99 research outputs found

    A Full-Image Full-Resolution End-to-End-Trainable CNN Framework for Image Forgery Detection

    Full text link
    Due to limited computational and memory resources, current deep learning models accept only rather small images in input, calling for preliminary image resizing. This is not a problem for high-level vision problems, where discriminative features are barely affected by resizing. On the contrary, in image forensics, resizing tends to destroy precious high-frequency details, impacting heavily on performance. One can avoid resizing by means of patch-wise processing, at the cost of renouncing whole-image analysis. In this work, we propose a CNN-based image forgery detection framework which makes decisions based on full-resolution information gathered from the whole image. Thanks to gradient checkpointing, the framework is trainable end-to-end with limited memory resources and weak (image-level) supervision, allowing for the joint optimization of all parameters. Experiments on widespread image forensics datasets prove the good performance of the proposed approach, which largely outperforms all baselines and all reference methods.Comment: 13 pages, 12 figures, journa

    Determination of the Optimal Threshold Value and Number of Keypoints in Scale Invariant Feature Transform-based Copy-Move Forgery Detection

    Get PDF
    The copy-move forgery detection (CMFD) begins with the preprocessing until the image is ready to process. Then, the image features are extracted using a feature-transform-based extraction called the scale-invariant feature transform (SIFT). The last step is features matching using Generalized 2 Nearest-Neighbor (G2NN) method with threshold values variation. The problem is what is the optimal threshold value and number of keypoints so that copy-move detection has the highest accuracy. The optimal threshold value and number of keypoints had determined so that the detection has the highest accuracy. The research was carried out on images without noise and with Gaussian noise

    Are GAN generated images easy to detect? A critical analysis of the state-of-the-art

    Full text link
    The advent of deep learning has brought a significant improvement in the quality of generated media. However, with the increased level of photorealism, synthetic media are becoming hardly distinguishable from real ones, raising serious concerns about the spread of fake or manipulated information over the Internet. In this context, it is important to develop automated tools to reliably and timely detect synthetic media. In this work, we analyze the state-of-the-art methods for the detection of synthetic images, highlighting the key ingredients of the most successful approaches, and comparing their performance over existing generative architectures. We will devote special attention to realistic and challenging scenarios, like media uploaded on social networks or generated by new and unseen architectures, analyzing the impact of suitable augmentation and training strategies on the detectors' generalization ability.Comment: 7 pages, 5 figures, conferenc

    Detection of copy-move forgery in digital images using different computer vision approaches

    Get PDF
    Image forgery detection approaches are many and varied, but they generally all serve the same objectives: detect and localize the forgery. Copy-move forgery detection (CMFD) is widely spread and must challenge approach. In this thesis, We first investigate the problems and the challenges of the existed algorithms to detect copy-move forgery in digital images and then we propose integrating multiple forensic strategies to overcome these problems and increase the efficiency of detecting and localizing forgery based on the same image input source. Test and evaluate our copy-move forgery detector algorithm presented the outcome that has been enhanced by various computer vision field techniques. Because digital image forgery is a growing problem due to the increase in readily-available technology that makes the process relatively easy for forgers, we propose strategies and applications based on the PatchMatch algorithm and deep neural network learning (DNN). We further focus on the convolutional neural network (CNN) architecture approach in a generative adversarial network (GAN) and transfer learning environment. The F-measure score (FM), recall, precision, accuracy, and efficiency are calculated in the proposed algorithms and compared with a selection of literature algorithms using the same evaluation function in order to make a fair evaluation. The FM score achieves 0.98, with an efficiency rate exceeding 90.5% in most cases of active and passive forgery detection tasks, indicating that the proposed methods are highly robust. The output results show the high efficiency of detecting and localizing the forgery across different image formats for active and passive forgery detection. Therefore, the proposed methods in this research successfully overcome the main investigated issues in copy-move forgery detection as such: First, increase efficiency in copy-move forgery detection under a wide range of manipulation process to a copy-moved image. Second, detect and localized the copy-move forgery patches versus the pristine patches in the forged image. Finally, our experiments show the overall validation accuracy based on the proposed deep learning approach is 90%, according to the iteration limit. Further enhancement of the deep learning and learning transfer approach is recommended for future work

    VideoFACT: Detecting Video Forgeries Using Attention, Scene Context, and Forensic Traces

    Full text link
    Fake videos represent an important misinformation threat. While existing forensic networks have demonstrated strong performance on image forgeries, recent results reported on the Adobe VideoSham dataset show that these networks fail to identify fake content in videos. In this paper, we show that this is due to video coding, which introduces local variation into forensic traces. In response, we propose VideoFACT - a new network that is able to detect and localize a wide variety of video forgeries and manipulations. To overcome challenges that existing networks face when analyzing videos, our network utilizes both forensic embeddings to capture traces left by manipulation, context embeddings to control for variation in forensic traces introduced by video coding, and a deep self-attention mechanism to estimate the quality and relative importance of local forensic embeddings. We create several new video forgery datasets and use these, along with publicly available data, to experimentally evaluate our network's performance. These results show that our proposed network is able to identify a diverse set of video forgeries, including those not encountered during training. Furthermore, we show that our network can be fine-tuned to achieve even stronger performance on challenging AI-based manipulations

    An ensemble architecture for forgery detection and localization in digital images

    Get PDF
    Questa tesi presenta un approccio d'insieme unificato - "ensemble" - per il rilevamento e la localizzazione di contraffazioni in immagini digitali. Il focus della ricerca è su due delle più comuni ma efficaci tecniche di contraffazione: "copy-move" e "splicing". L'architettura proposta combina una serie di metodi di rilevamento e localizzazione di manipolazioni per ottenere prestazioni migliori rispetto a metodi utilizzati in modalità "standalone". I principali contributi di questo lavoro sono elencati di seguito. In primo luogo, nel Capitolo 1 e 2 viene presentata un'ampia rassegna dell'attuale stato dell'arte nel rilevamento di manipolazioni ("forgery"), con particolare attenzione agli approcci basati sul deep learning. Un'importante intuizione che ne deriva è la seguente: questi approcci, sebbene promettenti, non possono essere facilmente confrontati in termini di performance perché tipicamente vengono valutati su dataset personalizzati a causa della mancanza di dati annotati con precisione. Inoltre, spesso questi dati non sono resi disponibili pubblicamente. Abbiamo poi progettato un algoritmo di rilevamento di manipolazioni copy-move basato su "keypoint", descritto nel capitolo 3. Rispetto a esistenti approcci simili, abbiamo aggiunto una fase di clustering basato su densità spaziale per filtrare le corrispondenze rumorose dei keypoint. I risultati hanno dimostrato che questo metodo funziona bene su due dataset di riferimento e supera uno dei metodi più citati in letteratura. Nel Capitolo 4 viene proposta una nuova architettura per predire la direzione della luce 3D in una data immagine. Questo approccio sfrutta l'idea di combinare un metodo "data-driven" con un modello di illuminazione fisica, consentendo così di ottenere prestazioni migliori. Al fine di sopperire al problema della scarsità di dati per l'addestramento di architetture di deep learning altamente parametrizzate, in particolare per il compito di scomposizione intrinseca delle immagini, abbiamo sviluppato due algoritmi di generazione dei dati. Questi sono stati utilizzati per produrre due dataset - uno sintetico e uno di immagini reali - con lo scopo di addestrare e valutare il nostro approccio. Il modello di stima della direzione della luce proposto è stato sfruttato in un nuovo approccio di rilevamento di manipolazioni di tipo splicing, discusso nel Capitolo 5, in cui le incoerenze nella direzione della luce tra le diverse regioni dell'immagine vengono utilizzate per evidenziare potenziali attacchi splicing. L'approccio ensemble proposto è descritto nell'ultimo capitolo. Questo include un modulo "FusionForgery" che combina gli output dei metodi "base" proposti in precedenza e assegna un'etichetta binaria (forged vs. original). Nel caso l'immagine sia identificata come contraffatta, il nostro metodo cerca anche di specializzare ulteriormente la decisione tra attacchi splicing o copy-move. In questo secondo caso, viene eseguito anche un tentativo di ricostruire le regioni "sorgente" utilizzate nell'attacco copy-move. Le prestazioni dell'approccio proposto sono state valutate addestrandolo e testandolo su un dataset sintetico, generato da noi, comprendente sia attacchi copy-move che di tipo splicing. L'approccio ensemble supera tutti i singoli metodi "base" in termini di prestazioni, dimostrando la validità della strategia proposta.This thesis presents a unified ensemble approach for forgery detection and localization in digital images. The focus of the research is on two of the most common but effective forgery techniques: copy-move and splicing. The ensemble architecture combines a set of forgery detection and localization methods in order to achieve improved performance with respect to standalone approaches. The main contributions of this work are listed in the following. First, an extensive review of the current state of the art in forgery detection, with a focus on deep learning-based approaches is presented in Chapter 1 and 2. An important insight that is derived is the following: these approaches, although promising, cannot be easily compared in terms of performance because they are typically evaluated on custom datasets due to the lack of precisely annotated data. Also, they are often not publicly available. We then designed a keypoint-based copy-move detection algorithm, which is described in Chapter 3. Compared to previous existing keypoints-based approaches, we added a density-based clustering step to filter out noisy keypoints matches. This method has been demonstrated to perform well on two benchmark datasets and outperforms one of the most cited state-of-the-art methods. In Chapter 4 a novel architecture is proposed to predict the 3D light direction of the light in a given image. This approach leverages the idea of combining, in a data-driven method, a physical illumination model that allows for improved regression performance. In order to fill in the gap of data scarcity for training highly-parameterized deep learning architectures, especially for the task of intrinsic image decomposition, we developed two data generation algorithms that were used to produce two datasets - one synthetic and one of real images - to train and evaluate our approach. The proposed light direction estimation model has then been employed to design a novel splicing detection approach, discussed in Chapter 5, in which light direction inconsistencies between different regions in the image are used to highlight potential splicing attacks. The proposed ensemble scheme for forgery detection is described in the last chapter. It includes a "FusionForgery" module that combines the outputs of the different previously proposed "base" methods and assigns a binary label (forged vs. pristine) to the input image. In the case of forgery prediction, our method also tries to further specialize the decision between splicing and copy-move attacks. If the image is predicted as copy-moved, an attempt to reconstruct the source regions used in the copy-move attack is also done. The performance of the proposed approach has been assessed by training and testing it on a synthetic dataset, generated by us, comprising both copy-move and splicing attacks. The ensemble approach outperforms all of the individual "base" methods, demonstrating the validity of the proposed strategy
    corecore