24 research outputs found

    LungTrack: towards contactless and zero dead-zone respiration monitoring with commodity RFIDs

    Get PDF
    International audienceRespiration rate sensing plays a critical role in elderly care and patient monitoring. The latest research has explored the possibility of employing Wi-Fi signals for respiration sensing without attaching a device to the target. A critical issue with these solutions includes that good monitoring performance could only be achieved at certain locations within the sensing range, while the performance could be quite poor at other "dead zones." In addition, due to the contactless nature, it is challenging to monitor multiple targets simultaneously as the reflected signals are often mixed together. In this work, we present our system, named LungTrack, hosted on commodity RFID devices for respiration monitoring. Our system retrieves subtle signal fluctuations at the receiver caused by chest displacement during respiration without need for attaching any devices to the target. It addresses the dead-zone issue and enables simultaneous monitoring of two human targets by employing one RFID reader and carefully positioned multiple RFID tags, using an optimization technique. Comprehensive experiments demonstrate that LungTrack can achieve a respiration monitoring accuracy of greater than 98% for a single target at all sensing locations (within 1 st − 5 th Fresnel zones) using just one RFID reader and five tags, when the target's orientation is known a priori. For the challenging scenario involve two human targets, LungTrack is able to achieve greater than 93% accuracy when the targets are separated by at least 10 cm

    Respiratory Rate Estimation Using WiFi Channel State Information - A Machine Learning Approach

    Get PDF
    Respiratory rate (RR) is an important vital sign for diagnosing and treating a number of medical conditions. Current respiration monitoring systems require that a special device is continuously attached to the human body. However, contactless respiration monitoring systems have recently been developed to overcome this inconvenience. Research has shown that channel state information (CSI) measured by WiFi devices can be used for estimating RR. Although pattern-based respiration detection has been used to extract RR from periodic changes in CSI, systems based on this method do not perform well when channel conditions are not favorable. This thesis highlights newly introduced learning-based approaches used for RR estimation. Off-the-shelf WiFi devices were used to collect fine-grained wireless CSI data, which was then used to train and evaluate machine learning models. Results show that classification algorithms, including KNN, SVM, Random Forest, Logistic Regression and MLP, achieve over 96% accuracy when predicting RR. Regression models were compared to an existing pattern-based system, demonstrating that the majority of regression models have better performance when estimating RR. For instance, Logistic Regression’s Root Mean Square Error (RMSE) is 0.35, while pattern-based system’s RMSE is 2.7. It is important to note that classification and regression models cannot be generalized, nor can they accurately predict respiratory rate using the data collected from a new and previously unseen subject. To improve and make the models more generalizable, data used to train the models must be collected from a larger number of subjects

    FarSense: pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas

    Get PDF
    International audienceThe past few years have witnessed the great potential of exploiting channel state information retrieved from commodity WiFi devices for respiration monitoring. However, existing approaches only work when the target is close to the WiFi transceivers and the performance degrades significantly when the target is far away. On the other hand, most home environments only have one WiFi access point and it may not be located in the same room as the target. This sensing range constraint greatly limits the application of the proposed approaches in real life. This paper presents FarSense-the first real-time system that can reliably monitor human respiration when the target is far away from the WiFi transceiver pair. FarSense works well even when one of the transceivers is located in another room, moving a big step towards real-life deployment. We propose two novel schemes to achieve this goal: (1) Instead of applying the raw CSI readings of individual antenna for sensing, we employ the ratio of CSI readings from two antennas, whose noise is mostly canceled out by the division operation to significantly increase the sensing range; (2) The division operation further enables us to utilize the phase information which is not usable with one single antenna for sensing. The orthogonal amplitude and phase are elaborately combined to address the "blind spots" issue and further increase the sensing range. Extensive experiments show that FarSense is able to accurately monitor human respiration even when the target is 8 meters away from the transceiver pair, increasing the sensing range by more than 100%. 1 We believe this is the first system to enable through-wall respiration sensing with commodity WiFi devices and the proposed method could also benefit other sensing applications

    Human activity recognition with commercial WiFi signals

    Get PDF

    Enhancing system performance through objective feature scoring of multiple persons' breathing using non-contact RF approach

    Get PDF
    Breathing monitoring is an efficient way of human health sensing and predicting numerous diseases. Various contact and non-contact-based methods are discussed in the literature for breathing monitoring. Radio frequency (RF)-based breathing monitoring has recently gained enormous popularity among non-contact methods. This method eliminates privacy concerns and the need for users to carry a device. In addition, such methods can reduce stress on healthcare facilities by providing intelligent digital health technologies. These intelligent digital technologies utilize a machine learning (ML)-based system for classifying breathing abnormalities. Despite advances in ML-based systems, the increasing dimensionality of data poses a significant challenge, as unrelated features can significantly impact the developed system’s performance. Optimal feature scoring may appear to be a viable solution to this problem, as it has the potential to improve system performance significantly. Initially, in this study, software-defined radio (SDR) and RF sensing techniques were used to develop a breathing monitoring system. Minute variations in wireless channel state information (CSI) due to breathing movement were used to detect breathing abnormalities in breathing patterns. Furthermore, ML algorithms intelligently classified breathing abnormalities in single and multiple-person scenarios. The results were validated by referencing a wearable sensor. Finally, optimal feature scoring was used to improve the developed system’s performance in terms of accuracy, training time, and prediction speed. The results showed that optimal feature scoring can help achieve maximum accuracy of up to 93.8% and 91.7% for single-person and multi-person scenarios, respectively

    WideSee: towards wide-area contactless wireless sensing

    Get PDF
    Contactless wireless sensing without attaching a device to the target has achieved promising progress in recent years. However, one severe limitation is the small sensing range. This paper presents WideSee to realize wide-area sensing with only one transceiver pair. WideSee utilizes the LoRa signal to achieve a larger range of sensing and further incorporates drone's mobility to broaden the sensing area. WideSee presents solutions across software and hardware to overcome two aspects of challenges for wide-range contactless sensing: (i) the interference brought by the device mobility and LoRa's high sensitivity; and (ii) the ambiguous target information such as location when employing just a single pair of transceivers. We have developed a working prototype of WideSee for human target detection and localization that are especially useful in emergency scenarios such as rescue search, and evaluated WideSee with both controlled experiments and the field study in a high-rise building. Extensive experiments demonstrate the great potential of WideSee for wide-area contactless sensing with a single LoRa transceiver pair hosted on a drone

    Synthetic Micro-Doppler Signatures of Non-Stationary Channels for the Design of Human Activity Recognition Systems

    Get PDF
    The main aim of this dissertation is to generate synthetic micro-Doppler signatures and TV-MDSs to train the HACs. This is achieved by developing non-stationary fixed-tofixed (F2F) indoor channel models. Such models provide an in-depth understanding of the channel parameters that influence the micro-Doppler signatures and TV-MDSs. Hence, the proposed non-stationary channel models help to generate the micro-Doppler signatures and the TV-MDSs, which fit those of the collected measurement data. First, we start with a simple two-dimensional (2D) non-stationary F2F channel model with fixed and moving scatterers. Such a model assumes that the moving scatterers are moving in 2D geometry with simple time variant (TV) trajectories and they have the same height as the transmitter and the receiver antennas. The model of the Doppler shifts caused by the moving scatterers in 2D space is provided. The micro-Doppler signature of this model is explored by employing the spectrogram of which a closed-form expression is derived. Moreover, we demonstrate how the TV-MDSs can be computed from the spectrograms. The aforementioned model is extended to provide two three-dimensional (3D) nonstationary F2F channel models. Such models allow simulating the micro-Doppler signatures influenced by the 3D trajectories of human activities, such as walking and falling. Moreover, expressions of the trajectories of these human activities are also given. Approximate solutions of the spectrograms of these channels are provided by approximating the Doppler shifts caused by the human activities into linear piecewise functions of time. The impact of these activities on the micro-Doppler signatures and the TV-MDSs of the simulated channel models is explored. The work done in this dissertation is not limited to analyzing micro-Doppler signatures and the TV-MDSs of the simulated channel models, but also includes those of the measured channels. The channel-state-information (CSI) software tool installed on commercial-off-theshelf (COTS) devices is utilized to capture complex channel transfer function (CTF) data under the influence of human activities. To mitigate the TV phase distortions caused by the clock asynchronization between the transmitter and receiver stations, a back-to-back (B2B) connection is employed. Models of the measured CTF and its true phases are also shown. The true micro-Doppler signatures and TV-MDSs of the measured CTF are analyzed. The results showed that the CSI tool is reliable to validate the proposed channel models. This allows the micro-Doppler signatures and the TV-MDSs extracted from the data collected with this tool to be used to train the HACs.publishedVersio
    corecore