180,677 research outputs found

    Advances in Spacecraft Thermal Control

    Get PDF
    Spacecraft thermal management is critical for ensuring mission success, as it affects the performance and longevity of onboard systems. A comprehensive overview of the state of the art in spacecraft thermal control solutions, as well as a design methodology framework for efficient and effective thermal management, is provided. Various thermal control solutions, including coatings, insulation, heat pipes, phase-change materials, conductive materials, thermal devices, actively pumped fluid loops, and radiators, are discussed along with the primary sources of heat loading in space. The need for accurate modeling and analysis of the thermal environment to identify appropriate thermal control solutions and design pathways is highlighted. Future innovations in thermal management, such as new materials and technologies that have the potential to further improve the efficiency and effectiveness of thermal control solutions for spacecraft, are explored

    Framework for integrated dynamic thermal simulation of future civil transport aircraft

    Get PDF
    The development of increasingly more electric systems and ultra high bypass ratio turbofan engines for civil transport aircraft is projected to bring forth critical challenges regarding thermal management. To address these, it is required that the thermal behavior of the complete propulsion-airframe unit is studied in an integrated manner. To this purpose, a simulation framework for performing integrated thermal and performance analyses of the engines, airframe, and airframe systems, is presented. The framework was specifically devised to test novel integrated thermal management solutions for future civil aircraft. In this paper, the discussion focuses mainly on the thermal modeling of the wing and fuel. A highly flexible approach for creating wing thermal models by means of assembling generic thermal compartments is introduced. To demonstrate some of the capabilities, a case study is provided that involves thermal analysis of a single-aisle airplane with ultra high bypass ratio engines. Results are provided for fuel temperatures across flights in standard, hot, and cold days and for different airframe materials. Engine heat sink temperatures and input power to the engine gearboxes, both important parameters needed to design thermal management systems, are also presented

    Dynamic Thermal Management for Microprocessors

    Get PDF
    In deep submicron era, thermal hot spots and large temperature gradients significantly impact system reliability, performance, cost and leakage power. Dynamic thermal management techniques are designed to tackle the problems and control the chip temperature as well as power consumption. They refer to those techniques which enable the chip to autonomously modify the task execution and power dissipation characteristics so that lower-cost cooling solutions could be adopted while still guaranteeing safe temperature regulation. As long as the temperature is regulated, the system reliability can be improved, leakage power can be reduced and cooling system lifetime can be extended significantly. Multimedia applications are expected to form the largest portion of workload in general purpose PC and portable devices. The ever-increasing computation intensity of multimedia applications elevates the processor temperature and consequently impairs the reliability and performance of the system. In this thesis, we propose to perform dynamic thermal management using reinforcement learning algorithm for multimedia applications. The presented learning model does not need any prior knowledge of the workload information or the system thermal and power characteristics. It learns the temperature change and workload switching patterns by observing the temperature sensor and event counters on the processor, and finds the management policy that provides good performance-thermal tradeoff during the runtime. As the system complexity increases, it is more and more difficult to perform thermal management in a centralized manner because of state explosion and the overhead of monitoring the entire chip. In this thesis, we present a framework for distributed thermal management in many-core systems where balanced thermal profile can be achieved by proactive task migration among neighboring cores. The framework has a low cost agent residing in each core that observes the local workload and temperature and communicates with its nearest neighbor for task migration and exchange. By choosing only those migration requests that will result in balanced workload without generating thermal emergency, the presented framework maintains workload balance across the system and avoids unnecessary migration. Experimental results show that, our distributed management policy achieves almost the same performance as a global management policy when the tasks are initially randomly distributed. Compared with existing proactive task migration technique, our approach generates less hotspot, less migration overhead with negligible performance overhead. Temperature affects the leakage power and cooling power. In this thesis, we address the impact of task allocation on a processor\u27s leakage power and cooling fan power. Although the leakage power is determined by the average die temperature and the fan power is determined by the peak temperature, our analysis shows that the overall power can be minimized if a task allocation with minimum peak temperature is adopted together with an intelligent fan speed adjustment technique that finds the optimal tradeoff between fan power and leakage power. We further present a multi-agent distributed task migration technique that searches for the best task allocation during runtime. By choosing only those migration requests that will result chip maximum temperature reduction, the presented framework achieves large fan power savings as well as overall power reduction

    Predictive Control Framework for Thermal Management of Automotive Fuel Cell Systems at High Ambient Temperatures

    Get PDF
    Environmental conditions have a significant effect on the performance of fuel cell systems. This paper studies the vehicle hydrogen consumption, the thermal management system, and the thermal loads of an automotive fuel cell system. A predictive control framework for thermal management is investigated to minimize the overall hydrogen consumption. Initially, a numerical modeling approach for the automotive fuel cell system is presented from electrochemical and thermal perspectives. Then, the problem formulation related to the thermal management strategy is presented and solved with an optimization method based on dynamic programming (DP). The implemented DP exploits the a priori knowledge of the driving mission to appropriately control the fuel cell system gross power and the operation of the radiator fan, the coolant pump, and the compressor. Optimization constraints involve maintaining the fuel cell stack temperature below the operational limit and avoiding the thermal system from being activated when the vehicle is at rest. The fuel cell system is tested while the vehicle performs different numbers of repetitions of the Worldwide Harmonized Light Vehicle Test Procedure (WLTP) at high ambient temperature. Using the proposed predictive control framework for thermal management, results demonstrate that an average 62.5% to 63.0% efficiency can be attained by the fuel cell stack in extreme ambient conditions both in short distance and long distance driving missions

    Comparative analysis of battery electric vehicle thermal management systems under long-range drive cycles

    Get PDF
    Due to increasing regulation on emissions and shifting consumer preferences, the wide adoption of battery electric vehicles (BEV) hinges on research and development of technologies that can extend system range. This can be accomplished either by increasing the battery size or via more efficient operation of the electrical and thermal systems. This study endeavours to accomplish the latter through comparative investigation of BEV integrated thermal management system (ITMS) performance across a range of ambient conditions (-20 °C to 40 °C), cabin setpoints (18 °C to 24 °C), and six different ITMS architectures. A dynamic ITMS modelling framework for a long-range electric vehicle is established with comprehensive sub models for the operation of the drive train, power electronics, battery, vapor compression cycle components, and cabin conditioning in a comprehensive transient thermal system modelling environment. A baseline thermal management system is studied using this modelling framework, as well as four common thermal management systems found in literature. This study is novel for its combination of comprehensive BEV characterization, broad parametric analysis, and the long range BEV that is studied. Additionally, a novel low-temperature waste heat recovery (LT WHR) system is proposed and has shown achieve up to a 15% range increase at low temperatures compared to the baseline system, through the reduction of the necessary cabin ventilation loading. While this system shows performance improvements, the regular WHR system offers the greatest benefit, a 13.5% increase in cold climate range, for long-range BEV drive cycles in terms of system range and transient response without the need for additional thermal system equipment

    Development of multi-functional streetscape green infrastructure using a performance index approach

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This paper presents a performance evaluation framework for streetscape vegetation. A performance index (PI) is conceived using the following seven traits, specific to the street environments – Pollution Flux Potential (PFP), Carbon Sequestration Potential (CSP), Thermal Comfort Potential (TCP), Noise Attenuation Potential (NAP), Biomass Energy Potential (BEP), Environmental Stress Tolerance (EST) and Crown Projection Factor (CPF). Its application is demonstrated through a case study using fifteen street vegetation species from the UK, utilising a combination of direct field measurements and inventoried literature data. Our results indicate greater preference to small-to-medium size trees and evergreen shrubs over larger trees for streetscaping. The proposed PI approach can be potentially applied two-fold: one, for evaluation of the performance of the existing street vegetation, facilitating the prospects for further improving them through management strategies and better species selection; two, for planning new streetscapes and multi-functional biomass as part of extending the green urban infrastructure

    Thermal Management for 3D-Stacked Systems via Unified Core-Memory Power Regulation

    Get PDF
    3D-stacked processor-memory systems stack memory (DRAM banks) directly on top of logic (CPU cores) using chiplet-on-chiplet packaging technology to provide the next-level computing performance in embedded platforms. Stacking, however, severely increases the system’s power density without any accompanying increase in the heat dissipation capacity. Consequently, 3D-stacked processor-memory systems suffer more severe thermal issues than their non-stacked counterparts. Nevertheless, 3D-stacked processor-memory systems do inherit power (thermal) management knobs from their non-stacked predecessors - namely Dynamic Voltage and Frequency Scaling (DVFS) for cores and Low Power Mode (LPM) for memory banks. In the context of 3D-stacked processor-memory systems, DVFS and LPM are performance- and power-wise deeply intertwined. Their non-unified independent use on 3D-stacked processor-memory systems results in sub-optimal thermal management. The unified use of DVFS and LPM for thermal management for 3D-stacked processor-memory systems remains unexplored. The lack of implementation of LPM in thermal simulators for 3D-stacked processor-memory systems hinders real-world representative evaluation for a unified approach.We extend the state-of-the-art interval thermal simulator for 3D-stacked processor-memory systems CoMeT with an LPM power management knob for memory banks. We also propose a learning-based thermal management technique for 3D-stacked processor-memory systems that employ DVFS and LPM in a unified manner. Detailed interval thermal simulations with the extended CoMeT framework show a 10.15% average response time improvement with the PARSEC and SPLASH-2 benchmark suites, along with widely-used Deep Neural Network (DNN) workloads against a state-of-the-art thermal management technique for 2.5D processor-memory systems (ported directly to 3D-stacked processor-memory systems) that also proposes unified use of DVFS and LPM

    Multi-split configuration design for fluid-based thermal management systems

    Full text link
    High power density systems require efficient cooling to maintain their thermal performance. Despite this, as systems get larger and more complex, human practice and insight may not suffice to determine the desired thermal management system designs. To this end, a framework for automatic architecture exploration is presented in this article for a class of single-phase, multi-split cooling systems. For this class of systems, heat generation devices are clustered based on their spatial information, and flow-split are added only when required and at the location of heat devices. To generate different architectures, candidate architectures are represented as graphs. From these graphs, dynamic physics models are created automatically using a graph-based thermal modeling framework. Then, an optimal fluid flow distribution problem is solved by addressing temperature constraints in the presence of exogenous heat loads to achieve optimal performance. The focus in this work is on the design of general multi-split heat management systems. The architectures discussed here can be used for various applications in the domain of configuration design. The multi-split algorithm can produce configurations where splitting can occur at any of the vertices. The results presented include 3 categories of cases and are discussed in detail.Comment: 11 pages, 18 figure

    Evaluation of Heat Pumping and Waste Heat Recovery for Battery Electric Vehicle Thermal Management

    Get PDF
    Due to increasing regulation on emissions and shifting consumer preferences, the wide adoption of battery electric vehicles (BEV) hinges on research and development of technologies that can extend system range. This can be accomplished either by increasing the battery size or via more efficient operation of the electrical and thermal systems. This study evaluates the range performance of a BEV integrated thermal management system (ITMS) with heat pumping and waste heat recovery across a range of ambient conditions (-20 °C to 40 °C) and cabin setpoints (18 °C to 24 °C). A dynamic ITMS modelling framework for a long-range electric vehicle is established with comprehensive sub models for the operation of the drive train, power electronics, battery, vapor compression cycle components, and cabin conditioning. This modelling framework is used to construct a baseline thermal management system. The waste heat recovery (WHR) system is compared to the baseline and shown to offers significant benefit in terms of driving range for long-range BEV drive cycles in terms of system range and transient response
    • …
    corecore