108 research outputs found

    Improving Quality of Life: Home Care for Chronically Ill and Elderly People

    Get PDF
    In this chapter, we propose a system especially created for elderly or chronically ill people that are with special needs and poor familiarity with technology. The system combines home monitoring of physiological and emotional states through a set of wearable sensors, user-controlled (automated) home devices, and a central control for integration of the data, in order to provide a safe and friendly environment according to the limited capabilities of the users. The main objective is to create the easy, low-cost automation of a room or house to provide a friendly environment that enhances the psychological condition of immobilized users. In addition, the complete interaction of the components provides an overview of the physical and emotional state of the user, building a behavior pattern that can be supervised by the care giving staff. This approach allows the integration of physiological signals with the patient’s environmental and social context to obtain a complete framework of the emotional states

    Ubiquitous Robotics System for Knowledge-based Auto-configuration System for Service Delivery within Smart Home Environments

    Get PDF
    The future smart home will be enhanced and driven by the recent advance of the Internet of Things (IoT), which advocates the integration of computational devices within an Internet architecture on a global scale [1, 2]. In the IoT paradigm, the smart home will be developed by interconnecting a plethora of smart objects both inside and outside the home environment [3-5]. The recent take-up of these connected devices within home environments is slowly and surely transforming traditional home living environments. Such connected and integrated home environments lead to the concept of the smart home, which has attracted significant research efforts to enhance the functionality of home environments with a wide range of novel services. The wide availability of services and devices within contemporary smart home environments make their management a challenging and rewarding task. The trend whereby the development of smart home services is decoupled from that of smart home devices increases the complexity of this task. As such, it is desirable that smart home services are developed and deployed independently, rather than pre-bundled with specific devices, although it must be recognised that this is not always practical. Moreover, systems need to facilitate the deployment process and cope with any changes in the target environment after deployment. Maintaining complex smart home systems throughout their lifecycle entails considerable resources and effort. These challenges have stimulated the need for dynamic auto-configurable services amongst such distributed systems. Although significant research has been directed towards achieving auto-configuration, none of the existing solutions is sufficient to achieve auto-configuration within smart home environments. All such solutions are considered incomplete, as they lack the ability to meet all smart home requirements efficiently. These requirements include the ability to adapt flexibly to new and dynamic home environments without direct user intervention. Fulfilling these requirements would enhance the performance of smart home systems and help to address cost-effectiveness, considering the financial implications of the manual configuration of smart home environments. Current configuration approaches fail to meet one or more of the requirements of smart homes. If one of these approaches meets the flexibility criterion, the configuration is either not executed online without affecting the system or requires direct user intervention. In other words, there is no adequate solution to allow smart home systems to adapt dynamically to changing circumstances, hence to enable the correct interconnections among its components without direct user intervention and the interruption of the whole system. Therefore, it is necessary to develop an efficient, adaptive, agile and flexible system that adapts dynamically to each new requirement of the smart home environment. This research aims to devise methods to automate the activities associated with customised service delivery for dynamic home environments by exploiting recent advances in the field of ubiquitous robotics and Semantic Web technologies. It introduces a novel approach called the Knowledge-based Auto-configuration Software Robot (Sobot) for Smart Home Environments, which utilises the Sobot to achieve auto-configuration of the system. The research work was conducted under the Distributed Integrated Care Services and Systems (iCARE) project, which was designed to accomplish and deliver integrated distributed ecosystems with a homecare focus. The auto-configuration Sobot which is the focus of this thesis is a key component of the iCARE project. It will become one of the key enabling technologies for generic smart home environments. It has a profound impact on designing and implementing a high quality system. Its main role is to generate a feasible configuration that meets the given requirements using the knowledgebase of the smart home environment as a core component. The knowledgebase plays a pivotal role in helping the Sobot to automatically select the most appropriate resources in a given context-aware system via semantic searching and matching. Ontology as a technique of knowledgebase representation generally helps to design and develop a specific domain. It is also a key technology for the Semantic Web, which enables a common understanding amongst software agents and people, clarifies the domain assumptions and facilitates the reuse and analysis of its knowledge. The main advantages of the Sobot over traditional applications is its awareness of the changing digital and physical environments and its ability to interpret these changes, extract the relevant contextual data and merge any new information or knowledge. The Sobot is capable of creating new or alternative feasible configurations to meet the system’s goal by utilising inferred facts based on the smart home ontological model, so that the system can adapt to the changed environment. Furthermore, the Sobot has the capability to execute the generated reconfiguration plan without interrupting the running of the system. A proof-of-concept testbed has been designed and implemented. The case studies carried out have shown the potential of the proposed approach to achieve flexible and reliable auto-configuration of the smart home system, with promising directions for future research

    Progress in ambient assisted systems for independent living by the elderly

    Get PDF
    One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients’ place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for wearable devices and sensors, as well as distributed storage and access (e.g. cloud) are yet to be fully appreciated. There is a distinct lack of strong supporting clinical evidence from the implemented technologies. Socio-cultural aspects such as divergence among groups, acceptability and usability of AALS were also overlooked. Future systems need to look into the issues of privacy and cyber security

    A female-focused design strategy for developing a self-care information system

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Smartphone Apps for the Treatment of Mental Disorders: Systematic Review

    Get PDF
    Background: Smartphone apps are an increasingly popular means for delivering psychological interventions to patients suffering from a mental disorder. In line with this popularity, there is a need to analyze and summarize the state of the art, both from a psychological and technical perspective. Objective: This study aimed to systematically review the literature on the use of smartphones for psychological interventions. Our systematic review has the following objectives: (1) analyze the coverage of mental disorders in research articles per year; (2) study the types of assessment in research articles per mental disorder per year; (3) map the use of advanced technical features, such as sensors, and novel software features, such as personalization and social media, per mental disorder; (4) provide an overview of smartphone apps per mental disorder; and (5) provide an overview of the key characteristics of empirical assessments with rigorous designs (ie, randomized controlled trials [RCTs]). Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for systematic reviews were followed. We performed searches in Scopus, Web of Science, American Psychological Association PsycNET, and Medical Literature Analysis and Retrieval System Online, covering a period of 6 years (2013-2018). We included papers that described the use of smartphone apps to deliver psychological interventions for known mental disorders. We formed multidisciplinary teams, comprising experts in psychology and computer science, to select and classify articles based on psychological and technical features. Results: We found 158 articles that met the inclusion criteria. We observed an increasing interest in smartphone-based interventions over time. Most research targeted disorders with high prevalence, that is, depressive (31/158,19.6%) and anxiety disorders (18/158, 11.4%). Of the total, 72.7% (115/158) of the papers focused on six mental disorders: depression, anxiety, trauma and stressor-related, substance-related and addiction, schizophrenia spectrum, and other psychotic disorders, or a combination of disorders. More than half of known mental disorders were not or very scarcely (<3%) represented. An increasing number of studies were dedicated to assessing clinical effects, but RCTs were still a minority (25/158, 15.8%). From a technical viewpoint, interventions were leveraging the improved modalities (screen and sound) and interactivity of smartphones but only sparingly leveraged their truly novel capabilities, such as sensors, alternative delivery paradigms, and analytical methods. Conclusions: There is a need for designing interventions for the full breadth of mental disorders, rather than primarily focusing on most prevalent disorders. We further contend that an increasingly systematic focus, that is, involving RCTs, is needed to improve the robustness and trustworthiness of assessments. Regarding technical aspects, we argue that further exploration and innovative use of the novel capabilities of smartphones are needed to fully realize their potential for the treatment of mental health disorders

    Un système pour aider les personnes âgées en cas d’urgence en se servant de réseau bénévole

    Get PDF
    Assister les personnes âgées dans les situations d’urgence représente un facteur important qui pourrait augmenter le sentiment de sécurité chez cette population. Les risques et les situations d’urgence les plus fréquentes auxquelles les personnes âgées peuvent être confrontées sont la chute, l’errance et les crises de santé. Ces risques les affectent et augmentent chez eux la peur, ce qui les rend dépendantes. Face à ces risques, les personnes âgées ont besoin des outils d’assistance qui permettent de les protéger durant les activités quotidiennes. Aujourd’hui, le bénévolat joue un rôle important dans la chaîne des moyens d’assistance pour les personnes âgées. En plus, la technologie, et en particulier l'informatique diffuse et mobile, peut être utilisée pour réduire les impacts négatifs associés au vieillissement. Cette technologie peut également être utilisée pour faciliter le travail des bénévoles en le rendant plus efficace et moins contraignant. Le bénévolat dans sa forme actuelle exige une déclaration préalable de disponibilités des bénévoles (indication d’un lieu et d’horaires précis). Cette forme d’engagement exclut des bénévoles potentiels qui souhaiteraient s’investir dans des activités de bénévolat, mais qui ne connaissent pas leurs disponibilités à l’avance. Nous proposons dans ce mémoire un système pour aider les personnes âgées dans les situations d'urgence, que nous appelons Assist-Me. L’objectif du système Assist-Me est d'améliorer la qualité de vie et d’augmenter l'indépendance et l'autonomie des personnes âgées dans leurs activités quotidiennes, puisqu’il offre une assistance rapide dans les situations d'urgence via l'intervention offerte par des bénévoles, qui, par ailleurs, peuvent alléger l'intervention non nécessaire des centres d'urgence. Assist-Me est un système intelligent ayant deux applications sur les téléphones intelligents. Ces applications peuvent partager des informations indépendamment de l’emplacement physique: une application pour les personnes âgées qui demandent de l'assistance, et une deuxième pour les bénévoles qui reçoivent les demandes d’assistance. Un contrôle centralisé des informations est assuré via un système de gestion de la situation d'urgence. Ce système est muni d’un moteur de sélection basé sur la « logique floue » qui sélectionne automatiquement les bénévoles appropriées

    Inventory of ATT system requirements for elderly and disabled drivers and travellers

    Get PDF
    This Inventory of ATT System Requirements for Elderly and Disabled Drivers and Travellers is the product of the TELSCAN project’s Workpackage 3: Identification and Updating of User Requirements of Elderly and Disabled Travellers. It describes the methods and tools used to identify the needs of elderly and disabled (E&D) travellers. The result of this investigation is a summary of the requirements of elderly and disabled travellers using different modes of transport, including private cars, buses/trams, metros/trains, ships and airplanes. It provides a generic user requirements specification which can guide the design of all transport telematics systems. However, it is important to stress that projects should also capture a more detailed definition of user requirements for their specific application area or system
    corecore