5,013 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Dendritic Cells for Anomaly Detection

    Get PDF
    Artificial immune systems, more specifically the negative selection algorithm, have previously been applied to intrusion detection. The aim of this research is to develop an intrusion detection system based on a novel concept in immunology, the Danger Theory. Dendritic Cells (DCs) are antigen presenting cells and key to the activation of the human signals from the host tissue and correlate these signals with proteins know as antigens. In algorithmic terms, individual DCs perform multi-sensor data fusion based on time-windows. The whole population of DCs asynchronously correlates the fused signals with a secondary data stream. The behaviour of human DCs is abstracted to form the DC Algorithm (DCA), which is implemented using an immune inspired framework, libtissue. This system is used to detect context switching for a basic machine learning dataset and to detect outgoing portscans in real-time. Experimental results show a significant difference between an outgoing portscan and normal traffic.Comment: 8 pages, 10 tables, 4 figures, IEEE Congress on Evolutionary Computation (CEC2006), Vancouver, Canad

    Distributed Network Anomaly Detection on an Event Processing Framework

    Get PDF
    Network Intrusion Detection Systems (NIDS) are an integral part of modern data centres to ensure high availability and compliance with Service Level Agreements (SLAs). Currently, NIDS are deployed on high-performance, high-cost middleboxes that are responsible for monitoring a limited section of the network. The fast increasing size and aggregate throughput of modern data centre networks have come to challenge the current approach to anomaly detection to satisfy the fast growing compute demand. In this paper, we propose a novel approach to distributed intrusion detection systems based on the architecture of recently proposed event processing frameworks. We have designed and implemented a prototype system using Apache Storm to show the benefits of the proposed approach as well as the architectural differences with traditional systems. Our system distributes modules across the available devices within the network fabric and uses a centralised controller for orchestration, management and correlation. Following the Software Defined Networking (SDN) paradigm, the controller maintains a complete view of the network but distributes the processing logic for quick event processing while performing complex event correlation centrally. We have evaluated the proposed system using publicly available data centre traces and demonstrated that the system can scale with the network topology while providing high performance and minimal impact on packet latency

    A novel random neural network based approach for intrusion detection systems

    Get PDF
    • …
    corecore