or designed to achieve. Recall that our primary objective is to use 

more informative constructs (concepts), which correspond to how human thinking and 

understanding might work, to represent the concepts, ideas or thoughts present in 

documents, and to employ the representations created with these more informative 

constructs to achieve more elaborate "concept matching". The theories and techniques 

underlying our model were presented in Chapters 5 and 6, and in this chapter we present 

how they are used to design a prototype system to achieve our goals. A complete 

description of the design requires detailed treatment of all its components, together with 

some implementation detail. However, before flooding the reader with implementation 

detail, we first describe our design in this chapter at a conceptual level, in order to give the 

reader a high level view of what the model is about rather than how it is implemented. 

Within this chapter and the next, details of all the features and components of the model 

are covered, including the crucial decisions made to realise our goal of concept matching 

within the ftarnework. of FCA, and also the simplifications necessary for making the 

implementation feasible. Justifications for such decisions are given at the relevant places in 

the text. 
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7.1 CONCEPT MATCHING 

A node in a Concept Lattice represents a formal concept which can be thought of as 

analogous to a concept that might anse in the human brain during the reading of a 

document. The process of reasoning about the usefulness of a given document to an 

information need (query) can therefore be achieved based on how similar the nodes in a 

query concept lattice are to the nodes in a document concept lattice (see Figure 7.1). 

00 
now ý Naft 

Mft 

00 
00 (Me, VEMa, P) 

(Me, VEMa) -; ý jss, dn) 

(MY) 11% 

(Me, V) -4 

e, V, E, Ma, J, S, U, N, P) 4 

ftft %% 
E, Ma, J, S, U, N, P) -; ý (my) 

ss, my) , S, U, N, P) -4 (df, my) 

ly) (J's (sl, dfm 
(UN) -4 (sm, dfmy) 

(P) df, m 

(ss, sm, sl, dn, df, my, mn) 

Figure 7.1 : Node Matching between Two Concept Lattices 

Comparing query nodes with document nodes in this scenario is not as simple and 

straightforward as comparing just simple terms or keywords. We need to maintain the 

consistency of our treatment of certain terms as objects and certain terms as attributes. In 

addition, we may need to take into account the supenonty/generality of concepts within the 

concept hierarchies in order to match more specific concepts and also to avoid 

duplications. Problems of natural language such as synonymy, polesemy and other 

problems related to the variability of vocabulary cause mismatches between components 

(objects and attfibutes) of concepts, which lead to concept mismatches. In addition, size 

variability between query and document concepts in terms of numbers of objects and 

attributes means that a complete match between a query and a document node is 

impossible. 
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7.1 .1 Partial Matching 

Queries in general are short expressions of information needs. Documents on the other 

hand are much longer and more descriptive than queries. Therefore a document lattice is 

likely to have more nodes and a more detailed order hierarchy between them than a query 

lattice. Note that it is the containment of common attributes or objects that relates a given 

node to another in a hierarchy according to the order relation. This causes two problems. 

Firstly, it leads certain nodes that are supposed to represent the same idea to have different 

terms (objects and elements) and also a different number of elements in their extents and/or 

intents. This means that most often a partial match is likely to occur between a query- 

document node pair rather than a full match. Secondly, it causes a query node to be 

partially matched with more than one node, often in the same hierarchy, in the document 

lattice (see Figure 7.1). A solution to the first problem is first to measure the degree of 

partial similarity (commonality) between a query-document node pair and then to use 

similarity degrees of all (partial) node matches to compute the final retrieval status value 

(RSV) for the query-document pair. A solution to the second problem is to use 

relationships in the hierarchy to match the most specific concepts whenever a query node 

(partially) matches with more than one related document node (Section 7.1.3). 

Definition 

We define a partial match between two concepts as a concept m, in which the objects in its 

extent are those common to the query and the document extents, and the attributes in its 

intent are those common to the query and the document intents. This can be formally 

expressed as: 

Let q= <AB> and d= <CD> be two fonnal concepts, where AB, CD are sets of tenns in 

which ten-ns in A and C are interpreted as objects, and terms in B and D are interpreted as 

attributes according to the FCA formalism, then the partial match between the two 

concepts is given by the "concept" m= <Ar-)CBr*D>. Here the term "concept" is loosely 
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used, as this "concept" may or may not exist as a formal concept in either context of the 

two lattices that the two concepts being matched are from. 

For example, consider the two formal concepts (Dog, Cat, Frog) --) (lives mi 1wid, 

has life, can movej, and IFish, Frog) 4 (lives in water, can move, has life) found in the 

example concept lattice given in Figure 5.4. The partial match between these two concepts 

is given by (Frog) 4f has life, can movel. This is a more specific concept to the two 

concepts being matched. There is a node in the concept lattice (Figure 5.4) that contains 

only the two attributes has life and can move. The fact that the object Frog can have more 

attributes (in the context of the lattice that the two concepts being matched are from) than 

what the intent of this concept contains is irrelevant. In particular, when matching concepts 

between two concept lattices (e. g. between a query lattice and a document lattice), it is 

unlikely for either lattice to have a node representing solely the resultant concept given by 

the partial matching defined above. But, it is guaranteed that more exhaustive fortnal 

concepts (to the resultant concept) are present in each lattice (i. e. the concepts being 

matched). 

The individual object-attribute pairs (unit-concepts) in m determine how similar the two 

concepts q and d are. If the query concept is identical to the docw-nent concept (ideal case), 

a complete concept match occurs, i. e. m=q=d=<A, B>=<CD>. A statistical measure for this 

degree of similarity can be computed by using the statistics of matching object and 

attribute counts in the two nodes, preferably with a term (concept) weighting mechanism. 

This is the most frequently used strategy for quantifying similarity between two sets of 

(query and document) keywords/terms in conventional keyword-based IR systems. The 

resultant similarity degrees of individual node matching can be combined in some 

aggregation function to compute a final measure for the similarity (RSV) of the document 

to the query. We have extended this simple mechanism to "unit-concepts". We use the 
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weights of matching unit-concepts (Section 7.2.1) instead of the weights of i=ndividual 

tenns (objects and attributes). 

7.1.2 Possible Levels or Degrees of Partial Concept Matching 

Given below are the possible levels or degrees of partial matches that can take place 

between two concepts due to different levels of specificities/exhaustivities between them. 

Note that the examples given are for illustrative purposes only. They show the different 

possibilities of partial matching by taking into account the different possible compositions 

of queries (left) that can be compared to the given document concept 

(E, Ma) 4 (ss, dn, my). 

Case 1: Perfect Match: 

E. g. 1 : (EMal 4 {ss, dn, my} with 

{E! Ma) --) fssdt, my) 

This is the ideal case, in which the query and document concepts are identical and 

therefore a perfect match occurs. This indeed is the strongest possible match between two 

concepts. However, the overall contribution of this match for retrieving the document 

depends on the significances (weights) of constituent object-attribute pairs in that 

document (Figure 7.2). 

Case 2: Full Extent and Partial Intent: 

There are three possibilities for this case: 
i. The intent of the document concept (strictly) contains the intent of the query 

concept, i. e. the intent of the document concept is more exhaustive to the intent 

of the query concept. 

E. g.: (EMa) 4 iss, dn) with {EMa) 4 (ss, dn, m. v) 
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ii. The intent of the query concept (strictly) contains the intent of the document 

concept, i. e. the intent of the document is specific to the intent of the querý. 

E. g.: (E7Ma) --) ss, with (EMa) 4 fss, my) 

iii. No intent contains the other, but there are elements common to both intents 

E. g.: JEMa) 4 ý, afn) with JEMaj --3ý Iss, 

One can treat these three possibilities differently and quantify their degree of similarity 

differently according to a particular view of the matching process. For instance, if we view 

the matching process as one looking for the presence of query concepts in the document 

lattice, we can say that the first possibility given above (Case 2. i) is a perfect match 

because the document concept fully contains the query concept. In other words, what we 

are looking for is present in full in the document concept. In this case, we would not mind 

having additional objects or attributes in the document concept. Conversely, one can view 

it as a process of looking for the presence of document concepts in the query. However, a 

moderate and more general view that makes partial matching easier is to disregard the 

presence of additional objects and attributes both in the query and document concepts. In 

other words, consider matching elements only regardless of the additional objects and 

attributes. This generalises the first two views and simplifies the implementation of the 

matching process. Partial matching can then be achieved by taking into account the object- 

attribute pairs common to both the query and the document concepts. This fits well into the 

partial matching process defined above in Section 7.1.1. 

For instance, consider the following concept pair, in which the document concept (in right) 

is more exhaustive to the query concept (in left). Our matching process treats it according 
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to the first view, i. e. as if we were looking for the presence of the query concept in the 

document concept: 

E. g.: jMaj 4 fssl and fEMa) 4 fss, dn. my) 

Now, if we reverse the document and query concepts, for instance, we get the folloýving 

pair of concepts in which the document concept is more specific to the query concept. Our 

matching process can now be viewed as looking for the presence of the document concept 

in the query concept, ignoring any additional (not matching) elements. So they both will 

result in the same outcome (ýMaj --)ý Issl). 

E. g.: JEMa) 4 Iss, dn, my) and tMa) --) tssl 

However, given the fact that documents are more detailed than queries, this type of 

situation (i. e. query concepts being more exhaustive to document concepts) is less likely to 

arise, compared to the first view. 

Case 3: Full Intent and Partial Extent: 

E. g.: JE) --) Iss, dn, my) with JEMa) 4 Iss, dn, myl 

Intents of formal concepts may be considered more crucial in defining concepts according 

to the FCA fon-nalism. Objects in extents can be regarded as just examples or instances that 

belong to the same concept or category defined by intents. However, in the context of IR, 

objects play a major role in identifying relevant documents. Research on the use of noun 

phrases (only) for indexing has demonstrated the importance of nouns (in our case, 

objects). Therefore, we treat them both with equal importance in our work. 

This case can be subdivided into three sub-cases and further analysed as with Case 2, but 

as everything stated above for Case 2 applies to this case as well, we will avoid any further 

analysis at this point. 

135 



Case 4: Partial Extent/Intent 

E. g.: JEJ 4 Iss, dn) with (E, Mal --) ýss, dn, my) 

This is the most general form of all the cases mentioned above. It is simply a combination 

of Case 2 and Case 3 described above and so is easily understood. In the example gk-en 

above, the document concept is more exhaustive to the query concept. But all other 

combinations (e. g. JEJ 4 Jss, dn, myj with JE, Ma) --) ýss, dn)) are possible with this case. 

What is important here is to understand that the idea of unit-concept matching suits this 

case as well. 

7.1.3 Many-to-Many Node Matching 

As mentioned before, and as can be seen in Figure 7.1, a given object (or attribute) may 

appear in more than one location (node) in a concept lattice. As a result, a given query 

concept may match fully or partially with more than one node in the document lattice. 

Conversely, more than one query node may match partially or fully with the same node in 

the document lattice. This many-to-many relationship between node matching leads to a 

duplication of concept matches and thus favours the retrieval of documents with large 

lattice representations (as they have more nodes in their representations and thus a greater 

chance for more nodes to match). A large lattice tends to contain more nodes, between 

which more sub-super relationships are likely to be present than in smaller lattices. This 

raises the need to restrict node matching to a carefully selected set of appropriate node 

pairs. 

A sensible approach to solving this problem is to use the relationship information in the 

concept hierarchy of the document lattice in some meaningful way to impose restrictions 

on node matching, as it is the properties of the relationship hierarchy that cause the 

duplication. We achieve this by matching the query concept with the most specific 

document concept in the concept hierarchy of the document lattice in the case that a query 

concept matches with more than one (related) document concept (node). The intuition 
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behind this idea is based on the fact that it is the most specific concepts that best descnbe 

what the document is specifically about. Ideally, the most specific query concepts should 

be matched with the most specific document concepts, and in this work we attempt to 

achieve this goal. 

Such a matching process, however, requires well representative query and document 

concept lattices. The short length of queries, in particular, causes the concept hierarchies of 

query lattices to be less informative and less useful. This does not mean that the concept 

hierarchies of documents are complete and self-contained. The level of completeness of a 

concept lattice representation depends on the information content of the source document; 

the ability of the feature extraction process to extract objects and attributes and to represent 

the content of the document in the form of formal concepts; and the subsequent amount of 

learning the representation has undergone through user interactions in the past. However, 

in general, documents are more descriptive and lengthier than queries in an IR set-up. In 

our case in particular, document lattices tend to grow in time as they are subject to 

learning, through which they are expected to learn a more exhaustive set of concepts from 

user needs. Despite the problems caused by incomplete representations of document and 

especially query representations, matching the most specific concepts between query and 

document lattices is the most sensible approach to take. This is achieved using the 

properties "object concepts" and "attribute concepts" defined in Section 5.2.6. 

To illustrate, consider the case of matching the concept containing the object Mass (Ma) in 

the query lattice with the document lattice given above in Figure 7.1. The object concept of 

the object Ma in the query lattice is tMaJ4 (my). This query concept is present in all 

three nodes indicated in black in the document lattice in Figure 7.1. However, the (black) 

node at the bottom indicates that Ma is smaller in size (ss), posses a moon (my) and is near 

to the sun (A); whereas the top black node represents a more general concept in that it 

shows all the planets that have moons. Afa in that concept is just an example for a planet 
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containing a moon. A document containing this concept could be about any other planet 

(contained in its extent), or simply a document about planets containing moons in general. 

The bottom black node, on the other hand, precisely represents Ma and E with all their 

properties given in the context. This is as far as we can go in discriminating planets based 

on this particular query concept and the given document lattice. There is no information in 

the context of the document to distinguish between the Ma and E based on just this one 

given query concept. Given the fact that Ma is mentioned in the query, it makes sense to 

match it with the most specific concept containing Ma rather than matching it with a more 

general document concept. In a real situation, however, it is not just one query concept that 

decides the relevancy of the document. There is often a set of query concepts to match with 

the document, and it is a combination of the matching degrees of all the query concepts 

that decides a similarity score (RSV) for the query-document pair. 

7.2 LEARNING 

A characteristic of machine learning is the changing of weights of certain features to make 

them more or less significant. In the context of IR this relates to learning the weights of 

features that are used to match between queries and documents or learning the strengths of 

relationships between features. Another aspect of learning in IR is to learn new features for 

query enhancement. In this section we describe how our learning strategy deals with these 

different aspects of leaming. 

7.2.1 Concept Weighting 

7.2.1.1 Concept Weighting in our Model 

A concept in our case is not just a single term, but two related collections (sets) of tenns: 

objects and attributes. Therefore, we need a mechanism to weigh the significances of such 

concepts in such a way that partial matching between concepts can be accounted for. 

Simple term weighting strategies (such as ýflidfi are not suitable in our case. On the other 

hand, assigning a single weight for individual fonnal concepts represented by nodes in the 
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Figure 7.2 : Weight Assignments to Object-attribute Pairs 

concept lattice does not permit computation of the degrees of partial matching. Instead, our 

solution is to assign a weight to each object-attribute pair (Figure 7.2). Note that we use the 

term "unit-concepf' to refer to a pair consisting of an object and related attribute - 

The overall weight of a formal concept can then be defined as the sum of the weights of 

each distinct unit-concept that it is composed of The overall weight of the concept given in 

Figure 7.2 will therefore be: 

Y, W = WFss + WEýdn + WFmy + WMass + WMadn + WMamy 

This composite weight, however, may not contribute towards the computation of a 

similarity measure between a query and a document concept unless a perfect match occurs. 

Instead, the treatment of a formal concept as a collection of unit-concepts makes it possible 

to quantify the significance of a partial match based on the weights of matching object- 

attribute pairs, and thus fits well with the partial concept matching process described above 

in Section 7.1.1. For instance, the degree of similarity of the query concept 

(Ma) 4 {ss, dn) to the document concept JEMaj --) Iss, dn, my) is Wm.,,,, + Wm. *. This 

is not the final similarity measure (RSV) between the query and the document, as there 

may be other matching query-document concept (node) pairs. The final RSV value will 

therefore be an aggregation of all such degrees of similarities arising from partial matching 

between individual concept pairs between the same query-document pair (Section 8.7.2). 

The RSV values are then subject to thresholding in order to make the decision to retrieve 
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the document. We use a dynamic thresholding mechanism (Section 8.7.4) as a way of 

normalising to deal with the size (length) variability problem of documents and quenes. 

It should also be noted that in our final RSV calculations, we use not only the weights of 

the unit-concepts but also the weights of the keywords (i. e. the weights of individual 

objects and attributes) that concepts are made up of Section 8.5 gives details of why we 

use them and how individual terms are weighted and used in computing RSV values. 

7.2.1.2 Factors That Affect Concept Weighting 

Assigning the correct weights for concepts in documents is a difficult problem in IR. There 

are a number of factors that we should consider in deciding a weighting strategy. They 

include: 

1. The balance between the expressive power and the retrieval power of 
features/concepts. 

2. The balance between the locality (to a document) and globality (to the collection) of 
features. 

3. The ability to capture the variability of the significance of the same feature in different 

documents. 

4. Adaptivity (static versus dynamic weights). 

5. Usage factor (the chance of an average user using a feature/concept in formulating a 

query). 

This is a highly correlated set of properties that defines a complex set of conflicting 

demands. Finding the right balance between these is extremely difficult. 

* Expressive Power Versus Discrimination Power 

Quantifying the significance of concepts in respect of their ability to convey an 

understanding of the important message a document carries is a major objective of text 

understanding research. However, in IR, the primary interest has been in giving a higher 

significance to the features that support the correct retrieval of documents (against queries) 

than to the features that best represent the main theme(s) of the documents. How far these 
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two coincide is a research question that is outside the scope of our work. One might expect 

that the features that best describe the content of a document are the best features that can 

uniquely identify the document. But "best" here is a relative concept that depends heavily 

on the users. It is unlikely that all users always use the same concepts or tenns (to describe 

their infonnation needs) that the authors think are "best" in describing the contents of their 

documents. In addition, the differences of vocabularies between individual authors may 

result in different authors reporting the same infonnation using different ternis 

(vocabularies). The differences between users and authors make the situation more 

complex and highly dependent on such factors which are outside the IRS. 

* Locality Versus Globality 

The fact that a given feature (concept) is not equally significant in all the documents that it 

appears demands some degree of locality in weight values, i. e. significance weights must 

be decided with respect to the individual documents. How much a weight computation is 

local and how much it is global is a well-known problem in IR research. Statistical 

methods attempt to balance this by taking into account both global and local information 

(frequency counts) to estimate the weight values, i. e. they estimate the significance of 

concepts in retrieving a document based on the level of their "uniqueness" in representing 

individual documents. However, estimations based on the frequency statistics are often 

incomplete and easily misleading. Such estimations are not tolerant to the deliberate 

repetition of features, the length differences between documents and other complexities of 

natural language writing, such as the use of pronouns, analogies and the use of exarnples 

etc. As a result, false hits are made by retrieval systems. In addition, certain documents 

such as bibliographies, sununaries and surveys, might have higher frequency counts of 

certain terms, which influence their retrieval even when the user might not be interested in 

them. 
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o Usage Factor of Concepts 

Prior assignment of weights to features by statistical methods tends to allocate higher 

weights to "rare" concepts. These "rare" concepts might never be used by users to find a 

document. Therefore, assigning a high weight for a concept is not of much value if that 

concept is not used by the users. A more useftil approach therefore would be to assign 

higher weights for features/concepts that are used on average by more users for finding a 

document. One approach in this direction is to allow users to assign their own weights to 

search terms. The intuition behind this approach is based on the assumption that the 

importance of a term is a relative concept and that it is the user who knows exactly how 

crucial a search term is to his information need. The INQUERY system [Callan et al. 92, 

Croft 1995] can be given as an example for a practical implementation of this approach, in 

which the user can modify the tf factors of term weights. This approach has the desired 

feature that two distinct users can weight the tenns of the same query expression 

differently according to their perspectives of the query [Fagin 2000]. Although this sounds 

more practical, its success depends on the user's ability to formulate his query correctly, 

identifying the significant concepts that the authors might have used. This is a difficult and 

unrealistic goal to achieve. As a result, more often than not, the user will have to repeat his 

query a number of times by changing the significance weights of his search terms or 

concepts before he gets them right. In addition, this approach is typically implemented via 

ad hoc heuristics and demands excessive user interaction. 

e Document Ageing 

Another important factor that has not drawn much attention from the IR community is 

document ageing. As documents age, information contained in those documents becomes 

obsolete and therefore less useful. Nevertheless, certain classic documents may remain 

useful despite their age. IR systems that are based on static weighting mechanisms cannot 

deal with this problem as the RSV value of a given document to a given query is fixed 
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regardless of when the query was made. A dynamic weighting scheme that learns weights 

based on user interests is required to deal with this problem. 

7.2.2 A Reinforcement Learning Strategy 

7.2.2.1 Learning Concept Weights 

A more practical solution, that helps to overcome most of the above problems, is to decide 

which concepts (or keywords) are significant and to what extent based on the common 

views of the users. We achieve this goal by employing a reinforcement learning strategy 

based on relevance feedback, in which the concepts that support retrieval of a document 

that the user finds useful are rewarded and concepts that cause a false retrieval are 

penalised. Rewarding is achieved by increasing the weights of the matching unit-concepts 

that helped retrieval of a useful document, and penalising is achieved by decreasing the 

weights of the matching unit-concepts that led to a false retrieval of a document. In this 

scenano, the weight of a given unit-concept in a given document at a given time depends 

solely on the retrieval of that document in the past as a result of that unit-concept being 

matched, and the decisions of the users about the usefulness or relevancy of the document 

to their information need(s). This keeps the weights dynamic and lets them evolve over a 

period of user interactions. The balance between positive and negative hits of a given 

object-attribute pair in a given document in the past decides its present weight, i. e. the 

significance of a concept is based on the average view of all the users. Therefore, on 

average, a fair response can be expected by an average user for an information need. 

Figure 7.3 given below illustrates how our concept learning strategy works. The four 

boxex at the top show the concepts in a query, the documents (IDs) retrieved, and what 

concepts caused the documents Doc#35 and Doc#20 to be retrieved. Only Doc#35 is found 

to be relevant to the query by the user. The weight adjustments are shown at the bottom. 

Since Doc#35 is a relevant and retrieved document, the weights of the unit-concepts 

common to both the query and Doc#35 (only p--)q in this case) are rewarded. On the other 
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Figure 7.3 : Concept Learning Strategy 

hand, Doc#20 has also been retrieved by the system as relevant to the query, but the user 

has not found it useful (i. e. it is a false hit). Therefore, the weights of the unit-concepts 

common to both the query and Doc#20, i. e. the weights of the unit-concepts that caused it 

to be retrieved (in this case only u--) v) are penalised. This makes the similarity of Doc#35 

stronger and Doc#20 weaker to the query. 

This weight learning policy allows the same unit-concept (object-attnbute pair) in different 

documents to have different weight values. In addition, the dynamic nature of the weights 

results in the RSV value of a document declining in time as the document ages and gets 

less attention from the users. Also, by learning weights, we escape from the need to pay 

special attention to balancing the trade-off between locality-globality and the trade-off 

between the expressivity-retneval powers in weight setting. In fact, we have passed them 

over to the users to decide, without giving any burden to them. 

Implementation details of our weight learning mechanism are given in Section 8.6. 

Rare Concepts 

A property much desired in characterising documents is to assign a higher weight for rare 

concepts or features. As mentioned before, statistical methods achieve this by taking into 

account the occurrence counts of features in the whole collection. In our case, however, 

since rare concepts are rarely used by users in formulating their information needs, they 
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rarely get reinforced. Although this looks to be an undesirable property, in fact it is not. 

Since they are rare concepts, the chance of negatively reinforcing a rare concept is even 

rarer and as a result they do not tend to get as many negative reinforcements as positive 

reinforcements. Therefore, weights of rare concepts will often eventually emerge with 

higher values in the long run. 

7.2.2.2 Learning New Concepts 

The weight learning described above enables the documents in the collection to learn the 

significances of their concepts according to user decisions. However, leaming weights of 

unit-concepts alone is not sufficient for concept learning in fR. A weight of a given 

unit-concept in a given document is reinforced only if the following three conditions are 

satisfied: 

1. The document is retrieved by the system for one or more queries. 
2. The unit-concept in question matches with one or more of those queries which 

retrieved the document. 

3. The document is judged as useful to those queries by the user, in which case the 

weight is increased; otherwise the weight is decreased. 

It is unlikely that all the unit-concepts of a query are present in a document, due to various 

problems already mentioned that cause mismatches. This slows down learning, as 

reinforcing just a few concepts (features) in a document is not sufficient for picking that 

same document up again by a similar query. A new query looking for the same document 

may not contain any of those unit-concepts in the document that have been reinforced at 

some point in the past by previous queries. As a result, a query will fail to pick up a 

document useful to the user just because of the mismatch problems. Therefore, we need a 

way of making the similarity of the documents that were judged by the users as relevant to 

their queries much stronger, so that a similar query that has some unit-concepts in common 

with some of the previous queries (to which the document was previously retrieved and 

found useful) could retrieve the document. We achieve this by expanding the document 
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representations with all the unit-concepts of corresponding queries that are i udged as 

relevant to them. For instance, in the example shown in Figure 7.3, Doc#35 is enhanced by 

adding the unit-concept u4 v into its representation. This helps to eliminate the gap 

between the users and authors, and makes documents learn from the users about the 

different possible ways of describing their contents according to user perspectives. 

7.2.2.3 The Problem of Wrong Judgements 

The success of relevance feedback relies on the way relevance judgements are made. In 

most automatic relevance feedback models the system's heuristics make the judgements. 

But in our case, we use users' judgements as to which documents are relevant out of the 

retrieved documents. In both cases, there is a danger caused by misjudgements. Wrong 

judgements adversely affect learning and degrade the performance of the system. A way 

round this is to make the system learn from experts rather than from novice users. This is 

possible with the systems that are trained in advance before being deployed, in which case 

the knowledge leamt is fixed thereafter. In an adaptive set-up like ours, in which the 

system learns continuously while it is in use, we cannot expect all of its users to be experts. 

However, we believe that this problem will not cause a severe danger to learning in our 

model, given that the chance of all users making the same error is unlikely. Although there 

is a possibility of fooling the system by making wrong judgements deliberately, the system 

is capable of recovering from such acts as it learns from correct judgements made by other 

users, provided that the majority of them do not make the same incorrect judgements. 

7.3 SUMMARY 

This chapter presented in detail the design of our model. Special features of our model are 

its explicit concept matching and the use of a reinforcement learning strategy for learning 

the significances of concepts as well as learning different possible ways of describing the 

contents of docurnents according to the perspectives of the users. 
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This learning strategy is based on relevance feedback information. TradItionall-y, relevance I 
feedback has been used in IR for query reformulation purposes. Although it has shown 

improvements of as much as 20% on recall and precision, the system's learning through 

relevance feedback is temporal and does not last long. It does not retain what it learns from 

important user decisions, as they (user decisions) are used only within one query session 

during searching for a single information need. The learning gained by relevance feedback 

in one query session is usually not available for subsequent query sessions and hence a 

separate leaming mechanism is required to make the system adaptive. In contrast to the 

system's learning, the knowledge gained by the user from previous retrieval sessions stays 

longer in his mind and will be useful to him in formulating future queries. This feature is, 

however, local to individual users. 

In our model, document representations are updated continuously in accordance with user 

decisions and thus the knowledge gained through relevance feedback is retained for later 

use. We expect the document representations to converge to a fully representative set of 

concepts for each document over a period of time. Such a set of concepts, in fact, will 

become more customised to the vocabulary and the writing style(s) of the end user(s), as it 

is the concepts of the user formulated queries that are appended to the (relevant) document 

representations. The following can be listed as the favourable properties of our 

reinforcement learning strategy: 

1. The ability to assign different weights to the same concept in different documents. 

2. Implicit balancing of locality and globality of document characterisation, and the 

expressive and retrieval power of concepts. 

I The use of dynamic weights that help document aging and customising (document 

representations) for changing users and changing user interests. 

4. Document representation is locally held for each individual document. This makes a 

distributed representation of the document collection possible. 

5. It assists in narrowing the gap between users and authors by letting documents learn 

the way users describe the information that they find useful in documents. 
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CHAPTER 8- IMPLEMENTATION DETAIL 

A detailed discussion of the design of our model was given in the previous chapter. In this 

chapter we present the implementation detail of the model. Firstly, we present a schematic 

diagram of our implemented prototype (Figure 8.1), and the detail of each of its 

components follows. 

8.1 SCHEMATIC DIAGRAM OF THE IMPLEMENTED PROTOTYPE 
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Figure 8.1 : Schematic Diagram of the Model 

8.2 FEATURE EXTRACTION FOR CONCEPT GENERATION 

Extraction of features for generating concepts of the kind we are interested in (i. e. object- 

attribute pairs (unit-concepts)) is a difficult problem. This task, which is related to the more 

complex natural language understanding problem, is an unsolved research question beyond 

the scope of our work. However, the fact that a deep and complete understanding of the 

text may not be mandatory for IR means that it is possible to work with a shallow and 
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Partial representation of document contents. We make use of techniques such as part-of- 

speech (POS) tagging and noun and verb phrase analysis, together with a set of selected 

prepositional tenns (such as in, on, at, of) that frequently appear between noun and/or verb 

groUPs as connectors, to extract a set of features (objects and attributes) and their I- 

possessive relationships (which objects possess which attributes). Even though the use of 

individual noun-phrases has been proven to be superior to full text indexing 

[Evans & Zhai 1996], this alone would not be sufficient in our case, in particular for 

extracting intentions (attributes). It ignores the important roles that verbs play in natural 

language. In fact, it is verbs that express the intentions or objectives of subjects (participant 

ob ects). Since we are interested in the relationships between objects and attributes, it is j 

useful to take into account verbs (verb phrases) and connections between noun phrases and 

verb phrases as well. 

Our feature extraction process starts by pre-processing text with POS tagging and chunking 

terms into noun and verb groups. We used the tagger and chunker LTCHUNK (developed 

by the Language Technology Group of the University of Edinburgh, Scotland; 

http: //www. Itg. ed. ac. uk/software/chunk/) for this purpose. It tags each term with a symbol 

(using the Penn Treebank tag-set [Marcus et al. 1993,1994]) to identify its part-of-speech 

and groups them into noun phrases (NG) and verb phrases (VG). We gather the tagged and 

chunked infonnation of each sentence in the following data structure (Figure 8.2): 

Groups/Chunks List 

GI 
G2 
G3 

L=--j 

Tenn Term 
Terml 1 POS 1 il 1 Tenn2 1 POS 1 

TermsList 

Th6e two IDs are to helpfast traversing tofind 
the previous and next groups ofthe same type 
e. g. the previous NG and next NG of a NG 
(NOTjust the previous and next groups). 

Figure 81 : Sentaice Data Shftre 

A document consists of a list of such structures, one for each sentence in the text. Terms 

that do not belong in any (NG or VG) chunk are grouped under a third category, "Other 
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Group" (OG). 'Mis group is very important for our concept extraction process, as this is 

where the connecting tenns (prepositional words that connect different groups) are 

grouped in general. 

For instance, consider the sentence, "The tractor hit the gate of the farm". A tagged and 

chunked version of this would look like [The_DT tractor hit VB) [the DTgate NA7 
_YN] 

(_ 

ofjN [the_DTfarm N 
___: 
N ], where noun groups are enclosed with square brackets and verb 

groups in round brackets. The symbols DT, NN, VB and IN are the POS tags for a 

determinant, a noun, a verb and a preposition respectively (from the Penn Treebank tag-set 

[Marcus et al. 1993,1994]). The representation of this sentence in the data structure is 

illustrated in Figure 8.3. 

j 

Groups List 

i- -4---Li-Ný- L- 

Figure 8.3 : Data Structure of a Sentence - an Example 

As can be seen in the above example (Figure 8.3) the extracted sentence structure contains 

not only the terms of the sentence, but also its syntactic structure in terms of POS tags and 

chunks. A sample of sentences (from the Cranfield collection) were ftuther analysed and a 

number of rules were developed to identify objects and their attributes in order to automate 

the concept extraction process. Syntactic infon-nation about the sentence structures, 

syntactic structures within components (i. e. within NGs, VGs and OGs), and semantic 

relationships between terms within groups and between groups indicated by connecting 

words Nvere taken into consideration in developing these rules. Most of these rules can be 

described under three general categories based on the grounds on which they were 
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developed. However, there are certain specific rules that do not belong to either of these 

general categories, for example, the constructs formed by "such as" followed by some 

examples or a few examples followed by "etc". Constructs such as these that do not belong 

to the general rules but contain useful information for the extraction of concepts are 

captured by using special rules. In this section the general categories only are described. 

The complete list of rules used for concept extraction is given in Appendix A with 

examples illustrating each rule. 

8.2.1 Syntactic Structure of Noun Groups 

As noted above, most noun groups contain more than one noun word and adjective 

(modifier) within them. They are further analysed using POS tags attached to each word in 

order to detect useful object-attribute relationships between the words within them. A 

frequently found relationship in noun phrases (NGs) is the adjective-noun construct. In this 

case the adjective usually acts as a modifier that specifies a special property of the noun 

tenn. Therefore, an adjective in such constructs is considered a property (attribute) of the 

noun term (object) that it modifies. 

For example, if the syntactic structure of a noun group is DTIJJINN (e. g. "The_DT tall-JJ 

man_NM'), then a concept is fonned as NN --) JJ (i. e. Iman) 4 (tall)). Here "tair, is an 

attribute of the object "man". This is read as the object 'Iman" having the property "talr'. 

Here, the tag DT stands for a detenninant, JJ for an adjective and NN for a noun, and the 

structure of the chunks is written using the part-of-speech tags of individual terms 

separated by vertical bars ("I"). Note that we use the convention (<extent>) 4 t<Intent>j 

to write a formal concept. An extent (or intent) can contain more than one object (attribute) 

in which case they are written comma separated. 

In case of noun groups comprising more than one noun word, concepts are formed 

according to the following rule: 
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[<nounl> < noun2>< noun3 > I<noun3> f <nounl> 9<noun, >); 
f <noun3> <noun1>+<noun, > 1; and 
ý<noun2>+<noun3>1 --) (<nounl>l 

For example consider the noun phrase [central-NN capital-NN citv-NN]. The concepts 

extracted from it are as follows: 

1. f city) Icentral, capital) 
2. tcity) (central copitall 

3. (capital city) 4 Icentral) 

In addition to the above, a concept is formed by taking the entire noun group (i. e. all the 

tenns in the group) as the object as well as the attribute (self-concept) when a noun group 

has only noun terms (according to part-of-speech tagging results). This is to ensure that 

such descriptive keyphrases, which carry useful infonnation, are retained for possible 

keyword matching. For example, consider the noun group [London_NN Bridge_NN]. Only 

the concept (Bridge) 4 (Londonj is extracted from the first rule described above. 

However, it would be more meaningftil, in this case, to keep the two terms of this phrase 

together (i. e. London Bridge as a single entity). Note that the phrase "London Bridge" will 

not be used as a single element to create a concept if this noun group is not connected with 

another noun group by a connector (preposition) that we use (Section 8.2.2) for extracting 

infonnation. Fonning a self-concept such as (London Bridge) 4 (London Bridge) in 

particular enables a meaningful keyphrase match in the absence of a unit-concept. 

8.2.1.1 Possessive Relationships 

The possessive relationships between two noun words indicated by a trailing 's or s' are 

also detected and processed separately to form concepts containing all the words in the 

noun group up to the apostrophe (') as the object and the rest of the words in the group 

after the possessive tag "POS" as the attribute. These always appear within a single noun 

group (NG). In addition to this rule, the rules described above are also applied If any part 

(object or attribute) of the concept thus forrned is multi-tenned. 
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E. g. 
I The_DT man_NN's_POS hair_NN] 

fman) 4 lhairl 

2. [Seattle_NNP'S-POS central-JJ business-NN district-NN] 

c* fSeattlel --) Icentral business districtl 

* fSeattle) 4 ýdistrictj 

c* fSeattle) --) tbusiness 
, district) 

c* fSeattle) 4f business district) 

An interesting outcome of these concept extraction rules is that the same concept happens 

to be formed from several different ways of writing the same idea (verbal groups). For 

instance, both noun groups "The man's hair" [The_DT man_NN's-POS hair_NN] and 

"The hair of the man" ([The_DT hairý_NNJ of IN [the_DT man_NN]) produce the same 

concept Iman) 4 (hair). 

8.2.2 Prepositional Connectors between Chunks 

Use of individual noun phrases (only) for document indexing does not take into account 

the relationships between noun groups. We analysed the relationships between those noun 

groups that are connected by prepositional connectors such as in, on, of, with, to, into, from 

etc, for extracting useful concepts using ten-ns in two connected chunks. Relationships 

inferred by such connectors between two noun groups can be interpreted as object-attribute 

relationships. Both the set of prepositions used as connectors and the rules that decide the 

roles of tenns or phrases as objects or attributes were selected by analysing the syntactic 

structures of sentences and the semantic relationships between chunks/groups of a resultant 

pre-processed (tagged and chunked) swnple of text. The list of connecting words selected 

[given in Appendix A] is not complete by any means, but consists of the most frequent and 

useful connectors found in the text. 

Usage of prepositions in natural language is such that the roles of the tenns (as objects and 

attributes) in most connectors (such as "in" and "at") usually appear in a particular written 
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order that can be interpreted either as object-connector-attribute or attribute-connector- 

object. However, there are a few connectors (e. g. "of') for which the usage is not precise. 

With these connectors an object (attribute) can appear on either side. For example, in the 

phrase "[millions] of [visitors] ", visitors is more suitable as the object and millions as the 

attribute. But in the noun group "[University] of [Plymouth]", either the University or 

Plymouth can be taken as the object and the other terrn as a property/attribute of the object. 

In such cases, both possibilities can be used for concept extraction (and both were used in 

the initial experiments). However, we only employed the most frequently used practice in 

the final experiments as no significant improvement in the retrieval results was found when 

both possibilities were used. For instance, for the operator "of', i. e. in the fonn NGI of 

NG2, NG2 is considered the object and NG, is considered the attribute. 

As already noted in Section 8.2.1, in most cases noun groups are comprised of several 

adjectives and one or more noun words etc. (E. g. The_DT red_JJ old_JJ car_. _, 
NN). Using 

all the tenns in a noun group as a single object or attribute is not very useful when creating 

a concept based on two connected noun groups. Instead we use only the noun words of the 

noun groups. For instance, consider the following two pieces of text: 

E. g. 1. [the_DT red_JJ car_NN] of IN [the_DT tall_JJ man_NN] 

2. [a_DT lobbyýý] of fN [dark_JJ marble_NN walls-NNS] 

In the first example, creating a concept as Itall man) 4f red car) causes matching 

problems when the same adjectives (red and talo are not used by the user in his query 

statement. A better formulation therefore would be: (man) 4 (car). Note that 

detenninants (like "a - and "the") are always ignored. The processing of the syntactic 

structures within the noun groups described above extracts Iman) -) (tall) and 

tcar) --) fredl as concepts. The first two concepts will then be joined during concept 

forniation, resulting in the single concept Iman) 4 Icar, tall). This allows the query 
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concepts ýman) -; ý Icar) or (man) 4 (tall) to partially match Nvith the concept 

I 
, man) --) Icar, tallj. 

However, using this method alone also causes a problem if a particular document talks 

about more than one distinct car, say, described by two different colours, that should be 

identified separately. The above-mentioned method constructs a concept with ffie object 

car together with all colours as its attributes. Therefore, it is useful to use both methods, 

i. e. in this exarnple Itall man) 4 (red car), tman) 4 Icar, talll and (car)--> Iredl. In 

this case, if the document talks about a green car, a concept will be formed taking green 

car as a single attribute of an object to which it relates. During concept matching, we must 

be careful to take into account only the most expressive matching concept(s) in cases 

where concepts share the same tenns (in their extents or intents), i. e. if both 

ttall man) 4 Ired car) and f man) 4 (car) matches with a query, we should take only 

(tall man) --) Ired car) into account, as otherwise we may be duplicating the same 

concept. 

8.2.3 Verbs in Verb Groups (VGs) and Other Groups (OGs) 

Verb tenns in the English language take many different forms depending on the tense and 

other language rules. Examination of tagged and chunked text reveals that verb terms 

appear frequently in VGs and OGs, but rarely in NGs. In NGs verb tenns usually appear as 

adjectives (e. g. running man or cracked bottle). These are correctly identified by the tagger 

as adjectives (and tagged with JJ) and so do not need special attention. Verbs that appear 

in VGs tend to follow a few generic pattems/rules and therefore can be captured by a set of 

generic rules, while for others specific rules are needed. 

The most generic construction of noun and verb group combination is of the form 

NGIIVGING2, with the VG containing a single verb (_VBZ type) that creates an "is-a" or 

"has_a"' type of relationship between the surrounding NGs. In this case. a concept is 

created using the noun word(s) of NG, as the object(s) and the noun words of NG2 as the 
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attribute(s). For instance, consider the simple sentences "[John_NN] (I*s_ VBZ) [an_DT 

engineer_NN]" or "[John_NN] (has_VBZ) [a_DT car_NN]". We extract 

fJohn) -: ý fengineer) from the first sentence and (John) -; ý f car) from the second. 

Appendix A gives full details of the different constructs of noun/verb groups and the 

different constructs of connecting groups (Other Groups (OGs)) used, together with the 

rules developed for extracting concepts from those constructs. Note that the connecting 

words used were grouped into five main (overlapping) groups [Appendix A] depending on 

the syntax patterns of the text they appear in, in order to create rules for common patterns. 

8.3 DATA STRUCTURE(S) 

There are three data structures central to our implementation: (1) a Sentence Structure -a 

structure for gathering information about the details of sentences; (2) an Elements Table -a 

structure for keeping constituent elements (objects and attributes) of concepts and their 

weights (i. e. keyword weights); and (3) a Concepts Table -a structure to store 

unit-concepts and their weights. The Sentence Structure, which is central to our concept 

extraction, was described in Section 8.2 (Figure 8.2 and Figure 8.3), and the other two 

structures are described below. 

Note that we used the same structures for Queries. The reasons for this are twofold. Firstly, 

it is easier and is a frequently used practice to use the same structure for both queries and 

documents. Secondly, it allows for the provision of future enhancements to use (user 

specified) weights for query concepts/keywords. 

8.3.1.1 Elements Table 

This is the structure that keeps information of each element. Each object and attribute is 

assigned an identification number with respect to its role (as object or attribute) and has a 

weight (keyword weight). This information, together with the role of the element and its 
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status (i. e. whether an original one or initially extracted one) or a reinforced (i. e. one added 

later-on during learning) are stored in this structure as illustrated below in Table 8.1. 

TERM ROLE OBJECT 
ID 

A77RIBUTE 
ID 

OBJECT 
STA TUS 

ATTRIBUTE 
STATUS 

KEYWORD 
WEIGHT 

man 1 1 -999 1 -999 0.25 
hair 2 -999 1 1 1 0.38 

<treMn> 3 12 15 j 1 2 0.18 

Table 8.1 : Elements Table Data Structure 

where, 
ROLE :I -Object, 2-attribute, 3 -both 
STATUS: I -Original, 2-updated/later-added one through reinforcement process 

-999 indicates "Not Relevant/Not Used" 

Note that a given term can play different roles in different unit-concepts depending on the 

situation and therefore can take both roles (Role = 3, i. e. it is an object in one unit-concept 

and an attribute in another). Since it is useftil to know the role of an element, we assign 

identification numbers for the elements with respect to their roles. An element that plays 

both roles is therefore assigned with two identification numbers; one as an object and the 

other as an attribute. However, only one (keyword) weight is associated with it as we do 

not distinguish between the roles of elements outside the context of unit-concepts when 

weights of constituent elements are considered as keywords. Numbering objects and 

attributes separately is not essential; they all can be numbered with a single series and the 

role information can be kept separately. However, separate numbering simplifies the 

implementation. 

8.3.1.2 Concepts Table 

As can be seen in Table 8.1, the Elements Table does not store object-attribute 

relationships. They are kept separately in the Concepts Table as shown below in 

Figure 8.4. It is possible to combine these two structures and use a single (more complex) 

structure. We avoided using such a complex structure for reasons of simplicity of 

implementation and tractability of data. 
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This structure holds the attributes related to each object and weights between each object- 

attribute (i. e. weights of unit-concepts) pair as shown below. 

Attribute Lists 

Object List I 
QBJ ID 5 

1 ,-... 
2A 

TBI 
4 
3 

Eg. weight of ( man) 4 (hair) 
0.583 
0.21 

0.29 
0.21 

I ... II 

Figure 8.4 : Concepts Table Data Structure 

8.4 INTERACTIONS BETWEEN THE DATA STRUCTURES AND 
REINFORCEMENTS 

Adding a new concept involves adding its constituent elements to the Elements Table and 

adding the relationships between constituent objects and attributes (unit-concepts) to the 

Concepts Table with initial weight values. In the case where one element of the 

unit-concept is already present then we only need to add the other element into the 

Elements Table, and amend the Concepts Table accordingly. If the element of the concept 

being added is the "object" and is present as an object in the Elements Table, then there is 

already a Concepts Table for that object. We only need to add the attribute of the unit- 

concept to the Elements Table and Concepts Table, and to set an initial weight for the 

unit-concept in the Concepts Table and an initial (keyword) weight for the attribute in the 

Elements Table. If it is the "attribute" that is present in the Elements Table, then the object 

needs to be added into the Elements Table and to the Objects List of the Concepts Table, 

and a new table needs to be created to store the attribute and the weight of the unit-concept. 

If one or both elements of the unit-concept being added are present in the Elements Table 

with opposite roles, then their roles need to be amended. Amendments needed for the 

Concepts Table follow the same process described above, with those elements treated as 

though they were not present in the Elements Table. 
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If both elements are present in the Elements Table, but the Concepts Table has no entry 

relating the object to the attribute, then an entry is created by adding the attribute to the 

corresponding table. If both elements are present in the Elements Table and the related 

attributes table of the Object in the Concepts Table already has an entry for the 

unit-concept being added, then no concept addition takes place; instead, the weight of the 

unit-concept is reinforced. Reinforcing matching unit-concepts and keywords involves 

increasing or decreasing their weights depending on the user judgement about the 

usefulness of the document to the information need. 

8.5 THE NEED FOR KEywoRD MATCHING 

Common unit-concepts are not always present between the nodes of two concept lattices 

(i. e. a partial match does not always take place between a query and a document concept). 

We often find cases where two concepts share either a common object(s) or attribute(s) but 

not both (Figure 8.9). This may happen for various reasons, including word mismatch 

problems due to synonymy or the chance representation of distinct concepts by the same 

tenn (due to polysemy). Regardless of the cause, we do not want to ignore the possibility 

of the positive contribution that such common features between nodes might make towards 

the retrieval of a useful document. Therefore such a single object or attribute match is 

considered a keyword match and its significance is modelled with keyword weights. For 

this reason, we maintain weights for both unit-concepts and their constituent elements 

(objects and attributes). The weights of the unit-concepts model the significances of the 

object-attribute pairs (unit-concepts) with respect to the individual docwnents within which 

they are present, while the weights of the keywords (individual elements of unit-concepts) 

model the significance of the elements the unit-concepts are composed of 
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8.6 ALL ABOUT CONCEPT/KEywoRD WEIGHTING AND WEIGHT LEARNING 

8.6.1 Weight Ranges and Initial Values 

Both keyword and unit-concept weights are initialised at the beginning with an initial value 

of 2.5 and they are subject to learning over user interactions. The same initial value (2.5) is 

used for new unit-concepts and keywords that are added during the learning process. As 

mentioned before, the values of weights are subject to increase or decrease by small steps 

(Aw) depending on the user feedback. The range of a weight was arbitrarily selected to fall 

in the range between 0.1 and 5.0. The minimum vaiue of a weight was set at 0.1 instead of 

zero (0) to avoid complete unawareness of the existence of a unit-concept or keyword. One 

can use any other positive range instead and accordingly set the thresholds or normalise the 

RSV values to lie in a particular range (such as [0,1]). 

8.6.2 Step Size of Weight Changes 

The step size is determined proportional to the current value of the weight. The idea is to 

make weight changes based on how far it is from the top boundary (if increasing) or the 

bottom boundary (if decreasing). This makes learning faster if the difference between the 

current value of the weight and the boundary towards which the modification is made is 

larger, and makes learning slower otherwise. The weight modification formula is given 

below and is illustrated in Figure 8.5. 

Wnew = Wold + yjAW 

AW = Wmx )Vid 

where 

f 

AW = )Vld Wn-ýn 

if a positive reinforcement or 

if a negative reinforcement, and 

Tj is the leaming rate. 
Wrnu=5.0 

AW = Wmax i 
_ 

Wold if rewarding 
if rewarding WT 

, Wold 

lf penalising Wnw ------ b. AW = Wid _ Wnn if penalising 

L: 

Wnün--o. i 

Figure: 8.5: Weight Modification Policy 
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8.6.3 Learning Rates for Rewarding and Penalising 

The learning rate is a constant that identifies the proportion of theweight difference to take 

into account for the actual step size of the modification. However, the nature of IR is such 

that usually not all documents retrieved by the system will be opened by the user and 

therefore not many documents (of a retrieved set of documents) will be judged as useful by 

an average user. As a result, only those (few) documents that are judged by the user as 

useful are rewarded (i. e. the weights of matching concepts and keywords are increased and 

the query concepts that are not present in them are added). All other documents in the 

retrieved set are regarded as false hits (i. e. implicit negative feedback) and therefore are 

penalised (i. e. weights of matching concepts and keywords are negatively reinforced) by 

our learning algorithm. As a result of this, on average, the weights of unit-concepts and 

keywords are likely to be negatively reinforced more often than they are positively 

reinforced. If not controlled, this imbalance of rewarding and penalising would lead all the 

weights to end up with the minimum weight value allowed (0.1) in the long term. This 

problem has also been reported by Scott Weiss [Weiss et al. 1997] in his attempt to use 

Littlestone's "Winnow" algorithm for a newsgroup classification task. A way to resolve 

this problem is to use different learning rates for positive and negative reinforcements. 

However, deciding precise values for positive (ij) and negative (P) learning rates is 

difficult. It depends on a number of factors including the number of queries tried, the 

composition of the queries, user judgments, etc. Based on the results of a few preliminary 

experimentations on the Cranfield collection, they were set to il=0.04 and P=ij/3=0.0 133. 

8.6.4 Informative Factors of Comparison Units 

The weight reinforcement strategy described so far treats each matching entity 

(unit-concepts and keywords) as equals regardless of their infonnativeness, i. e. the weight 

of each unit-concept/keyword is reinforced by a computed amount based only on the 

leaming rate and the current value of the weight. However, not every concept (or keyword) 
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is equally informative. We have identified some differences (four levels) in the degree of 

infon-native-ness of the information items we use (i. e. unit-concepts and keywords). A way 

to deal with this problem is to use further weighting factors to re-weight the weight 

modification steps based on their informative-ness. Depending on the number of individual 

words they were composed of, they were categorised into four groups of infonnative-ness 

and four significance weighting factors were used to re-weight the weights initially 

computed based on the learning rate. We call these significance factors (weights of 

weights) "Informative Factors" in order not to confuse them with others. Given below are 

the four different levels of informative-ness considered. They are listed in increasing order 

of their infonnative-ness. 

a. One-tenn keywords 

b. Keyphrases (Keywords with more than one term) 

c. Unit-concepts with one-term components (one-term object and one-term 

attribute) 

d. Unit-concepts with multi-term components (at least one component 

constitutes more than one term) 

The parameter values used in the final experiments were: 

Positive Reinforcement Rate: il = 0.04 

Negative Reinforcement Rate: P= ij/3 = 0.0133 

Informative Factor of unit-concepts with multi-terms: d 3.0 

Informative Factor of unit-concepts with single-terms: c 2.0 

Informative Factor of KeyPhrases: b=1.6 

Informative Factor of single-term keywords: a=1.0 

These values are not optimised for their performances but selected based on empirical 

results of preliminary experimentation. As can be seen, keyphrases (multi-term keywords) 

are weighted higher than one-term keywords, as they are likely to be more meaningful than 

one-term keywords. Unit-concepts are weighted even higher than keyphrases as they are 

more flexible and therefore considered rich in expressive power. This is simply because 

they are not restricted to consecutive words as in the case of a keyphrase. Unit-concepts 
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with multi-term objects or attributes are obviously the most informative among the four 

categories, and so have the highest significance of all. 

The values of the weights of the Informative Factors were decided so that a desired set of 

(pre-decided) incremental and decremental steps were obtained for a unit-concept or a 

keyword with an average weight value of 2.5. The following table (Table 8.2) shows the 

complete set of equations used for the weight modifications for each case of informative- 

ness. The values of the step sizes are also shown for each case for a concept with an 

average weight of 2.5. 

Weight Increase Formula Steps when Wold =2.5 
Positive Negative Weight Weight 
Reinforcement Reinforcement Increase Decrease 

Unit-Concepts with 
multi-ten-n woki + i1. d. (W"u'x-WOk') W)kI 

_ 
p. d. (W)kJ_Wnfi") 0.3 0.096 

objects/attributes 
Unit-Concepts with 
single-term objects W, 1 + TI. C. (W,,,, _W,, 

kl) w)kJ 
- 

ý. C. owAl-wmin) 0.2 0.064 
and attributes 
Keyphrases NvkJ + Ti. b 

. 
(Wmax_\V)k1) \kfokJ _ P. b. (W)"'-W ...... 0.16 0.0512 

Single-term \01 + Ti. a. (Wmax_\kfok1) W"" - O. a. (\V)k1_Wnun) 0.1 0.032 Keywords I I II 

Table 8.2: Weight Reinforcement Formulae 

8.7 RETRIEVAL PROCESS AND SIMILARITY (RSV) COMPUTATION 

8.7.1 Setting up Concept Lattices of Queries and Documents 

The retrieval process begins when a query (a natural language expression) is issued by the 

user. This query expression is pre-processed as described in Section 8.2 and concepts are 

extracted. A concept lattice of the extracted concepts is then created as described in 

Section 6.4 by setting up a BAM with the object-attribute link information (Figure 6.4). 

Then, in order to compare the query concept lattice with the document concept lattices, the 

concept lattice of each document (one at a time) is also set up with a BAM. The nodes of 

the query concept lattice are then compared with the nodes of the document concept 

lattices for partial matching (Section 7.1). 

163 



8.7.2 Candidate Node/Concept Pairs for Comparison 

As already mentioned in Section 7.1.1, not all query concepts match with all document 

concepts, and therefore attempting to match all query nodes with all document nodes is a 

waste of time. Instead, we extract "candidate" concept pairs to match between the query 

and the document based on the presence of common features (unit-concepts and keywords) 

between them. The candidate concept extraction process works mainly by looking for the 

most specific concept in the document lattice for each query object (i. e. using object 

concepts). Attribute concepts (i. e. the most generic concept containing a given attribute) 

are also used in the cases where a related object concept is not available in the document. 

There are a number of cases to consider here when developing an algorithm to extract 

"candidate concept pairs". 

Firstly we look for the presence of query objects and attributes in the document 

representation. For each object and attribute common to the document and the query, 

object concepts and attribute concepts (respectively) are extracted from both the query and 

the document BAMs. Such object and attribute concept pairs are the candidate concept 

pairs to match between the query and the document. During this process, we make sure 

tthat extract the most specific concepts are extracted wherever possible and also that the 

same concept pair is not extracted more than once. Also we avoid extracting document 

(query) concepts that are general (in the general-specific hierarchy in the concept lattice) to 

any of the document (query) concepts already extrcted to match with the same query 

(document) concept. If an object or attribute in the query appears as both object and an 

attribute in the document representation, we check whether there is any order relation (in 

the concept hierarchy) between them in order to avoid matching two related document 

concepts with the same query concept. Only the most specific concept is considered for 

matching in such cases. However, there are some cases where we find the same term (word 

or phrase) appearing both as an object and attribute in document representations, but are 
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not related in the concept hierarchy. Such concepts are regarded as two distinct concepts 

(ideas). In this case, the attribute concept given by the document BAM is also taken into 

account as a candidate concept to match with the object concept given by the query BAM, 

in addition to the object concept given by the document BAM. 

The following are the different possible cases (eight cases) identified and taken into 

account in the algorithm that extracts candidate concepts to match between queries and 

documents in our implementation (see also Figure 8.6 and 8.7). 

1. The query object is present ONLY as an object in the document representation 
2. The query object is present ONLY as an attribute in the document representation 
3. The query object is present as both an object & attribute in the document and they are 

related (i. e. the query object plays both object and attribute roles in the document and 
they are present in the same concept or in different but related concepts in the super/sub 

concept hierarchy) 

The query object is present as both an object & attribute in the document and they are 

not related 
5. The query attribute is present ONLY as an object in the document representation 
6. The query attribute is present ONLY as an attribute in the document representation 
7. The query attribute is present as both an object & attribute) and they are related 
8. The query attribute is present as both an object & attribute and they are not related 

The following two charts illustrate these cases and how candidate concept pairs can be 

extracted to match between the query and the document. Some cases have more than one 

alternative to process them and some processing options cover some others. The algorithm 

we have developed (given in Figure 8.8) covers all the cases with no alternative options 

(i. e. cases 1.1,2.1,2.3,3.1,4.1,4.3,5.1,5.2 and 6.1) and the following alternative options 

of the cases with alternative options. 

1. Case 2.2: Option 2 

2. Case 3.2: Both options I and 2 

3. Case 4.2: Option 2 

4. Case 5.3: Option 2 

5. Case 6.2: Both options I and 2 
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A working example illustrating which candidate concept pairs are extracted by this 

algorithm to match between a query and a document (from Cranfield collection) is given in 

Appendix B. 
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The A12orithm 

FOR each Query Object (QO) in the Query Object List 
IF QO is present in Doc Object List 

Match the Qry and Doc Object Concepts 
(this covers case 1.1,2.1,2.2,3.1 and I" case of 3.2 (3-2.1 ) AND case 4.1,4.2,5.2,5.3) 
IF QO is present in Doc Attribute List (i. e. QO is present in both Doc Obj and Atb Lists) 

IF they are NOT related (i. e. Doc Obj Cnpt for the Object QO do not contains the QO as an Attribute) 
IF Objs of Doc Atb Cnpt NOT present in Qry Obj List 

Match Qry Obj Cnpt with Doc Atb cnpt (covers the other part of case 3.2 (3.2.2)) 
ENDIF 

ENDIF 
ENDIF 

ELSE (i. e. QO is present ONLY in Doc Attribute List) 
IF Objects of Doc Attribute Cnpt NOT present in Qry Object List 

Match Qry Object Cnpt with Doc Attribute Cnpt (covers case 2.3) 
ENDIF 

ENDIF 
ENDFOR 

FOR each Query Attribute (QA) in the Query Attribute List 
IF QA is present in the Doc Obj List 

IF Objs of Doc Obj Cnpt NOT present in Qry Obj List 
Match Qry Atb Cnpt with Doc Obj Cript (case 4.3,6.1 and part of case 6.2 (6.2.1)) 

ENDIF 
IF QA is present in the Doc Attribute List (i. e. present in both Lists) 

IF Doc Obj Cnpt NOT contain the same Obj as an Atb (i. e. they are not related) 
IF Objs of Doc Atb Cript NOT present in Qry Obj List 

Match Qry Atb Cnpt with Doc Atb Cript (other part of case 6.2 (6.2.2)) 
ENDIF 

ENDIF 
ENDIF 

ELSE (i. e. QA is present only in the Doc Attribute List) 
IF Objs of Doc Atb Cript NOT present in Qry Obj List 

Match Qry Atb Cnpt with Doc Atb Cript (case 5.1) 
ENDIF 

ENDIF 
ENDFOR 

Figure 8.8 : Candidate Concept Extraction AJgorithm 

8.7.3 Computing the Similarity Measure (RSV Value) 

Each candidate query and document concept pair extracted for matching is then examined 

for the presence of common unit-concepts (partial concept matching) and keywords. The 

presence of a matching unit-concept between a candidate query and a document concept 

pair leads to a (partial) concept match. A high number of unit-concept matches indicates 

that the two concepts have a high degree of similarity. The presence of a common object or 

169 



attribute that does not participate in a matching unit-concept leads to a keyword match (see 

the illustration in Figure 8.9). The matching unit-concepts and keywords between 

candidate concept pairs are stored in two lists (MatchingConceptsList and 

MatchingKeysList) and are pruned for any duplication. Pruning does the following: 

1. Removes keywords that are contained in other more expressive keywords or in 
unit-concepts 

e. g. The keyword "bridge" is removed from the MatchingKeysList if the keyphrase 
"London Bridge" is also present in the MatchingKeysList or one of the 

unit-concepts fLondonj 4 (bridge) or (bridge) 4 tLondon) or 
f London bridge) 4 ffall) is present in the MatchingConceptsList. 

2. Removes unit-concepts that are contained in other more expressive unit-concepts 

e. g. (bridge) 4 {fall) is removed from the MatchingConcepsList if 

{London bridge) 4 {fall) is present in the list. 

It is the unit-concepts and keywords in the pruned lists that contribute to the RSV 

computation. See Appendix B for an actual example. 

[marrow) 4 [bone, change] & [marrow] 4 [bone, architecture, area] 

unit-concept match 

[marrow] 4 [bone, change] & [marrow] 4 [cell, culture, rat] 
tt 

k*worJmatch 

[drug, pesticide) 4 [effect] & [erythropoiefin] -4 [action, simulation, effect] 
t 

keyword match 

Figure. 8.9 . Unit-COncept Matches and Keyword Matches 

A similarity measure for each candidate query-document concept pair is considered to be 

the sum of the weights of the matching unit-concepts and keywords. The final RSV value 

I tor a query-document pair is then computed as the sum of the similarity measures of all the 

candidate query-document concept pairs considered between the query and the document. 

The RSV values thus computed for each query-document pair are then subject to 

thresholding in order to decide which documents to retrieve. The documents whose RSV 

values exceed their thresholds are presented to the user ranked simply in the decreasing 
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order of their RSV values. Notice that we do not constraint the MV value to a pailicular 

range (e. g. [0-1) as in many other systems) and therefore they can take any positive value. 

8.7.4 Concept Size Variability and Thresholding 

The similarity computation described above depends on the sizes of the concepts (i. e. the 

number of objects and the number of attributes present in the concepts) and the weights of 

the unit-concepts and keywords. Different concepts are of different sizes in ternis of the 

number of objects and the number of attributes they contain. Query concepts in particular 

tend to be shorter due to the fact that most of the time, queries are short expressions 

(compared to documents) and thus contain less detail. The number of unit-concepts that the 

concept extraction process can extract from such short expressions is smaller compared to 

much lengthier query expressions. This feature tends to favour lengthier queries as they are 

likely to be represented with more unit-concepts thus giving them a higher chance to match 

with documents. A common solution for this type of sizing problem is to use some kind of 

size normalisation. In the implemented prototype of our model, however, concepts were 

not non-nalised for lengths; instead, a concept length dependent thresholding mechanism 

was used to compensate for the varied sizes of queries. 

This is a dynamic thresholding strategy computed by taking into account the total number 

of unit-concepts available in all the candidate query concepts considered for comparing 

with document concepts (i. e. the total number of unit-concepts we are looking for in the 

candidate document concepts). Note that the size of a query is determined by the number 

of distinct unit-concepts that its representation comprises. This value is multiplied by a 

predefined base threshold value (see the equation given below). The use of a base 

threshold value allows us to experiment with the best thresholding value to use by varying 

the base threshold. Based on the results of a few preliminary experimentations, the base 

value was fixed to 1.3. No further experiments were conducted to evaluate the impact of 

thresholding. Such work is reserved for future experimentation. 
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Number of unit-concepts in all the candidate Dynamic Threshold = (Base Threshold) x 
Cery 

concepts considered for match' 
NL 
qýj I ing 
between a given query-document pair 

See Appendix B for a threshold calculation in an actual example. 

8.8 FEEDBACK PROCESSOR 

The task of the feedback processor is to implement the reinforcement learning strategy 

described in Section 7.2.2. It accepts the user feedback in the form of yes or no (i. e. accepts 

a document as useful or rejects it as not useful) and modifies the document representation 

accordingly. The modifications made include: 

1. adding unit-concepts of the query into the document if the document is judged as 

useful; 

2. increasing the weights (rewarding) of the unit-concepts and the keywords that 

helped the rehieval of a document when the document is judged as useful; and 

3. decreasing the weights (penallsing) of the unit-concepts and keywords that helped 

the retrieval of a document when the document is not judged as useful. 

These were already described in Section 7.2.2 for unit-concepts. In addition to the weights 

of unit-concepts, the contributions of matching keywords are also counted for the 

computation of RSV values and therefore they are also reinforced in the same way as 

unit-concepts. Implementation details of rewarding (weight increment) and penallsing 

(weight decrement) weights are described in Section 8.6 and therefore are not repeated 

here. The complete reinforcement learning process with keyword weight learning is 

iI lustrated in Figure 8.10. 

As already indicated, an important feature of the way we use relevance feedback 

information is that the modifications made based on them are retained for later use. We 

expect the document representations to converge to a well representative set of concepts 

(for each document) over time through these modifications. Such a set of concepts, in fact, 

Nvill becomc more custornised to the vocabulary and the writing style of the end users, as it 
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is the concepts of the user formulated queries that are appended into relevant document 

representations. 

An adverse effect of adding all the unit-concepts of queries into the documents judged as 

relevant to them is that it may result in unnecessary unit-concepts creeping into the 

document's representation. Such unimportant unit-concepts are expected to end up with 

low weights in the long run as a result of the weight learning process described above, and 

thus can easily be pruned off. 

8.9 SUMMARY 

Firstly, this chapter presented in detail how pat-of-speech tags, noun (NG), verb (VG) and 

other (OG) chunks, and connecting (prepositional) words were used for extracting objects, 

attributes and their relationships to form unit-concepts. These concepts may not represent 

the content of a document as completely and accurately as a human would perceive it. 

Also, they are far from what can be achieved by manual concept extraction within the same 

FCA formalism. The representation of concepts in the human brain will be even more 

complex than such a formulation. Therefore the results of the implemented prototype 
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might not represent the true power of concept matching and concept leaming. Given the 

deficiencies of automatic concept extraction, we have no choice but to extract concepts 

manually if we are to see the actual performance of concept matching ", ithin the 

framework set out in this research. However, this was not attempted during this research 

due to the high cost of such an attempt. Our goal in this particular task is to extract 

concepts automatically to an extent that is sufficient to demonstrate the potential of 

concept matching. 

Secondly, the implementation detail of concept matching was described. Node or concept 

matching between concept lattices as described in this chapter was found to be a difficult 

task. Direct matching of the most specific query nodes with the most specific document 

nodes is impossible as it is difficult to build a concept lattice which sufficiently represents 

a query due to the inadequate amount of information present in queries and the problem of 

duplicate matches. This made us develop an algorithm to extract candidate concept pairs to 

match between the query and the document. This, as we have found, is sufficient to help 

concept matching despite its considerable expense in ten'ns of computational resources. 

fn addition, the details of the formulae used for weight modifications, RSV calculation, and 

dynamic threshold calculation were given in this chapter. As seen in these fon-nulae, there 

are a number of parameters that can be optimised, but we have used only a selected set of 

values based on the empirical results of preliminary experiments conducted on a small 

document collection. They will need custornising to the environment (document collection) 

as appropriate and optimised for better perfonnances. 

The following chapter evaluates various properties of our model using the results of the 

experimentations of our implementation. Our major interest in those experimentations is to 

evaluate the impact of concept matching and concept learning on retrieval performance 

ovcr time. 
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CHAPTER 9- RIFSULTS AND EVALUATION 

This chapter presents our experiments, results and observations on the experimental 

results. We conducted a carefully designed set of experiments based on the traditional 

evaluation model to examine the effect of individual components of the system, as well as 

the performance of the system as a whole in its full capacity. Two main classes of 

experiments were designed: one based on an "Incremental Learning-Testing" strategy and 

the other based on a "Probe Testing" strategy. Tests based on the first strategy were used to 

evaluate the performance improvements of the system as it gains experience through user 

interactions. The probe testing was used mainly for producing comparable results to 

evaluate the system against published results. The primary test collection used for 

evaluating performance improvements was the Cranfield test collection. The CACM and 

CISI collections were used to produce results for comparison with published results. 

The first part of this chapter presents the test collections used, their detailed properties and 

statistics. The properties desired of a test collection for the purpose of evaluating leaming 

systems, and details of the two testing strategies mentioned above are presented next. 

Individual experiments conducted, their results and observations are given in the latter part. 

In this chapter, the performance of "keyword matching", as used in our system, is 

compared with the performance of other aspects of the system. The "keyword matching" 

discussed here should be distinguished from the traditional keyword matching used in 

conventional keyword-based IR models. In our case a keyword is a constituent component 

of a unit-concept. The way it is extracted and processed is radically different to 

conventional keyword-based systems. We do not explicitly extract each term as a keyword 

from document contents, but keyword extraction is a result of unit-concept extraction. 

Also, we do not use a stoplist for removing non-significant keywords or unit-concepts, and 

terms are not stemmed to obtain their roots. A keyword match takes place only when one 
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of the two constituent components of a unit concept in a query matches with one in a 

document concept (but not both - in this case a unit-concept match takes place). Recall 

that, a term or a phrase that makes a keyword match between a query concept and a 

document concept is pruned out if it participates in a concept match between the same 

query and the document (Section 8.7.3). This is to make sure no feature is counted more 

than once. In addition, the weights of individual components (keywords) of such a 

matching unit-concept are not rewarded (the weight is not increased); only the weight of 

the unit-concept is rewarded. The weight of a keyword is rewarded only if it makes a 

keyword match. Our intention here is only to compare and contrast the effectiveness of the 

two comparison units (entities) used in our model on performance. Therefore, results 

reported here for keyword matching should not be confused and compared with results of 

of conventional keyword-based systems. Also note the alternative use of the terms 

"document collection", "test collection" and "test database" to refer to the same. 

9.1 TEST COLLECTIONS 

There are a number of document collections around for evaluating fR systems. These 

include the Cranfield, Reuters, CACM, CISI, MEDILINE and TREC collections 

(Table 9.1). Compared to the TREC collections, the others are very small in size (in the 

order of less than 5000 documents). Despite the availability of bigger collections such as 

TREC, high computational and storage demands needed for using bigger collections for 

systems evaluation have restricted most researchers to smaller collections. Computational 

demands are severe in the evaluation of learning models (such as ours) compared to static 

IR models, as they (learning systems) need to undergo training before their performance 

can be evaluated. 

Any test collection that is meant for evaluating IR systems should possess: (1) a collection 

of documents, (2) a collection of queries and (3) relevance assessments (i. e. user decisions 

on which documents are relevant to which queries). The larger the collection in terms of 
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the number of documents and queries the better (closer to the reality). The number of 

documents and queries is critical in evaluating learning systems, as they naturally need 

more queries and/or documents so that the collection may be divided into training and 

testing sets. 

Creating a test collection with query-document relevance assessments is a difficult and 

time-consuming task that requires a lot of human effort. Most of the test collections listed 

below in Table 9.1 were created decades ago mainly for the purposes of document 

categonsation or evaluation of static IR systems. Newer collections, such as Reuters and 

some of the TREC collections that have also been designed for document categorisation do 

not contain queries and relevance assessments. No document collection (or corresponding 

Collection Documents Queries Size in Bytes Details MB per Doc. 

LISA 5,872 35 3.4 610 Library and Information Science 
Abstracts 
Titles and abstracts from 
Communications of the ACM 

CACM 3,204 64 2.2 717 journal CACM. Important feature: 
a number of articles reference each 
other 
Document abstracts in library 
science and related areas published 

CISI 1,460 112 2.2 1,526 between 1969 and 1977, extracted 
from Social Science Citation Index 
by the Institute for Scientific 
Information 
Document abstracts in aeronautics 
and related areas, originally used 

Cranfield 200/1,400 225 1.6 1,203 for tests at the Cranfield Institute 
of Technology in Bedford, 
England. 
Articles from the Time magazine's Time 423 83 1.5 3 663 , world news section in 1963 
Document abstracts in 

Medline 1,033 30 1.1 1,079 biomedicine from National 
Library of Medicine 
Document abstracts from library ADI 82 35 0.04 466 
science and related areas 

348,566 References from 270 medical OHSUMED 
references journals over 5 years (1987-1991) 

22,173 No Queries Documents from the Reuters 
Reuters newswire 

21,578 No Queries An improved version 
This has 5 volumes with material 

TREC Huge 4GB from various sources. Relevant 
assessments of documents for 
queries is not complete 

Table 9.1 -. Test Colk)cbons 
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evaluation methodology) seems to have been created specifically for evaluating interactive 

learning systems. Therefore, the present test collections lack certain desirable features 

(given in Section 9.1.1) for evaluating learning systems that adapt to their environment. 

This, together with lack of a suitable evaluation technique, hampers the evaluation of the 

full potential of adaptive IR systems. 

9.1.1 Desired Properties of a Test Collection 

Depending on the target of the IR system, certain specific properties become more 

desirable over certain others. There may be certain properties that are desirable to produce, 

for instance, more robust or more representative evaluation figures, while certain other 

properties may be necessary for specific learning algorithms used by an IR system, and yet 

others may be required to test for specific features of an IR model. Among them, domain 

independency, nature or type of queries and documents (e. g. keyword type quenes or 

natural language queries) and overlaps in documents and queries (i. e. presence of more 

query-document cross relations in relevance assessments) are the major properties that we 

are concemed with. 

9.1.1.1 Domain Independency 

It is best if the documents in the collection are not from a specific domain. In specific 

domains, the meaning of certain domain-specific words may be more precise than they are 

in the general use. Therefore, performance measures obtained on such a domain-specific 

document collection might not represent the true performance of the system as the system 

can be tuned for the specific domain. A system that is tuned for a specific domain is 

unlikely to show a similar performance in another domain. Therefore, one cannot conclude 

that a particular system is better than another based on the perforniance results obtained 

only on one collection. Unfortunately, most of the publicly available collections (including 

Cranfield, CISI, and CACM) are domain-specific (see Table 9.1). The Reuters collection 
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seems to cover a wide range of topics, but lack of queries and relevance assessments have 

prevented it from being used for evaluating IR systems. 

9.1.1.2 Expressiveness 

Test collections that were originally created for evaluating keyword-based retrieval models 

lack adequately expressed natural language queries. In addition, short documents might not 

contain sufficient background information to identify correctly what the document is 

mainly about. The length of a query has drawn much attention of the IR community. In 

particular, present test collections have been crtitisised to have too long queries. This is in 

accordance with the finding that the length of an average (keyword-based internet query) 

query is etween 1.5 to 2.5 words long. However, these findings were mainly based on the 

investigations made on general Internet populations [Silverstein et al. 1998, 

Spink & Xu 2000, Jansen et al. 1998]. The circumstances and context between searches on 

more regular IR systems such as DIALOG and searches on the Web done by the general 

Internet population are known to be very different [Jansen et al. 1998]. A number of other 

studies have shown that the mean number of search terms in the searching of regular IR 

systems is 7 to 15 (find details in [Jansen et al. 1998]). The nature of query processing and 

the facilities provided for query formulation in the IR systems used in these studies may 

have affected the way queries were formulated by the users. However, changes in the way 

queries are formulated and searching is conducted can be expected as more natural 

language interfaces that encourage longer queries are made available [Wolfram 2000]. In 

line with this expectation, our model is designed to work on reasonably well-expressed 

natural language query expressions. Such queries are richer in terms of the semantic 

relationships between words and are naturally longer than the Web queries issued to 

keyword-based search engines. According to the past studies which have indicated that 

longer queries are used by familiar users, such long queries would be more suitable for 

(though not limited to) expert users. Our target, however, is to use such more realistic 

natural language queries with richer semantics. 
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9.1-13 Overlaps 

A primary objective of any learning system and of our system in particular. is that learning 

should trigger the retrieval of previously missed-out (un-noticed) but relevant documents. 

We attempt to achieve this goal by enhancing document representations based on query- 

document interactions, where knowledge acquired by a document through previous query 

interactions is expected to help its retrieval by a subsequent (relevant) query. 

Qrys Does Qrys Does Qrys Does 

One-to-one many-to-one one-to-many 

Figure 9.1 : Different Query-Document Cross Relations 

This important feature cannot be tested if the document collection lacks sufficient 

cross-relations. Medline is an example of a collection in which no document is relevant to 

more than one query (I -to- 1). The diagram given above (Figure 9.1) shows different 

query-document relationships that a test collection might possesses. A collection with more 

many-to-one relations is desired for our learning strategy. 

9.1.1.4 Similar Queries 

The overlaps mentioned above occur mainly as a result of similar information needs. 

Similar information needs may or may not be similarly formulated using the same 

vocabulary. Our learning mechanism is expected to take care of the differently formulated 

queries that are targeted at the same documents. A result of this learning scheme is that the 

system tends to favour queries it has seen before. This is not at all an undesired feature, as 

similar queries do occur in reality. Even humans are better and quicker at answering 

familiar queries in a known context than answering unfamiliar queries. 
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The likelihood of similar queries to occurring has been found to be greater on more regular 

search services compared to Web queries. Based on the results of the analysis of 

approximately one billion queries collected over 43 days from the AltaVista Query Log, 

Silverstein [Silverstein et al. 1998] conjectured that a small set of quenes is repeated many 

times over the course of the day. An average query frequency (over 43 days) is 3.97. 

Twenty five (25) most common quefies formed 1.5% of the total number of queries asked 

in the 43-day period, despite being 0.00000016% of the unique queries. In this study, two 

quenes were considered the same if they contained the same words with the same 

capitalisation, ignoring the word order and operators. Also, Jansen et al. 

[Jansen et al. 1998] give some statistics about modified queries, i. e. a subsequent query in 

succession, created by the same user by adding ten-ns to or removing terms from the 

previous query, and also identical queries issued by the same user. The identical queries 

reported in this study include queries generated by the search engine (Excite) when the 

second and further pages are viewed by the user. Such queries cannot be considered as 

identical queries formulated by the user. The identical queries issued by different users 

were not analysed in this study. In a study on query clustering, Wen and colleagues 

[Wen et al. 2002] analysed 2.7 million user queries (FAQs) directed to the Encarta 

encyclopaedia. A particular result of this analysis placed 66% of queries in 1756 clusters. 

The average number of queries per cluster is 8.24, confirming their hypothesis that many 

users tend to use similar or identical queries. 

The use of relevance feedback (or more like this) and successive searches also account for 

similar queries, in addition to the identical queries created by the users themselves. 

Wolfram [Wolfram et al. 2001] found an increasing trend of the use of relevance feedback 

(5% to 9.7% from 1997 to 1999). An interactive survey conducted by Spink and Xu 

[Spink & Xu 2000] found that many users had conducted two, three or more searches over 

time when seeking information on a particular topic. These results support positively for a 

system's favourable response to quenes similar to the ones it has seen before. 
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9.1.2 Test Collections Used 

After an initial investigation of the document collections for the basic properties, the four 

collections: MED, CISI, CACM and Cranfield (CRAN) were initially chosen for 

evaluating our system. The collection size (TREC - too big, OHSUMEED - too big, 

ADI - too small, TIME -too small) and lack of queries (Reuters) were the major factors 

that caused us to drop the other collections. Further examination of the four chosen 

collections revealed that Cranfield is better in terms of cross-references, and the number 

and nature of queries (natural language query expressions). The MEED collection does not 

possess the desired overlaps or a sufficient number of queries. The CISI is poor in terms of 

expressive natural language queries and number of queries. The CACM lacks sufficient 

overlaps (cross-relations) and has too few queries. Compared to the other three, the 

Cranfield collection has more queries, a greater degree of overlaps and reasonably well- 

expressed natural language queries (see Table 9.2 and Table 9.3 below for comparison 

statistics). Based on these facts, the Cranfield coliection was chosen as our main test 

collection, primarily for the experiments that were aimed at evaluating the performance of 

interactive learning. 

No of 
relev t 

No of Documents 
an 

queries 
CRAN CISI CACM MED 

>10 0 0 0 0N 
10 0 0 0 01 
9 1 1 0 01 
8 2 2 0 0 
7 7 2 0 0 
6 11 10 1 0 
5 1 16 23 8 0 
4 %62 49 16 0 
3 137 114 32 0 
2 271 266 92 0 
1 417 458 406 696 

Table 9.2: Document-Query Cross Relations in Test Collections 

Number of documents 
which are relevant to 
more than three queries 

Note that Table 9.2 above should be read starting from the number of documents. For 

instance, in the Cranfield collection there are 2 documents judged as relevant to 8 queries 

each. 
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Test Collection No. of Words per 
CACM 26.25 
MED 19.63 
CRAN 17.97 
CISI 14.28 

Table 9.3: Word Density in Queries in Test Collections 

9.2 PUBLISHED RESULTS 

When choosing a set of published results to evaluate the comparative effectiveness of an 

IR system, it is best if the results of similar model(s) can be chosen. In particular, we were 

interested in a model that uses the same or similar theoretical concepts (as ours) and learns 

the document representations interactively from experience (adaptive). Nevertherless, we 

were unable to find a set of published results for a model that satisfies all of these 

requirements. But a set of results published by Carpineto and Romano 

[Carpineto & Romano 2000] was appealing to us for two reasons. Firstly, this model is 

based on fon-nal concept analysis and concept lattices, and secondly, the authors have 

given comparative results of three models: (1) a FCA-based model (referred to as 

CLR -Concept Lattice-Based Ranking), (2) a Cluster-based model (referred to as 

HCR - Hierarchical Cluster Based Ranking), and (3) a Best Match model (BMR - Best 

Match Ranking). The implementation of the BMR model is a simple vector-based model in 

which the similarity between queries and documents is computed by taking the inner 

product with cosine nonnalisation between their vector representations. In the 

implementation of the HCR model, similarity between a query and a cluster is computed 

by taking the inner product with cosine normalisation between the query and each cluster 

in the cluster hierarchy. Also, the degree of similarity between documents has been 

detennined by taking the inner product with cosine normalisation, and using the single link 

method (i. e. linking the most similar items together) for cluster formation 

[Carpineto & Romano 2000]. 

Carpineto and Romano have evaluated their model on the CISI and CACMcollections, and 

results reported. A problem with these two collections, however, is that their relevance 
183 



assessments are not complete. They both have queries to which no documents are assessed 

to be relevant. Such queries (with no relevant documents) have been discarded from their 

evaluation. Only the first 35 of the 112 queries of CISI and 52 of the 64 queries of CACNI 

(12 queries do not have associated relevance assessments) have been used. In producing 

comparable results, we used the same performance metrics on the same collections using 

the same queries in our evaluation (Section 9.5.9). However, it should be noted that the 

underlying indexing languages and retrieval criteria are different between Carpineto and 

Romano's implementation and ours. Also note that, the documents as well as some queries 

in the CISI, CACM and Cranfield collections contain information about authors and 

journals (see the example given in Figure 9.2). These were removed from all documents in 

our evaluations, as they do not help creating concepts in our case. 

.11 

.T 
Preliminary Report-International Algebraic Language 

.B 
CACM December, 1958 

.A 
Perlis, A. J. 
Samelson, K. 

.N 
CA581203 JB March 22,1978 8: 28 PM 

Figure 9.2: Fraction of a Document in CACM Collection 

9.3 PERFORMANCE METRICS AND EVALUATION TECHNIQUES 

Since recall and precision formed the basis of the Cranfield tests, a number of perfon-nance 

metrics have been defined based on the notion of "relevance" to support evaluation of IR 

systems. A number of evaluation methodologies/techniques have been suggested using 

those metrics to compare performance of IR systems. The technique, "Precision at II 

standard recall levels (interpolated)", that facilitate the averaging and plotting of P-R 

curves is the most frequently used. Other techniques include Average precision over all 

relevant documents (non-interpolated), Precision at specific retrieval points, R-Precision, 

Fallout Rate, F-Measure, E-Measure, Novelty Ratio, Coverage Ratio, Average Precision 

Histogram etc. The computation of these metrics is primarily based upon binarý, relevance 

judgements, i. e. given a document collection and a query, some documents are relevant to 
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the query and others are not (binary relevance judgments). This (binary) assumption leads 

to derivation of the following four statistical quantities for a given query session. They 

provide the necessary inputs for the computation of performance figures for the precision 

and recall based evaluation metrics mentioned above. 

" The number of relevant and retrieved documents (true positives) 
" The number of non-relevant and retrieved documents (false positives) 
" The number of relevant and non-retrieved documents (true negatives) 
" The number of non-relevant and non-retrieved documents (false negatives) 

We used the Average Precision (non-interpolated) over all relevant documents and 

Precisions at Retrieval Points 5,10 and 20 as our primary evaluation measures. Precisions 

at standard 11-point recall levels were also used to create a few P-R curves. Details of 

these techniques are given in the following sections. 

9.3.1 Precision and Recall Definitions 

No. of Relevant Items Retrieved 
Precision = 

Total no. of Items Retrieved 

No. of Relevant Items Retrieved 
Recall = 

Total no. of Relevant Items in the Collection 

9.3.2 Precision at 11 Standard Recall Levels (Interpolated) 

This is based on calculating precisions for each query at II standard cut-off recall points. 

These cut-off points are determined based on a set of pre-defined percentages taken from 

the total number of relevant documents present in the collection for each query. The II 

standard percentages are 10%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 

100%j. For instance, if there are 3 documents relevant to a given query in the collection, 

then the recall points (cut-off values) x are 0,0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4,2.7 and 

3.0. Precision at a given recall level x is then calculated by going down the ranked 

retneved document list until the x th relevant document is found and then dividing x by the 

position of that document in the rank order. For instance, the recall point is 3 for the recall 

th 
level 100% in the above example and if the third relevant document appears at the 10 
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position in the ranked list, then the precision at the 100% recall level is 3/10. The 

precisions of each individual query at each recall level thus computed are then averaged to 

obtain a mean precision figure to represent the performance of the system at that recall 

level. 

One of the problems with this method is that the cut-off points take fractional values. For 

instance, what does the 0.3 rd relevant document mean in the above example? This probleni 

is tackled by "interpolation" in which those fractional values are mapped (rounded-off) to 

the nearest upper integer. As a result, the precisions at recall levels 0.0,0.3,0.6 and 0.9 are 

all taken to be the precision when the first relevant document is retrieved. This causes 

unrealistic precision figures to be assigned for queries at recall levels with fractional 

values. The problem is severe if there not many documents are assessed relevant to the 

queries. For example, if there are many queries in the collection, say, with only one 

document each judged as relevant, the P-R curves of those individual queries will be flat 

horizontal lines. (Recall, cut-off points are 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 

and the interpolated cut-off point is one (1.0) for each recall level. As a result the precision 

at all standard recall levels will be the same for those queries). 

Despite this deficiency, the P-R curve on standard II -point recall levels is the most widely 

used and accepted technique for comparing the performance between IR systems. 

Although a P-R curve does not show the actual performance of an IR system , it 
does not 

affect too much when the results were computed on the same test collection for the purpose 

of comparing perfon-nance between systems. 

9.3.3 Precision-Recall Graph (P-R Graph) 

The Precision-Recall graph is created using the precisions at the II cut-off values 

described above. Typically these graphs slope downwards from left to right, enforcing the 

notion that as more relevant documents are retrieved, more nonrelevant documents are also 

retrieved. The plots of different test runs can be superimposed on the same graph to 
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detennine which test run is superior. Curves closest to the upper right-hand comer of the 

graph indicate the best performance. Comparisons are best made in three different recall 

ranges: 0 to 0.2 (high precision), 0.2 to 0.8 (middle recall), and 0.8 to I (high recall). 

9.3.4 Average Precision over all Relevant Documents (non-interpolated) 

This is a single-valued measure that reflects the performance over all relevant documents. 

It rewards systems that retrieve relevant documents quickly (highly ranked). The measure 

is not an average of the precision at II standard recall levels. Rather, it is the average of all 

the precision values obtained after each relevant document is retrieved. As an example, 

consider a query to which four documents have been assessed relevant, and that they are 

retrieved at ranks 1,2,4 and 7. The actual precisions obtained when each of the relevant 

documents is retrieved are 1,1,0.75 and 0.57 respectively, and the mean of these is 0.83. 

Thus, the average precision over all relevant documents is 0.83. Usually an average over a 

sample of queries is reported. 

9.3.5 Precision and Recall at Specific Retrieval Points 

Precision computed after a given number of documents have been retrieved is considered 

to reflect the actual measured system performance as a user might see it. Precision at a 

given cut-off retrieval point is computed by taking the average precisions over all the 

topics/queries at that cut-off point. TREC uses 9 retrieval points (5,10,15,20,30,100, 

200,500,1000), but we used only 4 retrieval points (1,5,10 and 20) as they are the most 

important for the user, and retrieval points 5,10 and 20 are the ones Carpineto and 

Romano have used. 

However, a problem with this technique is that it does not reflect the actual performance if 

the collection does not have as many relevant documents Oudged as relevant for a given 

query) as the value of the retrieval point. For instance, assume that there is only one 

document in the collection judged as relevant to a given query and that this document is 

ranked at the top in the retrieved list. The precisions of this query at the retrieval points 1, 
187 



5,10 and 20 are 1,1/5,1/10 and 1/20 respectively. The precision fipres obtained for this 

query at retrieval points 5,10 and 20 do not give a correct impression of the effectiveness 

of the retrieval despite the fact that the only document relevant to the query has been 

retrieved. In fact, not many queries in the three collections we used have 20 relevant 

documents. Usually, precisions at retrieval points are given together with recalls at the 

same retrieval points. Recall at retrieval point x (for a given query) is computed as the 

number of relevant documents within the top x retrieved documents divided by the total 

number of relevant documents present in the collection (for the given query). Typically, 

averages over a sample of topics (queries) are reported. 

9.4 TRAINING-TESTING STRATEGIES 

Evaluating learning systems requires that systems be trained prior to testing for producing 

performance figures. Common practice in machine learning has been to divide the sample 

data set into two halves: one set to be used for training and the other for testing. Since the 

data points in the test set are not shown to the system during training, this method allows 

the system to be tested on unseen data. However, in order to produce representative 

performance figures, the set of data points should be distributed between the training and 

testing sets in such a way that they both equally represent the domain space. 

In our case, it is the set of queries that act as inputs to our learning system. Therefore, it is 

the set of queries that is to be split between training and testing sets, if we are to follow the 

above mentioned Training-Testing evaluation strategy. However, this strategy, in its 

original form, is not suitable for evaluating an interactively learning system or for 

producing comparative results, because: (1) it is designed for training systems once (only) 

before the system is put in operation; and (2) it does not allow the production of results 

based on testing all data points. Therefore, we used three different strategies here: 

(1) Incremental Learning- Testing strategy for evaluating the perfon-nance of the system as 

it gains experience; (2) a Probe Testing strategy for producing perfonnance figures based 
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on testing all queries for the purpose of comparing them with published results; and 

(3) Full-Training Full-Testing strategy for examining the performance of the system on 

queries that the system has seen (learnt) before. These strategies are described in detail in 

the following sections. 

9.4.1 Incremental Learning-Testing Strategy 

9.4.1.1 Methodology 

The main objective of this test strategy is to examine how the experience gained through 

user interactions affects the performance of the system. This was achieved by first splitting 

the set of queries into two sets (training set and testing set) and then training the system on 

a (cumulative) subset of the queries in the training set at each training session. The system 

is tested on all test queries at the end of each training session. This means that the system 

undergoes a number of training-testing phases during its evaluation process. At each 

subsequent training session, a set of (new) queries (which were not used in the previous 

phases), picked randomly from the full set of training queries, are added into the actual 

training subset. The number of training-testing phases required for producing one set of 

performance figures depends on the number of queries in the full training set and how 

many new queries are added to the actual training set at each training session. The more 

training-testing phases there are, the better. But this requires a greater number of queries in 

the full training set. 

9.4.1.2 Splitting Queries between Training and Testing Sets 

Splitting the query set into training and testing tests so that they both equally represent the 

full set of queries (query space) in tenns of desired properties is a difficult task. This 

includes deciding which features or properties of queries should be considered for equal 

distribution, how many queries should go in the training set and how many in the testing 

set etc. There are 225 queries in the collection we used (Cranfield) in all tests that were 

conducted according to this strategy, and out of them 65 queries were used for testing and 
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160 queries for training. More queries were placed in the training set simply because we 

needed more queries to create more training-testing sub sessions. 

No. of relevant 
documents (x) 
(Category) 

No. of 
Queries 
with x no. of 
relevant 
documents 

% of 
queries 
with x no. 
of relevant 
documents 
in the 
collection 

No. of 
Queries for 
test set (out 
of 65) 

Actual no. 
oftest 
queries 
taken 

<=2 6 2.67 1.73 2 
3 29 12.9 8.38 8 
4 19 8.44 5.49 6 
5 26 11.6 7.51 8 
6 28 12.4 8.09 8 
7 21 9.33 6.07 6 
8 15 6.67 4.33 4 
9 14 6.22 4.04 4 
10 15 6.67 4.33 4 
11 8 3.56 2.31 2 
12 7 3.11 2.02 2 
13 5 2.22 1.44 1 
14 5 2.22 1.44 1 
15 9 4 2.6 3 

Between 15 & 20 12 5.33 3.47 4 
>=20 6 2.67 1.73 2 
Total 225 65 

Table 9.4: Query-Document Overlaps and Selection of Test Queries 

Queries were divided between the training and testing sets based on their degree of overlap 

in relevant assessments, as this is the most important factor that helps interactive learning 

in our model. The degree of overlap was measured in terms of the number of documents 

assessed as relevant to each query. A proportionate number of queries were randomly 

selected from each set of queries that has the same degree of overlap (see Table 9-4). 

The number of queries picked from each category for testing is shown in the above table 

(Table 9.4), and the actual queries thus picked up for testing are given below. The rest of 

the 160 queries were used for training. 

Test Queries: 

[2,6,10,12,14,18,21,24,26,29,31,34,36,41,46,48,53,57,61,64,679 72,769 79,82, 

85,88,91,94,97,101,103,106,110,115,118,122,126,128,133,139,142,145,150, 

154,157,159,163,166,170,174,178,181,184,186,191,194,200,203,205,207,211, 

214,218,222] 
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Although, this gives a fairly representative set of queries for testing in terms of cross- 

relations, it does not guarantee that the queries are equally distributed (between the training 

and testing sets) in terms of their similarity (i. e. the use of the same vocabulary). The 

resultant test and training sets were also expected equally to represent the query space in 

terms of their expressiveness in natural language, though no effort was made to enforce 

this. 

9.4.1.3 Training (Sub) Sets and Testing Process 

A training (sub) set for each training phase was created by adding 40 randomly selected 

queries from the full training set (of 160 quenes in Cranfield) into the training set used at 

the previous training session. No query was picked more than once. So, the number of 

queries trained at the first training phase was 40, at the second phase 80 (previous 40 + 

new 40), at the third phase 120 (previous 80 + new 40) and at the final phase 160. Each 

query was iterated 20 times at each training session (in all the experiments except for those 

cases where the number of iterations were irrelevant). The order of presentation of the 

queries to the system was random. At the end of each training session, the system was 

tested with the 65 test queries, and the similarity measures and the numbers of unit-concept 

matches and keyword matches were recorded for each query-document pair. 

9.4.1.4 Incremental Learning-Testing Experiments 

A number of tests were conducted according to this test strategy for the purpose of testing 

the impact of different aspects (components) and their combinations on the performance of 

the system. The two comparison or matching entities (i. e. unit-concepts and keywords) and 

the three components of the learning strategy (i. e. concept addition, unit-concept weight 

learning and keyword weight learning) were the main components of the system. 

Consideration of these components left us with a number of possible combinations to be 

tested. Table 9.5 shows tests and the components used in each test run. The same test 

queries (65) and the training queries (160) stated above were used in all these tests. The 
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results of the tests were combined in a number of charts (in Section 9.5) to compare the 

effectiveness of the various components of the system. Also, the results were statistically 

analysed for the significance differences between each case/test (refered to as "technique"). 

Matching Entity 
Concept Keyword 
Matching Matching 

Learning Components 
Concept Concept Keyword 
Addition Ltarning Ltarning 

Comment 

Test I x 
Test2 x x 
Test3 x x 

x x No Use 
Test4 x x x 

x x x Same as Test2 

x x x Same as Test3 

x x x x Same as Test4 
Test5 x 
Test6 x x 

x x No use 
Test7 x x 

x x x Same as Test6 
Test8 x x x 

x x x Same as Test7 
Test9 x x x x Same as Test8 
Test 10 x x 
Test II x x x 
Test 12 x x x 
Test 13 x x x 
Test 14 x x x x 
Test 15 x x x x 
Test 16 x x x x 
Test 17 x x x x x 

Table 9.5: Experiments on Incremental Leaming-testing 

9.4.2 Probe Testing 

9.4.2.1 Methodology 

Probe testing is a technique used for testing learning systems especially when not enough 

data points are available to split between training and testing sets. It consists of a number 

of training-testing sessions. At each session, a pre-decided (usually small) number of data 

points are left out from the full data set and the rest are trained to the system. The data 

points that were left out from training are used as testing inputs to test the system at the end 

of each training session. No data point is left out from more than one training session i. e. 

no data point is tested more than once), and training-testing sessions are repeated until all 
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the data points are tested. The smaller the number of data points left out (at each training 

session) the better, as this allows the system to learn from more samples. A special case of 

probe testing, known as Leave-one-out testing, leaves only one data point out from training 

at each session. An interesting feature of probe testing is that it allows all data points to be 

tested, rather than a subset of them. This was an appealing feature for us, in particular, for 

producing comparative results. The set of published results, with which we compare ours, 

has been produced based on the (average) performance of all the queries, not on a subset of 

them. 

However, a major disadvantage of probe testing is that it requires the system to undergo a 

number of training-testing sessions. This is a computationally very expensive task that can 

take weeks or even months, depending on the size of the data set and the amount of 

processing required in each training iteration. For example, testing our system on the 

Cranfield collection took about 45 days on a 1.5 GHz PC, when 9 queries were left out 

lr__ - trom training (to be used for testing) at each session and when each query was iterated 50 

times at each training session. The complexity of this training is 

50 x (225 - 9) x 25 = 270,000 in terms of the number of query iterations (where 25 is the 

number of training sessions needed to cover all 225 queries when 9 queries are left out at a 

time). At each training iteration, each training query is compared with 1400 documents, 

which requires 1400 document lattices to be set up, candidate query-document concept 

pairs to match between to be extracted, a similarity measure for each query-document pair 

to be computed, and retrieved documents to be reinforced. Thus, the complexity is 

270,000 x 1400 = 378,000,000 in terms of query-document interactions. For this reason, 

probe testing was not conducted to examine the performance of different aspects of the 

system, as was the case with interactive leaming-testing, but only to produce the 

performance measurements of the system with all its components in place. 
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9.4.2.2 Probe Testing Experiments 

Three tests were camed out (one on each of CISI, CACM and Cranfield) according to the 

probe testing strategy using the full capacity of the system (i. e. using both concept and 

keyword matching and all three learning components). The numbers of queries left out 

from learning at each training session (to be used for testing) were 9 for Cranfield, 2 for 

CACM and I for CISI. This made the test on Cranfield to have 25 (=225/9) training-testing 

sessions, CACM to have 26 and CISI to have as many training-testing sessions as the 

numbers of queries considered (i. e. 35). Each training query was presented (in a given 

training session) 20 times (i. e. 20 iterations). The selection of queries for leaving out from 

training at each training session was done randomly, and the order in which training 

queries were presented to the system was also made random in order to make sure that the 

presentation order does not affect perfon-nance figures. 

Note that, the set of published results chosen for comparison with ours contains results 

obtained on the CISI and CACM collections only. However, since these two collections do 

not possess the desired features/pro pert i es (Section 9.1.1) for testing learning systems of 

our kind, our system was tested on the Cranfield collection as well (Table 9.23, Table 9.24 

and Table 9.25). Table 9.6 lists the individual tests conducted according to the probe 

testing strategy. 

Test 
Features / 
Components 
Used 

Test 
Collection 

Queries Left 
Out from 
Training 

Training 
Iterations 

Test 18 All clsi 1 20 
Test 19 All CACM 2 20 
Test20 All Cranfield 9 20 

Table 9.6 - Expedments on Probe Testing 

9.4.3 Full-training and Full-testing 

9.4.3.1 Methodology 

The airn of this test strategy was to measure the performance of the system on queries that 

it has already seen (i. e. learnt) before. This is achieved by simply training the system with 

all queries, and then testing the system on the same (trained) set of queries. One might 
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expect a near perfect, if not 100%, retrieval accuracy when the same quenes that were 

shown to the system during training are tried, because the relevant documents have been 

reinforced with all the corresponding query concepts (i. e. all query concepts are added to 

the relevant documents, and the weights of the unit-concepts common to the queries and 

relevant documents are rewarded during training). This, however, is not always the case 

due to three major reasons: (1) no system could recall all relevant documents, (2) conflicts 

in relevance assessments, and (3) the presence of common concepts. These problems make 

100% retrieval accuracy an impossible task. Therefore, it will be interesting to see how far 

our approach can cope with those problems, and improve performance on seen queries. 

9.4.3.2 Full-training Full-testing Experiments 

Three tests were conducted according to the ftill-training full-testing strategy, one on each 

of the three collections: Cranfield, CISI and CAM At each test, all the queries of the 

respective collection were shown to the system for 100 iterations (in total), and the same 

set of queries (all queries in the collection) were tested after a pre-decided number of 

training iterations (5,10,20,30,50,75 and 100). The following table (Table 9.7) lists the 

details of the three individual tests. 

Features/ 
Components 
Used 

Test 
Collection 

Training 
Iterations 

Test2l All CIS1 100 
Test22 All CACM 100 
Test23 All Cranfield 100 

Table 9.7: Expedments on Seen Quedes 

9.5 RESULTS 

9.5.1 Effect of Learning on Performance 

In the following, the precision averages of Test17 were plotted against a number of 

training queries (Figure 9.3) to observe the performance of the system in its full capacity. 

Figure 9.4 plots average precisions at retrieval points 1,5,10 and 20 to see the consistency 

of the perfonnance at different retrieval points. P-R curves were produced on the results of 
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testing at the four levels of training, (Figure 9.5) to see the improvements of precisions 

during training. 

Average Precisions over Training 
0 36 

0 34 
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0.3 
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Figure 9.3 : Average Precisions over Learning 
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Figure 9.4: Average Precisions over Learning at Different Retrieval Points 

Figure 9.3 shows that the perfon-nance of the system (i. e. average precisions (non- 

interpolated)) increases considerably during training. Note that, the performance gains at 

ditTerent parts of the curve vary depending on the amount of learning taking place at each 

training session and how much that learning helps in retrieving relevant documents for test 

queries (Figure 9.16 in Section 9.5.5 shows that the curves of the same test at different test 

runs are different). Figure 9.4 shows that not only the overall performance given by 

average precisions, but also perfomiances at retrieval points 1,5,10 and 20. are increased 
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Figure 9.5 : P-R Curves at Different Levels of Learning 

consistently. Also, Figure 9.5, which plots the P-R curves of test results obtained at the end 

of each training session, highlights the same performance increases, and confirrns that the 

performance of the system increases over training. This, however, is a combined result of 

both concept and keyword matching with all three learning components of the system. The 

contribution of individual components towards this result is further analysed in the 

following section. 

9.5.2 Contribution of Learning Components 

Given below are the results of tests 2,3,4,10 and 17 plotted in one chart (Figure 9.6) to 

see the performance gains given by different learning components. A random baseline, 

computed by arranging the documents in a random order for each test query, is also plotted 

in the same graph. The aim of these plots was to show that the performance of the system 

improves as each training component is added. Eexcept for Testl7, all tests (i. e. tests 

2,3,4 and 10) used concept matching only (no keyword matching). In addition to overall 

average precisions, the average precisions at retrieval points 1,5,10 and 20 of the swne 

tests were also plotted in the 4 charts given in Figure 9.7 to show the performances at those 

retrieval points. 

89 10 
Recall Levels 
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Observations 

As can be seen in Figure 9.6, concept matching alone without any learning component (the 

flat curve/line) is not of much use. The problems with concept extraction, and mismatches 

caused by the vocabulary differences and word ambiguity in natural language are the main 

causes of the poor performance of concept matching (only). These problems are severe in 

our case (concept matching) compared to simple keyword matching. Concept extraction is 

more complex and difficult, as it needs identification of a semantic relation or some 

connection between two terms or phrases to interpret them as an object and attribute pair. 

The term mismatch problem is doubled in concept matching, because a concept match 

needs both the object and attribute constituents of a query concept (unit-concept) to match 

with an equivalent in a document. 

Contribution of Learning on Performance 
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Both Concept & Keyword Matching with Full RL (Test'l 7) No. of Training Queries Concept Matching only with Concept Addition & Learning(Test4) 
Concept Matching Only with Concept Learning Only(Test3) 
Concept Matching Only with Concept Addition Only(Test2) 
Concept Matching only with no leaming at all (Test 10) 

-Random Baseline 

Figure 9.6 : Contribution of Learning on Performance 

A5x5 within subjects analysis of variance (ANOVA) was performed on the performance 

figures of 5 tests each with 5 training levels. Note that the baseline was not included in the 

computation of ANOVA as it is clearly much lower from the rest. Instead of the Random 

Baseline, performance of the system with no prior learning could be considered as the 
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baseline, as our objective here is to compare the performances between different learning 

components. 

Repeated Measures Analysis of Variance 
Sigma-Restricted parameterization 
Efective hy othesis decomposition 

Effect SS Degree of 
Freedom MS F P 

Intercept 98.15935 1 98.15935 102.0559 <0.0000 I 
Error 61.55643 64 0.96182 
Technique(Test) 1.04141 4 0.26035 6.6482 <0.0000 I 
Error 10.02522 256 0.03916 
Training Level 0.53715 4 0.13429 9.3826 <0.0000 I 
Error 3.66396 256 0.01431 
Technique *Training 
Level 

0.44668 16 0.02792 3.8166 <0.0000 I 

Error 7.49032 1024 0.00731 
Table 9.8 : ANOVA on the Results of Tests 2,3,4,10 and 17 

As expected, there were significant main effects of both: Technique (test), F4,256=6.648, 

p<0.0001; and Training Level, F4,256=9.3826, p<0.0001). The interaction between 

Technique and Training Level was also significant, F16,1024 3.816, p<0.0001). The 

ANOVA is given in Table 9.8. The follow-up analysis conducted by using the Tukey 

Honest Significant Difference (HSD) test revealed that the differences between tests are 

present mainly at the later training levels (training levels 4 and 5). Table 9.9 gives a 

fraction of the results of the Tukey HSD test for comparing individual pairs of points of 

Test 17 with other four tests, at training level three and above. 

Tukey (HSD) test. Approximate Probabilities for Post Hoe Tests 
Error: Within NIS = 0.00731, df =1024.0 

Comparison Pair of 
Training Levels 

tests/techniques Training Leve13 Training Leve14 Training Leve15 
(80 Queries) (120 Queries) (160 Queries) 

Test 17 and Test4 0.663145 0.031214 0.000028 
Test 17 and Test3 0.063944 0.000019 0.000019 

Test 17 and Test2 0.015393 0.000019 0.000019 

Testl7andTestIO 0.000037 0.000019 0.0000 19 

Table 9.9 : Probabilities of Follow-up Tukey HSD Analysis on the Results of Tests 2,3,4,10 and 17 
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According to the probability figures of Table 9.9, the perfon-nance of "both matching" 

(i. e. Testl 7) is significantly different to the other four tests at training levels 4 and 5. Except 

with Test4 and Test3, it is significantly different to other tests (i. e. tests 2 and 10) at 

training evel3 too. 

The results of the system, using the concept weight learning and concept addition 

components each alone, have shown only marginal improvements (Figure 9.6). Concept 

weight learning does not (and it is not expected to) solve the two main causes of the poor 

perfon-nance stated above. Although concept addition helps documents to learn (through 

user interactions) the different ways that users might refer to them (i. e. learn from 

experience), and thereby helps both the word mismatch problem and poor concept 

extraction, it has not shown a significant improvement. This is mainly because these results 

were produced by testing unseen queries. The lack of sufficient overlaps in the collection 

(i. e. the use of the same unit-concepts to represent similar documents) does not help the 

retrieval of a document by a query as a result of the document being reinforced (updated) 

by another query (this is the main objective of our learning strategy). However, it is 

interesting to observe that they both show, though small, increasing trends in performance. 

As a result of improvements of each component, their combination shows even greater 

improvement. 

Finally, the curve of Test 17 in Figure 9.6 shows that taking keyword matching into account 

helps to improve performance. The reasons for this are: (1) keywords help the initial 

picking up of documents for reinforcing; and (2) keyword matches, that take place in the 

absence of unit-concept matches, help increase the similarity scores (RSVs) of documents, 

thus helping the system to rank the documents, with more features common to the query,, 

above the documents with fewer features. The second point is valid only if more keyword 

matches occur with relevant documents than with non-relevant documents -a well-known 

observation in IR [Krovetz & Croft 1992, Savoy 1997]. Although no experiments were 
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targeted at examining the validity of this feature, the improvements shown by the system 

with keyword matching demonstrates its validity. 

Except in the case of precisions at retrieval point one, we see better results for concept 

matching, when both concept addition and concept leaming were taken into account 

Average Precision at Retrieval Point 1 

053 

40 
0,48 

043 

0.38 

Average Precision at Fbtrieval Point 10 

0.26 

0.24 

CL U. 22 
6 
:10.2 

4c 

0.18 

0.16 
120 160 

No. of training Queries 
120 160 

No. of training Queries 

(charts in Figure 9.7). This is in addition to the case of the system's performance in its full 

capacity (i. e. using all the components). Although higher precisions were shown by the 

cases "concept learning only" and "concept addition and concept learning" at the early 

stages of learning (as shown in the top two charts of Figure 9.7), the results of the system 

with its full capacity outperforms them as the system gains more experience. These charts 

evidence that the better performance shown by concept matching with both learning 

components (seen in Figure 9.6) is not just an arbitrary result, but is consistent with the 

results of the system at different retrieval points. They also show that concept matches are 

superior in finding a few relevant documents (better precision). 

Average Precision at RDtrieval Point 5 

80 120 160 

--I 
No. of training Querlei 

Average Precision at Retrieval Point 20 
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9.5.3 Effect of Learning Components on the two Matching Entities 

The aim of the following two charts was to see how the different learning components and 

their combinations affect each matching entity. The results of Test 1, Test2, Test-3 and 

Test4 were used in the first chart (Figure 9.8), and the results of Test5, Test6. Test7 and 

Test8 were used in the second chart (Figure 9.9). Two 4x5 ANOVAs (one for each chart) 

were perfon-ned on the data (test results) to analyse the main effects and interactions. 

4 

týh 

Performance of (only) Concept Matching 
with Different Learnint! Comt)onents 
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. 
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10 2 510 ý4,6 
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s with Concept Addition and Concept Learning (Test4) 
with Concept Learning Only (Test3) 
vvith Concept Addition Only (Test2) 
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No. of Training Queries 

Figure 9.8 : Contribution of Learning Components on Concept Matching Only 

3 

According to the ANOVA performed on the results shown in the charts in Figure 9.8, no 

significant main effect is detected in either variable, but an interaction exists 

(F12,768==1.8924, p=0.032) between them. The follow up Tukey HSD tests show significant 

differences only between Test4 and Testl at training levels 3,4 and 5. A fraction of the 

resultant probabilities of the follow-up Tukey HSD test is given in Table 9.10, for the 

purpose of comparing significances between tests at training levels 3 and above. 

Comparison Pair Trn. Lev3 
80 ueries) 

Trn. Le" 
0 20 Queries) do 

Trn. Lev5 
(160 Queries) 

Test4 and Test') 0.9944334 1 

. ... - . - 

0.177731 0.990571 

Test4 and Test2 0.855681 0.11 33576 0.862363 

Test4 and Test 1 0.005234 0.000044 0.000141 

Test3 and Test-) 1.000000 1.000000 1.000000 

Test3 and Test 1 0.475850 0.477375 0.076535 

Test2 and Test 1 0.881770 0.608546 0.287287 

Table 9.10 : Probabilities of Follow-up Tukey HSD Analysis on the Results of Tests 1.2,3 and 4 
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1 

Performance of (only) Keyword matching 
with Different Learning Components 

According to the ANOVA performed on the results shown in the charts in Figure 9.9, there 

were significant main effects of both: Technique, F3,192= 4.4208, p=0.0049; and Training 

Level, F4,256=9-9835, p<0.00001. Also, the interaction between them was significant, 

F12,768=3.2692, p=0.00012. The follow up Tukey HSD test was performed (for point wise 

comparison), and the probabilities necessary to compare each test (technique) with each 

other at training levels 3 onwards are given in Table 9.11. 

Comparison Pair Trn. Lev3 
(80 Qreries) 

Trn. Lev4 
(120 Queries) 

Trn. Lev5 
(160 Queries) 

Test8 and Test6 0.953242 0.970069 0.807846 
Test8 and Test7 0.034604 0.344702 0.044802 
Test8 and Test5 0.002894 0.000043 0.000042 
Test6 and Test7 0.960830 0.999965 0.998158 
Test6 and Test5 0.622352 0.003277 0.000502 
Test7 and Test5 1.000000 0.1 -35298 

0.1051 

Table 9.11 : Probabilities of Follow-up Tukey HSD Analysis on the Results of Tests 5,6,7 and 8 

According to the probabilities given in Table 9.11 for the respective pairs of points, 

-Keyword Matching with Concept Addition and Concept Learning" (Test8) is not 

significantly different from "Keyword matching with Concept Addition Only" (Test6) at 

any of the training levels. It differs from -Keyword Matching with Keyword Leaming 

Only"" (Test7) at training levels 3 and 5. and from "Keyword Matching with No Learning" 
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(Test5) at training levels 3,4 and 5. In addition, Test6 is found to be significantly different 

to Test5 at training levels 4 and 5. An interesting observation, according to the sIgnIficant 

differences found between "Keyword Matching with Keyword Learning only" (Test7) and 

"Keyword Matching with No Learning" (Test5), is that as keyword weights are learned 

ftom experience, the system performs significantly better. 

The above two charts, in general, show that combining learning components gives better 

mean performance results for both concept matching (only) and keyword matching (only). 

This result further confirms that the better performance shown by Test 17 in Figure 9.3 is a 

combined result of all learning components on both "concept matching" and "keyword 

matching", rather than a result of one or a few particular components of the system. 

The performance gain shown by the system with only the keyword learning component 

(i. e. Test7) is also interesting. The keyword matches at each test session were the same in 

this case, as it is the same set of queries that were tested on the same collection, and no 

concepts (and hence no keywords) were added to the documents by learning. Despite the 

fact that no additional keyword matches have taken place during training, the results have 

improved. This is solely due to keyword weight leaming. This mean, learning seems to 

have assigned higher weights to keywords that are significant, at least in terms of their 

discriminating power. 

However, not all of the keyword matches that take place during testing for the case 

"keyword matching only", are considered as keyword matches when "both keyword and 

concept matches 119 are taken into account. The keywords that participate in concept matches 

are not treated as keyword matches in the later case, and are pruned out. Therefore, the 

result of the case with "keyword matching and concept matching" is not the same as the 

sum of the individual cases of "concept matching only" and "keyword matching only". 
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9.5.4 Impact of Matching Entities on each Learning Component 

The aim of the charts given under this section is to see the impact of individual leaming 

components on each matching entity. The results of the same tests, discussed in the above 

section (Section 9.5.3), were used here, but they were organised differently in order to 

compare the perfon-nance of "concept matching", "keyword matching" and both of them 

together, on a given individual learning component (or on a given combination of them) at 

a time. As before, ANOVAs were performed on the corresponding results of the tests to 

analyse statistically the differences between each case (technique). 

9.5.4.1 Impact of Concept Addition 

Impact of Concept Addition 
0 Both Matching jestlýl) 
6 Concept Matching Only (Test2) 

njý to) Keyword Matching Only (Testc6z) 

ý30 

0.27 

0.24 

> 

. 2- 

6 4'0 io lio 140 

No. of Training Queries 

Figure 9.10 : Impact of Concept Addition 

According to Figure 9.10, keyword matching seems to outperform concept matching in the 

case when only the concept addition component is taken into consideration. The main 

reason for this could be insufficient learning caused by the inadequate number of quenes 

and inadequate expressiveness in queries for leaming. Since these results were based on 

testing unseen queries. the chance of more concept matches taking place is less if queries 

similar to testing (unseen) queries have not been learnt by the system. Although there are 
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cross relations (overlaps) in the test collection, those queries that are assessed as releN, ant to 

a given document may have not been formulated in a similar way to each other (i. e. they 

may not share the same concepts). Therefore, concept addition leads more keyword 

matches to take place, than concept matches (with relevant documents). On the other hand, 

both "concept matching only" and "keyword matching only" show significant performance 

increases over training and hence best performance is shown when both of them are used 

in combination (curve on Testl 1). 

The results of significance testing performed with a3x5 within subjects analysis of 

variance (ANOVA), given below in Table 9.12, indicates no main effect of the Technique 

(tests). But there is a main effect of Training Levels. Since, no significant interation 

between these two were indicated, no follow up tests were performed. 

Repeated Measures Analysis of Variance 
Sigma-Restricted parameterization 
Efective hypothesis decomposi ion 

Effect SS Degree of 
Freedom MS F P 

Intercept 60.09127 1 60.09127 105.5956 <0.0000 I 
Error 36.42048 64 0.56907 
Technique(Test) 0.24656 2 0.12328 2.2677 0.107697 
Error 6.95845 128 0.05436 
Training Level 0.50607 4 0.12652 9.6161 <0.0000 I 
Error 3.36813 256 0.01316 
Technique *Training 
Level 0.10678 8 0.01335 

I 
1.3204 0.230591 

I 
Error 5.17571 512 0.01011 1 1 

Table 9.12: ANOVA on the Results of Tests 2,6 and 11 

9.5.4.2 Impact of Concept Weight Learning 

Concept weight learning affects concept matching only (not keyword matching). 

Therefore, the contribution of concept matching is the same in the two cases plotted (in 

Figure 9.11). Nevertheless, "Both Matching" shows a slightly better result, on average, due 

to the additional keyword matches that it takes into account. The statistical analysis 

performed with a2x5 within subjects ANOVA (Table 9.13) shows a main effect of 

Training Level. No interaction between the two variables was found. 
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Figure 9.11 : Impact of Concept Weight Learning 

An interesting observation, however, is that the concept weight learning has helped to 

improve the system's perfon-nance. As the concept matches between the test queries and 

the documents are the same in this case, as a result of no new concepts being added to the 

document representations, the performance increment shown is solely a result of concept 

weight leaming. 

9.5.4.3 Impact of Keyword Weight Learning 

Repeated Measures Analysis of Variance 
Sigma-Restricted parameterization 
Efective hypothesis decomposi io 

Effect SS Degree of 
Freedom NIS F P 

Intercept 36.84508 1 36.84508 89.48792 <0.0000 I 
Error 26.35088 64 0.41173 
Techniquejest) 0.00148 1 0.00148 0.0 6_3 25 0.802234 
Error 1.49983 64 0.02343 
Training Level 0.12953 4 0.03238 8.72784 <0.0000 I 
Error 0.94980 256 0.00371 
Technique* Training 
Level 0.00881 

I 
4 

I 
0.00220 

I 
0.020603 0.934929 

I 
Error 2.73569 1 256 1 0.01069 1 1 

Table 9.13 : ANOVA on the Results of Tests 3 and 12 
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Figure 9.12 : Impact of Keyword Leaming 

The contribution of keywords is the same in both cases plotted in Figure 9.12 as no new 

keyword matches take place on testing over training. However, as can be seen in 

Figure 9.12, the system seems to perform better in the case with "both matching" due to 

additional (original) concept matches that take place in this case (compared to the case 

with keyword matching". Also, both curves show increasing trends over training queries 

(experience), meaning that keyword weight learning helps improving performance. 

Repeated Measures Analysis of Variance 
Sigma-Restricted parameterization 
Efective hvpot esis decomposi ion 

E ffect SS 
Degree of 
Freedom 

MS IF P 

Intercept 36.88214 1 36.88214 119.7826 <0.0000 I 

Error 19.70617 64 0.30791 

Technique(Test) 0.06535 1 0.06535 2.1546 0.147043 

Error 1.94128 64 0.03033 

Training Level 0.22164 4 0.05541 8.4101 <0.0000 I 

Error 1.68663 256 0.00659 

Technique* Training 
Level 

0.01940 4 0.00485 0.9410 0.440736 

Error 1.31964 256 0.00515 

Table 9.14: ANOVA on the Results of Tests 7 and 13 
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The statistical analysis perfon-ned with a2x5 within subjects ANOVA (Table 9.14) shows 

that a main effect exists only on Training Level (i. e. two curves are not significantly 

different). No interaction was found between the two variables, Technique and Training 

level. 

9.5.4.4 Impact of Concept Addition and Concept Weight Learning 

Impact of Concept Addition 
and 

Concept Weight Learning 
0 Both Matching(Test'14) 
6 Concept matching Only(Test4) 

Keyword Matching only (concept learning 
does not aoolv to this case) (Test6) 

0330 

. 3- 
0.272 

--4 lo- 
--q 

0. 

> 

0.216 

4ý 

- 

0 ýO io 1ý0 160 
No. of Training Queries 

Figure 9.13 : Impact of Concept Addition and Concept Weight Leaming 

A better improvement is shown for the case of "both matching", in particular at training 

level5 when both concept addition and learning were considered. This is a result of 

improvements made by concept addition on both "keyword matching and concept 

matching" (Figure 9.10) and "concept weight learning" on concept matching (Figure 9.11). 

It seems that the curve of "both matching" tends to depart from the curve on "keyword 

matching only", beyond the training level3. Also, the performance increases shown by 

"keyword matching only" (Test6) as the system learns is interesting despite the fact that 

concept weight learning does not help keyword matching at all. This is a result of more 

keyword matching taking place as more concepts are added (as noticed before). In 

addition, -concept matching with concept addition and concept learning" (Test4) has 

performed as well as keyword matching (Test6). 
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The statistical analysis perfon-ned with a3x5 within subjects ANOVA (Table 9.15) shox 

a main effect only on the Training Level (but not on the Technique). No interaction was 

found between the two variables. 

Repeated Measures Analysis of Variance 
Sigma-Restricted parameterization 
Efective hypot esis decomposi ion 

Effect SS Degree of 
Freedom MS F P 

Intercept 62.77500 1 62.77500 111.3542 <0.0000 I 
Error 36.07947 64 0.56374 
Technique(Test) 0.14877 2 0.07438 1.3842 0.254237 
Error 6.87827 128 0.05374 
Training Level 0.74328 4 0.18582 10.4127 --0.00001 
Error 4.56840 256 0.01785 
Techn iq ue *Training 
Level 0.08182 8 0.011023 0.8233 

I 
0.582245 

I 
Error 6.36040 512 0.01242 1 1 

Table 9.15: ANOVA on the Results of Tests 4,6 and 14 

9.5.4.5 Impact of Concept Addition and Keyword Weight Learning 

Figure 9.14 shows improved performance of all three cases over training. Since concept 

addition has only a little effect on (only) concept matching (as noticed before in the case of 

concept addition only in Figure 9.10), due to insufficient leaming, the curve for concept 

matching shows only a little effect. Note that, keyword learning has no effect on concept 

Impact of Concept Addition 
and 

Keyword Weight Learning 
. 5- 

0 Both Matching (test15) 
Keyword matching only (Test8) 
Concept Matching only (keyword Learning do not affact to this case) (Test2) 
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Figure 9.14: Impact of Concept Addition and Keyword Weight Learning 
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matching. On the other hand, keyword matching has shown a better improvement over 

training due to concept addition and keyword weight learning. 

A3x5 within subjects ANOVA was perfonned to analyse the data statistically. There 

were significant main effects of both: Technique (test), F2,128=5.0427, p=0.0077; and 

Training Level, F4,256=12.8268, p<0.00001. The interaction between Technique and 

Training Level was also significant in this case, F8,512=2.6347, p=0.0077. Table 9.16 shows 

a selected set of probabilities extracted from the results of the follow-up Tukey HSD tests, 

in order to compare the significances between tests at training levels 3 and above. 

Comparison Pair Trn. Lev3 
(80 Queries) 

Trn. Lev4 
(120 Queries) 

Trn. Lev5 
(160 Queries) 

Test 15 and Test8 0.711139 0.805446 0.635490 
Test 15 and Test2 0.012639 0.000261 0.000034 
Test8 and Test2 0.946143 0.291288 0.112741 

Table 9.16 : Probabilities of Follow-up Tukey HSD Analysis on the Results of Tests 2,8 and 15 

According to the probabilities given in Table 9.16, "both matching with concept addition 

and keyword weight learning" (Testl5) is significantly different from "concept matching 

only with concept addition and keyword weight learning" (Test2) at training levels 3,4 and 

5. This indicates significantly different performance by both matching (Test15) over 

concept matching only (Test2). 

9.5.4.6 Impact of Concept Weight Learning and Keyword Weight Learning 

Figure 9.15 compares the impact of concept and keyword weight learning over training 

queries. As can be seen in the graph, "both matching" with concept weight learning and 

keyword weight leaming (Testl6) has perfon-ned better than the other two throughout. 

Perfon-nances of "concept matching only" with concept weight learning and keyword 

learning (Test3) and "keyword matching only" with concept weight learning and keyword 

learning (Test7), however, show mixed results with no clear difference between them. 

A3x5 within subjects ANOVA (Table 9.17) was performed on the data to analyse 

statistically the main effects and interactions. Main effects were found on both Technique 
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and Training Level, meaning that the curves (techniques) are significantly different from 

each other. However, there was no significant interaction between the two variables. 

Impact of Concept and Keyword 
Weight Learning 

0 Both Matching (Testl6) 

-6 Concept Matching (Keyword Learning do not affect this case) (Test3) 
-0- Keyword matching (Concept Learning do not afect ths case)(Test7) 

. 
3- 

P. 291 -- 

253 
> 

--4 ýr- . 25, 

. 2- D. 20E 

T __j 

6 ýO io 120 160 No. of Training Queries 
Figure 9.15 : Impact of Concept and Keyword Weight Learning 

Repeated Measures Analysis of Variance 
Sigma-Restricted parameterization 
Efective hypot esis decomposition 

Effect SS Degree of 
Freedom 

MS F P 

Intercept 57.76009 1 57.76009 111.8288 <0.0000 I 

Error 33.05629 64 0.51650 

Technique(Test) 0.24819 2 0.12410 3.1494 0.046221 

Error 5.04364 128 0.03940 

Training Level 0.36537 4 0.09134 11.3675 <0.0000 I 

Error 2.05705 256 0.00804 
Technique*Training 
Level 

0.08042 8 0.01005 1.4938 0.156544 

Error 3.44561 512 0.00673 

Table 9.17 : ANOVA on the Results of Tests 3,7 and 16 

9.5.5 Effect of Presentation Order on Performance 

This experiment was aimed at examining whether the presentation order affects the 

perfon-nance of the system. Test17 was repeated three times and the results of the three 

runs were plotted on the same chart (Figure 9.16). Although the set of training queries was 

the sanie at each run, the individual training sets at corresponding training sessions (note 

that each test run involves four training sessions with 40,80,120 and 160 training queries 

at the four respective training sessions) were different in the three runs (except the training 
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sets of the final training sessions with the same 160 queries), as each time we picked up 

queries randomly from the full training set when creating the training sets for individual 

(sub) training sessions. In addition, although the last training session of each test run 

consists of the same training queries, they are presented to the system in a random order. 

Observations 

0.36 

0.34 

0.32 

0.3 

0.28 

< 0.26 

0.24 

0.22 

0.2 
0 40 80 120 160 

No. of Training Queries 

Figure 9.16 : Impact of Presentation Order 

As expected, the results of the three runs are slightly different to each other. This is a result 

of the fact that the training (sub) sets of the training sessions are different (except at the last 

training level) and the contribution of different training queries on training is different. 

Since early reinforcement of a document helps other (relevant) queries to pick it up earlier 

in the training process, it allows the weights of those matching concepts to undergo more 

tuning. This causes the order of presentation of the queries to make a difference. However, 

despite the random presentation order, the results at their last training-testing sessions (i. e. 

when the training set is the same at all three test runs) reaches the same value when 

adequate training iterations are used (i. e. when training queries are shown repeatedly until 

the weights are converged). 

Note that since our experimental set-up consists of a fixed set of queries with fixed 

(predecided) relevance assessments, and that we iterate this set of queries over and over 

again during training. using the same set of relevance judgements (for user feedback), the 
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weights of concepts tend to converge in our case. However, in a practical si I in 

which the user feedback is not fixed and the same set of queries does not appear iteratively, 

weights will never converge to fixed values. Instead, they will keep changing dynamically, 

depending on user interactions. 

9.5.6 Effect of Learning on (numbers of) Concept and Keyword Matches 

In this section, we carry out a detailed comparison of the contributions of keyword 

matching and concept matching by looking at the average numbers of matching 

unit-concepts and keywords per query-document pair with relevant documents as well as 

with non-relevant documents. We use the results of Test18 through Test23 and report 

corresponding average counts on the CISI, CACM and Cranfield collections, which were 

obtained by testing the system at the end of a pre-decided number of leaming iterations. 

Counts are given on seen and unseen queries in order to compare the perfon-nance of 

concept matching (and keyword matching) between the two cases. 

Note that for average count calculations with relevant documents, all relevant documents 

in the database (for each query) were taken into account regardless of whether they were 

recalled (RSV value > zero) or not. This is to include the documents which have nothing in 

common with a query but are still assessed as relevant. But with non-relevant documents, 

only the non-relevant documents with non-zero RSV values were considered, as there is no 

benefit of considering non-relevant documents that have nothing in common with the 

query. 

The results are listed in the following four tables (Table 9.18 - Table 9.2 1) and a summary 

of results is given in Table 9.22. Note that the figures shown in the tables were obtained 

after 20 training iterations for the case of unseen query testing, and after 100 training 

iterations for the the case of seen query testing. 
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Iterations CRAN FIELD CACM CISI 
Concepts Keys Concepts Keys Concepts Keys 

0 0.710348 1.912856 0.189849 1.821537 - 
1 1.140801 2.2125603 0.425843 2.269914 - - 
2 1.142984 2.130332 0.426393 2.271176 0.244544 1 2.182932 
5 1.142984 2.130332 0.426393 2.271176 0.244544 2.182932 

20 1.142984 2.130332 0.426393 2.271176 0.244544 2.182932 

Table 9.18 : Average Number of Unit-Concept and Keyword Matches per Query-Document Pair with Relevant Documents 
(on Unseen Queries) 

Iterations Cranfield CACM CISI 
Concepts Keys Concepts Keys Concepts Keys 

0 0.710348 1.912856 
1 5.871865 0.506639 - - - - 
2 5.929075 0.495198 7.416438 1.302963 3.81725 0.986864 
5 5.929075 0.495198 7.416438 1.302963 3.836858 0.986864 

100 J 5.929075 0.495198 7.416438 1.302963 3.836858 0.986864 

Table 9.19 : Average Number of Unit-Concept and Keyword Matches per Query-Document Pair with Relevant Documents 
(on Seen Queries) 

Iterations Cranfield CACM CISI 
Concepts Keys Concepts Keys Concepts Keys 

0 0.081282 1.413301 0.010099 1.272748 
1 0.092168 1.559275 0.051313 1.315085 - - 
2 0.092268 1.560897 0.051598 1.316208 0.111251 1.668411 

- - 0.051598 1.316208 0.111251 1.668437 
20 0.092267 1.560907 0.0516 1.316192 0.111251 1.668437 

Table 9.20 : Average Number of Unit-Concept and Keyword Matches per Query-Document Pair with Non-Relevant 
Documents (on Unseen Queries) 

Iterations Cranfield CACM CISI 
Concepts Keys Concepts Keys Concepts Keys 

0 0.081282 1.413301 
1 0.092679 1.564219 - - - - 
2 0.092688 1.565913 0.52672 1.316891 0.112511 1.567456 

5 - - 0.52672 1.316891 0.112511 1.567508 

20 0.092688 1.565913 0.52672 1.316891 0.112511 1.567508 

Table 9.21 : Average Number of Unit-Concept and Keyword Matches per Query-Document Pair with Non-Relevant 
Documents (on Seen Queries) 
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With Relevant 
Documents 

Concepts Keywords Concepts 
Keywords 

With Non-Relevant 
Documents 

Concepts KeN-words Concepts I 
Kev" ords 

(--RAN-t)'nseen Query Testing 1.142984 2.130332 0.5365 0.092267 1.56090- 0.0-71911 
CRAN-Seen Query Testin& 5.929075 0.495198 0.092688 1.565913 0.0-5919 

Z M, M// 
CACM-Unseen Query Testing 0.426393 2.271176 0.1877 0.0516 1.316192 0.03920 

: CACM-Seen ! ýu! Ty Testi 7.416438 1.302963 0.052672 1.316891 0.03999 

CISI-Unscen Query Testing 0.244544 2.182932 0.11202 0.111251 1.668437 0.006 
CISI-Seen Query Testing 3.836858 0.986864 0.112511 0.1567508 0.7177 

Table 9.22 : Summary of Unit-Concept and Keyword Counts 

Observations 

With relevant documents, more keyword matches have taken place than concept matches 

when unseen queries were tested (see Table 9.18). This means that concept addition 

(learning) has failed to make unit-concepts the driving entity for retrieval. As noticed 

before, the main reason for this may be the lack of sufficient overlaps between queries (in 

the set of queries). Recall that the criteria used for selecting test queries is based on the 

number of documents assessed as relevant to each query, rather than the actual similarity 

of queries. Therefore, given a set of queries with sufficient overlaps (in terms of similarity 

in the use of the same concepts), and queries picked up for testing based on their similarity 

so that the similar queries are equally distributed among the training and testing sets, the 

result would have been different. For instance, numbers of concept matches are much 

higher than keyword matches in the case testing on the seen queries given in Table 9.19. In 

fact, no keyword matches take place between a query and a relevant document once the 

document is updated with the query concepts. However, there are always cases where 

certain documents are not picked up at all by certain queries to which those documents are 

judged as relevant. 

Few concept matches have taken place with non-relevant documents compared to key'ý%, ord 

matches both on testing seen and unseen queries (see Table 9.22). These results show that 

a smaller number of false hits are made by concept matching compared to keyword 
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matching. This means that concept matching makes more accurate retrieval (increase 

precision) compared to keyword matching. 

Another interesting result is that only the first couple of training iterations have shown the 

biggest changes in the numbers of concept and keyword matches made with relevant 

documents (see Table 9.18 and Table 9.19). This is because most concept additions take 

place at the early iterations. Once concepts of a query have been added to its relevant 

documents, the numbers of concept and keyword matches between the query and its 

relevant documents are the same at the subsequent iterations. Leaming at subsequent 

iterations only helps tuning weights. This is the reason for the big jump in average 

precisions observed at the first iteration in Figure 9.18 and Figure 9.19. 

Furthermore, relatively more concept matches and fewer keyword matches have taken 

place with relevant documents in the Cranfield collection, in the case of seen query testing 

(Table 9.19). Although more concept matches have occurred with relevant documents in 

the CACM collection in the case of testing on seen queries (Table 9.19), it has reported 

fewer concept matches (and more keyword matches) with relevant documents in the case 

of testing on unseen queries. As a result, the ratio of the number of concept matches to the 

number of keyword matches is higher on the Cranfield collection (with relevant documents 

when unseen queries were tested). These figures (ratios) indicate how good the system is 

on concept matching against keyword matching. In addition, the P-R curve on the CACM 

in the case of seen query testing (Figure 9.17) is no better than the corresponding P-R 

curve on the Cranfield. The greater number of concept matches that it has made with 

relevant documents have not improved the performance of CACM on seen query testing. 

This could be due to the presence of more common concepts between quenes and 

documents (as also evident by the counts with non-relevant documents). 

The system has performed relatively badly on the CISI collection compared to CACM and 

Cranfield. It has made fewer concept matches with relevant documents in seen query 
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testing and more concept matches with non-relevant documents in the unseen case 

compared to the other two collections. 

9.5.7 Performance Comparison between Seen and Unseen Test Queries 

PR Curves on Three Collections 
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Figure 9.17 : PR Curves of the Known and Unknown (Novel) Queries on all Three Collections 

(Figure 9.17 shows PR curves of our system on all three collections in the cases of testing 

on both seen and unseen queries. These graphs were plotted based on the results of the 

tests 18 through 23. 

Observations 

Performances on all three collections are the same up until the 60% recall level in seen 

query testing. Cranfield shows better performance at the latter part (beyond 60% recall) 

mainly because it is rich in overlaps, and thus misses fewer documents than in the other 

two collections. This result suggests that if there were more overlaps between queries, 

better results could be obtained. Also, CISI performs better than CACM until the 90% 

recall level. This may be because it is richer in overlaps than CAM The performance of 

the system on unseen query testing is comparatively poor on the the CISI and CACM than 

on Cranfield. The CACM has performed better than CISL perhaps, due to the more 
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expressive queries (in terms of the length) that it has compared to the queries in CISI (see 

Table 9.3). 

9.5.8 Performance Dynamics over Training Iterations 

In this section, we examine and analyse the dynamics of the system's performance over 

training iterations. Only the results on Cranfield (of Test20) are used here. Results on the 

other two collections (CISI and CACM) also show similar patterns (not given here). 

Figures 9.18 and 9.19 show how the performance curves (average precisions) at different 

retrieval points behave over training iterations for the two cases of unseen and seen query 

testing respectively. 
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Observations 

There is a sharp increase of perfonnance at the first iteration, followed by a little increýise 

in the next couple of iterations. This is because the maximum learning (concept additions) 

takes place the very first time a query is shown, i. e. concepts of queries are added to the 

relevant documents the very first time they (relevant documents) were retrie,,, ed for the 

query. This result is also observed in the unit-concept counts given in Table 9.18 and 

Table 9.19. The addition of query concepts at early iterations (retrieval sessions) trigger 

other similar queries (queries sharing the same unit-concepts) to retrieve those (reinforced) 

documents at subsequent iterations. 

Since we repeated the same set of queries over the iterations, no concept additions take 

place at the later iterations, instead only the weights of the concepts are tuned. As can be 

seen in the chart, weight tuning has caused a slight drop in performance in the unseen 

query testing. This may be due to the fact that the weights of concepts and keywords are 

not well-tuned at the early iterations, and therefore all concepts and keywords are equally 

significant (note that, all of them are assigned an initial weight of 2.5 at the start). Since 

only a few concept matches take place with unseen queries, the system seems to have 

ranked documents that have more features in common with the query (i. e. more matchiiig 

unit-concepts and keywords) the top. Some of these matching unit-concepts may not be the 

best (should be highly-weighted) concepts in terms of their representation or retrieval 

ability. Since more concept and keyword matches occur with relevant documents than with 

non-relevant documents, having more matches causes performance to increase at early 

iterations, regardless of the actual significances of matching elements. Therefore, 

documents with better information to satisfý, the information need might not appear at the 

top of the retrieval list at the early stages of learning. The rank order of the documents is 

subject to change as the weights of the documents are (better) tuned during the training 

iterations (see Figure 9.20). 
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This phenomenon in which the performance drops as the queries are shown a greater 

number of times (iterated more) can also be described in machine learning terms as a result 

of "overfitting". Overfitting causes the system to be less robust for average novel 

situations. 

Relevant 
documents 

In contrast to the unseen query testing, the performance of the system on seen query testing 

does not show a drop in perfonnance over training iterations (Figure 9.19). It shows a 

similar big jump at the first iterations, followed by little increases thereafter. 

This is because all the relevant documents have already been retrieved and updated with 

the corresponding query concepts at the early iterations (in the case of seen query testing). 

Therefore, the number of concept matches with relevant documents is higher, and as a 

result those reinforced documents have much higher similarity scores than the non-relevant 

ones (see Figure 9.20). As the training proceeds, the similarity scores of relevant 

documents get higher and higher, making them (relevant documents) clearly separate from 

the non-relevant documents (Figure 9.20). Although this does not help in increasing 

perfon-nance figures (as the documents at the top are the same), it helps in changing the 

rank order among the relevant documents (and also among the non-relevant documents) by 

ranking the best-match documents at the top. For example, see the result of testing Query 
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number 100 in the Cranfield collection given above in Figure 9.20. It shows clearly how 

the similarities of the relevant documents keep increasing, making the block of relevant 

documents separate from the block of non-relevant documents, and how the order of 

documents within each block changes as weights are learnt over iterations. 

Figure 9.21 shows an example of testing Query# I in Test20. This query has not been 

shown during training. The rank of certain relevant documents, such as documents 14 and 

858, which started at a low position, moved up to higher positions as a result of concept 

weight learning. Note that, no additional concept or keyword matches have taken place 
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Figure 9.21 : Results of Query#1 (an Unseen Query) at Different Training Iterations (Results of Test2O) 

between iterations (i. e. unit-concept and keyword matches are the same). On the other 

hand, the ranks of certain other non-relevant documents, such as documents 878 and 874, 

have lowered over the iterations. The documents whose ranks are lowered over iterations 

tend to be the ones that have been retrieved by keyword matching only, while the 

documents whose ranks are heightened tend to be the ones having at least one good 

(high I y-wei ghted) matching unit-concept (see the keyword and unit-concept counts). There 

are also certain documents (such as document 843 in Figure 9.20 and document 864 in 

Figure 9.2-1) that show mixed behaviour, i. e. increased rankings at certain iterations and 

decreased rankings at certain other iterations. These are the ones with concepts that conflict 
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with training queries, i. e. certain queries increase their weights, while certain other queries 

decrease them. 

9.5.9 Comparison with Published Results 

Table 9.23 and Table 9.24 list average precisions of our system obtained on the CACM 

and CISI collections (results of Test18 and Test19) alongside the results published by 

Carpineto and Romano [Carpineto & Romano 2000]. In addition, the average precisions of 

our system on the Cranfield collection (results of Test20) are listed in Table 9.25. 

CACM 
BMR I HCR CLR I Ours 

Avg. Precision (non-interpolated) 0.320 1 0.231 0.253 0.224 
11 -point precision Average 0.340 0.257 0.281 0.203 

Precision at retrieval Point 5 0.346 0.342 0.412 0.265 
Precision at retrieval Point 10 0.304 0.298 0.240 1 0.204 
Precision at retrieval Point 20 0.238 0.202 0.164 0.172 
Recall at retrieval point 5 0.227 0.136 0.228 0.134 
Recall at retrieval point 10 0.297 0.224 0.266 0.187 
Recall at retrieval point 20 0.428 0.323 0.319 0.289 

Table 9.23 : Comparison Figures with Published Results on CACM 

CISI 

BMR HCR CLR Ours 
Avg. Precision (non- interpolated) 0.164 0.127 0.162 0.165 
11 -point precision Average 0.183 0.153 0.185 

10.149 
Precision at retrieval Point 5 0.269 0.280 0.337 0.274 
Precision at retrieval Point 10 0.266 0.254 0.286 0.217 
Precision at retrieval Point 20 0.239 0.209 0.234 0.179 
Recall at retrieval point 5 0.027 0.042 0.043 0.063 
Recall at retrieval point 10 0.060 0.066 0.095 0.077 
Recall at retrieval point 20 0.107 0.103 0.139 0.113 

Table 9.24: Comparison Figures with Published Results on CISI 

Cranfield 
Avg. Precision (non- interpolated) 0.371 
11 -point precision Average 0.349 
Precision at retrieval Point 5 0.386 
Precision at retrieval Point 10 0.279 
Precision at retrieval Point 20 0.186 
Recall at retrieval point 5 0.295 

, Recall at retrieval point 10 1 0.396 
1 Recall at retrieval point 20 1 0.505 

Table 9.25 : Our Results on Cranfield 
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Observations 

The results of our system, given above in Tables 9.23 through 9.25, are the test results on 

novel (unseen) queries. As can be seen, the performance results of our system are as good 

as the published results (by Carpineto and Romano) on both the CACM and CISI 

collections. However, as with the published results of the three models (BMR, HCR and 

CLR), our model also has shown better figures on CACM than on CISI. The comparative 

performance given by our model on these two collections (CACM and CISI), despite their 

inadequate desired properties of the two collections for our learning strategy to make 

documents leam from experience (described in Section 9.1.1), is encouraging. Note that 

the removal of author and journal information from the document collections (of CACM 

and CISI) might have caused a small (negative) affect on the performance figures of our 

system on these two collections. 

We expect our model to perform better on a test collection with more cross relations and 

other desired features. For instance, the results on the Cranfield collection (Table 9.25), 

though not comparable with the results obtained on the other two collections, show higher 

performance figures. This may be because Cranfield is richer in terms of the desired 

properties that help learning in our system. Also, see the P-R curves on the seen query 

testing given in Figure 9.17. The performances of the model on all three collections are the 

same (near optimal) up until the 60% recall level on seen query testing. This result 

suggests that, if there were more overlaps between queries (i. e. if the system were trained 

with more similar queries for each information need), better results could be obtained. 

9.5.10 Impact of Learning on the Size of the Documents 

Our reinforcement learning strategy causes the documents (representations) to grow as 

they learn. The addition of query concepts to the documents is the major cause of the 

growth, as changing the values of weights does not change the size of documents. In the 
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following table (Table 9.26), the sizes of the document collection(s) before and after 

learning are tabulated to give an idea of how much learning affects the collection sizes. 

Test Collection Original Size (Before Learning) After Learning Percen age 
Increase 

Cranfield 4.31 MB (4,523,439 bytes) 5.09 MB (5,342,208 bytes) 10 

CACM 5.25 MB (5,514,593 bytes) 5.84 MB (6,132,496 bytes) 11.23% 

CISI 4.13 MB (4,336,061 bytes) 1 4.63 MB (4,856,162 bytes) 12.10` /0 

Table 9.26 : Growth of Test Collections 

The sizes reported here under "After Leaming" are the sizes of test collections after the 

training of Test2l, Test22 and Test23 were completed. In each of these tests, all queries 

were trained for 100 iterations. Note that our aim here is not to draw any conclusions about 

the growth of test collections, but to show some statistics for the sake of completeness of 

our evaluation. However, the percentage increments indicate that Cranfield has learnt morc 

than the other two and that the CISI and CACM have learnt roughly the same. 

9.6SUMMARY 

This chapter covered a detailed evaluation of our implementation. Test methodologies used 

and tests conducted (23 in total) under each test methodology were described. The results 

of the tests were plotted in a number of different charts and the effects of different aspects 

of our system were observed. It was first shown that the performance of the system in its 

full capacity improves over training queries (experience) (Figure 9.3), and then evidence 

was given for the conclusion that this performance improvement is a collective result of all 

the components (2 matching entities and 3 leaming components). A detailed analysis of 

perfon-nance dynarnics was given and reasons for certain observations such as the big 

performance jump at the early iterations and slight drop at the later iterations were 

discussed. The results obtained on CISI and CACM were compared (Table 9.23 and 

Table 9.24) against the results reported by Carpineto and Romano. Finally, statistics of the 

collection growth sizes were given to show how much concept addition affects the size of 

the document collections. The next chapter uses the test results and the observations made 

in this chapter to draw final conclusions on our work. 
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CHAPTER 10 - CONCLUSIONS AND FUTURE 
WORK 

This chapter begins with a summarised discussion of our research objectives and the 

approach taken towards achieving them, followed by a discussion of the strengths and 

weaknesses of the proposed model. The environments in which it would be likely to be 

successful are also indicated. Next, conclusions are drawn based on the experimental 

results reported in the previous chapter. Finally, this thesis is concluded with a discussion 

of possible directions for improvements and fruitftil ftiture extensions. 

10.1 DISCUSSION 

10.1.1 A Summary of Our Approach 

The main goal of this research was to investigate the use of a more elaborate construct as 

the basic unit for matching queries and documents. A secondary goal was to investigate the 

role of interactive reinforcement leaming, based on relevance feedback information, in this 

task. 

In our work, an emphasis was placed on the extraction and formulation of concepts from 

document contents and the creation of document (query) representations in the form of 

concept lattices. This supported the production of an IR model that is based on (formal) 

concept matching rather than keyword matching. We used an obj ect- attribute pair (i. e. the 

smallest construct of a formal concept), that we referred to as a unit-concept, as the basic 

representation (hence the comparison) unit. In particular, we attempted to match the most 

specific (formal) concepts between queries and documents whenever possible, to help 

retrieval based on the most specific concepts or ideas rather than more generic or common 

ideas that might present in documents. The use of unit-concepts allowed us to perform 

partial matching between two formal concepts. In addition, matches of the constituent 

elements of unit-concepts (i. e. object or attribute matches, refered to as keyword matches) 

226 



were also considered in the absence of unit-concept matches, in order not to miss out any 

contribution that such a feature common to a query-document pair could make on retrieval. 

Significances of unit-concepts and keywords were modelled with weights with respect to 

the document in which they appeared. The allocation of weights to unit-concepts made it 

possible to compute a degree of similarity between two formal concepts based on the 

degree of importance of matching unit-concepts between them. 

A reinforcement learning strategy based on relevance feedback information was employed 

for achieving our secondary goal - interactive learning. It has two major components: (1) 

weight learning/tuning; and (2) concept addition. The weight learning component deals 

with learning weights of both unit-concepts and keywords, and the concept addition 

component with updating relevant documents with the concepts of their respective queries. 

Learning takes place on document representations. Documents retrieved and found to be 

useful for a given query are positively reinforced and retrieved documents that were not 

found to be useful are negatively reinforced. During positive reinforcements, all the query 

concepts that are not present in documents relevant to the query are added into the 

document representations and the weights of matching unit-concepts (and matching 

keywords) in the relevant documents are rewarded (increased). During negative 

reinforcements, the weights of matching unit-concepts (and keywords) of those documents 

that are retrieved but not found to be very useful are penalised (decreased). Through these 

steps, documents that are relevant to the query are made more similar to the query and the 

retrieved documents that are not relevant are made less similar to the query. 

Another very important feature of our implementation is the use of BAM structures for 

embedding concept lattices. We consider this to be a significant contribution to the use of 

concept lattices in IR as a whole, as well as individually to the applications of BAMs 

(adding to the few applications of BAMs to be found in literature). Also, this work is 
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Significant as it may be the first attempt to employ Mohldvek's discovery 

[B61ohlavek 2000] in a practical application. 

Through the use of BAMs we avoid the need to use complex lattice building algorithms, 

which makes the use of concept lattices easier and more efficient. The process of setting up 

a BAM with a concept lattice is a one-off learning task, and once a concept lattice is set up 

in a BAM, it can be easily updated with additional concepts (as required by our concept 

learning process) by simply adding nodes to its object and/or attribute layers as appropriate 

and re-computing the connections (link weights) between nodes (Section 6.8). 

Furthermore, a BAM allows fast access to the most specific (or most genenc) concept in its 

learned lattice for a given set of objects (attributes) (Section 6.6.3) without having to use 

complex algorithms to traverse the lattice structure. 

10.1.2 Strengths and Differences to Keyword-Based Models 

Our model is different to keyword-based approaches in a number of ways, and it is these 

differences that give it its strength. The first difference is the use of object-attribute pairs 

(unit-concepts) to match between queries and documents, and the allocation of weights to 

unit-concepts rather than to individual keywords. Though concept matching may result in 

some relevant documents being missed out, it helps to reduce false hits, thus helping to 

improve precision. in particular, the multi-constituent structure of the comparison unit 

(unit-concept) helps in solving the polesemy (or homonymous) problem to a greater extent, 

and the synonymy problem to some extent. A homonymous term that is used in one of its 

several meanings is unlikely to possess the same properties/attributes (if it appears as an 

object) or is unlikely to be possessed by the same objects (if it is an attribute) as when used 

in one of its other meanings. Thus two concepts formed by the same homonymous term but 

with two different meanings are unlikely to match together. On the other hand, concept 

matching may help in identifying where a synonymy problem occurs, as two concepts 

formed by two synonymous terms (objects) are likely to share the same attributes (if the 
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synonym words are objects) or are likely to be possessed by the same objects (if they are 

attributes). 

In addition, maintaining weights with respect to documents independently of the other 

documents in the collection gives greater freedom and flexibility in concept weighting. In 

particular, it helps the same concept to have different weights in different documents 

independent of each other. Although systems based on tf-idf weighting schemes do allocate 

different weights to the same keywords in different documents, they are to some extent 

constrained to the frequency of term appearances within the document as well as within the 

document collection. As a result, the qualities of those weighting schemes are heavily 

dependent on the quality of the documents (writing). Deliberate repetition of keywords, the 

use of synonyms, homonyms, anaphors and the use of examples are a few well-known 

problems in those weighting schemes. In contrast, we do not use frequency statistics of any 

kind at all. Instead, weights are learned based on user interactions. Therefore, the quality of 

concept weights in documents in our case is attributable to the quality of user queries and 

relevance judgements. However, as with others, our system can also be fooled by being 

given wrong user judgements deliberately (Section 7.2.2.3). 

Additionally, we attempted to use the sub-super concept relationship information that is 

already available in concept lattice representations of documents and queries. The idea was 

to focus on matching more specific concepts between queries and documents. However, 

the lack of adequate information to build sufficiently informative concept lattices, in 

particular for queries, made concept lattices of queries less useful in this particular feature. 

Furthermore, the document representations which were created using only the local 

information present in the individual documents may make them initially more local rather 

than global. However, the balance between locality and globality will be achieved through 

learning via user interactions. During learning, concepts that are capable of identifying a 

document for retrieval tend to emerge as a result of their weights being tuned to have 
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higher values. At present no stopwords are used; verbs only are stemmed and plural nouns 

are converted to singular. It would be useful to have a set of "stop-unit-concepts", and the 

effect of stemming all the terms remains to be investigated. However, we prestime that 

stemming will not help to improve the effectiveness of the system, simply because it 

removes the semantics of terms. 

Another interesting property related to the use of local information for document 

characterisation and weight learning is that it helps greatly towards making the system 

domain independent. Unlike in tf-idf based schemes, each document is charactensed 

independent of the others. The later addition of a document to the collection affects neither 

the representation of other already present documents nor their retrieval. Though if-idf 

based indexing schemes can be applied in documents from any domain, they are not as 

flexible as ours since the tenn weights depend on frequency statistics of the collection. 

In addition, learning in our model helps enhance document representations according to 

user decisions, by adding concepts in the query to the relevant documents, and by tuning 

the weights of concepts. The weight tuning is engineered so that the concepts which 

specifically help identify a document (i. e. specific unit-concepts) gain higher weights and 

the concepts that are common to many documents and therefore are not useful for the 

correct retrieval of a document end up with smaller weights. The addition of query 

concepts to document representations and tuning the concept weights of document 

representations as described above results in the document representations becoming more 

customised according to the personal views of its users. As a consequence, better 

performance of the system can be expected in a more personallsed environment, where one 

or more users with similar interests interact with the system. 

An interesting by-product of our learning strategy is that it helps the system to cope with 

the document ageing problem. As new documents with later and more informative contents 

are made available, documents that were useful to an infon-nation need in the past become 
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obsolete. Users are likely to pick newer documents with the latest information instead of 

obsolete ones when a list of retrieved documents is presented to them. As a result, those 

newer documents get positively reinforced and older documents that were rejected by the 

users get negatively reinforced. This makes the similarity scores of newer documents 

become greater and those of older documents become lower, in time causing neý, ver 

documents to be ranked above the older documents. As more documents with up-to-date 

information are made available, the older documents will eventually disappear from the 

retrieved list. However, the classic documents which remain important despite their age 

will not be affected as they are unlikely to be rejected by all users and thus will be 

positively reinforced as they are picked up. This is a very useful feature that no system 

with a static representation scheme could provide. However, we only describe the 

theoretical aspect of this without empirical evidence, as the system was not tested for this 

property simply because this was not the main objective of our work. Also, at present, no 

test methodology and supporting test environment (document collection) is available for 

the evaluation of this property. 

10.1.3 Strengths and Differences to Other FCA-Based Models 

The application of concept lattices to information retrieval tasks has usually focused on 

interactive browsing (e. g. TOSCANA [Becker et al. 2002], CEM [Cole et al. 2000]). 

These approaches create a large single concept lattice to represent the whole document 

collection (e. g. Carpineto and Romano's model [Carpineto & Romano 2000], TOSCANA, 

CEM) and it is this concept lattice that serves as the search space for users to explore. 

Typically, a visualisation of the full or part of the ftill concept lattice is provided at the 

beginning and the user may then navigate through the nodes in the lattice to find the 

documents contained in each node. Some approaches use conceptual scaling to help 

visualisation of the concept lattice in a structured manner [e. g. TOSCANA and CEM]. 

Usually the top level of the structure is displayed first and the user navigates the lattice by 

expanding (unfolding) the parts/nodes of interest until the desired inform ation/documents, 
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are found. More recently, the basic navigational fi-amework has been extended to 

accommodate Boolean queries and full-text indexing. Carpineto and Romano's model 

[Carpineto, & Romano 2000] may be one of the pioneering piece of work that used concept 

lattices to document retrieval without browsing. However, once created, the concept lattice 

(i. e. search space) is fixed in all these models and therefore they lack adaptivity. 

All previous attempts formulate a concept with the document II)s as the objects in its 

extent, and keywords extracted from the contents of the document as the attributes or 

properties in its intent. This is a rather unrealistic concept formulation compared to how a 

human might formulate concepts. The criterion for the construction of the lattice is based 

simply on the presence of keywords. A node in the lattice does not represent a natural 

concept or idea, nor does the hierarchical order represent a concept hierarchy. Such a 

representation only creates categories of documents sharing the same keywords, and 

therefore is not very different to keyword-based document categorisation technique(s). 

Our approach is different to the present FCA approaches found in literature in at least four 

ways. Firstly, a concept in our work consists of objects stated in the content of the 

document (i. e. textual labels of objects) rather than document IDs. Properties of the objects 

stated in the text are the attributes in the intents. Therefore, matching such object-attribute 

pairs may leads to concept matching in the same sense as how the human brain might 

work. Secondly, it uses separate concept lattices for representing each individual 

document rather than using one large concept lattice. Thirdly, it performs document 

retrieval without browsing. Fourthly, it uses interactive learning of document 

representations (i. e. dynamic lattices). 

The above mentioned features, in particular the use of one lattice per document, give our 

model a greater flexibility to operate on large document collections with full-text indexing 

rather than being constrained to smaller document collections and to a limited number of 
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terms or keywords (as with Carpineto and Romano's experiments 

[Carpineto & Romano 2000)). 

10-1.4 Strengths and Differences to Other Conceptual Knowledge based 
Models 

Models that make use of more elaborate conceptual knowledge representations, such as 

semantic networks and conceptual graphs, use an extensive amount of detailed information 

(knowledge) in characterisation (indexing) of text items and as a result suffer from heavy 

processing requirements. The acquisition of such knowledge requires consultation of 

domain experts and as such is expensive and sometimes impossible. In addition, storage of 

such a large amount of knowledge is expensive and inefficient to access. In contrast, the 

use of concept lattices in our model makes it lighter in terms of the amount of knowledge 

necessary for the characterisation, and the use of BAMs makes it more efficient in 

accessing the stored knowledge. 

10.1.5 Drawbacks of the Current Implementation 

Lack of sufficient information within the contents of documents and queries to create 

representations with adequate knowledge to well-represent them is a major problem in IR. 

The difficulty of extracting information already available in the text in the form used by 

the system (i. e. object-attribute pairs) for creating representations causes further 

limitations, in particular to the models that operate on more elegant knowledge structures. 

Ours is not an exemption. An additional concern with our learning strategy is the possible 

risk involved in adding query concepts into the document representations. This may cause 

the original concepts or the original purpose of the documents to change in the long term. 

Also, it may result in the representations of similar documents being made identical. The 

overheads involved in extracting candidate node pairs from the query and document 

concept lattices to match between and the unnecessary concepts creeping into the 

document representations through learning are another two problems. A "stop-concept" list 

can be used to control unnecessary concepts entering the documents. Periodic pruning of 
233 



document representations to remove poorly weighted concepts will also help to dispose of 

unnecessary concepts. This can be restricted to remove only the concepts that were added 

through learning in order to keep the original content of the document intact. These 

problems are further discussed in Section 10.3 under future work. 

10.1.6 Potential Environments in Which Our Model is Likely to Perform 
Well 

A main characteristic of an adaptive system is that the system becomes more and more 

tuned to its enviromnent, or strictly speaking to its inputs, as it leams. Consistency of 

training examples, or in our case consistency of users in terms of the use of vocabulary in 

query formulation and making relevance assessments, is essential for such a system to 

converge or become better tuned for its inputs. Consistency is maximised in single-user 

environments. Essentially, this makes the system better adapted to its only user, thus 

making it strictly personalised. 

On the other hand, learning in multi-user environments helps with leaming more 

exhaustive and better-generalised document representations. It helps the system to learn the 

different possible ways that different users formulate similar queries, perhaps using 

different vocabularies, but targeting the same documents. However, consistency among the 

users in making relevance assessments is essential for convergence. In an environment 

with more inconsistent users, the system dynamics would rapidly vary with time, resulting 

in unreliable system responses to an average user. For instance, in such an environment, 

the user is not guaranteed to get the same (relevant) documents back for the same query at 

different attempts. Therefore, the system is likely to perform better in more personallsed 

environments, i. e. in a single user environment or in multi-user environments with similar 

or consistent users. Indeed it has the potential to outperform conventional keyword-based 

systems in such environments. 
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In addition, the fact that there is nothing central in the document representations in our 

model makes it suitable for distributed environments. No global knowledge of the 

document collection is used in document characterisation, and the document 

representations are local and independent of each other. Therefore, documents distributed 

in a network can be processed locally, including their characterisations, and the results 

integrated. An interesting extension to this work would therefore be to investigate the 

potential of the system in a distributed set-up, possibly implemented in a multi-agent 

environment. This is further discussed under future work given below in Section 10.3.5. 

10.2 RESULTS AND CONCLUSIONS 

Firstly, we have shown a way of using more elaborate and true concepts for creating more 

meaningful representations of textual material and using them for explicit concept 

matching. Secondly, a radically different approach to using concept lattices in IR was 

developed and its feasibility was evaluated. Thirdly, the importance of an interactive 

learning strategy and the effectiveness of retaining the learnt knowledge were 

demonstrated. Finally, the advantage of a hybrid approach that uses both concept matching 

and keyword matching, together with concept addition and weight leaming mechanisms, 

was justified. 

The empirical results given in Section 9.5 show that without learning, performance of the 

system is poor and static. Addition of each component of our learning strategy (i. e. concept 

leaming, keyword learning and concept addition) shows improvements, with the system 

gaining experience as more queries are encountered. This is true for all cases of matching 

entities, i. e. for "concept matching only", "keyword matching only" and a combination of 

the two. Moreover, the use of keywords for matching in the absence of matching 

unit-concepts helps in improving retrieval performance. As a result, the system in its full 

capacity (i. e. with both keyword matching and concept matching with all three learning 

components) shows a significant improvement with experience (Figure 9.3). The results 
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were found to be consistent at different retrieval points (charts in Figure 9.7) as %vell. The 

P-R curves given in Figure 9.5 further confirm that the performance of the system 

improves as more queries are encountered (i. e. as more experience is gained). These results 

support our interactive learning strategy in its ability to improve document retrieval by 

enhancing their representations with additional concepts and learning (tuning) concept 

weights. 

Mixed results were observed when concept addition is considered (Figure 9.10) in which 

concept matching was outperformed by keyword matching, as the system leams. This 

result, and the improved performance shown by the system when both concept matching 

and keyword matching were considered, demonstrates the importance of using keywords 

as a matching unit in addition to unit-concepts. 

Results of repeated testing of the system with its full capacity show only marginal 

perforniance differences (Figure 9.16) over the presentation order. The variations between 

the graphs at the middle part of Figure 9.16 were mainly due to the differences of the 

contributions made by the randomly picked queries during learning. Note that the set of 

queries picked for training at its sub-training sessions are different (with overlaps) as they 

are picked randomly from the full training set. However, the set of queries at the final 

training sessions are the same for all tests. 

The analysis into numbers of concept and keyword matches given in Tables 9.18 through 

Table 9.22 shows fewer concept matches with relevant documents compared to keyword 

matches. However, more concept matches have taken place with Cranfield compared to 

concept matches on CISI and CACM (the ratio of concept matches to keyword matches is 

0.5365 on Crarifield, 0.1877 on CACM and 0.112 on CISI (See Table 9.22). This result Is 

consistent with the performance of the system on Cranfield as can be seen in the P-R 

curves in Figure 9.17, suggesting that more concept matches make the system perform 

better. This is further confinned by the results on known queries (i. e. testing on the queries 
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used for training), which shows more concept matches on all three test collections 

compared to the results on novel queries (unseen query testing), and also much better (near 

perfect) performance shown by the P-R curves in Figure 9.17. Therefore, we can conclude 

without doubt that it is the occurrence of more concept matches that have made the system 

perform better on the Cranfield collection, thus supporting our initial hypothesis that more 

elaborate constructs of concepts might help improve effectiveness of IR. 

The fact that the system makes more concept matches on the Cranfield collection than on 

the CISI and CACM collections depends on the nature and the quality of queries, 

documents and relevant assessments in the collection. The main requirements for better 

learning are well-expressed queries and documents in natural language and adequate 

overlaps in queries and documents to produce sufficient cross relationships in relevance 

assessments. Table 9.2 gives some statistics of the cross relations and Table 9.3 gives the 

average lengths of queries in terms of "number of words", which gives an impression of 

the expressiveness of queries. In addition to these, the availability of more queries in the 

Cranfield collection (225 compared to 64 in CACM and 52 in CISI) helps the system to 

learn better on the Cranfield collection than on the other two collections. 

Furthermore, the number of concept matches with non-relevant documents is much smaller 

compared to the number of keyword matches on all three test collections. This proves that 

concept matches are more precise compared to keyword matches, thus helping to improve 

the precision of retrieval results. 

Leaming has helped the system to make significantly more concept matches with known 

queries (testing on seen queries) than with novel queries (testing on unseen queries , as can 

be seen in respective figures given in Table 9.18 and Table 9.19. In practice, when the 

system is in operation and has adequately learnt from past queries, a mixture of seen and 

novel queries can be expected. Thus better perfonnance can be expected in a real situation 
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than in the case of completely unseen query testing reported in Table 9.18, Table 9.19, 

Table 9.23, Table 9.24 and Table 9.23. 

The performance of the system over training iterations (performance dynamics), given in 

Figure 9.18 and Figure 9.19, shows that learning is rapid in the first few epochs and then 

tends to saturate. It is during the first epoch that the system picks up the most nev., relevant 

documents (for the shown queries) and therefore this is when most of the updatings of the 

document representations occurs. Hence the performance gain is greater at the first epoch. 

The concept additions that take place at the early epochs during training trigger those 

documents to be picked up by different quenes at subsequent epochs. The recall of new 

documents at subsequent iterations becomes less and less as more relevant documents are 

recalled over training epochs, and finally comes to its limit when either all the relevant 

documents for the query are recalled or no more new relevant documents can be recalled 

by ftirther training epochs. This behaviour is clearly reflected in Figure 9.20 for the seen 

query testing in which all the relevant recalled documents are ranked above the non- 

relevant documents due to their high similarity (all query concepts are present in the 

relevant documents in this case). 

In the case of unseen query testing, the same dynamics are shown at the early epochs, but a 

slight drop in average precision is observed during the subsequent iterations. This drop 

could be due to the low number of concept matches that have taken place with relevant 

documents during unseen query testing. These concepts, though not guaranteed to be the 

best candidates for representing the document, are equally weighted at the beginning. 

Therefore, the better perfonnance shown at early epochs (epochs 1,2,3 see Figure 9.18) is 

purely based on the number of concept matches, regardless of the significances of the 

matching concepts. Since more concept matches seem to occur with relevant documents 

than with non-relevant documents, on average, more concept matches favour retrieval 

perfonnance. However, as the weights are tuned during the subsequent leaming epochs, 
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weights of certain concepts in certain documents that helped their retrieval to certain 

queries are decreased, and as a result, the rank of those documents within the retrieval 

results will be degraded, causing a drop in performance. 

Another reason for this drop could be the result of "over- fitting", i. e. differences between 

testing and training queries adversely affect performance on test queries as the system is 

tuned more and more for the queries in the training set. However, as can be seen in 

Figure 9.18, this drop is very small and the performance curve shows a tendency towards a 

"convergence". A sub-conclusion that can be drawn from this observation is that the 

number of matches that has occurred with insignificant concepts is fewer compared to the 

number of matches with important concepts, as otherwise the drop in performance would 

be greater. Note also that when the number of concept matches is smaller, as with the 

unseen query testing, keyword matches tend to dominate retrieval. 

10.2.1 Summary of Final Conclusions: 

I- Comparable performance figures given by our system on CACM and CISI to 

published results (of Carpineto's) indicate the viability of our approach (i. e. concept 

matching within the FCA framework) to document retrieval. Results on the 

Cranfield collection show its potential for outperforming keyword-based systems. 

The Cranfield collection has been one of the main document collections used for 

the evaluation of IR systems by many researchers, including Fabio Crestani and van 

Pajsbergen [Crestani & Rijsbergen 1994, Crestani 1995] on a neural network-based 

relevance feedback model; W. B. Croft [Croft et al. 1989, Croft 1980] on an 

inference model and a cluster-based classification model; 

[Dumais et al. 1991 ]on the latent semantic model; 

Susan Durnais 

Gerad Salton 

[Salton & Allan 1994] on a text structuring model; K. L. Kwok [Kwok 1995] on a 

network approach to probabilistic IR and Thomas Hofinann [Hofmann 1999] on a 

probabilistic LSI model to name a few. However, despite the myriad IR models 
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evaluated on the Cranfield collection by a vast number of IR researchers, we were 

unable to find performance figures for a model similar to ours. In order to make a 

fair comparison, evaluation results obtained on the same collection by a similar 

system (i. e. one stemmed on FCA-based concept matching) is required. 

2. The system's performance improves significantly as it gains experiences. The point 

at which this rising trend would achieve its maximum and saturate or go flat is not 

known. This, in fact, is dependent mainly on the user interactions and therefore it is 

impossible to give an exact figure. A more practical figure could be obtained if the 

system was set to operate in a practical environment for a longer period and its 

performance measured. Such an evaluation is time-consuming and so is avoided 

during this research. 

3. Concept matching seems to produce fewer false hits than keyword matching (hence 

improved precision), as fewer concept matches occur with non-relevant documents 

compared to keyword matches. 

4. The performance of the system is shown to be superior for the queries seen before 

or for queries that are similar to the seen ones (i. e. queries similarly fon-nulated 

with the same vocabulary). This gives the system the potential to perform 

successfully in a more personalised situation and/or in an environment in which the 

majority of the users share common interests and the same depth of knowledge 

about the topics/subjects on which queries are made, and hence expect a similar 

level of depth from the contents of the documents. 

10.2.2 Recommendation 

Finally, this research is concluded with the following recommendation. Our objective was 

to make the use of concepts as similar as possible to the formulation of concepts in the 

human brain. However, this research was far from achieving this objective, but only a first 

step towards it. The difficulty of automatic concept extraction from text and inadequate 

background information available in the contents of documents for building more complete 
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concept hierarchies caused major difficulties for an investigation of the full potential of 

concept matching within the framework of FCA. However, given these dIfficultles, the 

comparative performance results obtained are impressive and encouraging. More than 

outperforming existing models, it shows a way of performing true concept matching and 

the feasibility of using FCA in a different and more advantageous way to that of existing 

FCA approaches. We are optimistic of the potential of the FCA framework to deliver better 

performance, provided that better and more meaningful document and query 

representations can be created through the incorporation of background knowledge, and 

through advances in NLP technology for the extraction of objects and related attributes for 

formulating more meaningful concepts. 

10.3 FUTURE WORK 

This work can be extended and improved at least in the following five directions. 

1. by introducing in external knowledge source(s) to enhance the document and query 
lattices with background knowledge 

2. by incorporating a query reformulation mechanism. 
3. by allowing documents to learn from each other. 
4. by improving concept extraction for creating more meaningful concepts and concept 

hierarchies 

5. by employing a more efficient mechanism for extracting candidate matching concepts 
(nodes) pairs from concept lattice representations of queries and documents. 

10.3.1 Using External Knowledge Sources 

External knowledge sources can be used for two purposes: (1) for enhancing document 

representations with background knowledge; and (2) for reformulating queries. Both of 

these help to minimise ambiguities in the meanings of concepts and reduce imprecision 

involved with their (document and query) representations. 

The essence of the whole exercise of using more elegant constructs of concepts (i. e. formal 

concepts), structuring them hierarchically in concept lattices, and allowing document 

representations to learn from experience etc. is to make the IRS better understand the 
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contents of documents (and queries) and make use of such knowledge for the retrieval of 

documents by concept matching. Understanding the contents of documents has been 

identified as a way forward for achieving significant improvements for retrie%, al 

effectiveness. However, the nature of documents is such that they are not self-contalned, 

meaning that understanding the content of a document needs a great deal of background 

knowledge about the subject. This has caused serious problems for machine understanding 

of documents based only on their contents. As a result, representations created by 

extracting (local) information from the contents of documents are incomplete. This affects 

shorter documents (queries in particular) more severely as they contain less detail and 

hence less background information than longer documents. Consequently, this makes 

lattice representations of short and less informative documents (and queries) less effective 

and the matching of more specific concepts between queries and documents a more 

difficult task to achieve. 

The use of domain knowledge is a major approach that has been applied to understanding 

documents in IR. For this purpose the external sources such as ontologles, thesauri and 

dictionaries have been used in IR applications. The use of these knowledge sources in the 

past has been mainly to reformulate queries by adding new terms or phrases. In particular, 

dictionaries and lexical databases such as WordNet (http: //ýw. coesci. i2rinceton. edu/-wti 

have been used to add synonymous words to the query, mainly to alleviate the synonymy 

problem. In addition, hierarchical representations of terms or phrases in knowledge sources 

allow the enhancement of queries with broader, narrower or related terms (to the existing 

ten-ns). An application of a thesaurus in creating document and query representations in a 

FCA-based approach can be found in [Cole et al. 1997]. 

Alternatively, the use of learning mechanisms allows systems to learn knowledge from 

experience. In contrast to the use of external knowledge sources, learning has been used to 

capture underlYing associations between terms (concepts) and also between documents 
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based on term co-occurrences and relevance feedback. The knowledge of those 

associations has been used: (1) to enhance the query by adding terms (concepts) that are 

strongly associated with the terms (concepts) already present in the query-, and (2) for 

retrieving documents that are strongly associated with documents that match best ýý-ith 

query terms (concepts). This particular case allows the retrieval of documents that have no 

matching concepts with the query, yet contain useful information which fulfils the 

infon-nation need at hand. However, external knowledge resources are always superior in 

terms of their rich structure, in-depth knowledge and reliability to the knowledge that can 

be gained through learning. Nevertheless, unavailability of external knowledge bases to 

cover the domain knowledge required for the collection of documents under consideration 

has severely restricted the use of external knowledge sources in IR. The worst case to 

mention is the retrieval of domain independent free text documents. In this case, a large 

number of knowledge bases would be needed. Such an effort is bound to integration 

difficulties and overheads caused by structural differences between the knowledge bases. 

In addition, incorporation of background knowledge from existing knowledge bases into 

lattice representations of document contents requires derivation of more sophisticated 

knowledge (in the form of object-attribute pairs) from those existing knowledge sources. In 

the worst case, one might think of creating knowledge bases from scratch, with the 

necessary background knowledge in the form of formal concepts or object-attribute pairs. 

Alternatively, mechanisms similar to those of keyword-based approaches could be 

employed in our case too, to enhance query and document representations with broader, 

narrower or related (formal) concepts. The task is however more complicated than in the 

case of keyword-based approaches, as we need to deal with object-attribute pairs rather 

than with simple keywords. The simplest form of an extension would be to resolve concept 

mismatches caused by synonymous words. A lexical database such as WordNet 

(httD: 11ww. cojesci. princeton. edul-w could be used to verify whether synonyms of any 
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object or attribute of a query concept match with a document concept, whenever a match 

occurs only on one side between a query and a document concept pair. This process not 

only allows concept matches to take place inspite of the use of synonymous words in their 

representations, but also helps to avoide the number of keyword matches, causing the 

retrieval results to be based more on concept matches than on keyword matches. 

10.3.2 Knowledge Exchange Between Documents 

Another useful extension for the model would be to let the documents (retrieved and 

relevant to a given query) interact with each other and learn from each other by sharing 

their knowledge based on the co-occurrences of concepts. As a starting point, we can 

experiment by adding the significant concepts of each document to other documents that 

were judged by the user as relevant to the same query. However, this should be done in a 

very controlled manner, as it tends to make similar documents more and more similar and 

therefore might eventually lead to them all becoming identical. Also, we can look for the 

conceptswhich are common to all those similar documents and reward their weights. This 

will help in reinforcing certain important concepts which are otherwise not reinforced 

simply because the queries do not possess them. 

10.3.3 Tools for Extraction of Better Concepts 

Concept extraction from free text is an unsolved problem in NLU. A major problem with 

the identification of a terin or a phrase as an object is the dual role a particular term or 

phrase could play depending on the purpose of its use. Keith Devlin [Devlin 1991 ] 

describes this as "it's always a matter of purpose what parts of the worid are individualised 

as objects". Only a simple set of rules were used in our work to extract a basic set of 

objects and related attributes from natural language text to form concepts, and to create 

representations of documents and queries. Examination of the representations of 

documents reveals that certain formal concepts thus extracted were not accurate and 

meaningful in the human sense. This senously affects the performance of the system as it 
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depends heavily on concept matching. Therefore, it would be interesting to see how the 

model performs when it uses more meaningful concepts similar to those that humans might 

use. As a starting point, one can manually index documents and queries with meaningful 

concepts and try the system on them. This is only possible with a small collection of 

documents. A complete solution for this problem requires the development of better 

methodologies and tools for automatic concept extraction -a breakthrough in NLU. 

10.3.4 Efficient Way of Detecting Nodes to Match Between 

Detecting which node pair(s) to match between lattice representations of queries and 

documents is a difficult and expensive process. The algorithm we developed (Figure 8.8) 

works by extracting object concepts (and attribute concepts) from both the query and 

document for each object/attribute present in the query representation. This works fairly 

well with smaller lattices, but may become more expensive (time consuming) with larger 

lattices, particularly if background knowledge is incorporated using external knowledge 

resources. Therefore, a better and more efficient way of detecting nodes to match between 

is desirable. 

10.3.5 Application to an Agent-Based Distributed Environment 

Given the prospective properties of our model to operate in a distributed environment (as 

detailed in Section 10.1.6) it will be interesting to see the potential of the model in such an 

environment by extending our implementation to an agent-based distributed environment. 

Distributed storage of documents is a likely feature in large sources of documents, 

including the World Wide Web, and processing them locally would be a useful alternative 

to maintaining large indexes. Such an approach has the potential to scale up the systeni's 

ability to operate on large collections of documents. 
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Appendix A- Concept Extraction Rules 

A description of the concept extraction process and the data structures used were given in 

Section 8.2 and Section 8.3 without the detailed rules used. The rules used are detailed 

below under the same categories that they were described in Chapter 8. Note that, the 

LTChunk [http: //www. itg. ed. ac. uk/software/chunk/] software tool was used for taoizing 

and chunking text, before concepts are extracted, and that this particular software uses the 

Penn Treebank tag set for tagging. Those tags are used below at vanous places in 

describing the rules. Also note that, the abbreviated notations NG, VG and OG are used to 

refer into noun, verb and other (ungrouped) groups/chunks respectively. Text in NGs are 

enclosed within double square-brackets (i. e. [[<tennl> <tenn2> <term3>]]) and terms in 

VGs in double round-brackets (i. e. ((<ter-mI> <tem2> <term3>))). 

As already mentioned in Chapter 8, rules given below are not complete and may be not 

consistent by any means. Our objective was to extract a reasonably representative set of 

object-attribute pairs to create initial document/query representations/surrogates as a 

starting point. Di rent rules may extract the same concept (object-attribute pair) more 

than once or different concepts using the same terms from the same piece of text 

(sentence). 

Note that, the examples given below, under each rule, were taken from documents in the 

Cranfield collection, and therefore they might look technical and unfamiliar. 

Rules for Extracting Concep based on Syntactic Structure within Noun 
Groups 

If a possessive relationship between tenns as indicated by 's or s' appears (with the tag 

-POS) 
in a noun group, a concept is formed with the term having the POS tag as the 

object and all the terms that follows it as attributes. 

[[Scattle NNP's POS business NN district NNI I => (Seattle) 41 business 

district) 
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After extracting the concept the _POS 
tag is removed together with 's or s' leaving the 

noun group as [[Seattle_NNP business_NN district-NNI]. This allows the other rules 
(given below) to extract some concepts (object-attribute pairs) if the updated/modified 

noun group satisfies those rules. 

2. Noun groups with leading modifiers such as adjective and adverb terms (e. g. terms 

with the tags JJ, 
-VBN, 

VBG etc. ) (i. e. ten-ns having tags other than 
_NN, _NNS and 

_D7) and with one or more trailing noun terms are processed to create concepts with 

all the trailing noun terms (i. e. headnoun of the noun group) as an object and each 

leading non-noun term (modifier) as an individual attribute of the object. This can be 

written in a syntactic form as a rule using the tags as given below. If the noun group in 

its syntactic form is of [[JJ1 JJ2 NNP NNI], a concept of the form 

JNNP+NN) 4 JJJ1, JJ21 is created. 

e. g: [[The-DTfamed-JJ London-NNP Bridge-NNPI] creates: 

(London Bridge) --) Lfamed) 

3. Also noun groups with more than one trailing noun ten-n are further processed to create 

concepts of the following form. If the noun group is of the fonn [[JJ NNI NN2 NN31] 

then concepts of the form JNN31 4 (NN2); (NN3) 4 (NNI+NN2) and (NN2+NN3) 

4 (NNI) are created. 

e. g 1: [[The-DTfamed-JJ London-NNP Bridge-NNP]] creates: 

I Bridge) 4 (London) 

e. g 2: [[Seattle-NNP business-NN district-NNI I creates (district) 4 (business) and 

I district) 4 (Seattle business) and I business district) 4 (Seattle) 

4. Finally, for noun groups with only noun terms in it, a self-concept is created using all 

the noun terms in it as a single object as well as a single attribute, i. e. [[NNI NN2 

NN3]] => INN1+NN2+NN31 4 INNI+NN2+NN31. This is to take into account 

important phrases with only noun terms. Such phrases will not be taken into account 

(otherwise) if they are not connected to a second noun group by one of the connectors 

we use for concept extraction. 

e. g.: [[London-NNP bridge-NNPI] creates: 

t London Bridge) 4 (London Bridge I 

Note that, this is pruned out if the phrase "London Bridge" is present as a single constitute 

element in another (other than a self-concept) concept. 
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Rules for Extracting Conceots based on Verb Groul)s 
5. For a verb group with a single-word "be-verb" (i. e. is, are, was, were, has, had etc. ) 

which lies in between two noun groups (i. e. in the form NGI VG NG2), head nouns of 
the two noun groups are used for creating a concept, i. e. 
(HeadNoun(NGI)l 4 JHeadNoun(NG2)). These are similar to is-a type of 
relationships. 

e. g. 1: [[John. NN]] [[is-VBZ]] [Lfat--NNII => (John) --) I fat). 

e. g. 2: [[the-DTfree_JJstream--., NNII((has-VBZ))[[a-DTconstant-JJvelocirý, 
-NNIJ 

creates: (stream) 4 (velocity) 

6. For a verb group with a single-word non-be-verb which lies in between two noun 
groups (i. e. in the form NGI VG NG2): 

If the verb begins with "include" then create: 

fHeadNoun(NGI)) --) [HeadNoun(NG2)1 

e. g.: [[the-DT reduced-VBN equations. NN]] ((includes- VBZ)) [[various-JJ 

tennsý-NNSJ] creates: (equation) --) Itenns) 

For all other single-tenn non-be verbs create: 

(<Vtenn>) -4 (HeadNoun(NGI), HeadNoun(NG2)1 

7. For a Verb group with a multi-word verb which lies in between two noun groups (i. e. 
in the form NGI VG NG2): 

If the last word of the verb group is a forrn of a verb word (i. e. having a tag starting 

with VB, let's write this as Vtenn 
-VB? 

) then create: 

I <Vterm>) --) I HeadNoun(NGI), HeadNoun(NG2)) 

e. g.: [[engineers_NNS]] ((to-TO meet-VB)) [[the-DT demands_NNSI] creates: 

(meet) 41 engineers, demand) 

8. For verb groups that are not in between two noun groups (i. e. not of the form 

NG VG NG), but having previous and next noun groups at distance: 

If the verb group is having a single-word non-be-verb, then create: 

I <Vterm>) 41 HeadNoun(NGI), HeadNoun(NG2)) 

248 



e. g. [[the-DTpropeller-NNaxisý_NN]] ((undergoes- VBZ))pitching_VBZ 

[[vibrationsý_NNS]] creates: I undergo 14 (propeller axis, vibration) 

If the verb group is having a multi-word verb and the last term of it is of a ý'erb form 

(i. e. Vtenn-VB? ) then create: 

( <Vterm>) --)ý I HeadNoun(NGI), HeadNoun(NG2)) 

e. g. [[a-DT solution. NNII ((is-VBZ found-VBN)) forý--IN [[the_DT 

temperature-NN radient-NN]] creates: 
tfound) 4 (solution, temperature radient) 

If a verb group contains a fon-n of "include" (with -ing, -ed fonns etc. ), then create 
(HeadNoun(PreviousNG)) --) (HeadNoun(NextNG)). There can be anything (any 

other groups, other than NGs) in between 

e. g. [[Appendixes. NNS]] ((include_VBP)) [[the-DT questionnaire. NN]] ... creates: 

I appendix) 4 (questionnaire) 
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Rules for Extracting Concepts based on Prepositional Words 
(Connectors) between Noun/Verb chunks 

Prepositional words are not usually placed within noun or verb chunks (by the chunker 

LtChunk), but are left ungrouped. As already mentioned such ungrouped pieces of text are 

treated as belonging to a third kind of a group denoted by "Other Group" (OG). The rules 

given below are to extract concepts based on such prepositional words that belong to Other 

Groups in a chunked sentence. 

Full set of prepositional words (connectors) used: 

(by, at, as, after, into, for, of, in, on, to, through, over, among, between, toward, like, upon, 

along, from, under, within) 

This set of connectors is grouped into five overlapping groups as given below. 

Connector Setl : (by, at, as, after, into, for, of, in, on, to, through, over, among, between, 

toward, like, upon, along) 

Connector Set2 : (by, at, as, after, into, from, of, in, on, under, within, over, among, 

toward, like, upon I 

Connector Set3 : (by, at, as, into, from, in, under, through, between, toward I 

Connector SeW : (by, at, as, into, through, within, among, toward, upon, along) 

Connector Set5 :I by, at, as, into, through, toward, along I 

Generic Rules: 

9. If a starting group of a sentence is an OG and if it is of the fonn <By+ Vter-rn-VB? >, 

then I <Vterm> 14 ( NGI). i. e. if NNI = [[JJ NNI NN21] then create: 

I<Vtenn>) --) JNN2), I<Vterm>l --) INNI+NN2) and (<Vterm>) --) fJJ+NNI+NN2) 
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e. g.: By-INapplying-VBG[[the-DTrecommended_VBNscaling_NN]I ... creates: 
(apply) 4 (scaling) 

10. If OG contains only one-word connector and if it is in the middle of two NGs (i. e. of 

the form NGI OG NG2) and also if the <connector word> E Connector Set I then 

create I HeadNouns(NG 1) 14 1 HeadNouns(NG2)). (Note that repeated connectors are 
handled by a separate specific rule (see Rules 18 & 19)) 

e. g.: [[algorithm. NNII for-IN [[analysing. NNP logical-NNP stateinents-NNPI] 

creates: I algorithm) --) I analysing logical statements) 

11. If OG is a single-term connector and is of the form NGI VG OG NG2 and VG is a one- 

word verb and the verb is not a be-forrn word (i. e. not of the type is, are, was, were, 

has, had, will , would etc) and the <connector term> r= Connector Set2 then create 

jHeadNoun(NGI)) 4 (HeadNoun(NG2), <verbterin>) 

e. g. [[this-DT methodýNNJ] ((differ_VBP)) from-IN [[the-DT experimental-JJ 

results. NNS]l creates: (method) --)I results, differ) 

12. If OG is a single-term connector and is of the form NGI VG OG NG2 and VG is a 

one-word verb and the verb is not a be-fonn word (i. e. not of the type is, are, was, 

were, has, had, will, would etc) and the connecter tenn r= Connector Set3 then: 

I <Vterm>) -4 f HeadNoun(NGI), HeadNoun(NG2)) 

e. gl: [[this-DT methodýNNII ((differ_VBP)) from-IN [[the_DT experimental-JJ 

results. NNS]] creates (differ) --) (method, resultsl 

e. g2: [[airý-NNII ((decelerates_VBZ)) through-IN [[the-DT speedýNNJJ of 

creates: Ideceleratel 4 fair, speed) 

_, 
NG3,, ... and 13. NGI such-JJ+as-IN NG2, lor_CC NGn then create: 

( HeadNoun(NGI)) 41 HeadNoun(NG2), HeadNoun(NG3), ..., 
HeadNoun(NGn)) 

e. gI: [[extemal-JJ constrain ts. NNS] I such-JJ as-IN [[precedence-NN]l 

[[urgencY-NNI] -, etc. creates (constraint) 4( precedence, uqem-Y) 

e. g2: [[individuals-NNS11 such-Ras-IN [[researchers_NNSI] and_CC [[cliniciansfl 

... creates I individuals I --) (researchers, clinicians I 
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14. If OG is the two-word connector "as of' and lies between two noun groups (i. e. of the 
form NGI as_IN O! f IN NG2) then create: 

I HeadNoun(NGI) 14 1 HeadNoun(NG2)) 

e. g.: ... [[the-DTFederal-NNPGovemment-NNPII, 
-, as INo IN 

[[December-NNPI] ... creates I Federal Government) 4 (December) 

15. If OG contains two words and is of the fonn NGI OG NG2 and the I" term of OG is 
f 4toward' or "along" and 2 nd tenn is a verb term (Vterrn-VB? ) then create: 

(HeadNoun(NGI)l --) (HeadNoun(NG2), <Vter? n>) 

e. gl: [[a-DT first-JJ step. NN]] towards-IN developing-VBG [[a_DT 

costing-VBG methodýNN] ] creates I step) --)I method, developing) 

e. g2: [[items. NNS]] along-IN interacting-VBG [[channels-NNSI] creates 
(items) 4 (channels, interacting) 

16. If OG contains two words and is of the form NGI OG NG2 and the I" tenn of OG is a 

verb term (Vtenn-VB? ) and the 2 nd termE=- Connector SeN then create: 

(HeadNoun(NGI)) 4 (HeadNoun(NG2), <Vterm>) 

e. g.: [[solutions. NNS]]given_VBNbyjN[[Wassennann. NN]] creates: 

(solution) --) (Wassermann, given) 

17. If OG contains two words and is of the form NG1 OG NG2 and the Is' term of OG is a 

verb term (Vtertn-VB? ) and the 2d term (=- Connector Set5 then create: 

(<Vter7n>) 4 (HeadNoun(NG1), HeadNoun(NG2)) 

e. g.: [[the-DT solution_NNJ] measured-VBN along_IN [[the-DT surface_NN]] 

creates f measure I --) I solution, surface) 
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Specific Rules: 

18. If three noun groups are connected by one of the connectors "in", "on". -at", -by" O. e. 
of the form NGI CON NG2 CON NG3) the create: 

I HeadNoun(NGI)) 4( HeadNoun(NG2), HeadNoun(NG3)) 

e. gl: [[a-DT flat-JJ plate. NN]] in-IN [[an-DT incompressible-JJ fluid-NN]l 

qf-jN [ [small-JJ viscosity-.., NN] ] creates [plate (fluid, viscosity) 

e. g2: [[slipstream-NN]l at_IN [[different-JJ angles_NNS]] of-IN [[attack_NN11 

creates I slipstream) 4 (angle, attack) 

19. If three noun groups are connected by the connector "of' (i. e. of the fonn NGI of-IN 
NG2 of-IN NG3) then create: 

(HeadNoun(NGI)+"of'+HeadNoun(NG2)) --) (HeadNoun(NG3)) 

(HeadNoun(NGI)) 4 (HeadNoun(NG2)+"of'+HeadNoun(NG3)I 

e. g.: [[A DT new NNP method NNP]] of NNP] of IN JN [[computation- 

[[square-NNP Roots-NNP]] ... creates: 

(new method of computation I --) J square root) and 
(new method) 41 computation of square root) 

20. If two noun groups are connected by one of the connectors "in ..... .. on", "at", "by" and 

to a third noun group by "and' or "or" (i. e. of the form NGI CON NG2 andlor-CC 
NG3) then create: 

(HeadNoun(NGI)) 4 (HeadNoun(NG2), HeadNoun(NG3)) 

e. g.: [[the-DT rotation-NN term. NNI] on-IN [[pressure-NN distribution_NN]j 

and-CC [[drag. NNII creates: 

(rotation term) 4 (pressure distribution, drag) 

21. If two noun groups are connected by "and" (i. e. of the form NGI and-CC NG2) then 

for any concept formed taking NGI as an object/attribute (by other rules), another 

concept is created with NG2 with the same partner that NGI creates a concept. 

e. g.: [[temperature-NN differences-NNSJ] between-IN [[the_DT wall. NN11 

and_CC [[the-DTfree_JJ stream. NNI] creates: 

temperature difference) wall, stream 
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22. If two noun groups are connected by "or" (i. e. of the form NGI or_CC NG2) then for 

any concept created with one of the noun groups (by other rules). an alternative 
concept is created with the other. 

If a concept JNGI) --) (NG3) is created then (NG21 4 (NG3) is also created. 

e. g.: [[the-DT immediate-JJ vicinity. NN]] of IN [[the-DT wall-NN]] or_CC 
[[the-DT laminator-JJ sublayerý_NN]] creates: 
(vicinity) 4 (wall, sublayer) 

23. Remove any or-CC or and-CC present within a noun group in between modifiers (i. e 
between adjectives (-jJ), adverbs -VBN, _VBG etc. ). 

e. gl: [[traditional-JJ and-CC current-JJ professional-JJ ideas-NNS]] is tumed 

into [[traditional-M current-ii professional-M ideas. NNS] I 

e. g2: [[annular_JJ or-CC side-JJ air-NN intake. NNSJ] is changed to 

[[annular_JJ side-JJ air-NN intake. NNS]] 

24. If or-CC or and-CC is present in a noun group (NG) but not between two modifiers, 

then it may be talking about two aspects of the same noun/topic/object. Therefore two 

concepts are created for each of those aspects whenever a concept is created with this 

noun group (NG). (This rule was not implemented. ) 

25. If an Other Group (OG) is of the form to_TO+<Vtenn-VB? > and lies between two 

noun groups (i. e. NGI to-TO+ Vter7n_VB? NG2) then create : 

(<Vtenn>) 4 (HeadNoun(NGI), HeadNoun(NG2)) 

e. g: [[a_DT computerý_NN]] to-TO translate-VB [[simple-JJ algebraic-JJ 

formulas_NNS] creates I translate) --) I computer, formula) 

26. If an Other Group (OG) which lies in between two noun groups and starts with 

"based on" or "based upon" or based either upon" (i. e. NGI based_VB? + 

onluponleither upon-IN NG2) then create: 

I HeadNoun(NGI)) 4( HeadNoun(NG2)1 
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e. g.: [[Relevance-NN figures. NNS11 based-VBN upon-IN ([the_DT 

response. NN]] .... creates: (relevance figures) 4( response ) 

27. If an Other Group (OG) is of the form toward_IN+Vterm-VB? and that it lies in 

between two noun groups (i. e. NGI toward_IN+ Vtenn_VB? NG2) the create: 

I HeadNoun(NGI) I --) I <Vtenn>, <Vtenn> + HeadNoun(NG2)) 

e. g.: [[a-DT first-JJ step. NN]l towards-IN developing_VBG [[a-DT 

costing-VBG methodýNN]j creates: 

I step 14 1 developing, developing method 
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Appendix B- Concept Matching between Concept Lattices 
(A Transcript) 

Given below is the detail of Query 451 and Document 4528 of the Cranfield collection. This 

document is assessed as relevant to the query. The document context and the corresponding 
document concept lattice given below in Figure B. 2 are the ones obtained after training the 
document collection for 20 epochs with all queries except query #5 1. 

Note that, "0" followed by a serial number identifies an object, and "A" followed by a serial 

number identifies an attribute. The software tools "ConImp" and -Diagram- 

(http: //Www. mathematiktu-darmstadt. delagslagIlSoftwarelsoftWare_en. htmý both 

developed at Darmstadt, Germany were used for producing the lattice diagrams given below. 

Cranfield Ouery #51 

Objects and Related Attributes: 

01 : A2, Al 06 : A10, A9 

02 : A3 07 : A10 

03 : A6, A4 08 : All 

04 : A5 09 : A12 

05 : A9, A8, A7 010 : A13 

Details of Objects and Attributes: 

Objects Attributes 

0 1: what Al. what 
02: information A2. information 

03. Boundary layer A3. available 

04. layer A4. Boundary layer 

05. body A5. boundary 

06. revolution A6. body 

07. Continuum flow AT very 

08. flow A8. slender 

09. Curvature effect A9. revolution 

0 10. effect A 10. Continuum flow 

A 11. continuum 

A 12. transverse 

A 13. curvature 

Concept 
ID 

Concept 

CI <all objects> 4 
C2 (Effect) 4 (curvature) 
C3 (Curvature 

effect) (transverse) 
C4 {flow) (continuum) 
C5 (Revolution, continuum flow) 

(continuum flow) 

C6 (Body, revolution) 4 
f revolution) 

C7 (revolution) 4 (revolution, 
continuum flow) 

C8 body) 4 
(very, s lender, revo I ut ion) 

C9 (layer) 4 tboundary) 

CIO (boundary layer) 4 (body, 
boundarylayer) 

CII (information) 4 (available) 

C 12 (what) 4 (what, information) 

C 13 4 <all attfibutes> 

Table B. 1 : Objects, Attributes and Concepts Extracted from Query#61 of Cranfield 

256 



Opery Concept Lattice 

C2 

Figure B. 1 : Concept Lattice of the Query#51 of Cranfield Collection 

Cranfield Document #528 

Given below are the objects, their attributes and the weights of unit-concepts (i. e. weights 
between object-attribute pairs) of Document#528. Note that OI: A3 2.5; Al 2.5 means Object 

01 possesses Attributes A3 and Al, and the weights of the unit concepts, tOl) -4 JA31 and 
t0 1) 4 (A II are 2.5 each. 

01 : A3 2.5; Al 2.5 
02: A54 4.5077567; A43 2.6; A46 2.6; A2 2.5; 
A45 4.7884655 
03 : A6 2.5; A 17 2.0286775; A4 2.1744843 
04: A5 1.9842464 
05 : A8 4.4555316; A7 4.4786963 
06: A8 2.5 
07: A9 2.5 
08: A10 1.9244329 
09: All 2.5 
010: A29 2.5; A12 2.5 
Oil : A28 2.5; AI5 2.5; AI42.5; AI3 2.5 
012: A14 2.5; A13 2.5 
013: A14 2.5 
014: A16 2.5 
015: A18 2.5 
016: A20 2.5; A19 2.5 
017: Al 2.5 
018: A2 2.5 
0 19: A21 2.5 
020: A22 2.5; A21 2.5 
021 : A22 2.5; A28 2.5; A26 2.5; A25 2.5; A24 
2.5; A23 2.5 
022: A27 2.5. A25 2.5; A2 2.5 
023 : A26 2.5 
024: A28 2.5 
025: A30 2.5 
026: A31 2.5 

027: A32 2.5 
028: A33 2.5; A32 2.5 
029: A33 2.5 
030: A35 2.5; A34 2.5 
031 : A37 2.5; A36 2.5 
032: A6 2.5 
033 : A37 2.5 
034: A38 2.5 
035 : A6 2.3866334 
036: A39 2.5 
037: A40 2.5; A28 2.5 
038: A40 2.5 
039: A42 2.5; A41 2.5 
040: A42 2.5 
041 A44 2.6; A43 3.2063825; A52 4.5077567 
042 A47 4.7884655 
043 A48 4.5077567; A47 2.6 
044: A49 4.7884655; A47 2.6 
045 : A55 4.7884655; A50 2.6; A56 4.5077567 
046: A49 2.6; A5 4.5077567 
047 : A51 4.5077567; A6 4.5077567; A5 2.6 
048 : A6 4.5077567; A5 4.2040606 
049: A53 4.490081 
050: A55 2.6 
051 : A51 2.6; A3 2.060822 
052: A5 2.060822 
053: A2 2.6 
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Details of Ob*ects and Attributes 

Object 
ID 

Objects OrigJ 
Updtd 

Keyword 
Weig t 

01 Slip effect 1 2.6 
02 Effect 1 1.3298341 
03 Boundary layer 1 2.4816785 
04 layer 1 2.519406 
05 Body 1 2.0646727 
06 revolution 1 2.4823744 
07 Pressure gradient 1 2.6 
08 gradient 1 2.6 
09 Reference 1 1 2.6 
010 1 1 2.6 
Oil analysis 1 1.8698725 
012 given 1 2.4823744 
013 probstein 1 2.6 
014 elliott 1 2.6 
015 curvature 1 2.6 
016 extended 1 2.6 
017 Slip flow. 1 2.6 
018 flow. 1 2.6 
019 extension 1 2.6 
020 based 1 2.6 
021 expansion 1 2.5404787 
022 parameter 1 2.4823744 
023 Slip parameter_ 1 2.6 
024 ref 1 1 - 2.6 
025 Wall temperature 1 2.6 
026 temperature 1 1.8698725 
027 e 1 2.6 

028 varies 1 2.4823744 
029 x 1 2.6 
030 dependence 1 2.6 
031 Body radius 1 2.6 
032 radius 1 2.6 
033 X. 1 2.6 
034 Body shape 1 2.6 
035 shape 1 2.31623 FT 
036 note 1 2.6 
037 re-examined 1 2.6 
038 account 1 2.6 
039 variation 1 2.2289894 
040 e. 1 2.6 
041 what 2 0.7851298 
042 Effect of amount 2 2.6 
043 amount 2 2.5404787 
044 Gas rarefaction 2 2.6 
045 rarefaction 2 2.6959999 

046 characteristic 2 1.9873333 
047 boundary 2 1.4164754 
048 layers 2 2.6 
049 information 2 2.1125894 
050 Boundary layer 

flow 
2 2.5364094 

051 flow 2 0.837419 
052 Layer flow 2 2.6 
053 Slip 2 3.6044445 

Attrib. 
ID 

Attribute OrigJ 
Updtd 

Keyword 
Weight 

AI first-order 1 2.6 
A2 slip 1 3.6044445 
A3 Boundary layer 1 2.4816785 
A4 laminar 1 1.9423987 
A5 

- 
boundary 1 1.4164754 

A6 l body 1 2.0646727 
A7 slender 1 2.3702834 
A8 revolution 1 2.4823744 
A9 zero 1 2.3162313 
AlO pressure 1 1.2197144 
All Reference 1 1 2.6 
A12 reference 1 2.4823744 
A13 analysis 1 1.8698725 
A 14 probstein 1 2.6 
A15 given 1 2.4823744 
A16 elliott 1 2.6 
A17 compressible 1 2.2119575 
A18 transverse 1 2.4823744 
A19 curvature 1 2.6 
A20 Slip flow. 1 2.6 
A21 extension 1 2.6 
A22 expansion 1 2.5404787 
A23 double 1 2.6 
A24 asymptotic 1 2.4823744 
A25 parameter 1 2.4823744 
A26 Slip parameter 1 2.6 
A27 transverse- 

curvature 
1 2.6 

A28 ref. 1 1 2.6 
A29 ref. 1 2.6 
A30 constant 1 2.6 
A31 wall 1 2.4823744 
A32 e 1 2.6 
A33 X 1 2.6 
A34 dependence 1 2.6 
A35 Body radius 1 2.6 
A36 local 1 1.9572567 
A37 X. 1 2.6 
A38 arbitrary 1 2.2809136 
A39 present 1 2.6 
A40 account 1 2.6 
A41 vanation 1 2.2289894_ 
A42 e. 1 2.6 
A43 effect 2 1.3298341 
A44 what 2 0.7851298 
A45 Amount of gas 

rarefaction 
2 2.6 

A46 amount 2 2.5404787 
A47 Gas rarefaction 2 2.6 
A48 small 2 2.1616747 
A49 characteristic 2 1.9873333 
A50 gas 2 2.2634664 

A51 layer 2 2.519406 
A52 information 2 2.1125894 
A53 available 2 2.4823744 
A54 rarefaction 2 2.6959999 
A55 Boundary layer 

flow 
2 2.5364094 

A56 slight 2 12.6 

Table 8.2 : Objects and Attributes Extracted from Document#528 of Cranfield 
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Note that, the value "I" in the Orig. /Updtd. columns in Table B. 2 indicates objects/attributes 

originally extracted from the source document, and "T' indicates the ones that were added 

during learning. 

Document Concept Lattice 

ME 

c5d 

A55 
050 

045 

Candidate Keywords/Keyphrases (i. e. Keyword slKeyph rases Common to the Ouerv 
and the Document 

what layer revolution 
information boundary flow 
available body transverse 
boundary layer slender effect 

curvature 

Candidate Concept Pairs Extracted to Match Between the Ouerv and the Document 

I. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 

I -) . 

Qry Cnpt: 101) -> (Al, A2) WITH 
Qry Cnpt : (02) -> (M) WITH 
Qry Cnpt : f 03) -> (A4, A6) WITH 
Qry Cnpt : 104) {A5) WITH 
Qry Cnpt: (04) {A51 WITH 
Qry Cnpt: (05) f A7, A8, A9) WITH 
Qry Cnpt f 061 (A9, A 10) WITH 
Qry Cnpt (08) (A I I) WITH 
Qry Cn pt (09) (A 12) WITH 
Qry Cnpt (0 10) (A 13) WITH 
Qry Cnpt {O 10) (A 131 WITH 
QryCnpt: (010) (A13) WITH 

Doc Cnpt: 1041) -> (A43, A44, A52) 
Doc Cnpt: 1049) (A53) 
Doc Cnpt : (03) (A4, A6, A 17) 
Doc Cnpt: f 04,046,047,048,052) -> (M) 
Doc Cnpt: (0471 (A5, A6, A5 1) 
Doc Cnpt: (05) (A7, A8) 
Doc Cnpt: (05,06) -> (A8) 
Doc Cnpt : (05 1) -> (A3, A5 I) 
Doc Cnpt : 10 15) -> (A 18) 
Doc Cnpt: (021 -> (A-2, A43, A45, A46, A54) 
Doc Cnpt (0 15) -> (A 18) 
Doc Cnpt f0 16) -> (A 19, A20) 
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Figure B. 2 : Concept Lattice of the Document#528 of Cranfield Collection 



The following are the same candidate concept pairs, but written with actual textual labels of 

objects and attributes instead of their IDs. Concept/Node ID numbers used in the concept 

lattice diagrams are also indicated (circled). Matching Object-Attribute pairs are also indicated. 

Ouery Nodes/Concev Document Nodes/Concepts 

II 

(w atj --) (w I at, information) WITH(q I (effect, Vhat, information) 

2. (S (information) favaillable) WITH 
a 

(information) 4 (available) 

3.8 (boundary layer) --) (body, boundary layer) WITH (boundary layer) -4 (laminar, body, 
compressible) 

4. layer) 4 (boundary) WITHe layer, layers, characteristic, boundary, layer flow I 
4 (boundary) 

5. 
(D 

(layer) --) (boundary) WITH 
8 

(boundary) --) I boundary, body, layer I 

II11 
6. 

a 
(boýy (very, slelder, revolution) WITH boýý( sle der, revolution 

II11 
7. 

a 
(revolution) 4 (revolution, continuum flow) WITH body, revolution) 4 (revolution) 

8. flow) 4 (continuum) WITH flow) --) (boundary layer, layer) 

9. curvature effect) 4 (transverse) WITH (9 (curvature) --) (transverse) 

10(a (effect) 4 (curvature) WITH 
aI 

effect) 4 Islip, effect, amount of gas rarefaction, 
amount, rarefaction) 

IIa (effect 14 1 curvature) WITH 
6 

(curvature) 4 (transverse) 

12 effect) curvature) WITH (extended) 4 (curvature, slipflow) 
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Ouerv Document Node Ma 

Figure B. 3 given below illustrates (in blue lines) the same, i. e. nodes that are compared 

between the query and document lattices in order to compute a similarity score. 

1 
ý55 Al 

017 

c0 

51 
4 

C44 

4 

cc-; 4 
1 0, 

47 
048 

C6 

4 47 
4o 

C56 

A55' 
1050- 

A2 
01 

A42 
040 

033 06 

Figure B. 3 : Concept Matching between Query#51 and Document#528 of Cranfield Collecbon 

Following are the matching object-attribute pairs (unit-concepts) and keywords given by these 

candidate conceptJnode pairs. Note that they are subject to pruning to remove duplicates. 
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Matching Unit-concepts and Keywords Before Pruning 

Unit-Concepts Keywords/Keyphrases 

Jwhaq --) Jwhat) 
(what) 4 jinformation) 
(information) 4 (available) 
ýboundarylayer) --) (body) 
flayer) 4 (boundary) 
(body) --) Islender) 
(body) 4 Irevolution) 
frevolution) 4 frevolutionj 

Prunint! Concepts 

what : weight= 0.7851298 
infonnation : weight= 2.1125894 
available : weight= 2.4823744 
boundary layer weight = 2.4816785 
layer : weight 2.519400 
boundary : weight = 1.4164754 
body : weight = 2.0646727 
slender : weight = 2.3702834 
revolution : weight = 2.4823744 
flow : weight= 0.837419 
transverse : weight = 2.4823744 
effect : weight 1.3298341 
curvature : weight= 2.6 

twhat) 4f what) is a self-concept and what is also present in the concept 
(what) 4 finformation). So it is discarded. 

2. fLayerl 4 (boundary) is present as a single phrase in lboundary layel --) tbody). 
So it is discarded. 

3. (revolutionj -; ý frevolution) is a self-concept and revolution is also present in the 
concept tbody) 4 trevolution). So it is discarded. 

Pruninp- Keywords/Keyphrases 

The following keywords/keyphrases are present in at least one of the unit-concepts left after 

pruning. Therefore they are discarded. Others are retained. 

what, information, available, boundary layer, layer, boundary, body, slender, revolution. 

Matchinii Unit-concepts and Keywords/keyphrases After Pruninp- 

Unit-Concepts: 

1. (whatj 4 tinformation) (weight= 4.5077567) 
2. t information) --) tavailable) (weight = 4.49008 1) 
3. f boundary layer) 4f body) (weight = 2.5) 
4. (body) 4t slender) (weight= 4.4786963) 
5. tbody) -4 trevolution) (weight = 4.4555316) 

Keywords/Keyphrases: 

6. flow (weight= 0.837419) 
7. transverse (weight= 2.4823 744) 
8. effect (weight = 1.3298341) 
9. curvature (weight = 2-6) 
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Similarity Score (RSV) Calculation 

The weights of the remaining (i. e. left after pruning) unit-concepts and keywords/kevphrases 

are used for calculating a similarity score for the query-document pair. Recall that the weights 

are further weighted for their informative-ness. The re-weighting criteria and the Nveighting 

factors are given below. 

I- Unit-concepts in which at least one of its constituent (object or attribute) is a multi- 
term entity are multiplied by 2.5 (weighting factor). 

2. Single-term unit-concepts are multiplied by 2.0. 

3. Multi-term keyword/keypharse is multiplied by 1.5 

4. Single-term keyword is left un-weighted (weighting factor is 1) 

Similarity measure = (4.5077567 x 2) + (4.490081 x 2) + (2-5 x 2.5) + (4.4786963 x 2) 

(4.4555316 x 2) + 0.837419 + 2.4823744 + 1.3298341 + 2.6 

= 49.363758 

Threshold Calculation : 

Threshold = Base Threshold x Total number of (Query) unit-concepts extracted as candidates 

to match/compare with the document. 

= 1.3 x 14 

= 18.2 

Since the similarity measure (RSV) of Document#528 to Query#51 (49.363758) exceeds the 

threshold values (18.2), computed for the same query-document pair, Document#528 is 

retrieved for the Query#5 1. It indeed is a document that is assessed as relevant to the query in 

the relevance assessments list (qrels) of the collection (Cranfield). 
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