
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Dissertations College of Engineering and Computer Science

12-2012

Dynamic Thermal Management for Microprocessors Dynamic Thermal Management for Microprocessors

Yang Ge
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Ge, Yang, "Dynamic Thermal Management for Microprocessors" (2012). Electrical Engineering and
Computer Science - Dissertations. 326.
https://surface.syr.edu/eecs_etd/326

This Dissertation is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Dissertations by an
authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_etd
https://surface.syr.edu/eecs_etd
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_etd?utm_source=surface.syr.edu%2Feecs_etd%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=surface.syr.edu%2Feecs_etd%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_etd/326?utm_source=surface.syr.edu%2Feecs_etd%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

In deep submicron era, thermal hot spots and large temperature gradients significantly

impact system reliability, performance, cost and leakage power. Dynamic thermal management

techniques are designed to tackle the problems and control the chip temperature as well as power

consumption. They refer to those techniques which enable the chip to autonomously modify the

task execution and power dissipation characteristics so that lower-cost cooling solutions could be

adopted while still guaranteeing safe temperature regulation. As long as the temperature is

regulated, the system reliability can be improved, leakage power can be reduced and cooling

system lifetime can be extended significantly.

Multimedia applications are expected to form the largest portion of workload in general

purpose PC and portable devices. The ever-increasing computation intensity of multimedia

applications elevates the processor temperature and consequently impairs the reliability and

performance of the system. In this thesis, we propose to perform dynamic thermal management

using reinforcement learning algorithm for multimedia applications. The presented learning

model does not need any prior knowledge of the workload information or the system thermal and

power characteristics. It learns the temperature change and workload switching patterns by

observing the temperature sensor and event counters on the processor, and finds the management

policy that provides good performance-thermal tradeoff during the runtime.

As the system complexity increases, it is more and more difficult to perform thermal

management in a centralized manner because of state explosion and the overhead of monitoring

the entire chip. In this thesis, we present a framework for distributed thermal management in

many-core systems where balanced thermal profile can be achieved by proactive task migration

among neighboring cores. The framework has a low cost agent residing in each core that

observes the local workload and temperature and communicates with its nearest neighbor for

task migration and exchange. By choosing only those migration requests that will result in

balanced workload without generating thermal emergency, the presented framework maintains

workload balance across the system and avoids unnecessary migration. Experimental results

show that, our distributed management policy achieves almost the same performance as a global

management policy when the tasks are initially randomly distributed. Compared with existing

proactive task migration technique, our approach generates less hotspot, less migration overhead

with negligible performance overhead.

Temperature affects the leakage power and cooling power. In this thesis, we address the

impact of task allocation on a processor’s leakage power and cooling fan power. Although the

leakage power is determined by the average die temperature and the fan power is determined by

the peak temperature, our analysis shows that the overall power can be minimized if a task

allocation with minimum peak temperature is adopted together with an intelligent fan speed

adjustment technique that finds the optimal tradeoff between fan power and leakage power. We

further present a multi-agent distributed task migration technique that searches for the best task

allocation during runtime. By choosing only those migration requests that will result chip

maximum temperature reduction, the presented framework achieves large fan power savings as

well as overall power reduction.

Dynamic Thermal Management for

Microprocessors

by

Yang Ge

B.S., Zhejiang University, China, 2007

M.S., Binghamton University, 2009

Dissertation

Submitted in partial fulfillment of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

Syracuse University

December 2012

© Copyright

Yang Ge, 2012

All rights reserved.

v

To my parents Haitao Ge, Mingyuan Chen, my wife Yukan and my

daughter Shannon

vi

Acknowledgement
First of all, I would like to express my deep appreciation and gratitude to my advisor, Dr.

Qinru Qiu, for her patient guidance and mentorship she provided to me, all the way from when I

was attending her first VLSI class through to the completion of this degree. I am truly fortunate

to have had the opportunity to work with her. I would like to thank my committee members, Dr.

Roger Chen, Dr. Ezzat Khalifa, Dr. Jae Oh, Dr. Jian Tang and Dr. Senem Velipasalar for their

valuable feedback. I would also like to thank Dr. Qing Wu for his guidance and advices.

I would like to thank my fellow doctoral students—those who have graduated, those in

the quagmire, and those just beginning—for the discussion, feedback, and friendship.

I have been surrounded with an exceptional circle of friends, and would like to thank

Yifan Xu, Yuanyuan Wang, Yu Jiang and Xian Li for their support and the great time we have

spent together. Without them, I would not have so much fun in my PhD life.

I would like to thank my cousin Shushu and Yinyin who give me so much help and

support since the first day I arrived United States. It has been always exiting to visit them during

the breaks and holidays.

The greatest thanks are for all my family, who loved, supported and motivated me. I feel

extremely lucky to have such a wonderful family. I am dedicating this thesis to my parents,

Haitao Ge and Mingyuan Chen, and my wife Yukan Zhang. My parents have taught me to

believe in myself and made me the person I am today. My wife always encourages me during the

stressful time and shoulders all the household burdens while I pursued my PhD degree. Without

their love and support, I would not be able to come this far.

vii

Table of Contents

List of Figures ... x

List of Tables ... xi

Chapter 1 Introduction .. 1

1.1 The Adverse Effects of Unmanaged Temperature .. 1

1.1.1 The Effects of Temperature on System Reliability ... 2

1.1.2 The Effects of Temperature on Leakage Power .. 3

1.1.3 The Effects of Temperature on Cooling System ... 5

1.2 Dynamic Thermal Management Techniques .. 6

1.2.1 The Difference between Dynamic Power Management (DPM) and Dynamic Thermal

Management Techniques .. 7

1.3 Thesis Contributions ... 8

Chapter 2 A Survey of Dynamic Thermal Management Techniques ... 13

2.1 Temperature Aware Task Scheduling ... 14

2.2 Temperature Aware DVFS for CMP Power Control .. 16

2.3 Predictive Temperature Aware Task Migration .. 19

2.3.1 Thermal aware task migration with RLS temperature prediction 19

2.3.2 Thermal aware task migration with ARMA temperature prediction 22

2.4 Chapter Summary ... 25

Chapter 3 Dynamic Thermal Management for Multimedia Applications Using Machine Learning.......... 27

3.1 Related Work .. 29

3.2 Reinforcement Learning For Thermal Management ... 31

3.2.1 The Reinforcement Learning Model ... 31

3.2.2 Frame Based Decision Epoch ... 33

3.2.3 Interactions Between Agent and Environment ... 34

3.2.4 Classification of Environment States .. 36

3.2.5 Design of the Reward Function .. 39

3.3 Experimental Results .. 41

3.3.1 Experiment Setups .. 41

3.3.2 Results Analysis .. 43

3.4 Chapter Summary ... 48

Chapter 4 Dynamic Thermal Management for Many-core System .. 49

viii

4.1 Related Work .. 53

4.2 System Infrastructure .. 54

4.3 Distributed Thermal Management Policy ... 56

4.4 Temperature Prediction Model ... 60

4.4.1 Neural Network Based Temperature Prediction Model .. 61

4.4.2 Generalized ARMA Prediction Model .. 69

4.4.3 Comparing the Neural Network Predictor with ARMA Predictor 71

4.5 Distributed Task Migration Policy .. 74

4.5.1 Steady State Temperature Based Task Migration (SSTM) ... 74

4.5.2 Temperature Prediction Based Migration ... 76

4.5.3 The Combined Migration Policy ... 78

4.5.4 Workload Balancing Policy .. 80

4.6 Experimental Results .. 80

4.6.1 Workloads Generation .. 82

4.6.2 The Comparison between Neural Network and ARMAX Predictor under Static Workload

 84

4.6.3 The Comparison between Dynamic Workload ... 86

4.6.4 The Comparison between SSTM and TPM Policies ... 87

4.6.5 The Comparison between Distributed Policy and Global Policy .. 88

4.6.6 The Comparison between PTB and DTB-M ... 94

4.6.7 The Impacts of Migration Overhead ... 95

4.7 Chapter Summary ... 96

Chapter 5 Task Allocation for Cooling and Leakage Power Optimization .. 98

5.1 System Model ... 99

5.1.1 Processor Model .. 99

5.1.2 Processor Thermal Model ... 100

5.1.3 Processor Cooling Model .. 101

5.1.4 Leakage power model ... 103

5.2 Problem Formulation and Analysis ... 105

5.3 Power Optimal Task Allocation .. 110

5.3.1 An Exact Formulation ... 110

5.3.2 Distributed Task Migration ... 113

5.4 Experimental Results .. 117

ix

5.4.1 Fan Power Savings .. 117

5.4.2 Overall system power consumption .. 118

5.5 Chapter Summary ... 121

Chapter 6 Conclusions and Future Directions .. 123

6.1 Future Directions .. 125

Bibliography ... 127

Vita .. 137

x

List of Figures

Figure 1.1 System-on-Chip (SOC) Consumer Portable Power Consumption Trends [4]............................. 4

Figure 1.2 Leakage Current v.s. Temperature Relation[66] ... 5

Figure 2.1 Feedback Control Loop for Temperature Aware CMP Power Control 17

Figure 3.1 Variation of retired instructions for every 10 and 5 ms for MPEG4 decoder............................ 34

Figure 3.2 Variation of retired instructions at frame granularity .. 35

Figure 3.3 System model .. 35

Figure 3.4 Comparison of run time for different policies ... 44

Figure 3.5 Temperature and frequency comparison between Learning and Phase-Aware 45

Figure 3.6 Percentage of time of each frequency for Learning and Phase-Aware policy 46

Figure 3.7 Trade-off between run time and thermal violation .. 47

Figure 4.1 Master-Slave execution protocol ... 57

Figure 4.2 Master-slave communication ... 59

Figure 4.3 Example of instantaneous and peak temperature change .. 62

Figure 4.4 Neural network structure ... 63

Figure 4.5 Neural network predictor architecture ... 65

Figure 4.6 Prediction error for neural networks based on different feature groups 67

Figure 4.7 The temperature prediction of neural network model ... 69

Figure 4.8 The temperature prediction of ARMAX model ... 71

Figure 4.9 The adaption ability of ARMAX model and neural network model ... 72

Figure 4.10 Comparison of peak temperature prediction error ... 73

Figure 4.11 Different task set generation probability distribution .. 83

Figure 4.12 Comparison of hotspots ... 87

Figure 4.13 Comparison of performance .. 87

Figure 4.14 Comparison of number of migrations .. 88

Figure 4.15 Comparison of migration distance ... 90

Figure 4.16 Comparison of hotspots between multi-hops distributed policy and global policy 92

Figure 4.17 Comparison of migration distance between multi-hops distributed policy and global policy 92

Figure 4.18 Comparison of finish time between multi-hops distributed policy and global policy 93

Figure 4.19 Comparison of finish time for different migration overhead ... 96

Figure 5.1 Simplified multiprocessor thermal model ... 102

Figure 5.2 Linear approximation of relation between die temperature and convective resistance 103

Figure 5.3 Linear approximation of leakage power model ... 104

Figure 5.4 The relation between full chip leakage power consumption and different task allocations 106

Figure 5.5 Comparison of maximum temperature of 3 different task allocations 107

Figure 5.6 The overall power consumption depend on convective resistance .. 109

Figure 5.7 Diagram of communication protocol ... 114

Figure 5.8 Convective resistance comparison between Random allocation and FDTM allocation 117

Figure 5.9 Power consumption against convective thermal resistance curve ... 120

Figure 5.10 The overall power consumption break down ... 121

xi

List of Tables

TABLE 3.1 Correlation between different events and retired instructions ... 38

TABLE 3.2 Comparison of thermal violations in percentage of time .. 44

TABLE 3.3 Comparison of different state representation .. 47

TABLE 4.1 List of symbols and their definitions ... 56

TABLE 4.2 Prediction Accuracy vs. the Size of Neural Network .. 67

TABLE 4.3 Average Power and Steady State Temperature of CPU Benchmarks 82

TABLE 4.4 Comparison between ARMAX and Neural Network Model .. 84

TABLE 4.5 Performance with Dynamic Workloads .. 86

TABLE 4.6 Comparison between Global and Distributed Policy .. 89

TABLE 4.7 Comparison between Global and Distributed Policy Under Extreme Cases 91

TABLE 4.8 Comparison between DTB-M, PTB and PTB-NN .. 94

TABLE 5.1 Fan power savings of FDTM compare to the random task allocation 118

TABLE 5.2 Overall system power consumption comparison under different temperature constraints ... 119

1

Chapter 1 Introduction

Moore’s law states that the number of transistors on a chip doubles about every two years

or less. With the unprecedented number of transistors integrated on a single chip, the current

multi-core technology may soon progress to hundreds or thousands of cores era [13]. Examples

of such system are the 80 tile network-on-chip that has been fabricated and tested by Intel [60],

their 48 core single chip cloud computer [28] and Tilera’s 64 core TILE64 processor [8]. While

the muti-core or many-core technology delivers extraordinary performance, they have to face the

significant power and thermal challenges. This is because as we continue to shrink the chip sizes

and extract the performance of our systems at the cost of higher power consumption, the ever-

increasing chip complexity and power density elevate peak temperatures of the chip and

imbalance the thermal gradients. Raised peak temperatures reduce the life-time of the chip,

deteriorate its performance, affect the reliability and increase the cooling cost [54]. The adverse

positive feedback between leakage power and raised temperature creates the potential of thermal

runaway. When mapped on a multi or many-core system, the diverse workload of applications

may lead to power and temperature imbalance among different cores. Such temporal and spatial

variation in temperature creates local temperature maxima on the chip called the hotspot [24]. An

excessive spatial temperature variation, which is also referred to as the thermal gradient,

increases clock skews and decreases performance and reliability. Elevated temperatures require

more cooling efforts; to cool down the processor, a typical cooling fan can consume up to 51%

power budget of a server [35][11].

1.1 The Adverse Effects of Unmanaged Temperature

2

1.1.1 The Effects of Temperature on System Reliability

One of the most obvious results of high power consumption is the elevated chip

temperature, and the most serious consequence of high temperature is the harm to the system

reliability. The followings are some common temperature related semi-conductor devices failure

mechanism [3]:

 Electromigration (EM): The deformation of the metal wire caused by the gradual

movement of the ions in the metal wire due to the momentum transfer between

conducting electrons and diffusing metal atoms. It could eventually break the

metal wire and lead to device failure.

 Stress Migration (SM): The deformation of the metal wire caused by the

movement of metal atoms under the influence of mechanical stress gradients. The

stress could be generated by differing thermal expansion rates of the materials. It

could also break the metal wire and lead to device failure.

 Dielectric Breakdown (DB): The dielectric fails when a conductive path forms in

the dielectric, shorting the anode and cathode in the circuit.

The failure rate Time-to-Failure (TF) due to these mechanisms could be expressed in the

form of Arrhenius equation:

 (1.1)

Where is a constant, is the activation energy in electronvolts (eV) and is the

Boltzmann's constant (8.62x10
-5

 eV/K). They are all positive constants. is the operating

temperature of the device in Kelvin. Therefore, TF is a decreasing function of the temperature.

3

When the temperature increases, the TF will decrease exponentially. This means the device

could fail more quickly.

High temperature is not the only cause of system reliability issues. In addition, two other

thermal phenomena, i.e. thermal cycling and thermal gradients, could also affect the reliability of

the device severely. Thermal cycling means the temporal fluctuation of the operating

temperature, and it could be caused by, for example, the normal power-up and power-down

operation of the device. Other major sources of thermal cycling are from the variation of

workload as well as the power management policy of the device, which could potentially switch

the components of the device between several power modes very frequently. Thermal cycling

could weaken the materials and cause different types of failures like dielectric cracking and

solder fatigue etc. The failure rate due to thermal cycling could be expressed in the form of

equation (1.2):

 (1.2)

Where is the magnitude of the thermal cycle, while is the frequency of the thermal

cycle. The larger and the more frequent of the temperature swing, the bigger the failure rate is.

Thermal gradient is the spatial imbalance of the temperature across the chip. It could be

caused by the workload imbalance on today’s System-on-Chip (SoC) or the multi/many-core

chip. The major problem caused by large thermal gradient is the imbalance of the interconnect

resistance, which could lead to increased clock skew. This is very undesirable in synchronized

digital circuits and could eventually result in timing violations.

1.1.2 The Effects of Temperature on Leakage Power

4

Temperature is not only the consequence of the power; they actually interact as both

cause and effect to some degree. This is because the leakage power consumption strongly

depends on the operating temperature. According to ITRS roadmap [4], leakage power, which

already contributes a significant portion of the total system power in current process, will

continue to grow as the technology scales as shown in Figure 1.1.

Figure 1.1 System-on-Chip (SOC) Consumer Portable Power Consumption Trends [4]

Previous works have investigated the dependence between temperature and leakage

power extensively [36][66]. And the leakage current could be formulated as:

Where and are positive, temperature-independent constants for a given

technology, is the supply voltage and is the reference leakage current for some given

5

temperature and supply voltage. We could see that the temperature scaling for the leakage

current (and the leakage power) is . Figure 1.2 shows the leakage current against the

temperature curve.

Figure 1.2 Leakage Current v.s. Temperature Relation[66]

1.1.3 The Effects of Temperature on Cooling System

Another obvious consequence of elevated temperature is the higher cooling cost. To

guarantee that the chip operates normally, the chip has to be equipped with more expensive

packaging. Or for a conventional heat-sink-based cooling solution, the cooling fan has to operate

at higher speed to accommodate the extra heat generated by the chip. This is because the heat

dissipation ability of the heat sink is determined by its thermal resistance (h2a stands for

heat sink to ambient) which is in turn determined by the cooling fan speed as shown in (1.3) [11].

6

(1.3)

In this equation and are chip specific physical coefficients, and is the fan

speed. And the fan power consumption is proportional to the cubic of the fan speed, i.e.

 . This means high temperature not only raises the fan power consumption, but also

reduces fan life time.

1.2 Dynamic Thermal Management Techniques

We have seen in the previous section that unmanaged temperature could lead to serious

reliability, performance, power as well as cost issues. Dynamic Thermal Management (DTM)

techniques are designed to tackle the aforementioned problems and control the chip temperature

as well as power consumption. As long as the temperature is regulated, the system reliability can

be improved. It has been pointed out that a moderate reduction in temperature by 10
o
C~15

o
C can

extend the lifespan of the electronic device 2 times [34]. And a 10
o
C decrease in the magnitude

of thermal cycles can achieve 16 times increase in mean-time-to-failure for metallic structures.

Leakage power also drops significantly when temperature decreases. For every 9
o
C temperature

reduction, there is 50% reduction in the leakage power [38]. This reduction is particularly

important in the future System-on-Chip design, because the leakage power consumption is

estimated to account for more than 50% of total chip power consumption [4]. Regulated

temperature not only guarantees the system reliability and reduces leakage power consumption,

but also boosts the performance. Transistor switching speed is faster in low temperature [49]. A

balanced spatial gradient can mitigate the clock skew problem noticeably.

7

Dynamic thermal management refers to those techniques which enable the chip to

autonomously modify the task execution and power dissipation characteristics so that lower-cost

cooling solutions could be adopted while still guaranteeing safe temperature regulation. A DTM

controller observes system information during runtime and takes thermal management actions

accordingly. It maintains the system temperature below a safe threshold or reduces thermal

violations as much as possible and produces thermal profile that is as smooth as possible with

minimum performance overhead.

The most important system information that is required to carry out the dynamic thermal

management for a computing system is the chip temperature. This information can be read from

the on-chip temperature sensors or estimated using a thermal model. In additional to the

temperature information, application characteristics, task power consumptions, etc. are also

needed by some state-of-the-art DTM techniques.

1.2.1 The Difference between Dynamic Power Management (DPM) and Dynamic

Thermal Management Techniques

Although temperature is essentially the consequence of power consumption, and dynamic

thermal management techniques also require modifying the power dissipation characteristics,

and furthermore, both DPM and DTM share some actions like Dynamic Voltage Frequency

Scaling (DVFS) and task migration, there are significant differences existing between thermal

aware design and power aware design. First of all, the system thermal profile cannot be

characterized by its power consumption profile alone. This is because the power consumption

could change instantaneously, but the temperature is the cumulative effect of power consumption

and changes gradually in time and space domain. To make up an analogy, power consumption

acts like the current source in an RC circuit, while the temperature acts like the voltage on each

8

node. So temperature behaves like a low-pass filter, filtering out the high frequency component

of the power consumption variation. Second, temperature is not proportional to power itself, but

proportional to the power density, i.e. , where is the area. Therefore, even if it is

impossible to reduce power consumption, but we still want to reduce the temperature, we could

distribute the power consumption to a large area. For example, instead of consolidating all the

threads onto one core and stressing only a small portion of the chip, it is better to assign them to

multiple cores from a thermal perspective. Third, compared to thermal management policy,

power management policy could have conflicting goals and potentially produce undesirable

thermal profile. For example, a power management policy might switch the device to low power

states very frequently to save power. This behavior could produce large and frequent thermal

cycles and accelerate the package fatigue as mentioned in section 1.1.1. In order to achieve low

power, power management policy might turn off some components and consolidate computation,

which could create localized hotspots and large thermal gradients.

1.3 Thesis Contributions

As we could see, dynamic power management techniques are not able to tackle the

problem related with unmanaged temperature and dynamic thermal management techniques are

indeed necessary for thermal aware design. To perform the thermal management techniques

effectively without hurting the system performance requires exploiting the workload

characteristics to make intelligent management decisions. This thesis focuses on the design of

low-overhead, performance-efficient, learning-based thermal management techniques that target

on the computing platforms where workload information is unknown a priori (like the general

purpose personal computer or high performance computing servers) and the thermal/power

characteristics for different applications or even the different phases in the same application vary

9

significantly. These uncertainties impose remarkable challenges on the design and evaluation of

DTM policy.

The proposed learning based techniques assume there is a learning agent residing in the

system (e.g. a delicate hardware unit or a subsystem in the OS), which is responsible for

monitoring the system dynamics and taking appropriate thermal management actions. The

learning agent always extracts some information from past system dynamics and fits them into a

learning model. The learning model can be a prediction model, a reinforcement learning model

or some other models that are suitable for the problem under investigation. Based on the given

input, the learning model will make predictions about future system dynamics, like temperature,

workload or some abstract reward/penalty values. The learning agent then makes control

decisions which are most beneficial to the system (e.g. can reduce temperature most or maximize

a reward function) based on the prediction. The learning models can be updated based on the

outcome of the thermal management control actions.

For applications with high temporal correlation, this work presents a learning agent that

intelligently exploits their property and performs DTM actions at appropriate time granularity.

For example, most of the multimedia applications such as MPEG movie clips or MP3 files are

naturally arranged into frames. The computation load of processing each frame has high

temporal correlation. Then the agent performs the learning-based DTM at a single frame

granularity.

Most of the existing dynamic thermal management techniques are centralized approaches.

They require a controller that monitors the temperature and workload distribution of the entire

chip and make global decisions of resource allocation. Such centralized approaches do not have

10

good scalability. As the number of processing elements grows, the complexity of solving the

resource management problem grows super-linearly. Furthermore, a centralized monitoring and

commanding framework incurs a large overhead, as communication between central controller

and cores will increase exponentially [25].

In this work, we present a framework of distributed thermal management where balanced

thermal profile can be achieved by proactive thermal throttling as well as thermal-aware task

migrations among neighboring cores. The framework has a low cost agent residing in each core.

The agent observes the workload and temperature of local processor while communicating and

exchanging tasks with its nearest neighbors. The goal of task migration is to distribute tasks to

processors based on their heat dissipation capabilities and also ensure that each processor has a

good mix of high power (i.e. “hot”) tasks and low power (i.e. “cool”) tasks.

The contributions of this thesis are outlined as the following:

 This thesis provides the reader an in-depth and detailed survey on the working

principles and implementation details of some existing state-of-the-art dynamic

thermal management techniques in Chapter 2. This thesis presents these

techniques in three categories based on the actions they are: Temperature Aware

Task Scheduling, Temperature Aware Dynamic Voltage and Frequency Scaling

and Temperature Aware Task migration.

 For multimedia applications, this thesis adopts a reinforcement learning-based

algorithm to find the optimum thermal management policy during runtime. We

consider the processor’s DTM controller as a learning agent and model the rest of

the system, e.g., the operating temperature, the hardware and the application

11

status as the environment. After the learning agent, i.e. the DTM controller, takes

an action (i.e., switching to a new operating frequency), it observes the

environment and estimates the reward or penalty caused by this action. The agent

learns from this experience and tries to improve its future action selections to

maximize the reward (or minimize the penalty). The details of how to apply

reinforcement learning to dynamic thermal management can be found in Chapter

3.

 For a many-core processor, this thesis presents a distributed thermal management

framework where no centralized controller is required. The distributed thermal

management agent resides in each processor, monitors its own power and

temperature dynamics, communicates and exchanges tasks with its nearest

neighbor so that each processor has a good mix of high power tasks and low

power tasks. Because the communication and migration cost only happens

between the nearest neighbors, the communication cost and migration overhead

for each core does not increase when the number of cores in the system increases.

 A neural network based peak temperature predictor is also presented in this thesis.

It predicts the future peak temperature based on the workload statistics of the

local processor and the maximum and minimum temperatures of the neighbors.

Once trained, the neural network predictor has very low computation complexity.

Because it takes the workload as one of the input parameters, it can give accurate

prediction right after task migration. It can even be used to predict the temperature

impact of a migration before the migration actually takes place as long as the

power consumption of the task that will be migrated in or out is provided.

12

Therefore, the predictor is used not only to determine when to trigger a proactive

task migration but also to evaluate whether a migration is beneficial. The

predictor is part of the thermal management agent in each core. The details of the

distributed thermal management policy and the design of the neural network

temperature predictor are presented in Chapter 4.

 This thesis also investigates the effects of task mapping on the joint optimization

of cooling power and computation power for a many-core platform under a given

workload. We show that different task mappings could change the temperature

distribution across the system and could affect the leakage power and fan power.

While the leakage power is determined by the average temperature, the fan power

is determined by the peak power. Hence they require different optimization

techniques. The detailed optimization techniques are presented in Chapter 5.

13

Chapter 2 A Survey of Dynamic

Thermal Management

Techniques

The thermal management problem aims at finding the optimal resource management

policy that could effectively control the peak temperature, the number of hot spots and the

thermal gradient of a system on chip. Based on when the optimization takes place, the existing

thermal management research can be divided into the following two major categories:

 Offline approach: offline techniques usually target at the application specific

embedded system that has predictable workload. They solve the temperature

aware resource management problem at design time or compile time.

 Online approach: online techniques target more general platform where workload

information is unknown at the design time. They rely on state-of-the-art learning

or control techniques to adaptively manage the hardware and software to control

temperature.

A great number of different dynamic thermal management actions have been investigated.

These actions include clock gating, dynamic voltage frequency scaling, computation migration

and hybrid methods which combine two or more techniques mentioned above. Although

different techniques use different mechanisms and are applied in different computing

14

environments, they share the same key idea, that is, to modify the power dissipation

characteristics of a computing system for less heat generation and a smoother heat distribution.

The three most commonly used thermal management actions are listed as the following:

 Temperature Aware Scheduling: This technique optimizes the task execution

order to reduce temporal variation and peak temperature in the system.

 Dynamic Voltage and Frequency Scaling (DVFS): This technique dynamically

stalls the processor or scales the processor’s supply voltage and frequency to

achieve a lower power density.

 Temperature Aware Task Migration: This technique dynamically adjusts the task

mapping to reduce spatial thermal gradients and peak temperature of the system.

In this chapter, we will present one dynamic thermal management technique using each

action. We focus on online techniques in this chapter. Unlike offline techniques, online

techniques are usually applied to more general platforms such as general purpose personal

computers or high performance computing servers is priori unknown and the thermal/power

characteristics for different applications vary significantly. These uncertainties impose

remarkable challenges on the design and evaluation of DTM policy. The core problem here is

how the DTM policy reacts and adapts to the system dynamics (processors, applications and

environments) so that the objectives (reliability, performance) can be well accomplished.

2.1 Temperature Aware Task Scheduling

15

As we mentioned earlier, large temperature gradients and thermal cycles can cause clock

skew and reliability issues. The authors of [18] aim at controlling task scheduling to achieve a

temporally and spatially uniform temperature distribution.

Many modern operating systems (e.g. Linux 2.6 [40]) for multiprocessors maintain a

ready queue for each processor. A task generated on a processor would stay in the queue of the

processor for cache affinity. The scheduler would not move the task to another processor’s queue

arbitrarily for performance consideration. Only when there is an obvious load imbalance among

processors, the scheduler will start to move tasks from the heavy loaded processor to light loaded

processor. This scheduling scheme is called load balancing. However, this scheme does not take

the temperature into consideration. Therefore it might not be able to achieve a balanced

temperature profile.

The authors of [18] propose several temperature aware scheduling schemes. The first

scheme is referred as the Coolest, which sends a ready task to a processor with the lowest

temperature. The authors further improve the Coolest method by considering the lateral heat

transfer between neighboring processors. The second method is referred as Coolest-FLP. It sends

tasks to those processors which have idle neighboring processors with higher priority.

The third scheme is referred as Adaptive-Random. It is a probabilistic policy which

considers both the performance benefits of load balancing policy and thermal benefits of Coolest

policy. The general idea of this policy is to assign a probability value to each processor; when a

task is ready to run, it will be sent to a processor based on its probability. The probability of a

processor will be updated dynamically based on the following equation (2.1).

 (2.1)

16

Where and are the probability after and before the update, and is the

incremental amount defined in the following way: If a processor’s temperature has crossed a

temperature threshold in the history window, then is set to a negative value and

 . This means that the probability of this processor drops to 0 and it will not be assigned

with new tasks in near future. If the temperature of a processor drops below , then is set

to a positive value and , where is the average temperature over the history

window. This ensures that a processor with lower temperature will have a better chance to

receive a new task.

The authors validate the effectiveness of their scheduling policy on an 8-core

UltraSPARC [33] based processor model using applications with different characteristics (e.g.

CPU intensive, memory intensive and network intensive). The Adaptive-Random scheduling

policy is able to control the hotspots (i.e., the running time above 85
o
C) down to 0.09% and the

temporal variation (defined as the average temperature change over a window of 1000 seconds)

down to 0.15%. This policy also reduces the spatial variation (defined as the percentage of time

when there are cores whose temperature difference is more than 20
o
C) by about 70%.

2.2 Temperature Aware DVFS for CMP Power Control

In [61], the authors address the problem of joint management of chip power consumption

and temperature distribution for a chip multiprocessor (CMP). The adopted control action is

DVFS; and the control algorithm is based on the Model Predictive Control (MPC) theory, which

is a well-established feedback control model with Multiple-input and Multiple-output (MIMO).

Feedback control is an effective tool for power and temperature management due to its

theoretically guaranteed control accuracy and stability. And MIMO controller is especially useful

17

for multiprocessor power/thermal management because first, the small overhead of per-core

DVFS makes it possible to simultaneously change the DFVS level of multiple cores; second, the

significant workload intensity variation and process variation among cores require them to

response differently. Figure 2.1 shows the system control loop architecture. At every control

step, the power controller collects following information from CMP: the power consumption of

the chip, the temperature of each core and the system level performance of each core. The total

chip power consumption is the controlled variable of the control loop. Based on the collected

information, the power controller computes the new DVFS level for each core of the CMP and

DVFS modulator adjusts the DVFS level accordingly. The DVFS level of each core is the

manipulated variable in the control loop. The power consumption of each core at control step

is modeled as a variable linearly dependent on the operating frequency at step k as shown in

equation (2.2) and its differential form is shown in equation (2.3). The total chip power

consumption is the summation of each core’s power consumption (2.4). Note that the

 is the manipulated variable of the control loop and should be computed by the MPC

controller.

Figure 2.1 Feedback Control Loop for Temperature Aware CMP Power Control

18

 (2.2)

 (2.3)

 [] [

] (2.4)

At control step k, the controller is going to decide the frequency settings (i.e. the

manipulated variables) for the next control steps

such that the total chip power consumption (controlled variable) approaches the target power

consumption following an exponential trajectory for the next control steps while maximizing

the system performance and satisfying the temperature constraints. and are called control

horizon and prediction horizon respectively in MPC theory and they usually are equal. Based on

these objectives, the cost function of the MIMO controller is designed as in (2.5). The first item

in (2.5) is the difference between the chip power consumption and the reference trajectory, which

represents the tracking error in MPC theory. And the second item represents the control penalty

in MPC theory. The constraints for this optimization problem are the temperature constraint as

well as the DVFS range limitation, which are all linear. Therefore at each control step, the

controller just needs to solve a least-square optimization problem whose solution can easily be

found using existing solvers.

 ∑

 ∑

(2.5)

19

The authors of [61] implement the MPC controller on a real system with an Intel Xeon

quad core processor and running Linux OS. The power measurements are obtained by a Digital

Multimeter (DMM) which measures the current running through the power line to the processor.

The temperature readings are obtained by the digital thermal sensor (DTS) residing in each core.

The frequency scaling is enabled by the Intel Enhanced SpeedStep technology [1][2].

2.3 Predictive Temperature Aware Task Migration

Predictive DTM policies make control decisions based on projected future system

dynamics. As long as the prediction is accurate, thermal emergency events can be avoided by

taking appropriate actions in advance. Many predictive DTM policies have been proposed

[20][17][63][10][19]. Their main difference lies in the adopted temperature prediction models

and the DTM actions. In this section, we give a brief introduction of two predictive thermal

management techniques [19][63]. Based on the adopted temperature prediction models, we refer

them as “thermal aware task migration with RLS (Recursive Least Square) based temperature

prediction” [63] and “thermal aware task migration with ARMA (Auto-Regression Moving

Average) based temperature prediction” [19].

2.3.1 Thermal aware task migration with RLS temperature prediction

The rate of temperature change of an application depends on two factors: (1) the

difference of its current temperature and its steady state temperature; and (2) the characteristics

of the application itself. The first factor accounts for the long term thermal behavior while the

second factor accounts for the short term thermal behavior. Based on this observation, the RLS

based temperature prediction model consists of two parts: Application Based Thermal Model

(ABTM) for the short term prediction and Core Based Thermal Model (CBTM) for the long term

prediction.

20

The ABTM predicts future temperature by observing the recent thermal behavior of the

application and incorporating this information into a recursive least square regression model. In

its general form, the RLS model can be expressed in equation (2.6).

 (2.6)

where is the variable that is going to be predicted, are fixed functions, and

 []
 is the input vector of the model. In our case, y is the predicted future

temperature, are the n most recent temperature observations and
 . Then equation

(2.6) can be reduced to (2.7)

 (2.7)

The [] is the unknown coefficient vector which is going to be estimated

by the RLS model. To find out , we need a set of training data {
) }. Let

 [] and [] , then the relation between the variables and

 can be expressed in the following equation:

 (2.8)

And the coefficient vector can be solved by least square fitting using

 (2.9)

When a new set of training data

 arrives, it is not necessary to use (2.9)

again to compute new (denoted as), because the computation complexity is too high

when the size of the matrix grows. Instead, we can use the following recursive equation to update

21

 . Denote the () when we have training data. Then, given the new training data,

the can be updated using the following equations:

 (2.10)

 (2.11)

In this way, the temperature prediction model is continuously updated as more training

data is obtained during runtime. Please note that the dimension of the vectors and matrixes in

(2.10) and (2.11) is always , which is determined by the model order in (2.6). Therefore the

computation complexity stays the same as new training data comes in.

The CBTM model accounts for the long term thermal behavior of the application. It

neglects the short term power variation of the application and assumes that the application runs

at constant power. CBTM again adopts the temperature change formula given by (2.12)

 (2.12)

where is the steady state temperature, and is a thermal constant. In this equation,

 are pre-computed for each application. is also computed offline. It is calculated only once

for all applications because it is determined by the thermal characteristics of the chip. Using

(2.12), the processor temperature after time can be predicted.

To predict the temperature at a future time , the authors of [63] apply both ABTM and

CBTM and obtain two predicted temperatures and . The final prediction is the

weighted sum of these two as shown in equation (2.13).

22

 (2.13)

Based on the above temperature prediction model, the authors propose a thermal aware

task migration policy called Predictive Dynamic Thermal Management (PDTM). When a task

running on a processor is projected to exceed the temperature threshold, it will be moved to a

processor that is predicted to be the coolest in the future.

The evaluation platform of this policy is an Intel Quad-core processor. Processor

temperature can be read from the digital thermal sensor embedded in the cores. The applications

running on the system are libquantum, perlbench, bzip2, hmmer from SPEC 2006 Benchmarks.

The prediction model achieves very high accuracy and the temperature prediction error is only

1.6%. Compared to the existing thermal management scheme, the proposed task migration policy

reduces the average temperature by 7% and peak temperature by 3
o
C.

2.3.2 Thermal aware task migration with ARMA temperature prediction

The rationale behind the ARMA prediction model is that, when the workload is stationary,

the temperature can be estimated accurately by regressing the past measurements. The

formulation of the ARMA model, which is shown in equation (2.14), is similar to the RLS model

because they are both linear regression based models.

 ∑

 ∑

 (2.14)

 in (2.14) is the temperature at time t and the is called prediction error or residual

noise. In the equation, ∑

 is called the auto-regression (AR) part and the ∑

 is

23

called the moving average (MA) part. Similar to the RLS model, the coefficients and of the

ARMA model are obtained through online training.

In contrast to the RLS model, the order of the AR model (i.e. p) and the order of the MA

model (i.e.) are not known at the beginning of training. It is obvious that a large and can

achieve higher prediction accuracy, but it will also increase the complexity of the model thus the

runtime overhead. To get a good balance between accuracy and complexity, the training process

adopts a trial-and-error strategy. It starts from a small order, say , and gradually

increases the order until some accuracy measurement achieves a satisfactory extent. The

accuracy measurement used here is called Final Prediction Error (FPE) which is defined in

equation (2.15)

 (2.15)

In this equation, is the model order which is equal to . is the length of the

training time series and is the variance of the model residuals. Because the FPE takes both

training error and model complexity into consideration, it provides a good tradeoff between

accuracy and complexity.

Another difference between ARMA model and RLS model is the way models get

updated. In the RLS model, whenever a new training data arrives, the model will be updated.

This means the model will be updated at regular time intervals, because the processor’s

temperature is sampled periodically. This could incur some unnecessary computation overhead if

the workload is stationary. The ARMA model uses the Sequential Probability Ratio Test (SPRT)

to determine if the workload is drifting from the previous stationary state to a new state which

24

means there is a workload pattern change. When the workload is in stationary state, the

prediction error sequence is a white noise signal; the error follows a fixed probability distribution

which has zero mean and a small variance (e.g. a Gaussian distribution). When the workload

changes, the prediction error drifts from the previous distribution which can be detected by

SPRT. Instead of simply testing the mean and standard deviation of the prediction error, SPRT

performs statistical hypothesis tests on the mean and variance of the residuals.

In order to perform the hypothesis tests, a temperature prediction error history window is

maintained online. When new temperature data arrive, the prediction error is computed and the

history window moves forward, then the hypothesis test is performed by SPRT. Let the

prediction error in the history window be denoted as [], then the SPRT tests the

following two hypotheses:

 : is drawn from a distribution function with mean and variance .

 : is drawn from a distribution function with mean 0 and variance .

If SPRT decides is true, then it considers the prediction error drifts from the current

distribution and the workload pattern has changed. Therefore a model updating is needed. On the

other hand, if is true, then the workload pattern has not changed and is still stationary.

Therefore, the ARMA model does not need to be updated. Please refer to [20] for more details in

the SRPT test.

Compared to the RLS model, the ARMA model has several advantages. First, it reduces

the runtime model updating overhead. Second, the model order in RLS is fixed and has to be set

manually. While in ARMA model, the model order can be a variable. This flexibility enables the

ARMA model to achieve better tradeoff between prediction accuracy and model complexity.

25

Third, as shown in the experiments in [20], the ARMA predictor achieves higher accuracy than

the RLS predictor when they predict a longer time in the future. The authors also show that the

prediction accuracy of the ARMA predictor is superior compared with two other predictors, i.e.

exponential averaging predictor and history table based predictor.

Base on the ARMA predictor, the author proposed a Proactive Thermal Balancing (PTB)

policy. Similar to the PDTM policy [63], this policy also moves the tasks from a processor which

is predicted to be hotter to a processor which is predicted to be cooler. The difference is that

PDTM moves the current running tasks while PTB moves the tasks in the waiting queue. The

benefits of moving tasks in waiting queue is that when current running task finishes, the

processor has a period of idle time to cool down. Therefore, hotspots can be avoided. As a

mechanism of migrating a waiting task in the ready queues has already been implemented in the

OS scheduler for load balancing purposes, this technique does not introduce additional

implementation overhead.

Experimental results on an UltraSPARC T1 based processor model show that PTB

reduces hot spot occurrences, spatial gradients, and thermal cycles by 60%, 80% and 75%

respectively on average comparing to reactive thermal management. And it only incurs a

performance cost of less than 2% with respect to the default scheduling policy for load balancing

running on the system.

2.4 Chapter Summary

In this chapter, we survey four online dynamic thermal management techniques based on

task scheduling, dynamic voltage and frequency scaling and task migration. Although the

varieties of the application runtime characteristics and the uncertainties in user behaviors impose

26

significant challenges to online DTM, the techniques presented in this section are able to tackle

thermal safety problems while still delivering high performance. While reactive techniques are

able to respond to the changing of the system dynamics quickly, predictive techniques take

actions in advance to avoid thermal emergencies.

27

Chapter 3 Dynamic Thermal

Management for Multimedia

Applications Using Machine

Learning

As shown in Chapter 2, dynamic thermal management techniques have been widely

studied and employed to control the temperature for different computing platforms, from servers

[48], general purpose computers [20], to embedded systems [66]. These works consider

applications of various characteristics, including web applications [20], standard benchmarks

[17][31] and multimedia applications [55][64]. Among these, multimedia applications are

expected to form the largest portion of workload in general purpose personal computers and

portable computing devices like smart phones [55]. In spite of their popularity, the computation

intensity of multimedia applications is likely to produce high temperature in these platforms [64].

A thermal safe solution is to run the applications at lower speed or reduce the computation by

decreasing the Quality of Service (QoS). However these solutions impact the user satisfactory.

In this chapter, we consider the problem of dynamic thermal management for multimedia

applications. We utilize the processor’s dynamic voltage and frequency scaling (DVFS) ability to

control the operating temperature under a threshold while maximizing the system performance,

i.e. minimizing the CPU time of the multimedia applications. Our DTM technique does not

require to pre-characterize the system for its thermal and power model neither does it need any

28

prior knowledge of the workload information. It relies on machine learning algorithms to find the

best management policy during the runtime. Compared to the existing DTM techniques [17][55]

it provides considerable performance improvements with marginal increase in the percentage of

thermal hotspot.

We model the dynamic thermal management problem as a stochastic control process and

adopt the reinforcement learning algorithm to find the optimum policy during runtime. As

mentioned in Chapter 1, we consider the processor’s DTM controller as a learning agent and

model the rest of the system, e.g. the operating temperature, the hardware and the application

status as the environment. After the learning agent, i.e. the DTM controller, takes an action (i.e.

switching to a new operating frequency), it observes the environment and estimates the reward or

penalty caused by this action. The agent learns from this experience and tries to improve its

future action selections to maximize the reward (or minimize the penalty).

Most of the multimedia applications such as MPEG movie clips or MP3 files are

naturally arranged into frames. The computation load of processing each frame has high

temporal correlation. We exploit this property and perform the learning based DTM at a single

frame granularity. The application status is characterized by its frame level computation load

which can be obtained from the processor’s performance counter.

The characteristics of the presented work in this chapter are summarized as the following:

 This is the first work that applies reinforcement learning algorithm to solve the

problem of dynamic thermal management. The presented approach is truly

adaptive. The learning agent does not require having any prior knowledge of the

environment or the system power/thermal characteristics. It learns from the

29

experience and adjusts the policy online. Therefore, it works robustly in different

computing systems.

 The presented learning algorithm explores the frame level temporal correlation in

multimedia applications. The environment observation and policy adaptation are

performed at single frame granularity.

 The presented learning model has very small run time overhead. It only incurs a

few table lookups and some simple arithmetic operations.

 Instead of simply minimizing the thermal violation, our goal is to maximize the

performance without increasing the thermal violation.

 The presented learning model is validated on a Dell Dimension 9200 desktop PC

with Intel Core 2 processor. All the experimental results data reported in this

chapter are gathered with the consideration of the real implementation and control

overhead.

 Compared to running the application without dynamic thermal management and

the existing DTM techniques that utilize the same event counter information, the

learning based DTM provides better performance-thermal tradeoff.

The rest of this chapter is organized as follows: Section 3.1 reviews the related work. We

discuss how to apply the reinforcement learning model in detail in Section 3.2. Experimental

results are reported in Section 3.3. Finally, we conclude this chapter in Section 0.

3.1 Related Work

30

Dynamic thermal management (DTM) has been studied for different types of applications

from general purpose industry standard benchmarks to multimedia applications. Reference [31]

and [17] focus on thermal management techniques for SPEC benchmarks. The authors of [31]

propose to dynamically adapt some micro-architecture parameters, such as instruction window

size, issue width, and fetch gating level, to the application characteristics and hence control the

processor temperature. The authors of [17] propose to utilize the processor’s performance

counter readings to detect the phase changes of application at run time and adjust the operating

frequency accordingly to avoid thermal violations. Both these works perform the thermal

management at a regular time interval. Although this is effective for standard benchmarks, as we

will show in Section 3.2, it might not be the same for multimedia applications.

There have also been a number of studies of thermal management for multimedia

applications. Reference [64] proposes to profile the number of cycles to decode each frame. With

this information and a temperature prediction model, an operating frequency is selected for a

group of frames to guarantee the QoS while minimizing the temperature. Our work is different

from [64] as we try to maximize performance while stratifying the thermal constraint. The

thermal management scheme in [55] is based on the observation that the same type of frames has

similar average IPC and power consumption, so the same configuration is applied to these

frames.

One common drawback for the aforementioned works is that they rely on certain system

models or profiled information. For example, [31] utilizes a neural network model to predict

future temperature for a set of architecture parameters and application characteristics while [17]

uses a linear regression model to predict future temperature. Even though those prediction

models are carefully characterized, they suffer from lack of adaptability. Once the model has

31

been trained or obtained, it cannot be modified. Any change in the system or environment (e.g.

room temperature variation, chip aging) will invalidate the model and thus hit the performance of

the thermal management scheme.

Model free online learning techniques should be a solution to this problem. Previous

work [58] has successfully applied the online learning model to dynamic power management

(DPM) problems, but few works have applied the learning techniques to the DTM problem.

3.2 Reinforcement Learning For Thermal Management

In this section, we will first give the formulation of Q-learning in its standard form in

Section 3.2.1 and then discuss how to apply this technique to the thermal management problem

in Sections 3.2.2 ~ 3.2.5.

3.2.1 The Reinforcement Learning Model

Reinforcement learning [56] is an unsupervised machine intelligence approach that has

been applied in many different areas. The general learning model consists of

 An agent, with a finite action set A.

 The environment that has a finite state space S. The actions of the agent will

affect the future states of the environment, which in turn affects the options and

opportunities available to the agent at later times.

 A policy π that defines the behavior of the learning agent at any given time. It is a

mapping from the set of environment states to the set of actions, i.e. π: S A.

32

 A reward function r: S A R which maps each state-action pair to a single real

number, (R is the real number set). A reward indicates the intrinsic desirability of

taking an action at one particular state.

The process of reinforcement learning is divided into multiple decision steps. We refer to

each decision step as decision epoch. At each decision epoch, the agent takes an action according

to current environment state. It then observes the environment for the reward/penalty caused by

this action. The goal of the agent is to maximize the average long-term reward by trial-and-error

interaction with a dynamic environment. It is achieved by learning the policy π, i.e. a mapping

between the states and the actions. The agent might not select the optimum action at beginning,

but its performance can be improved over time.

The Q-learning algorithm is one of the most popular reinforcement learning algorithms.

In Q-learning, the agent keeps a value function

 , for each state-action pair

and stores it in a Q-table. The value function represents the expected long-term reward if the

system starts from state s, taking action a, and thereafter following policy π. Based on this value

function, the agent decides which action should be taken in current state to achieve the maximum

long-term rewards. An optimum policy is a policy which achieves the maximum value

function denoted as

, i.e.

 .

The core of the Q-learning algorithm is to iteratively update the value function

 as

following [56]:

 [

]

33

In the above equation, is the learning rate which determines how fast the Q value will

adapt. The discounted factor is between 0 and 1.

3.2.2 Frame Based Decision Epoch

How frequent an agent observes its environment, updates the policy and issues DTM

command is determined by the length of the decision epoch. An appropriate decision epoch can

help the system to learn and control effectively. Within a decision epoch, the system should have

consistent behavior. Across multiple decision epochs, the system behavior should exhibits

repeated patterns. Here we define a workload phase to be an execution interval during which the

application has near identical power, temperature and performance characteristics [17]. It is

obvious that the workload phase of an application determines the decision epoch of its DTM

agent.

For a multimedia application, the decision epoch can be divided in two ways: frame

based decision epoch and equal time step decision epoch. An equal time step decision epoch at

the granularity of 100 ms has been used for the DTM of SPEC CPU2006 benchmarks [17]. This

is because the workload phase change of the applications in SPEC CPU2006 benchmarks can be

detected at this granularity. (Those applications will stay in the same workload phase for several

to tens of seconds before moving to next phase [17].) However, the same equal time step

decision epoch is not suitable for multimedia applications. Figure 3.1 shows a segment of trace

of retired instructions for the MPEG4 decoder from the MediaBench [6]. The upper part and

lower part of the figure show at time interval of every 10 ms and every 5 ms respectively. The

number of retired instructions has been reported as one of the architectural events that contribute

most for the temperature change [17]. From this figure, we can see that instruction retired

number is constantly vibrating and does not show obvious phase change. This is because equal

34

time epoch smoothes out the inner workload phase change of the application. On the other hand,

Figure 3.2 demonstrates the trace of the retired instructions every frame for a total of about 200

frames. As shown in this figure, phase change can be clearly observed with a regular pattern.

Therefore in this work we choose frame based learning epoch.

Figure 3.1 Variation of retired instructions for every 10 and 5 ms for MPEG4 decoder

3.2.3 Interactions Between Agent and Environment

Figure 3.3 presents the system model of our learning based DTM agent. The actions that

the agent takes are the available frequency levels of the processor. At each decision epoch, the

agent observes the current state of the environment and chooses the frequency level for the next

frame according to the Q-values in the Q-table. The Intel’s speedstep technology [2] or AMD’s

1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700
1.4

1.6

1.8

2

2.2
x 10

7

Timestamp (10 ms)

In
s
t.

 r
e
ti
re

d

3000 3050 3100 3150 3200 3250 3300 3350 3400
4

6

8

10

12

14
x 10

6

Timestamp (5 ms)

In
s
t.

 r
e
ti
re

d

35

PowerNow technology [1] can be used to dynamically switch the voltage and frequency of a

processor.

Figure 3.2 Variation of retired instructions at frame granularity

Figure 3.3 System model

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 2040

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

x 10
7

frame index

in
st

 r
et

ire
d

36

Everything outside the agent is considered as environment, including the processor, the

applications and the thermal monitoring system (thermal sensors). The environment and the

agent are closely coupled. For instance, the power consumption of the processor is linearly

dependent on the operating frequency, which in turn determines the processor’s temperature. As

another example, because the agent only changes the clock frequency of the processor not the

clock frequency of the memory subsystem, its actions will affect the instruction per cycle (IPC)

of the system. On the other hand, the environment status limits the agent’s actions in some cases

by changing the reward/penalty value. For example, the agent is not allowed to run at full speed

when the processor is approaching the temperature threshold.

3.2.4 Classification of Environment States

The environment can be characterized by many features, from the temperature and the

power consumption of the processor, to the cache miss rate and IPC. The learning agent works

under a discrete state space. How to map this huge and sometimes continuous feature space into

a finite set of discrete state space has direct impact to the effectiveness of the learning algorithm.

Here, two problems are involved.1) Which features should be selected to represent the

environment; 2) How to discretize the selected feature space into the state space.

The rules of thumb of selecting features to represent the environment are: first, those

features should closely relate to our problem, i.e. performance optimization with thermal

constraint; second, they could be observed easily.

It is obvious that the processor’s temperature should be one of the features to represent

the environment state as it is directly related to our optimization problem. This information can

37

be obtained by reading the temperature sensors that are equipped on most state-of-the-art

processors.

We may also want to use the processor power consumption as one of the features for

environment state, because it directly contributes to the temperature change of the processor.

Unfortunately, this information is not easy to obtain. Therefore, we decided to use the readings

of performance counters as a proxy for the power consumption as they reflect the processor’s

switching activities. Besides power consumption, the performance counter readings, such as the

execution cycles, instruction retired rate and cache miss rate, etc., also reflect the performance of

the application programs, which is what we want to optimize.

Our test platform, the Intel’s Core 2 Duo processor has 5 performance counters which

could record 130 architectural events [7]. Among them, we select those events that contribute

most to the temperature change and are most relevant to the system performance. Reference [17]

utilizes the principle component analysis to find the contribution of each architectural event to

the temperature change and suggests that 3 of them, i.e. the “instruction retired” event, the

“floating point instructions executed” event and the “conditional instructions executed” event,

play the most important roles in temperature change. However, our analysis shows that, for a

typical multimedia application such as an MPEG-4 decoder, the variation of floating point

instructions executed among different frames is very small. We also found that the number of

conditional instructions executed has high correlation with the number of retired instructions and

thus does not provide much additional information.

We analyzed the correlations between different events and retired instructions that were

recorded during an MPEG decoding process. TABLE 3.1 Correlation between different events

38

and retired instructions gives the selected results. The results indicate that the “last level cache

miss” event has the least correlation with the “instruction retired” event and hence provides the

most additional information about the system. Therefore we use the “last level cache miss” event

together with the “instruction retired” event to represent the environment state. The former

represents the memory activities while the latter specifies the computation activities. Combined

together they provide a complete picture of the system. This choice also agrees with what is

suggested in reference [32].

TABLE 3.1 Correlation between different events and retired instructions

UOPS RETIRED
BR_INST

RETIRED
BR_CND EXEC FP_INST EXEC

BUS_MEM

TRANS

LAST_LEVEL

$_MISS

0.997 0.977 0.964 0.763 0.762 0.669

Based on the above analysis, we will use the feature set to characterize the

environment, where T is the reading from the thermal sensors and is a vector of selected event

counter readings. In the next, we will discuss how to map the feature space into a finite state

space to apply the reinforcement learning model.

Note that T can be any real number within the working range, usually from 0
o
C ~ 100

o
C.

Because it is a continuous variable, we have to discretize it to get a finite set of states. We divide

the temperature working range into a set of disjoint intervals, i.e.], (], (], … ,

], , each interval] corresponds to a state . Note that the

(N+1)th interval covers all temperatures beyond the threshold. Although the temperature level

 , … can be set arbitrarily, we would divide the region near the threshold temperature in

finer granularity while leave the other region in coarse granularity. In this way when the

temperature is approaching the threshold, the agent might take better control at finer resolution.

39

In order to classify the space of the event counter readings (i.e. P) we use the k-means

clustering method as in [17]. We took 5 representative video clips and collect the retired

instructions number and cache miss number for each frame, and classify them by the standard k-

means algorithm [57]. To find the optimum number of states (i.e. number of clusters), we start

from a small number and gradually increase it until the classification error is less than 5%, which

is defined as the ratio between square sum of all points’ within cluster distance and the square

sum of their distance to the origin. Based on k-means clustering, we divide the event counter

values into K states } . Together with the N temperature states, the size of the

resulting learning space is |N||K|. In our implementation, we set N=11 and K=10.

3.2.5 Design of the Reward Function

The state of the th decision epoch is denoted as , where give the temperature

at the beginning of the th epoch and gives the number of cache misses and the number of

instruction retired during the th epoch. The action taken by the agent during the th epoch is

denoted as . At the end of the th epoch (or the beginning of the th epoch, the agent

calculates the reward caused by the action and update the Q-function of state action pair

 . The reward function is defined as the following:

 () {

 () ()

 (3.1)

where is the temperature state at the end of the ith epoch (or the beginning of the

(i+1)th epoch), Inst(p
i
) is the number of retired instructions, Freq(a

i
) is the processor frequency

selected by action a
i
, and state (N+1) is the temperature state that covers all temperatures beyond

40

the threshold. In this function, P, A and B are constants. The upper part of the reward function is

the thermal violation penalty, which is a negative number. If at the end of the ith epoch, we reach

a thermally unsafe state (i.e. T
i+1

 = N+1), then a negative reward will be received. A negative

reward will decrease the Q-value of state action pair (T
i
, p

i
, a

i
) so that this action will be avoided

at this state in the future.

The lower part of the reward function is used when the system is thermally safe at the end

of the ith epoch. In this scenario, we would like to increase the performance of the system. The

first part of the reward function is the performance. We use the product of the number of retired

instructions and the processor frequency to represent the performance reward. This encourages

the agent to select high frequency for frames with high computation demand. The intuition

behind this is that use high frequency for complex frames can reduce more execution time than

using it for simple frames. The second part of the reward function represents the thermal award.

The parameters A and B provide tradeoff between temperature and performance.

Generally, the convergence of the learning process depends on the recurrent visits of all

possible state-action pair. We have several techniques to improve the convergence speed of the

learning process. First, our learning policy encourages using higher frequency in each state as

long as it is thermal safe. Therefore, the action space is reduced. So the number of recurrent

visits on each action is increased. Second, the virtually visiting technique and variable learning

rate technique proposed in reference [54] can be applied to further increasing the convergence

speed. For example, if the state-action pair is and the next state is .

Apparently, is not dependent on the action. If is in the thermal violation region, then

we could update all state-action pair , such that the frequency of is bigger than

that .

41

3.3 Experimental Results

3.3.1 Experiment Setups

We carried out our experiments on a Dell Dimension 9200 desktop with Intel Core 2 Duo

E6400 processor which has 2MB L2 cache and 1333 MHz FSB. The processor supports 8

frequency levels: 267 MHz, 533 MHz, 800 MHz, 1.07 GHz, 1.33 GHz, 1.63 GHz, 1.87 GHz and

2.13 GHz. The operating frequency of each core in the dual core processor can be adjusted

separately. The operating system is Fedora 11 with Linux kernel 2.6.29.

To monitor the temperature change of the processor, we utilize the thermal sensors

available in each core [61]. The coretemp driver in the Linux kernel generates an interface under

/sys/devices/ platform/coretemp.[X] directory (X is the index of each core), and the current

temperature will be reported when the file temp1_input is read each time. The default driver only

updates temperature readings once every 1 second. This granularity is too coarse for our frame

based management scheme, because the decoding time for a frame is about tens of milliseconds.

We modified the driver so that it could update its readings every 10 ms.

We utilize Intel Enhanced SpeedStep [2] technology to adjust the frequency level.

Similar to temperature readings, the Linux kernel provides the cpufreq driver for users to read

and modify the operating frequency. Processors equipped with DVFS ability will have an

interface under /sys/devices/system/cpu/cpu[X]/cpufreq/ directory (X is the index of each core). It

has been reported in [61] that the overhead for each frequency adjustment is about 20 us,

therefore the overhead for DVFS at every frame is under 2%.

42

To collect the performance counter readings, we utilize the pfmon 3.9 hardware

monitoring tool [7]. Two event counters are monitored in our program, i.e. the instruction retired

event and cache miss event. The monitoring is trigger at the end of each frame.

We choose the MPEG-4 decoder from the MediaBench benchmark [6] as our application.

Please note that the presented method can be readily applied to other multimedia applications,

such as MPEG-2 decoder, H.264 decoder etc, because they have similar characteristics. We

apply MPEG-4 decoder on 5 video clips extracted from recent movies of different genres, e.g.

drama, action, animation.

We compare our reinforcement learning based DVFS thermal management policy with

the Phase-Aware dynamic thermal management policy proposed in [17]. In Phase-Aware DTM,

performance counter values are collected every 100 ms. Then the readings are classified into

different phases. Based on a linear temperature prediction model, the max frequency which is

guaranteed to be thermal safe under current phase will be selected. It is important to point out the

effectiveness of the phase aware DTM heavily relies on the accuracy of the temperature

prediction model. We also compare our policy with two scenarios that run the entire application

at 1.63 GHz and 1.87 GHz clock frequencies without any dynamic thermal management.

Please note that although we use MPEG-4 decoder from MediaBench and the Dell 9200

desktop as our platform, the proposed reinforcement learning model is not only limited to these

specific application and platform. As long as we choose the proper decision epoch, the

appropriate features to characterize the environment and an effective reward function, the

proposed learning model could readily be applied to general applications under other

architectures. For example, for a general benchmark, there is no frame based decision epoch. In

43

this case, an equal time interval decision epoch would be appropriate. On our current platform,

the decoding process is completely implemented in software and runs on the CPU. Therefore, the

control action is to change the frequency of the CPU. However, if the multimedia application

runs on a IP-rich System-on-Chip, while the computation is mainly offloaded to the IP core, the

control action could be changing the frequency of the audio or video codec.

3.3.2 Results Analysis

In the first set of experiments, we compare the run time and thermal violations among our

reinforcement learning based policy, Phase-Aware policy, and two single operating frequencies

and the results are shown in Figure 3.4 and TABLE 3.2. The thermal violation is defined as the

percentage of time that the processor temperature is above the given threshold. We use 1.63 GHz

as the base line frequency and set the peak temperature under this frequency as the thermal

threshold. The reason that we use a floating temperature threshold instead of a fixed temperature

threshold is to cancel the impact of the ambient temperature, which cannot be controlled by us.

We do not distinguish the violation temperatures because we found in our experiments, all

violation temperatures are within 5
o
C. Using the next available higher level frequency could

reduce the run time significantly; however, without any thermal management, it also incurs large

thermal violations. The average thermal violation for 1.87 GHz is 36.65%. On the other hand,

learning based policy provides large performance improvement with very small thermal violation.

For example, our Learning policy improves the run time by 22.15% and 7.53% over the 1.63

GHz policy and the Phase-Aware policy, while only incurs 2.38% thermal violation. And

compared to the 1.87 GHz clock frequency, the Learning policy reduces thermal violation

significantly while maintaining the similar run time. The reason that the Learning policy has

marginal higher thermal violation than the 1.63 GHz and the Phase-Aware policy is because,

44

unlike the Phase-Aware policy, it does not employ a temperature prediction model and has to try

frequency settings at different states. Therefore, the Learning policy will make some mistakes

“on purpose” in order to learn the optimum policy.

Figure 3.4 Comparison of run time for different policies

TABLE 3.2 Comparison of thermal violations in percentage of time
Policy Clip1 Clip2 Clip3 Clip4 Clip5

1.6G 0 0 0 0 0

Phase-Aware 0.49 0.4 0.65 0.25 0

Learning 1.78 3.31 2.83 1.26 2.7

1.8G 33.66 60 21.95 42.65 24.98

We observed in our experiments that Learning based policy is more aggressive than the

Phase-Aware policy. This is illustrated in Figure 3.5 Temperature and frequency comparison

between Learning and Phase-Aware, which shows the temperature variation (upper part) and

operating frequency (lower part) for an interval of 100 frames. The green circle line shows the

data for the Phase-Aware policy while the red dashed line shows the data for the learning policy.

We also plot the number of instruction retired for each frame in the lower figure (the blue line).

As shown in the figure, both control policies run at the thermal threshold 48
o
C for most of the

30

35

40

45

50

55

Clip1 Clip2 Clip3 Clip4 Clip5

R
u

n
 t

im
e

(S
ec

)

1.8G

1.6G

Phase-Aware

Learning

45

time, while the Learning policy incurs minor thermal violation. The Phase-Aware policy fix the

frequency at 1.87 GHz. while Learning based algorithm is able to perceive the state change at the

frame granularity and learns a control policy that alternates the clock frequency between 2.13

GHz and 1.87 GHz.

Figure 3.5 Temperature and frequency comparison between Learning and Phase-Aware

Figure 3.6 shows the percentage of time that Learning and Phase-Aware policies run at

each frequency. As shown in the figure, learning policy was able to run at the highest frequency

for more than half the time, while the Phase-Aware policy is more conservative and runs at the

second highest frequency for most of the time.

Our Learning policy is very flexible. We can achieve different performance-thermal

violation trade-offs by changing the parameters in the reward function. In the second set of

experiments, we vary the thermal violation penalty PT in the reward function from 500, 1000 ~

2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000
45

46

47

48

49

50

frame index

T
e
m

p
e
ra

tu
re

 (
o
C

)

Learning

Phase-Aware

2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

1.5

2

2.5
x 10

6

frame index

F
re

q
u
e
n
c
y
 (

K
H

z
)

2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

1.5

2

x 10
7

In
s
tr

u
c
ti
o
n
 r

e
ti
re

d

Learning

Phase-Aware

46

10000 by a step of 1000 and obtained a set of trade-off points which are shown in Figure 3.7.

The value of PT is also shown in the figure. When the thermal violation penalty is small, the

learned control policy tends to be more aggressive. On the other hand, when the penalty is large,

the learned control policy tends to be more conservative. This trade-off is a unique property of

our Learning policy and could not be achieved by the Phase-Aware policy. This property could

be useful when the reliability is considered as a resource that can be used to trade for

performance improvement.

Figure 3.6 Percentage of time of each frequency for Learning and Phase-Aware policy

0

10

20

30

40

50

60

70

0.27 0.53 0.8 1.07 1.33 1.6 1.87 2.13

P
e

rc
e

n
ta

ge
 o

f
ru

n
 t

im
e

Frequency level (GHz)

Learning

Phase-Aware

47

Figure 3.7 Trade-off between run time and thermal violation

In the last set of experiments, we tested the impacts of different environment state

representations to our learning policy. We tested three kinds of state representations: retired

instructions with cache misses, retired instructions only and cache misses only. We applied the

same Q-learning algorithm using these state representations and compared the run time and

thermal violations. TABLE 3.3 shows that combining these two variables together could result in

optimum performance. Compared to systems using only retired instructions or cache misses, in

average, it reduces the run time by 3.82% and 5.16% respectively and also has 0.974% and

1.108% lower thermal violations respectively. The results indicate that the learning agent

receives more information about the environment when monitoring these two variables, and

hence makes better control decisions.

TABLE 3.3 Comparison of different state representation

Clip # State Representation Inst + Cache Inst only Impr. (%) Cache only Impr. (%)

Clip 1
Violations (%) 3.80 4.65 0.85 5.58 1.78

Run time (Sec) 40.70 42.61 4.71 43.53 6.96

Clip 2 Violations (%) 4.90 5.16 0.26 4.94 0.04

0

5

10

15

20

25

44 45 46 47 48 49

V
io

la
ti

o
n

s
(%

)

Runtime (Sec)

Trade-off pointsPT = 500

PT = 1000

PT = 2000

PT = 3000
PT = 6000 PT = 7000 PT = 10000

48

Run time (Sec) 41.02 40.90 -0.28 42.81 4.37

Clip 3
Violations (%) 5.24 6.30 1.06 5.47 0.23

Run time (Sec) 42.81 44.79 4.63 47.49 10.95

Clip 4
Violations (%) 3.66 5.90 2.24 6.25 2.59

Run time (Sec) 45.32 47.40 4.60 45.20 -0.27

Clip 5
Violations (%) 2.53 2.99 0.46 3.43 0.90

Run time (Sec) 37.35 39.38 5.45 38.77 3.79

To compare our algorithm with other learning algorithm, we refer to the reference [27]. It

proposed a reinforcement learning based algorithm similar to us with multiple optimization

objectives, i.e. temperature, power and performance. And it compare with an expert-based

learning algorithm proposed in [23]. Their results show that when the temperature constraint is

tight, reinforcement learning based algorithm could finish the application faster than the expert-

based learning algorithm.

3.4 Chapter Summary

In this chapter, we presented reinforcement learning based dynamic thermal management

method for multimedia applications. The agent learns the workload pattern of the application

based on the performance counter readings, and adjusts the processor’s operating frequency at

the beginning of each frame to optimize the performance while ensuring thermal safety. We

implemented our learning based DTM policy on a personal computer and tested it using real

application. Our experimental results show big performance improvement with only marginal

thermal violations compare to a thermal management policy that also based on workload phase

detection.

49

Chapter 4 Dynamic Thermal

Management for Many-core

System

Most of these existing techniques [18][20][31][42][45][46][52][61] presented before or in

the literature are centralized approaches. They require a controller that monitors the temperature

and workload distribution of each core on the entire chip and make global decisions of resource

allocation. Such centralized approaches do not have good scalability. First of all, as the number

of processing elements grows, the complexity of solving the resource management problem

grows exponentially. Secondly, a centralized resource management unit that monitors the status

and issues DTM commands to each core generates a huge communication overhead in many-

core architecture, as communication between the central controller and cores will increase

exponentially with the number of cores [25]. Such overhead will eventually affect the speed of

data communication among user programs and also consume more power on the interconnect

network. Finally, as the size and the complexity of the many-core system increase the

communication latency between the central controller and the cores increases, this leads to a

delayed response and sub-optimal control.

In this chapter we present a framework of distributed thermal management where

balanced thermal profile can be achieved by proactive thermal throttling as well as thermal-

aware task migrations among neighboring cores. The framework has a low cost agent residing in

each processing element (PE). The agent observes the workload and temperature of the PE while

50

exchanging tasks with its nearest neighbors through negotiation and communication. The goal of

the proposed task migration is to match the PE’s heat removal capability to its workload (i.e. the

average power consumption) and at the same time create a good mix of high power (i.e. “hot”)

tasks and low power (i.e. “cool”) tasks running on it. As each agent monitors only the local PE

and communicates with its nearest neighbors, the presented framework achieves much better

scalability than the centralized approach. We refer to the presented technique as distributed

thermal balancing migration (DTB-M) as it aims at balancing the workload and temperature of

the processors simultaneously.

A steady state temperature based migration (SSTM) scheme as well as a temperature

prediction based migration (TPM) scheme are presented in this chapter. The first migration

scheme considers the long term thermal behavior of tasks, and distributes tasks to PEs based on

their different heat removal capabilities. The second migration scheme predicts the thermal

impact of different workload combinations and adjusts the task allocation in a neighborhood so

that all the PEs get a good mixture of hot tasks and cool tasks. The two migration schemes are

complementary to each other with the first considers long term average thermal effect and the

second considers short term temporal thermal variations. Both SSTM and TPM methods are

proactive migration schemes. Together they provide progressive improvement that reduces

thermal gradients and prevents thermal throttling events.

As part of the thermal management agent, a neural network based temperature predictor

is also presented in this chapter. It predicts the future peak temperature based on the workload

statistics of the local PE and some preliminary information from the neighboring PEs.

Comparing to the temperature predictors proposed in previous works [20][63], our neural

network predictor has several advantages. First of all, it only has to be trained once and after that

51

the recall process has very low computation complexity. Secondly, because it takes the workload

information as one of the input parameters, it can give accurate prediction right after task

migration. This is the major difference between our prediction model and the previous prediction

models ([20] and [63]) which need an online adaptation phase when workload changes. Finally,

our model can be used to predict the temperature impact of a migration before the migration

physically takes place, as long as the power consumption of the task to be migrated in or out is

known. Therefore, the predictor is used not only to determine when to trigger a proactive task

migration but also to evaluate whether a migration is beneficial.

The following summarizes the key contributions of the DTB-M thermal management

framework.

(1) No centralized controller is required in this framework. The distributed thermal

management agent communicates and exchanges tasks only with its nearest

neighbors. Therefore, the communication cost and migration overhead for each

core does not increase as the number of PEs on the chip increases.

(2) Comparing to the existing temperature prediction models ([20][63]), the neural

network based peak temperature predictor works more robustly especially during

the time when the workload changes, which usually happens after task migration.

Comparing to the existing proactive thermal-aware task migration, the presented

migration policy results in lower peak temperature and reduces the number of thermal throttling

events. Experimental results show that, in average, the DTB-M reduces the occurrence of

hotspots by 29.8% at 0.98% performance overhead compared to the Proactive Thermal

52

Balancing (PTB) algorithm proposed in [20]. Furthermore, the DTB-M also has much lower

migration overhead due to its distributed nature.

Comparing to the work in [26], this work provides the following two major extensions.

The first major extension of the chapter is a thorough study of the performance of neural

network model. The investigation covers three areas. (1) We varied the size (number of neurons)

of the neural network model and compared their prediction accuracies. The results show that

fairly good prediction accuracy could be achieved with very small size neural network. (2) We

also examined the impact of input feature set selection on the prediction accuracy. The above

analysis leads to an improved neural network model with better accuracy and computation

complexity tradeoff than the one presented in our previous work [26]. (3) We compared our

neural network model with an improved auto-regression moving average (ARMA) prediction

model proposed in [20]. The improvement is added in order to have a fair comparison as the

original ARMA model does not consider as many input information as we do in the neural

network model, and this impairs the accuracy. We test the accuracies of these two models not

only on systems with stable workload but also on systems with dynamic workload where tasks

start, complete and migrate from time to time.

The second major extension of the chapter is the enriched experimental results section.

We investigated the impact of different prediction models on the efficiency of the presented

migration policy. We also evaluated the performance of the SSTM and TPM policies separately

in order to assess their individual contributions to the thermal management. The results show that

the SSTM policy gives more hotspot reduction and leads to better system performance; therefore

it should be assigned with higher priority during the runtime. However, using TPM following

53

SSTM can give us extra reduction in hotspots and improvements in system performance. We

further demonstrate the effectiveness of using distributed control by applying the same migration

policy in a global manner. The results show that although in average the global policy has about

13% less hotspot than the distributed policy, its migration overhead is 58% higher. Finally, we

compared our migration policy with the PTB policy proposed in [20].

The rest of the chapter is organized as follows: Section 4.1 reviews the previous work.

Section 4.2 gives the semantics of the underlying many-core system and the application model.

We give an overview of our thermal management policy in Section 4.3, while the detailed

prediction model and migration schemes are presented in Section 4.4 and 4.5 respectively.

Experimental results are reported in Section 4.6. Finally, we conclude this chapter in Section 4.7.

4.1 Related Work

In a many-core system, the heat dissipation capability differs from processor to processor.

In [37] an algorithm is proposed to map and schedule tasks based on the thermal conductivity of

different processors. In [52][42], the authors proposed a task allocation and frequency

assignment algorithm which use exhaustive search to find a location and a voltage/frequency

setting for incoming tasks to achieve energy saving and balanced temperature. The author in [42]

proposed a clock gating and thread migration based method which maximizes system

performance and minimize the number of migrations while maintaining the temperature under a

desired constraint and guaranteeing fairness between threads. The throughput of an MPSoC

system under a maximum temperature constraint has been studied in [50], and they derived an

approximate analytic expression of system throughput depend on several parameters of interest.

54

Thermal management of on-chip interconnect network is addressed in [51]. The authors

first proposed an architecture thermal model for on-chip networks. Based on this model, they

further proposed ThermalHerd, a framework which uses distributed thermal throttling and

thermal aware routing to tackle thermal emergencies.

Proactive thermal management based on runtime task migration has been proposed in

references [20] and [63]. Both of them predict the future temperature as a projection of the

history temperature trace. Although these predictive models are very accurate in most

circumstances, they have some limitations. First of all, both models have to be updated and

adjusted at runtime. This could introduce adaption overhead. Secondly, both models predict the

future temperature solely from the temperature history. For a system with frequent task

migrations, history trace does not reflect future temperature because the workload changes

dramatically. The predictor cannot give accurate prediction until it has adapted to the new

workload which may take a long time.

Unlike the prediction model proposed in [20] and [63], our neural network based

prediction model can overcome the limitations mentioned previously. Our model does not rely

on the history temperature. Instead it reveals the relation between temperature and workload. It is

trained offline; and does not need an online adaption phase. As the model is trained separately

for each core on the chip, it inherently takes into account the core location and heat dissipation

ability.

4.2 System Infrastructure

A tile-based network-on-chip (NoC) architecture [22] is targeted here. Each tile is a

processor with dedicated memory and an embedded router. It will also be referred to as core or

55

PE in this chapter. All the processors and routers are connected by an on-chip network where

information is communicated via packet transmission. We refer to the cores that can reach to

each other via one-hop communication as the nearest neighbors. The presented DTB-M

algorithm moves tasks among nearest neighbors in order to reduce overhead and minimize the

impact on the communication bandwidth.

In an NoC, the latency and energy for transferring a data packet from one PE to another is

proportional to the number of hops along the path [29][41]. If we consider the congestions, this

relation could be super linear due to the buffering overhead at each router. Limiting the

communication to nearest neighbors cuts the communication cost (including both latency and

energy) by reducing the communication distances and eliminating congestions.

We assume an existence of temperature sensor on each core. A temperature sensor can be

a simple diode with reasonably fast and accurate response [24].

We assume that a dedicated OS layer is running on each core that provides functions for

scheduling, resource management as well as communication with other cores. This is a trend

pointed out by some literatures in OS research for many-core and NoC (Network-on-Chip)

systems [43][47]. Examples of such system are Intel’s single-chip cloud computing (SCC)

platform [28] and RAMP (Research Accelater for Multiple Processors) [62].

The presented DTB-M algorithm is implemented as part of the OS based resource

management program which performs thermal-aware task migration. We assume that each core

is a preemptive time-sharing/multitasking system. We focus on batch processing mode, where

pending processes/tasks are enqueued and scheduled by the agent. Each task occupies an equal

slice of operating time. Between two execution slices is the scheduling interval in which the

56

agent performs the presented DTB-M algorithm and the OS switches from one task to another.

The scheduling intervals of different cores do not have to be synchronized. Because the context

switch overhead is very small compare to the execution interval (e.g. in Linux), and our

algorithm has very low overhead, we assume that the duration of the scheduling interval is

negligible comparing to that of the execution interval.

In this work, we do not consider cores that support for simultaneous multithreading (SMT)

because it is anticipated ([13] and [30]) that future many-core platform is composed of large

number of weaker and smaller cores with less transistors and power consumption, therefore, they

are more likely to be single-threaded cores. However, with some modification in the temperature

prediction models, the same DTB-M algorithm could be applied to systems with SMT cores.

4.3 Distributed Thermal Management Policy

In this section we present the details of the distributed proactive thermal balancing

migration (DTB-M) policy. TABLE 4.1 summarizes the notations that will be used in this

chapter.

TABLE 4.1 List of symbols and their definitions

Symbol Definition

LTi The list of tasks running on core i

|LTi| The number of tasks running on core i

i, A task in LTi

Pi The power of i,

Ti Current temperature of core i

Ni The set of nearest neighbors of core i

Tm Temperature threshold to trigger the DTB-M algorithm

Tdiff Threshold to trigger thermal balancing

ntdiff Threshold to trigger workload balancing

tslice Execution interval

57

As we mentioned before, each PEi is a preemptive system and has a set of tasks LTi. Each

task occupies an equal slice of execution time tslice. Between two execution intervals is the

scheduling interval. Our DTB-M policy is performed in scheduling interval. The PE also

switches from one task to the next task at the scheduling interval. It is assumed that each task in

LTi will be running for a relatively long period of time and its power consumption has been

profiled or can be estimated. For example, it is reported in [15] that more than 95% accuracy can

be achieved in power estimation using information provided by performance counters that are

available in many modern processors. In the rest of the chapter, we refer to the power

consumptions of all tasks in LTi as the “workload” of PEi and we refer to the different

combinations of tasks in the LTi as different “workload patterns” of PEi. Both information can

easily be observed by OS.

Figure 4.1 Master-Slave execution protocol

M
aste

r protocol

 Ti > Tm? Tpred > Tm?

Tneigh < Ti – Tdiff?

DTB Master Mode DTB Slave Mode

Broadcast Requests Receive Requests

Receive Responses Select Requests and Send Response

Migrate Tasks

Reschedule Tasks

Resume Execution

S
lave

 protocol

Yes No

58

The DTB-M policy basically can be divided into 3 phases: temperature checking and

prediction, information exchange and task migration. Figure 4.1 shows the flowchart of the

DTB-M execution in the ith core. A DTB-M agent could be in either master mode or slave mode.

A DTB-M master initiates a task migration request while the DTB-M slave responds to a task

migration request. Please note the master is equivalent to the sender and the slave is equivalent to

the receiver in other multi-agent context. A DTB-M agent is in slave mode by default. It will

enter the master mode if and only if any of the following three scenarios are true:

(1) The local temperature Ti reaches a threshold Tm in the last execution interval. In this

case, hotspots are generated, and the DTB-M agent will first throttle the processor to let it cool

down before continue to execute.

(2) The predicted future peak temperature exceeds the threshold Tm and the current peak

temperature is larger than Tm-δ where δ is a temperature margin. Note that we do not take actions

unless the difference between the current peak temperature and the threshold is less than the

margin.

(3) The temperature difference between the local core and the neighbor core exceeds the

thermal balancing threshold Tdiff.

Any of the above three scenarios could cause adverse effects. The first two scenarios

indicate (potential) hotspots generation while the last scenario indicates high thermal gradients.

Therefore, a task migration request will be initiated.

A DTB-M master sends task migration requests to its nearest neighbors. Because the

scheduling intervals in all processors are not synchronized, the requests are not likely to be

checked and responded by the slave agents right away. On the other hand, because all cores

59

adopt the same execution and scheduling interval, it is guaranteed that all slave agents will

respond within one tslice after the requests are issued.

The asynchronous communication between master and slave agents is explained by the

example shown in Figure 4.2. It shows a complete execution cycle of DTB-M policy starting

from condition check phase to task migration. When an agent first enters its scheduling interval

and becomes a master, it broadcasts a migration request in its neighborhood and then continues

task execution.

Figure 4.2 Master-slave communication

After receiving the response, the master decides which tasks to migrate during its next

scheduling interval and sends the migration command to slave. The tasks are migrated from

master to slave at this time. After sending a response, the slave ignores any possible incoming

requests from other master agents until it receives the migration command from the original

master. Tasks can be migrated from slave to master at this time, which marks the end of DTB-M

policy cycle.

To make migration decisions, a master DTB agent considers both load balancing as well

as thermal balancing. First, a load balancing process is triggered which migrates tasks one way to

60

balance the workload between the master and the slave if the workload difference between them

exceeds the threshold ntdiff, which is measured by | | || . The detailed workload

balancing policy is presented in section 4.5.4. If there is no workload imbalance, then the thermal

balancing process is triggered.

The main idea of the DTB-M policy is to exchange tasks between neighboring PEs, so

that each PE can get a set of tasks that produces fewer hotspots. The DTB-M policy is composed

of two techniques. Both of the techniques have quadratic complexities to the number of tasks in

the local task queue. The first technique is a Steady State Temperature based Migration policy

(SSTM). It distributes tasks to cores based on their different heat dissipation abilities. The second

technique is a Temperature Prediction based Migration policy (TPM), which relies on predicted

peak temperatures of different task combinations to make migration decisions. It ensures that

each core can get a good mixture of high power and low power tasks without having thermal

emergency. The two techniques are complementary to each other with the SSTM focuses on long

term average thermal effect and the TPM focuses on short term temporal variations. The main

computation of the SSTM is performed by the masters while the main computation of the TPM is

performed by the slaves.

The DTB-M agent is not a separate task but resides in the kernel code. For example, it

can be integrated with the Linux task scheduler, which will be called each time when a task

finishes its current time slice and gives up the CPU.

4.4 Temperature Prediction Model

Instead of projecting the future temperature based on a sequence of history temperatures,

we model the peak temperature of a processor as a function of a set of features collected from

61

local processor and its neighboring processors within a history window, and approximate this

function using a neural network. Our feature set includes not only the temperature information

but also the workload information. Because the relation between temperature and workload is

relatively stable when the layout and packaging style of the chip is given, the neural network

needs to be trained only once.

The rest of the section is organized as follows. Subsection 4.4.1 presents our neural

network prediction model. Subsection 4.4.2 extends the ARMA prediction model proposed in

[20]. And Subsection 4.4.3 compares the performance of the two prediction models.

4.4.1 Neural Network Based Temperature Prediction Model

The peak temperature predictor will be used in the temperature checking/prediction phase

to determine if a master mode DTB-M will be triggered and also in the information exchange

phase to find out if a TPM migration is beneficial or not. Therefore, it should not only give

accurate peak temperature estimation when the PE continues the current workload pattern, but

also project the temperature change before dramatic workload changes.

Temperature prediction in a timesharing/multitasking system is challenging. For

example, Linux system makes context switch every tens of milliseconds. Different tasks have

different power consumptions and therefore display different thermal characteristics. When

running the combination of these tasks, the temperature of a PE would oscillate rapidly, making

accurate temperature prediction difficult. Fortunately, we observed that the local peak

temperature for a given set of tasks changes much slower compared to the instantaneous

temperature. For example, Figure 4.3 shows a 12 seconds long temperature trace of a processor

time-multiplexed by a set of tasks randomly picked from SPEC 2000 benchmarks. We sampled

62

the trace at a time step of 50ms. We can see that, for a given workload pattern (i.e. a given

combination of tasks in the ready queue), the instantaneous temperature variation of the PE can

be as large as 8
o
C and it changes rapidly while the peak temperature changes much slower and

the variation is less than 2
o
C. Similar observation has been reported in reference [16]. Our

second observation is that the peak temperature strongly depends on the task combinations

running on the PE. As shown in Figure 4.3, there are five different workload patterns running on

the PE. The temperature curve exhibits different characteristics during each workload pattern and

the local peak temperature is changing considerably from one pattern to another. Because a high

peak temperature causes the thermal emergency, here we are interested in predicting the PE’s

peak temperature in the near future given the set of tasks (i.e. the workload pattern) on this

processor.

Figure 4.3 Example of instantaneous and peak temperature change

63

We adopt the neural network model for the peak temperature prediction. Neural Network

has been widely used in pattern recognition and data classification because of their remarkable

ability to extract patterns and detect trends through complex or imprecise data [9]. It is composed

of a number of interconnected processing elements (i.e. neurons) working together to solve a

specific problem. A neural network model can be trained through a standard learning process.

After the training process, the model can be used to provide projections on the new data of

interest.

The general architecture of a neural network model is shown in Figure 4.4. The model

may have several layers, and each layer implements the function where is a

transfer function, W is a weight matrix, b is a bias vector, and I and a are input and output

vectors. The sizes of W and b are m-by-s and m-by-1, where s is the dimension of the input

vector and m is the number of neurons in this layer. Consequently, the output vector a has the

dimension m-by-1. For a multi-layer neural network, the relation between the input of the model

and the output of the model can be characterized by equation (4.1), where fk is the transfer

function, Wk is the weight matrix and bk is the bias vector for the kth layer respectively, and p is

the input vector to the neural network.

Figure 4.4 Neural network structure

64

 (4.1)

The training of the neural network predictor is an offline procedure and needs to be done

only once. Therefore, here we only consider the complexity of the recall procedure, which is

used online to predict the peak temperature. The recall procedure has very low complexity,

which involves only ms+m multiplications and ms+2m+1 additions.

In this chapter, a two-layer neural network as shown in Figure 4.5 is applied for peak

temperature prediction. It has a hidden layer, and an output layer. There is only one neuron in the

output layer because the output has to be a scalar variable. The number of neurons in the hidden

layer should be selected to provide a good balance between the prediction accuracy and

computing complexity. Later in this section we will show that, one neuron in the hidden layer is

enough to provide good prediction accuracy. We use tansig and purelin functions as the transfer

functions for the hidden layer (f1) and the output layer (f2) respectively. They are defined as the

following two equations.

 (4.2)

 (4.3)

65

Figure 4.5 Neural network predictor architecture

A set of features relevant to the peak temperature prediction are selected as the inputs to

the neural network. They can be divided into 2 categories, i.e. features collected from local

processor and features collected from neighbor processors. The local feature consists of two

variables. They give the average power consumption and maximum power consumption of tasks

running on the local processor. For the ith core, they can be calculated as∑

, and

 respectively. The feature set for neighbor information consists of 3 variables for

each neighboring processor. They specify the recent highest temperatures in a history window,

the average power consumption and the maximum power consumption of each neighboring

processor. Overall there will be input variables to the neural network where n is the

number of neighboring processors of the current PE.

A neural network based peak temperature predictor is trained for each processor. The

training process uses the fast and memory efficient Levenberg-Marquardt algorithm [31]

provided by Matlab neural network toolbox. The training set is generated by running 600 groups

of randomly picked synthetic workload on our many-core simulator and recording the peak

66

temperature of each PE for different workloads. Each group of workload consists of 144

artificially generated software programs randomly distributed across the many-core system. Each

software program in the training workload has constant power consumption. Note that these

artificially generated software programs are used only for the training purpose. All our

experiments in the rest of the chapter are based on benchmarks randomly picked from SPEC

2000, Mediabench and MiBench. There is no overlapping between our testing set and training set.

More details on the testing programs are provided in Section 4.6. Because the neural network

model is trained for each core on the chip separately, these models are able to capture the core to

core process variations.

It is important to point out that the neural network model is based on an assumption that

the peak temperature of a core is a deterministic function of all the features aforementioned plus

some white noise. A training set that covers all possible feature settings will yield the best model.

Therefore, the longer training set gives better training quality. However, it also increases the

training time. The size of our training set (i.e. 600 vectors) is selected for a balanced training

time and quality.

In general, the accuracy of the prediction can be improved by adding more neurons in the

hidden layer. However, this will also increase the complexity of training and recall. Experiments

have been conducted to evaluate the sensitivity of the prediction accuracy to the size of the

neural network. TABLE 4.2 gives the relation between the size of the neural network and its

accuracy for the peak temperature prediction. The first row specifies the number of neurons in

the hidden layer while the second row gives the Mean Square Error (MSE) of the estimation.

When there is 1 neuron in the hidden layer, the MSE is 0.068. Further increasing the value of m

67

will not improve the accuracy significantly but introduce higher computation complexity.

Therefore we set m equal to 1 for all PEs.

TABLE 4.2 Prediction Accuracy vs. the Size of Neural Network

Order 1 2 3 4 5 7 10 15

MSE 0.068 0.225 0.040 0.038 0.090 0.044 0.045 0.048

Avg. err. -2e-05 -0.0020 -0.0017 -0.0013 0.0077 -0.0030 -0.0018 0.0010

Because the complexity of the neural network is proportional to the size of its input

vector, next, we investigate the effect of feature selections on the prediction accuracy in order to

find out the set of features that gives the best tradeoff between prediction accuracy and

computing complexity. We divide the input into 4 groups: (1) local average power, (2) local

maximum power, (3) neighbor temperature information, and (4) neighbor power information.

We carried out extensive random simulations of a 6-by-6 many-core processor to find out how

the feature selections can affect the peak temperature prediction. Details of the simulator are

provided in section 4.6.

Figure 4.6 Prediction error for neural networks based on different feature groups

0
2
4
6
8
10
12
14
16

0.01

0.1

1

10

3 4 1

1
,3

1
,2

3
,4

1
,3

,4

1
,2

,3

1
,4 2

2
,3

1
,2

,4

2
,4

2
,3

,4

1
,2

,3
,4

M
SE

Selected feature groups

Error

Input Size

68

Figure 4.6 gives the MSE and the input size of neural network models based on different

combinations of feature groups. It is not surprising that including all 4 feature groups can result

in the most accurate model and the smallest MSE, which is 0.041. If only self power and

neighbor temperature (i.e. feature groups 1, 2 and 3) are considered, the MSE is 0.433. Finally, if

the model only takes neighbor information (i.e. feature groups 3 or 4) as the input, the derived

model is most inaccurate and the MSE can be as high as 4.977. Therefore, in this work, we build

our neural network based on the entire four feature groups.

Unlike other prediction models [20] and [63], we do not invoke the prediction at every

time step. Instead, the predictor will be invoked when the core temperature exceeds the predicted

value or when the workload pattern in the PE changes. Note that the workload pattern is

determined by the set of tasks in the current ready queue. It will be changed if a task is

generated, completed or migrated. These events can be monitored by the OS. For a task with

several phases that have different power and thermal characteristics, we consider each phase a

single task. New predictions will be made whenever a phase change is detected. Techniques for

program phase change detection can be found in [17].

69

Figure 4.7 The temperature prediction of neural network model

As an example, Figure 4.7 shows the temperature trace of a PE and the predicted peak

temperature given by the neural network. The temperature trace is generated by running several

CPU benchmarks on our many-core simulator. During 12 seconds simulation time, tasks migrate,

start or complete randomly. The workload information at different time is denoted at the bottom

of the figure. While the blue line gives the trace of the real temperature, the green line gives the

predicted peak temperature. As we can see, the predictor is invoked every time the workload

pattern changes and it is able to track the peak temperature accurately.

4.4.2 Generalized ARMA Prediction Model

In [20], Coskun et al. proposed to utilize the auto-regression moving average model to

predict a PE’s future temperature based on the previous temperature trace. The model is given by

equation (4.4), where is the temperature at time t, is the prediction error, and are the

coefficients. It consists of an auto-regressive (AR) part up to order p, which is on the left side of

the equation, and a moving average (MA) part up to order q, which is on the right side of the

70

equation. To utilize the ARMA model, we need to first identify the order of the model, and then

compute the coefficients using least square fitting, and finally check the residuals to ensure the

validity of the parameters.

 ∑

 ∑

 (4.4)

This model works very well when the temperature changes smoothly or there is a

repeated pattern in the temperature change. However, it has two major limitations. Firstly, in a

multitasking system where threads start, finish and migrate dynamically, the adaptation time for

the ARMA model is overwhelming. For example, in our experiment, we observed that the

adaptation can be more than 50% of the execution time. Second, as we mentioned earlier, we are

not only interested in predicting the future temperature when the current workload pattern

continues, but also like to predict the temperature for a new workload pattern that has not

physically been executed in order to assess the potential benefits of a task migration. This is not

achievable using the ARMA model. While the first limitation is a fundamental issue related to all

auto regression based predictors, the second limitation can be improved by including some

workload information in the original ARMA model.

In order to obtain a fair comparison between our neural network model and the existing

prediction model, we extend the ARMA model to include the workload information as the

exogenous inputs. The new model will be referred to as ARMAX [39] (i.e. auto-regressive

moving average with exogenous inputs.) It is described by equation (4.5), where is the

average power consumption of the task running at time t and is the coefficient. Because we

have already included the history temperature in the model, the input part could be reduced to

71

only one item, i.e. biui-1. Therefore, the next temperature of the PE depends on p history

temperature samples and the power consumption of the task it is currently running.

 ∑

 ∑

 ∑

 (4.5)

Figure 4.8 The temperature prediction of ARMAX model

Figure 4.8 shows the temperature trace of a PE in a 6x6 many-core system obtained from

Hotspot simulation and the temperature prediction made by the ARMAX model. The PE is time

multiplexed by 4 tasks. Their execution order is fixed; therefore the temperature trace shows a

rough periodic pattern. Similar to reference [20] we set p and q to 8 and 0 respectively. The trace

is 12s long; we sampled 2 data points for each time slice and collected 240 temperature sample

data. The results show that the Final Prediction Error (FPE) [20] is 0.0265.

4.4.3 Comparing the Neural Network Predictor with ARMA Predictor

72

We compare our neural network based temperature predictor with ARMAX based

predictor. Figure 4.9 shows a sequence of simulated temperature trace and the predicted

temperature from the neural network and ARMAX models. The PE is initially running 4 tasks,

after 3.25 seconds the PE exchanges its high power task with a low power task running on its

nearest neighbor. As we can see, the neural network predictor adjusts its prediction to the correct

level immediately after the migration while the ARMAX model takes more than 0.2 seconds to

adapt to the right value. We refer this adaptation time as black-out period as the prediction

results are not usable during this period of time.

Figure 4.9 The adaption ability of ARMAX model and neural network model

We further compare the two models’ capabilities to estimate the potential thermal impact

before the migration. We simulate a 36-core system with 144 tasks randomly selected from real

benchmarks listed in TABLE 4.3. Approximately 200 migrations are randomly generated. Figure

4.10 shows the absolute prediction error of the neural network model and the ARMAX model.

73

As shown in the figure, the average prediction error of the neural network model is

0.67
o
C and the maximum prediction error is 2.5

o
C. The average prediction error of the ARMAX

is 1.2
o
C which is 79% higher than that of the neural network predictor while its maximum error

is 5.8
o
C, which is 132% higher than that of the neural network model. For 99.75% of time the

prediction error of the neural network is under 2
o
C, while for 20% of time the prediction error of

the ARMAX is above 2
o
C. The difference is mainly because the ARMAX model has to take

some time to adapt to the new workload after migration, and cannot make accurate prediction

immediately.

Figure 4.10 Comparison of peak temperature prediction error

Please note that the testing programs used in our experiments are different from the

training programs. Our training set is artificially-generated programs with constant power

consumptions. And the testing set consists of real benchmarks. However, the training set and

testing set do share some similarity in those general features used for temperature prediction. For

example, the ranges of power consumptions of the applications in the training and testing sets are

very close. As long as two workloads have the same feature, their peak temperatures will be

close to each other. Because the selected feature set is not extremely large, the 600 training

0.0%

4.0%

8.0%

12.0%

16.0%

20.0%

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.6

1
.8 2

2
.2

2
.4

2
.6

2
.8 3

3
.2

3
.4

3
.6

3
.8 4

4
.2

4
.4

4
.6

4
.8 5

5
.2

5
.4

5
.6

5
.8 6

P
er

ce
n

ta
ge

 o
f

p
re

d
ic

ti
o

n
s

Temperature prediction error

ARMAX

Neural Network

74

vectors give reasonable coverage of possible scenarios. However, a larger training set can lead to

more accurate model.

4.5 Distributed Task Migration Policy

In this section, we present our distributed task migration policy. Section 4.5.1 discusses

the steady state temperature based migration (SSTM) policy. Section 4.5.2 discusses the

temperature prediction based migration (TPM) policy. Both of the SSTM and TPM have O(n
2
)

time complexities, where n is the number of tasks in local ready queue of a processor. Section 0

shows how to combine the two migration algorithms together. Finally, section 4.5.4 presents the

workload balancing algorithm.

4.5.1 Steady State Temperature Based Task Migration (SSTM)

Due to variant heat dissipation abilities, a task running on different processors have

different steady state temperatures. The SSTM policy balances high power tasks and low power

tasks among neighbor PEs to lower the average steady state temperature of the whole chip. It

considers the lateral heat transfer between neighbor PEs and their different heat dissipation

capabilities.

Before introducing the SSTM policy, we first give some definitions. We use n to denote

the number of all thermal nodes in the system, including those in the heat sink layer and heat

spread layer, and N to denote the number of processors in the system. The relation between n and

N is determined by the equation n = 2×N+14 [50]. We use TSSi and to denote the steady state

temperature and average power consumption of node i. Pi is 0 if node i belongs to the heat sink

layer or heat spread layer. The vectors of TSSi and Pi, where 1≤i≤n, are denoted as TSS and P.

When the system reaches the steady state, for each thermal node, its temperature is a linear

75

function of power consumptions P1, P2, …, Pn. The relation can be represented by the following

equation

 (4.6)

where [] is the inverse of thermal conductance matrix G. We simplify equation

(4.6) by keeping only the thermal nodes related to the PEs:

 (

) (

)(

) (

) (4.7)

where N is the number of processors, and ∑

 is a set of constants,

because the power () of those nodes not related with processors do not change. The coefficients

gij and Di 1≤i, j≤N can be obtained by offline analysis. Equation (4.7) shows that the steady state

temperature of each PE is a linear function of average power consumptions on other PEs and

increasing or reducing the power consumption of one PE will have an impact on the steady state

temperature of all other PEs.

Assume that PEi and PEj exchange some tasks, and their average power consumptions

altered by and respectively. Using equation (4.7), the total steady state temperature

change of all processors after task migration can be calculated as:

 ∑

 (4.8)

where Gi and Gj are the sums of the ith and jth column of the thermal conductance matrix,

i.e. ∑

 ∑

 . Because the thermal conductance matrix of a chip does not

76

change once the hardware is given, the values of Gi and Gj are constants and can be pre-

characterized. Overall, it takes only 2 multiplications and 1 addition to calculate ∑

 . As

we mentioned earlier, the goal of the SSTM policy is to reduce the average steady state

temperature of the many-core system. Therefore it exchanges task pairs to keep ∑

decreasing, i.e. ∑

 .

The main computation of SSTM is done on the master PE. Algorithm 1 gives the SSTM

policy. A master DTB-M agent in PEi first forms all task pairs ()

with

. Then for each task pair, equation (4.8) is evaluated. The task pair which gives the

minimum is selected and tasks are swapped. The process continues until ∑

 for

all task pairs. In this way, the master can maintain fairness of workload and reduce its own

operating temperature as well as the system’s average steady state temperature.

Algorithm 1 SSTM

1. for each

2. for each

3.

4. do {

5. if () swap()

6. } while ()

4.5.2 Temperature Prediction Based Migration

The SSTM reduces the average steady state temperature of the whole chip. Although very

effective, it has several limitations. First, it is possible that the SSTM moves all high power tasks

77

in a neighborhood to one core whose G value is the minimum. Furthermore, if the G value of a

core is less than the G value of all its neighbors, then using SSTM policy the core will not be

able to exchange its high power task with a low power task in its neighborhood when it is

overheated because this will increase the average steady state temperature of the chip.

Algorithm 2 TPM (Slave Process)

1. Input: LTi (list of tasks on local PE) and LTj (list of tasks on master PE)

2. Sort LTi based on the ascending order of task power consumption

3. Sort LTj based on the descending order of task power consumption

4. For each task τiLTi

5. For each task τjLTj

6. If (

)

7. Tp = Predicted local peak temperature after task exchange;

8. If (Tp < Tm) return () to the master and exit;

9. Return NULL to the master and exit;

To escape from the above mentioned situation, we further present the Temperature

Prediction Based Migration (TPM). The TPM policy guides high temperature core to exchange

tasks with its cooler neighbors as long as those task exchanges will not cause any thermal

emergency in both cores. This is achieved by using the prediction model introduced in section

4.4.

Algorithm 2 shows the main computation of the TPM policy which is performed by the

slave DTB-M agent. The algorithm scans the list of local tasks (i.e. LTi) based on the ascending

order of task power consumption and the list of tasks on the master PE (i.e. LTj) based on the

78

descending order of task power consumption. For each task pair τiLTi and τjLTj, if the power

consumption of the local task is lower than that of the remote task, the slave DTB-M agent

employs the neural network based predictor to determine whether the local peak temperature will

exceed the thermal threshold Tm after and are exchanged. The algorithm stops when first

such task pair is found. The task pair is returned to the master DTB-M agent as an offer for

potential task migration. Because of the way that the LTi and LTj are sorted, this offer specifies

the highest power task that can be taken from the master PE and the lowest power task that will

be given to the master PE without generating any thermal problem.

On the master side, algorithm 2.1 is executed. Upon receiving all offers from its

neighbors, the master agent selects the offer that enables it to move out the task with the highest

power consumption. If there is a tie, then it further selects the offer that enables it to move in the

task with the lowest power.

Algorithm 2 TPM (Master Process)

1. Input: S = {(i, j) | (i, j) are offers from neighbors}

2. Select the offer (i, j) S whose
 is the maximum

3. If there is a tie, select the offer (i, j) S whose
 is the minimum

4.5.3 The Combined Migration Policy

As discussed in the previous sections, the SSTM algorithm reduces the overall chip

temperature by considering the thermal conductance of the chip. So that in a neighborhood, high

power tasks can quickly be moved to the PEs that have better heat dissipation abilities, while low

power tasks can be moved to the PEs that are more easily to heat up. On the other hand, the TPM

79

algorithm prevents a core with stronger heat dissipation in a neighborhood from being

overheated by proactively exchanging its high power tasks with low power tasks in the

neighborhood.

The presented DTB-M policy is a combination of both SSTM and TPM. After the master

DTB-M agent triggers a migration request, it waits for the response from the slaves. In this

request, the master sends out the list of its local tasks. Once the slave receives the request, it

performs the TPM algorithm (slave process). In the reply message, it sends TPM offer together

with the list of local tasks to the master. The master then performs SSTM to search for task pairs

that, once exchanged, could bring down the average chip temperature. If such task pair is found,

then the master will issue a task migration command. Otherwise it performs the TPM algorithm

(master process).

We employ a simple technique to schedule the execution of tasks. All tasks in a PE’s

ready queue are sorted based on their average power consumption. The thermal aware scheduler

will execute hot and cool tasks alternatively starting from the coolest and the hottest tasks, then

the second coolest tasks and the second hottest, until all tasks have been executed once. It will

then start a new round of execution again. This simple yet effective scheduling technique reduces

the core temperature by interleaving hot and cool tasks.

Similar as many other research works in thermal management of multi-core systems [24],

we assume that the peak temperature of each core can be captured by one sensor located in the

hottest module, e.g. the register file. However, even if multiple hotspots exist in a core, the

presented DTB-M algorithm can still be applied as long as we are able to predict the peak

temperature of all the hotspots, and then the same decision process will be carried on based on

80

the highest temperature. In order to predict multiple temperature readings, we can add more

neurons in the output layer of the neural network predictor so that it generates multiple outputs.

The feature set should also be modified to include the information such as the switching

activities of those hot modules. As the model becomes more complicated, it also needs larger

training set to be properly trained.

Finally, the proposed DTB-M is a runtime thermal management technique. It can be used

together with any design time thermal optimization techniques such as hot-core and cold-cache

interleaving [43].

4.5.4 Workload Balancing Policy

Workload balancing is triggered when a master PEi finds the workload difference

between itself and a slave PEj exceeds the threshold ntdiff, that is | | || . The goal

of workload balancing is to maintain approximately equal number of tasks on each core and

therefore improve worst case latency and response time.

The master will pick the slave which gives the maximum workload difference. Then,

tasks are migrated one by one from the PE with more tasks to the PE with fewer tasks until their

difference is less than or equal to one. In every migration, equation (4.8) is evaluated and the task

which minimizes the ∑

 will be selected. It can be proved that if and

| |, the migration from PEi to PEj will start from the task with the highest power. On the other

hand, if and | |, the migration from PEj to PEi will start from the task with the

lowest power.

4.6 Experimental Results

81

We implemented a power trace driven behavioral simulator of a many-core system using

C++. Hotspot [54] is integrated to our simulator to simulate the system thermal behavior.

Although the model is scalable for any number of cores, a 36-core system with 6x6 grids is

chosen for our experiments due to the limitation of simulation time. Each core has a size of 4mm

x 4mm with silicon layer of 24mm x 24mm. We set the thermal sampling interval of Hotspot to

30 , in order to speed up the simulation without significantly reducing the accuracy.

We evaluated the presented thermal management policy using both static workload and

dynamic workload. The system performance is characterized by the number of completed jobs

within a given period of time. We assume that the temperature threshold Tm to trigger thermal

throttling is 80
o
C and during thermal throttling, the CPU stalls its current execution. In all

experiments, unless otherwise specified, the parameters of the DTB-M policy are set as the

following: ntdiff = 2, tslice = 100ms, Tdiff = 10
o
C, =0.5

o
C.

The following criteria are considered to measure the quality of a thermal management

policy:

 Hotspot: The time spent above a temperature threshold which is 80
o
C in our case.

 FT: The finish time of the last task in the system. This criterion measures the

performance in a system with static workload.

 NT: The number of tasks completed within a given period of time. This criterion

measures the performance in a system with dynamic workload.

 Mig: Total number of migrations occurred during execution. This criterion

measures the migration overhead.

82

We carried out experiments using power sequences collected from real applications. We

used 9 different CPU benchmarks comprising of 3 SPEC 2000 benchmarks (bzip2, applu and

mesa), 4 Mediabench applications (mpeg2enc, mpeg2dec, jpegdec, jpegenc) and 2 telecom

applications (crc32 and fft) from MiBench benchmark suite. Because each invocation of a

benchmark program runs only on a single core, its power consumption can be obtained using

conventional single processor power estimation tool. We collected their power traces by using

the Wattch power analysis tool [14]. The average power consumptions and steady state

temperatures of each task are summarized in TABLE 4.3. The workloads of the following

experiments are random combinations of multiple copies of these 9 benchmarks. All experiment

results reported below are the average of 10 runs.

TABLE 4.3 Average Power and Steady State Temperature of CPU Benchmarks

No. 1 2 3 4 5 6 7 8 9

Benchmarks crc32 mp2 enc mp2 dec fft applu mesa bzip2 jpeg dec jpeg enc

Avg. Power

(mW)
24.4 19.4 19 18.5 17.4 17.3 13.3 10.7 10.4

Steady

Temp. (
o
C)

99.42 84.17 82.95 81.42 78.07 77.76 65.56 57.63 56.72

4.6.1 Workloads Generation

We used both static and dynamic workload in our experiments to evaluate the

performance of the DTB-M algorithm. For static workload, each task set is a randomly mixture

of 144 CPU benchmarks which are initially distributed evenly across all the 36 PEs. Each PE has

4 tasks. The number of each benchmark in the task set follows a specific discrete probability

83

distribution of its average power consumption. Figure 4.11 shows the 5 different distributions

tested in the experiment.

Figure 4.11 Different task set generation probability distribution

Uniform distribution evenly generates tasks with different average power consumptions.

Triangular (cool) distribution generates more low power tasks than high power tasks, whereas

triangular (hot) distribution generates more high power tasks. Normal distribution generates a set

0

5

10

15

20

1 2 3 4 5 6 7 8 9

Ta
sk

 #

Uniform

0

5

10

15

20

1 2 3 4 5 6 7 8 9

Ta
sk

 #

Cool Tri.

0

5

10

15

20

1 2 3 4 5 6 7 8 9

Ta
sk

 #

Hot Tri.

0

5

10

15

20

1 2 3 4 5 6 7 8 9

Ta
sk

 #

Norm.

0

5

10

15

20

1 2 3 4 5 6 7 8 9

Ta
sk

 #

Inv. Norm.

84

of tasks whose power consumption is mostly clustered around the medium power; while inverse

normal distribution generates more high power tasks and low power tasks than the medium

power tasks.

Unlike the static workload, where all tasks are ready from the beginning of the simulation

and all of them have the same execution time, with dynamic workload, tasks can be randomly

generated on each PE and their execution time follows random distribution. The initial task set is

a set of uniformly distributed CPU benchmarks generated as described above. In every execution

interval, a new task is generated on a PE with 0.02 probabilities.

4.6.2 The Comparison between Neural Network and ARMAX Predictor under

Static Workload

In the first set of experiments, we investigate the impact of the temperature predictor on

the performance of DTB-M policy under static workload. TABLE 4.4 shows the comparison

between the performances of the DTB-M with the neural network model and the ARMAX model

for different task distributions.

We can see that with the neural network predictor, the DTB-M is able to reduce the

hotspot by 33.5% on average comparing to the ARMAX model. This is because the neural

network predictor makes more accurate prediction for the thermal impact of the workload pattern

that will be generated after task migration, and helps both the master and slave agents to make

thermal safe decisions.

TABLE 4.4 Comparison between ARMAX and Neural Network Model

Workload

Distribution
Predictor Uni. Tri. (cool) Tri. (hot) Norm. Inv. Norm.

85

Hotspot

NN 4986.1 940.2 14223.7 5535.7 4713.1

ARMAX 8106.4 1722.5 16569 7886.1 7808.7

%Impr. 38.49 45.42 14.15 29.80 39.64

FT

NN 38140.2 36985.4 40450 38369.7 38053.1

ARMAX 38392.9 37779 40559.2 38514.6 38453.8

%Impr. 0.66 2.10 0.27 0.38 1.04

of Mig.

NN 453.2 242.6 466 406.5 402

ARMAX 519 556.8 402.8 501 525.7

%Impr. 12.68 56.43 -15.69 18.86 23.53

The prediction accuracy also affects the number of migrations. Because using the neural

network predictor maintains a more balanced thermal profile and reduces hotspots, the migration

request is triggered less often than the system using the ARMAX predictor. On average, the

neural network predictor could reduce migration overhead by 19.16%. Note that the ARMAX

has less number of migrations in hot triangular distributed workload compared to other four

cases. This is because the ARMAX model adapts to the high power tasks and high temperature,

and tends to give conservative temperature prediction.

Also note that although the neural network predictor produces much less hotspot, and

invokes thermal throttling less frequently, it does not improve the finish time of the system a lot.

This is due to two reasons. First, the thermal throttling time is much shorter compared to the task

execution time. Second, the finish time is determined by the last task completed by the PE which

86

invokes the most thermal throttling. The worst case numbers of thermal throttling in a system

using the neural network predictor and the ARMAX predictor are about the same.

In this experiment, we did not show the comparisons of thermal gradients and thermal

cycles. Because both systems have high CPU utilizations and both of them have low thermal

gradients and thermal cycles.

4.6.3 The Comparison between Dynamic Workload

In the second set of experiments, we compare the impact of different temperature

predictors on the performance of the DTB-M policy under dynamic workload. The execution

time of the task is uniformly distributed between 15 to 30 execution intervals, which is

equivalent to 1.5 to 3 seconds. We simulate both systems for equal length of period and compare

their performance.

TABLE 4.5 Performance with Dynamic Workloads

Predictor Hotspot NT # of Mig.

ARMAX 16025.5 196.5 1048.5

Neural Network 11230.3 202.9 806.5

Improvement (%) 29.92 3.26 23.08

As shown in TABLE 4.5, compared to the DTB-M with ARMAX predictor, the DTB-M

with neural network predictor improves the system performance by 3.26%, reduces the hotspots

by 29.92% with 23.08% less migration overhead. Note that under the dynamic workload, we can

see more system performance improvement as the result of using a better temperature predictor

than that with the static workload. This is because the number of tasks is not fixed in dynamic

87

workload. The less thermal throttling occurs, the more time could be used for tasks and hence

more tasks are completed. While with static workload, the performance is determined by the PE

who spends the longest time in thermal throttling.

4.6.4 The Comparison between SSTM and TPM Policies

In the third set of experiments, we evaluate the individual performance of the SSTM and

TPM policy.

Figure 4.12 Comparison of hotspots

Figure 4.13 Comparison of performance

0

4000

8000

12000

16000

20000

Uniform Cool tri. Hot tri. Norm. Inv. Norm.

o

f
H

o
ts

p
o

t

Both

SSTM

TPM

32000

36000

40000

44000

48000

Uniform Cool tri. Hot tri. Norm. Inv. Norm.

P
er

fo
rm

an
ce

 (
Fi

n
is

h

Ti
m

e)

Both

SSTM

TPM

88

Figure 4.14 Comparison of number of migrations

Figure 4.12 through Figure 4.14 shows the hotspot, performance and migration overhead

of the combined migration scheme (i.e. DTB-M) as well as those for the individual SSTM and

TPM migrations. As we could expect, the migration overhead for using the combined scheme is

larger than employing any one of these two schemes individually. However, it is less than the

sum of those individual schemes. This is because the migration decisions made by SSTM and

TPM are not mutually exclusive.

Figure 4.12 shows that the DTB-M reduces hotspots by 9.12% over SSTM and 39.06%

over TPM on average. We can see that the SSTM is more effective in hotspot reduction

compared to the TPM. This is because the SSTM reduces hotspots by mapping tasks according

to the PE’s heat dissipation ability while TPM reduces hotspots by interleaving high power tasks

with low power tasks on the same PE. The PE’s own heat dissipation ability plays a more

important role in preventing the high temperature than interleaving low power tasks and high

power tasks on the same PE. Because the SSTM is more effective in hotspot reduction than TPM,

in DTB-M, we give SSTM higher priority and perform it before the TPM.

4.6.5 The Comparison between Distributed Policy and Global Policy

0

100

200

300

400

500

Uniform Cool tri. Hot tri. Norm. Inv. Norm.

o

f
M

ig
ra

ti
o

n
s Both

SSTM

TPM

89

As we mentioned at the beginning of the chapter, distributed thermal management has

lower control and monitoring overhead than centralized thermal management. However, it also

has limitations such as low convergence speed, sub-optimal solutions, etc. In the fourth set of

experiments, we compare the DTB-M policy with a global version of the same migration scheme

to assess the significance of these limitations.

TABLE 4.6 Comparison between Global and Distributed Policy

Workload

Distribution
Policy Uniform Cool tri. Hot tri. Norm. Inv. Norm.

Hotspot

Distributed 4986.1 940.2 14223.7 5535.7 4713.1

Global 4343 783.5 13943.7 4737.4 4176.4

%Impr. 14.81% 20.00% 2.01% 16.85% 12.85%

FT

Distributed 38140.2 36985.4 40450 38369.7 38053.1

Global 37375.4 36501.7 38662.5 37534.7 37334.3

%Impr. 2.05% 1.33% 4.62% 2.22% 1.93%

of Mig

Distributed 453.2 242.6 466 406.5 402

Global 391.9 273.7 508.5 384.3 386.8

%Impr. 15.64% -11.36% -8.36% 5.78% 3.93%

The global policy performs the same DTB-M migration with the assumption that all PEs

on the same chip are the nearest neighbor to each other, therefore, task migration could happen

between any two PEs. The experiment assumes that there is a central controller in the system and

it controls the task exchange and migration between any PEs. The experiment also assumes that

all information exchange between PEs and the controller take the same amount of time. This

90

gives a bias to the global policy whose communication time actually should be longer due to

multi-hop communication path.

TABLE 4.6 Comparison between Global and Distributed Policy shows the comparison

between DTB-M policy and the global policy in terms of the number of hotspots, system

performance and the number of migrations under static workload. In average, the global policy

reduces the hotspots by 13.3%, finishes all tasks 2.43% faster and has 1.13% less number of

migrations compared to the distributed policy. It is not surprising that the global policy

outperforms the distributed policy in all aspects, because it can move the task to a better position

more quickly.

Figure 4.15 Comparison of migration distance

In spite of the hotspot reduction and performance improvements, one major drawback of

the global policy is that, since the tasks are exchanged globally, its migration distance is much

longer than that of the distributed policy. Figure 4.15 shows the comparison of the total

migration distance between the global policy and the distributed policy. The migration distance

of the global policy is 2.14 times longer than that of the distributed policy on average. Overall,

0

200

400

600

800

1000

1200

Uniform Cool tri. Hot tri. Norm. Inv. Norm.

M
ig

ra
ti

o
n

 D
is

ta
n

ce

Distributed

Global

91

the performance improvement of the global policy is not as significant as the increase of the

overhead.

TABLE 4.7 Comparison between Global and Distributed Policy Under Extreme Cases

Workload

Distribution
Policy Uniform Cool tri. Hot tri. Norm. Inv. Norm.

Hotspot

Dist. Corner 18088 12152.1 25106.9 17570.1 19107.9

Glob. Corner 3659.7 554.3 13239.3 4203.8 3915.6

Dist. Center 9239.4 3854.6 14931.4 10198.5 7246.3

Glob. Center 3713.4 908.6 13167.9 4520.5 3848.2

FT

Dist. Corner 43869.2 41064.1 45404.6 44510 44063.4

Glob. Corner 37270.8 36477 39235.9 37744.4 37408.6

Dist. Center 41280.8 38400 44792.4 43483.1 38942.6

Glob. Center 37445.5 36472.8 39178.8 38050.3 37288.2

Migration

Distance

Dist. Corner 69.25 55.85 83.95 75.4 64.75

Glob. Corner 813.8 527.1 1027.8 743.7 834.1

Dist. Center 193.5 143.2 182.1 160.8 193.5

Glob. Center 861.3 622.9 1144.1 862 861.3

In the previous experiment, the initial task mapping is randomly generated. Therefore, the

high power tasks and low power tasks are evenly distributed across the system. In next

experiment, we test two extreme cases, both of which have high concentration of high power

tasks in a small area in the initial mapping. The further a PE is away from this area, the higher

probability that it will be assigned to a low power task. In the first test case, the “hot area” is

92

located at the corner of the chip, while in the second test case it is located at the center of the

chip.

TABLE 4.7 presents the performance of the global policy and the distributed policy for

the two extreme cases. Comparing the results in TABLE 4.6 and TABLE 4.7, we can see that the

performance of the global policy is hardly affected by the initial task mapping. On the other

hand, the performance of the distributed policy is significantly affected by the initial task

allocation and it performs much worse under these two extreme cases. It is because the

distributed policy relies on a rippling process to pass out high power tasks and it can be very

slow.

Figure 4.16 Comparison of hotspots between multi-hops distributed policy and global

policy

Figure 4.17 Comparison of migration distance between multi-hops distributed policy and

global policy

0

5000

10000

15000

20000

25000

30000

Uniform Cool tri. Hot tri. Norm. Inv. Norm.

H
o

ts
p

o
t

1 hop

1~2 hop

1~3 hop

Global

0

200

400

600

800

1000

1200

Uniform Cool tri. Hot tri. Norm. Inv. Norm.

M
ig

ra
ti

o
n

 D
is

ta
n

ce

1 hop

1~2 hop

1~3 hop

Global

93

Figure 4.18 Comparison of finish time between multi-hops distributed policy and global

policy

In order to speed up the rippling process, we slightly modify the distributed policy by

allowing a PE to send migration requests to its far neighbors occasionally. Figure 4.16 through

Figure 4.18 show the performance of the original distributed DTB-M policy where

communication only happens between 1-hop neighbors, the modified DTB-M policy where

communication could happen between 1 and 2-hop neighbors and the modified DTB-M policy

where communication could happen between 1, 2, and 3-hop neighbors. In the modified DTB-M,

the 2-hop and 3-hop neighbors will be contacted with 30% and 10% probability respectively. As

we can see, the percentage difference of hotspots between the distributed and global policies

reduces from 75.61% to 28.98% when we extend the communication range from 1-hop

neighbors to 2 or 3-hop neighbors; and the percentage difference of finish time between global

and distributed policies reduced from 14.02% to 2.06%. Because the far neighbors are contacted

with low probability, the total migration distance of the modified DTB-M is still much lower

than that of the global policy. As shown in Figure 4.17, even if the 2 or 3-hop neighbor are

contacted, the migration overhead is still 43% less than that of the global policy.

30000

35000

40000

45000

50000

Uniform Cool tri. Hot tri. Norm. Inv. Norm.

Fi
n

is
h

 T
im

e

1 hop

1~2 hop

1~3 hop

Global

94

Finally, we want to point out that in a real system, such extreme cases of initial task

allocation rarely happen because it can be avoided by simple random mapping of the tasks.

4.6.6 The Comparison between PTB and DTB-M

In this set of experiments, we compare the DTB-M policy with the Predictive Thermal

Balancing (PTB) policy proposed in [20]. PTB reduces hotspots by proactively exchanging tasks

between a core which is predicted to be hot and a core which is predicted to be cool. Note that

the PTB is not a distributed policy and those two cores do not have to be the nearest neighbors.

To obtain a fair comparison, we duplicate the experiment settings in [20] and assign only one

task to each core. The original PTB policy employs AMAR model for temperature prediction. To

separate the disturbance from different temperature prediction models, we replace the AMAR

model in the PTB policy with our neural network model and name it PTB-NN.

TABLE 4.8 Comparison between DTB-M, PTB and PTB-NN

Workload

Distribution
Policy Uniform Cool tri. Hot tri. Norm. Inv. Norm.

Hotspot

DTB-M 1204.5 212.3 5496.9 1455.3 1079.4

PTB 2355.3 184.8 7318.6 2053.1 2769.5

%Impr. 48.86% -14.88% 24.89% 29.12% 61.03%

PTB-NN 1394.1 157.2 6249.4 1430.5 1699.7

%Impr. 15.74% -25.95% 13.69% -1.70% 57.47%

FT

DTB-M 10655.5 9632.4 12820.9 10922.2 10595.8

PTB 11166.3 9252.5 11725.6 10800.3 11167.2

%Impr. 4.57% -4.11% -9.34% -1.13% 5.12%

PTB-NN 10445.3 9219.1 12137.1 10709.7 10639.3

95

%Impr. -1.97% -4.29% -5.33% -1.95% 0.41%

of Mig

DTB-M 43.4 18.2 49.4 41.4 44.6

PTB 265.8 54.2 464.6 189.3 314.3

%Impr. 83.67% 66.42% 89.37% 78.13% 85.81%

PTB-NN 129.7 25.2 351.8 116.4 142.4

%Impr. 66.54% 27.78% 85.96% 64.43% 68.68%

TABLE 4.8 shows the comparison among the DTB-M policy, the original PTB policy

and the PTB-NN policy. Compared to the PTB and PTB-NN policies, the DTB-M policy

successfully reduces the hotspots by 29.8% and 11.85%, reduces migration overhead by 80.68%

and 62.68%, while only has 0.98% and 2.63% performance degradation on average respectively.

This is because a PE using DTB-M policy always analyzes the workload before offering task

exchange. If the task migration will not be benefit or, even worse, will cause hotspots, it will not

be performed. However, such analysis does not take place in PTB and PTB-NN. Because the

DTB-M does not perform any unnecessary migrations, its migration overhead is also lower. Note

that the PTB and PTB-NN policy are global policies; the thermal throttling time is more evenly

distributed among all cores than DTB-M, but since they trigger more thermal throttling time, the

performance is only slightly better than that of the DTB-M policy for some test cases.

4.6.7 The Impacts of Migration Overhead

In the last experiment, we evaluate the impact of migration overhead to the performance

of the overall system. We compare the system using DTB-M to a system without any task

migration. When two tasks are exchanged between nearest neighbors, both of them would

experience a delay tdelay. In this experiment, we vary the value of tdelay from 1% of the execution

96

interval tslice to 100% of tslice and record the finish time for different static workload distributions.

The results are shown in Figure 4.19. As we can see, when the tdelay is 1% of the tslice, the system

using DTB-M is 23.08% faster than the simple system without task migration. This number

reduces to 10.34% when tdelay is 100% of tslice, which is very unlikely to be true in a real system.

The results show that a system that migrates tasks extremely slow still runs faster than a system

that does not migrate tasks at all. This is because the simple system that does not perform task

migration will be slowed down by lots of thermal throttling events.

Figure 4.19 Comparison of finish time for different migration overhead

4.7 Chapter Summary

In this chapter, we presented a distributed thermal management framework for many-core

systems. In this framework, no centralized controller is needed. Each core has an agent which

monitors the core temperature, communicates and negotiates with neighboring agents to migrate

and distribute tasks evenly across the system. The agents use DTB-M policy for task migration.

Our DTB-M policy consists of two parts. The SSTM migration policy distributes different tasks

in a neighborhood based on their heat dissipation ability. The TPM migration policy ensures a

good mixture of hot tasks and cool tasks on processors in a neighborhood. We also presented a

30000

35000

40000

45000

50000

55000

Uniform Cool triangle Hot triangle Normal Inverse
normal

Fi
n

is
h

 t
im

e

1.0%

2.0%

5.0%

10.0%

20.0%

50.0%

100.0%

No-Mig

97

neural network based prediction model that can be used not only for future temperature

prediction but also for agents to evaluate the rewards of proposed migration offers.

We compared our neural network predictor with an extended version of ARMA predictor

and showed that our predictor can make prediction faster and more accurate in the system where

tasks start, complete and migrate dynamically. We showed that our DTB-M policy reduces

hotspot by 29.8% and migration overhead by 80.68% with only 0.98% performance overhead

compare to the PTB thermal management.

98

Chapter 5 Task Allocation for

Cooling and Leakage Power

Optimization

As shown in the last chapter, even in a homogenous many/multi-core system, highly

heterogeneous workload on different cores can produce local hotspot and create large thermal

gradient. Elevated core temperature increases leakage current and stresses the cooling system.

The cooling fan has to operate at a sufficiently high speed to accommodate the worst case power

density and guarantee the chip temperature under a safe threshold anywhere and anytime. This

would require the fan operating at higher speed to maintain high air flow and strong heat

dissipation ability. However, operating at high speed for long time consume more energy and

reduce fan life time [11].

In this chapter, we address the impact of task mapping on the overall power consumption

of a homogenous multi-core system. The system power consists of three components, dynamic

power, static power, and fan power. Due to the homogeneity, different task mappings have little

impact on the dynamic power. However, they change the temperature distribution across the

system and can potentially affect the leakage power and fan power. While the leakage power is

determined by the average temperature, the fan power is determined by the peak temperature.

Hence they require different optimization techniques. However, as we will show in Section 5.2

that the impact on leakage power from task mapping is negligible if the fan speed is given. For a

given workload, the chip leakage power can be approximated to a linear function of the

99

convective resistance of the cooling system while the fan power is an inverse cubic function of

the same parameter. Our analysis shows that the overall power can be minimized if a task

allocation with minimum peak temperature is adopted together with an intelligent fan speed

adjustment technique that finds the optimal tradeoff between fan power and leakage power.

Furthermore, the impact of task allocation on the overall system power is significant when the

temperature constraint is tight. When the temperature constraint is loose, the overall system

power is insensitive to task allocation.

We further investigate the techniques to search for the task allocation for minimum peak

temperature. We formulate the task allocation problem as a zero-one linear programming.

Because solving the binary linear programming problem does not scale well for large system, we

presented an agent based distributed task migration approach for peak temperature reduction.

Our agent based algorithm has good scalability as the number of processors increases. It achieves

up to 18% power savings compare to a random mapping policy.

The rest of the chapter is organized as follows: Section 5.1 introduces the many core

system model, the system power and thermal model and cooling system model. We formulate the

task allocation problem in section 5.2. In Section 5.3 we present the temperature aware

distributed task migration framework. Experimental results are reported in Section 5.4. Finally,

we conclude the chapter in Section 5.5.

5.1 System Model

5.1.1 Processor Model

In this chapter, we consider a tile-based network-on-chip many-core architecture [26].

Each tile is a processor with dedicated memory and an embedded router. It will also be referred

100

to as core or processing element (PE) in this chapter. All the processors and routers are

connected by an on-chip network where information is communicated via packet transmission.

We refer to the cores that can reach to each other via one-hop communication as the nearest

neighbors. Note that a pair of cores that are nearest neighbors sometimes does not have to be

close to each other geometrically.

We assume the existence of a temperature sensor on each core. A temperature sensor can

be a simple diode with reasonably fast and accurate response [24]. We also assume that a

dedicated OS layer is running on each core that provides functions for scheduling, resource

management as well as communication with other cores.

5.1.2 Processor Thermal Model

Due to the duality between heat transfer and RC circuits, we abstract the many-core

system as an RC network. Let n denote the number of all thermal nodes in the system, including

those in the heat sink layer and heat spread layer. Let N denote the number of processors in the

system. The relation between n and N is determined by the equation n = 4×N+12 [50]. Let TSSi

and denote the steady state temperature and average power consumption of node i. Pi is 0 if

node i belongs to the heat sink layer or heat spread layer because they does not consume any

power. Let TSS and P denote vectors of TSSi and Pi, 1≤i≤n. When the system reaches the steady

state, for each thermal node, its temperature is a linear function of power consumptions P1,

P2, …, Pn. The relation can be represented by the following equation

 (5.1)

101

where [] is the inverse matrix of thermal conductance matrix G. We simplify

equation (5.1) by keeping only the thermal nodes related to the PEs:

 (

) (

)(

) (

) (5.2)

where N is the number of processors, and ∑

 is a set of constants,

because the power consumption of those thermal nodes which are not related with processors

(e.g. the thermal nodes on heat sink and heat spreader) does not change. The coefficients gij and

Di 1≤i, j≤N can be obtained by offline analysis. Equation (5.2) shows that the steady state

temperature of each PE is a linear function of average power consumptions on other PEs and

increasing/decreasing the power consumption of one PE will have an impact on the steady state

temperature of all other PEs.

5.1.3 Processor Cooling Model

In this chapter, we assume one standard heat sink and fan cooling system for the entire

many-core chip as the configuration of the TILERA TILE64 processor [8]. Our cooling system

modeling follows the similar techniques described in the previous works [11][53].

 (5.3)

We next model the relation between the convective resistance and the die temperature.

Although the Hotspot [54] provides a detailed and accurate thermal model at micro-architecture

level, its complexity is too high to be used analytically. And it does not directly reveal the

relation between convective resistance and the die temperature. Therefore, we adopted a simple

102

yet accurate model as shown in Figure 5.1 [11]. In this model, Pi, Ci, and Ri are the power

consumption, thermal conductance and die to package thermal resistance of processor i

respectively. Rconv is the convective resistance.

Figure 5.1 Simplified multiprocessor thermal model

Similar to the previous works [53] we are only interested in the temperature at steady

state when the system reaches the equilibrium. Therefore all the capacitors in the system are

open circuit and only thermal resistances will be considered. Then the die temperature Ti of core

i can be computed as

 ∑

 (5.4)

where Pi is the power consumption of core i and Ri is the approximation thermal

resistance from die to package. If the power consumption of core i does not change, the die

temperature of core i is a linear function of Rconv. To verify the simple model, we run the

simulation in Hotspot to obtain the die temperature of core by varying the convective thermal

……
R1P1C1 RnPnCn

Rconv

Tamb

103

resistance. Figure 5.2 shows that the simulated core temperature and the core temperature

predicted by the linear model matches very well.

Figure 5.2 Linear approximation of relation between die temperature and convective

resistance

5.1.4 Leakage power model

The leakage power consumption of a processor depends on the die temperature, supply

voltage and a number of other factors. If the supply voltage is constant, the leakage power

consumption can be expressed as follows:

 (5.5)

Where A1, A2 and A3 are constants which are dependent on processing technology and

supply voltage, Td is the die temperature. It has been pointed out in [38] that the leakage power

can be approximated using a linear model and the resulting error is expected to be less than 5%

0.01 0.015 0.02 0.025 0.03 0.035

345

350

355

360

365

370

375

380

385

convective resistance (
o
C)

di
e

te
m

pe
ra

tu
re

 (
K

)

Hotspot

simulation

linear model

104

for a large temperature range from 20
o
C to 120

o
C. We approximate the leakage power using its

first order Taylor expansion at 80
o
C and compare the linear approximation model with the

original model in Figure 5.3. The green line is the linear approximation while the red line is the

original model given by equation (5.5). Figure 5.3 shows that the linear model has very small

error compare to the original model in the normal operating range, which is between 60
o
C and

100
o
C.

Figure 5.3 Linear approximation of leakage power model

Based on this observation, we approximate the leakage power of the ith core using a

linear model , where is the average die temperature of the core , a and b

are two scalars. The total leakage power consumption can be simply calculated as

 ∑ where ∑

 ⁄ is the average temperature of N

cores. Thus the total chip leakage power can be approximated as a linear function of average die

330 340 350 360 370 380
10

10.5

11

11.5

12

12.5

13

13.5

temperature (K)

le
a
k
a
g
e
 p

o
w

e
r

(m
W

)

accurate model

linear

approxiamation

105

temperature. Because is linearly proportional to , the leakage power is also a

linear function of the convective resistance.

5.2 Problem Formulation and Analysis

In this chapter, we study the impact of task allocation on the overall system power. The

overall power consumption is the sum of the CPU power consumption and the fan power

consumption while the CPU power consumption consists of dynamic power and leakage power.

Therefore the overall power consumption model can be written as follows.

 (5.6)

In a homogenous multi-core system, task allocation has little impact on the dynamic

power consumption because all cores are identical. However, because task allocation changes the

temperature distribution across the system, it has the potential to change the leakage power and

fan power which are temperature related power consumptions.

To show the relation between task allocation and leakage power consumption, we

randomly generated 100 groups of task allocation for a given workload and compare their

leakage power consumption on a 36 core chip multiprocessor. The workload consists of 36 tasks

whose power consumption varies from 10mW to 20mw (details about workload generation are

described in section 5.4.) Figure 5.4 shows the leakage power for all 100 groups as the

convective resistance increases. The leakage power consumption for the worst mapping and the

best mapping differs only by less than 1% for a given convective resistance. This is intuitively

correct. The leakage power is linearly proportional to the average die temperature which is

determined by the average power density across the chip. Since the task allocation has little

106

impact on the processor dynamic power consumption, which is still the dominant part of the

CPU power consumption when it is actively running, it does not significantly change the average

chip temperature either. Consequently, the leakage power remains stable. Figure 5.5 (a) shows

the average die temperature for those 100 different random mappings as the convective

resistance increases. (The blue line that lies at the bottom corresponds to the task allocation

scheme that is found by our multi-agent distributed task migration framework that will be

introduced in the next section.) As we can see, the maximum difference in average die

temperature is less than 1
o
C.

Figure 5.4 The relation between full chip leakage power consumption and different task

allocations

Based on the experimental results we have two observations, (1) for a given , the

leakage power can be considered to be independent to the task allocation, (2) when the workload

0.01 0.011 0.012 0.013

410

415

420

convective resistance (
o
C/W)

fu
ll
 c

h
ip

 l
e

a
k
a

g
e

 c
o

n
s
u

m
p

ti
o

n
 (

m
w

)

107

is given, the only parameter that controls the leakage power is the fan speed which is reflected by

 . Their relation can be represented by a linear function: .

a)

b)

Figure 5.5 Comparison of maximum temperature of 3 different task allocations

0.0260.02650.0270.02750.0280.02850.029

367

368

369

370

371

372

convective resistence (
o
C)

av
er

ag
e

ch
ip

 t
em

pe
ra

tu
re

 (
K

)

0.025 0.03 0.035

370

375

380

385

390

convective resistence (
o
C)

m
ax

im
um

 c
hi

p
te

m
pe

ra
tu

re
 (

K
)

108

On the other hand, different task allocation significantly affects the peak temperature. In

order to bring the peak temperature below the constraint, the fan speed needs to be adjusted

accordingly, which in turn leads to different . For example, Figure 5.5 (b) shows the

maximum chip temperature of 100 different mappings as the convective resistance increases.

(Again, the blue line that lies at the bottom corresponds to the task allocation that is found by our

multi-agent distributed task migration framework.) We can see that the difference in peak

temperature is more than 10
o
C. Note that because the average temperatures for different

allocations are almost the same, the task allocation that gives the lowest peak temperature is the

one that generates the most balanced temperature distribution. A task allocation that generates

highly unbalanced temperature distribution will force the cooling fan to work harder (and

consumes more power) to keep the peak temperature under the constraint. However, as the speed

of cooling fan increases, the average chip temperature will decrease and therefore bring down the

leakage power. When searching for the optimal task mapping, we need to consider the tradeoff

between fan power and leakage power.

Because is independent to thermal convective resistance, is linearly

proportional to convective resistance and is an inverse cubic function of the convective

resistance, the overall power consumption is a convex function on the convective resistance.

There will be an optimal convective resistance
 (corresponding to the optimal fan speed)

which minimizes the overall system power. Furthermore, for a given workload, task allocation

cannot change the relation between the overall power consumption and the convective resistance.

109

a)

b)

Figure 5.6 The overall power consumption depend on convective resistance

Figure 5.6 shows the overall power consumption and the peak temperature under

different task allocations as functions of the convective resistance. Figure 5.6 (a) shows the

scenario when the temperature constraint is strict and the convective resistance (i.e. and)

that could bring the peak temperature to the constraint are located to the left of
 . In this case

the overall power is dominated by the fan power. Increasing the fan speed can only increase the

overall power consumption. The best task allocation that minimizes the overall system power is

allocation 2 which minimizes the peak temperature. Figure 5.6 (b) shows the scenario when the

temperature constraint is loose and the convective resistance that could bring the peak

r_convec r_convec

y = x y = x

overall power temperature

temperature

constraint

allocation 1 allocation 2

allocation 2

opt power

allocation 1

opt power

*

conv
R

r2maxr1max

r_convec r_convec

y = x y = x

overall power temperature

temperature

constraint

allocation 1 allocation 2

allocation 2

opt power

allocation 1

opt power

*

conv
R r1max r2max

110

temperature to the constraint are located to the right of
 . In this case the leakage power

dominates the overall power. If the fan speed is set to exactly satisfy the temperature constraint

(i.e. the convective resistance is set to or) then the best allocation is scheme 1 which has

higher peak temperature. We denote the maximum that keeps the peak temperature under

constraint as . Obviously, any convective resistance that is less than can keep the

system in safe temperature zone. This includes
 . For both allocation 1 and 2, setting the

convective resistance to
 can minimizes the overall power while satisfying the temperature

constraint. Because with a loose temperature constraint, the fan power does not dominate the

overall power alone, leakage power plays an important role as well. Increase the fan speed would

increase the fan power but could reduce the temperature and leakage power. In this case, power

consumption is not sensitive to task allocation. Any allocation scheme whose is greater than

 could be used to find the optimal tradeoff point between the fan power and the leakage

power. Obviously, among all possible task allocations, the allocation that minimizes the peak

temperature is most likely to satisfy this property.

5.3 Power Optimal Task Allocation

Based on these observations, we concluded that, to optimize the overall power

consumption, there are two steps. First is to find the task allocation that minimizes the peak

temperature. Second is to adjust the fan speed to find the optimal tradeoff point between fan

power and leakage power such that the overall power consumption is minimized and the

temperature constraint is satisfied. The latter step could be achieved by using feedback control

while former step will be discussed in detail in the following sections.

5.3.1 An Exact Formulation

111

Given a floorplan of a multi-processor system with n cores integrated on a chip, we

assume that the thermal conductance matrix can be characterized by offline training. We further

assume that the given workload consist of n different tasks {τ1, τ2, … , τn} whose power

consumption {P1, P2, … , Pn} can be obtained through offline training or online estimation by

observing the event counter. We assume the power consumption is a constant for each task,

because we are only concerned about the steady state temperature. Here we assume that the core

does not support multitasking and the number of tasks is equal to the number of cores. If the

number of tasks is less than the number of cores, we can simply add some dummy tasks with 0

power consumption.

Our goal is to obtain a mapping between the n tasks and the processors such that the

resulting maximum temperature among all the cores is minimized. For each task k and processor

j, there is a variable . Variable is 1 when task k is mapped to processor j, otherwise it is 0.

We formulate the problem as a zero-one min-max linear programming as follows:

 ∑∑

 (5.7)

Subject to

 ∑

 (5.8)

 ∑

 (5.9)

 } (5.10)

Constraint (5.8) guarantees that a processor is only occupied by one task and constraint

(5.9) ensures that a task can only be mapped to one processor. The item within the min-max

112

operator in the objective function is the temperature of the ith core. To see this, we rewrite the

equation (5.2) as follows:

 (

) (

)(

)(

) (

) (5.11)

where [] is a permutation matrix which assigns the n tasks to the processors.

Expand the right hand side the equation would give the equation . Then the

objective function min-max(Ti) is to minimize the maximum temperature among all n processors.

By some simple transformation, the min-max problem can be converted to traditional

linear programming:

 (5.12)

Subject to:

 ∑∑

 (5.13)

 ∑

 (5.14)

∑

 (5.15)

 } (5.16)

The above zero-one min-max linear programming is an exact formulation of the task

allocation problem. However, it is extremely difficult to solve. For example, for a problem with

36 cores there will be 1296 binary variables, it would take more than two days to solve this

problem using the open source linear programming solver lp_solver [5] on a 3.2GHz Quad core

113

Xeon processor. Therefore, it is infeasible to use the solution online for power and thermal

optimization in the future many-core platform as the core counter could go up to hundreds and

thousands [13]. Instead of solving this min-max problem directly, we present the following

online heuristic.

5.3.2 Distributed Task Migration

In this section, we presented our distributed task migration framework that searches the

optimal task allocation during runtime.

We denote our multi-agent task migration algorithm as MATM. The framework has a

low cost agent residing in each core. It is implemented as part of the OS based resource

management program which performs thermal-aware task migration. The agent observes the

workload and temperature of local processor while communicating and exchanging tasks with its

nearest neighbors. The agent based distributed framework has better scalability compared to the

centralized method as the communication cost and migration overhead for each core does not

increase when the number of cores in the system increases.

The proposed MATM adopts a task exchange based migration scheme. By exchanging

tasks, the processors can maintain a balanced temperature distribution and hence reduces the

peak temperature.

Communication protocol

114

Figure 5.7 Diagram of communication protocol

Each core running a MATM agent can be in two phases: execution phase and

communication phase. These two phases are interleaved. During the execution phase the core

executes the current computing task while during the communication phase it initiates task

migration request to its nearest neighbor or respond to the task migration request from its nearest

neighbor. The communication phase can further be divided into four sub-phases: broadcasting

self workload to neighboring cores, receiving workload information from neighbors, sending

migration requests to neighbors, exchanging tasks with neighbors. Figure 5.7 shows the diagram

of the communication protocol. We assume that a MPI (Message Passing Interface) based

communication is adopted. Therefore two cores do not have to enter the communication phase

synchronously in order to communicate to each other. We also refer the communication phase as

scheduling interval.

Broadcast self workload

Receive neighbor workload

Perform MATM algorithm

Make migration decisions

Send migration request

Receive migration

response

Migrate tasks

Broadcast self workload

Receive migration requests

Make migration decisions

Migrate tasks

Core i

Core j

115

At the beginning of each scheduling interval, an agent on a processor would broadcast its

own work load to neighbors and request them sending back their workload. Because the

scheduling intervals in all processors are not synchronized, the request is not likely to be checked

and responded by neighbor agents right away. On the other hand, because all processors adopt

the same execution and scheduling interval, it is guaranteed that all neighboring agents will

response before the next scheduling interval after the request is issued.

After receiving the response of neighbor workloads, the agent performs the MATM

algorithm to decide whether to exchange task with neighbors and select which neighbor to

exchange task with. Then it will send a migration request to the selected processor. For all other

neighboring processors, the agent will also send an acknowledgement to them which indicates no

task exchange. After that, the agent waits for the migration response from the selected processor.

MATM distributed migration algorithm

The FDTM algorithm distributes the tasks among processors based on their heat

dissipation. It moves high power tasks to processors with strong heat dissipation capability and

moves low power tasks to processors with weak heat dissipation capability. By distributing tasks

in this way, local hotspots can be mitigated and thus peak temperature of the chip can be reduced.

To determine if an exchange of tasks between two processors is beneficial to the whole

system, we consider equation (5.2) again. Assume that PEi and PEj exchange tasks, and their

average power consumptions are altered by and respectively. Using equation (5.2), the

total die temperature change of all processors in the system after task migration can be calculated

as:

116

 ∑

 (5.17)

where (or) is a parameter that characterizes the heat dissipation ability of processor

i (or j) . ∑

 ∑

 . The temperature contributed by processor i running task

k can be calculated as . If , then the temperature contribution made by processor i

will be less than the contribution made by processor j when running the same task, which means

processor i can dissipate heat better. Thus running high power task on processor i have smaller

chance to produce high peak temperature than running high power task on processor j. Therefore,

if and , it is reasonable to switch the tasks on the two processors. This leads to

∑

 in (5.17). In conclusion, if a task exchange between two neighbor processors leads

to ∑

 , then this task exchange is beneficial for the system and the task exchange

should be carried out.

If an agent found that it is beneficial to exchange task with several neighbor agent, the

agent will select a neighbor that lead to maximum temperature reduction, i.e. the minimum

∑

 (because it is negative), and send migration request to the selected neighbor. If an

agent received several migration requests from neighbors, it will follow the same criterion to

select a neighbor to exchange tasks. We summarized the MATM in the following algorithm.

Algorithm 5.1 MATM

1. for each neighbor processor j, compute

2.

3.

4. Select processor j, and send migration request to it

117

5.4 Experimental Results

The simulation infrastructure and the workload are exactly same as presented in section

4.6.1, so we skip the experimental setup description here.

5.4.1 Fan Power Savings

Figure 5.8 Convective resistance comparison between Random allocation and FDTM

allocation

Figure 5.8 compares the (i.e. the maximum thermal convective resistance that is

required to exactly meet the temperature constraint) between the random allocation and MATM

based allocation with the temperature constraint setting to 85
o
C. The results show that, to

maintain the whole system under the temperature constraint, the minimum fan speed required by

MATM based allocation is 14.5% less than that is required by the random task allocation. The

reduced fan speed could bring cubic savings in fan power for the system. And TABLE 5.1

shows the fan power savings of our proposed MATM policy compared to the random allocation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
o

n
ve

ct
iv

e
re

si
st

an
ce

Random

FDTM

118

policy. The MATM can achieve an average of 37.2% fan power savings over random allocation

while maintains the maximum chip temperature under the thermal constraint.

The reason that the MATM policy can achieve power savings is that through agent

negotiation and task migration, tasks can be distributed among processors evenly according to a

processor’s heat dissipation ability, i.e. high power tasks are moved to cores with stronger heat

dissipation ability while lower power tasks are moved to cores with weaker heat dissipation.

Therefore the processors’ temperatures are distributed more evenly across the chip and the

maximum temperature is reduced. The fan can run at a relatively lower speed to guarantee the

temperature constraint. Therefore the fan power savings is achieved.

TABLE 5.1 Fan power savings of FDTM compare to the random task allocation

Workload Uniform Cool triangle Hot triangle Norm Inv Norm

Fan power

savings
38.79% 29.35% 35.58% 35.78% 46.60%

5.4.2 Overall system power consumption

In the second experiment, we examine the effect of temperature constraint and task

allocation on the overall system power consumption, i.e. the power consumption summation of

dynamic power, leakage power and fan power. We select the uniform workload distribution in

this experiment. We vary the temperature constraint for 80
o
C, 85

o
C and 90

o
C and compare the

power consumption between MATM based task allocation and random allocation. For both

systems, optimal tradeoff point between fan power and leakage power will be searched after the

system reaches stable state. As shown in TABLE 5.2, MATM based allocation policy could

achieve 17.9% overall power savings when the temperature constraint is 80
o
C. When the

119

temperature constraint increases to 85
o
C and 90

o
C, the power saving reduces to 5.1% and 1.2%

respectively.

TABLE 5.2 Overall system power consumption comparison under different temperature

constraints

Overall System Power Consumption (mW)

Temp. Constraint 80
o
C 85

o
C 90

o
C

Random Mapping 1268.9 1110.8 1067.3

FDTM 1076.6 1057 1055.1

The experimental results show a diminishing power savings as the constraint temperature

increases from the TABLE 5.2, and task allocation gives large power savings especially when

temperature constraint is strict. To understand this, we draw the overall power consumption and

fan power consumption against the convective resistance curve in Figure 5.9. When temperature

constraint is strict, the convective resistance has to be small to satisfy the constraint. When fan

working in this area, the curve slope is sharp and a little decrease in convective resistance would

increase the fan power as well as the overall system power significantly; therefore a better task

allocation which reduces maximum chip temperature can achieve large power savings. On the

other hand, when temperature constraint is loose, the convective resistance does not have to be

small to satisfy the constraint. In this case, the curve slope is flat and the difference in convective

resistance does not affect the fan power and overall power consumption significantly. Therefore,

different task allocation achieves similar overall system power consumptions. If we further relax

the temperature constraint so that the of both random and MATM allocations are located to

the right side of
 , the MATM allocation will not give any power saving over the random

allocation as both of them can work at the optimal tradeoff point.

120

Figure 5.9 Power consumption against convective thermal resistance curve

Figure 5.10 shows each component in the overall system power consumption. The fan

power consumption plays an important part in the random allocation when temperature

constraint is strict. It accounts for 21.1% of total consumption. When the constraint is relaxed,

the share of fan power decreases. The MATM allocation reduces maximum chip temperature and

the fan can be maintained in a low speed. Therefore the fan power consumption is small, less

than 6% for all temperature constraint. We also notice that the dynamic power stays the same for

all constraint while the leakage power increase as the constraint is relaxed. This is because

allowing higher maximum chip temperature will also increase the average chip temperature,

rconv

overall power

rmax,MATM

(80oC)

rmax,RND

(80oC)

power savings

in 80oC

power savings

in 90oC

Fan power

rconv

rmax,RND

(90oC)

rmax,MATM

(90oC)

R*conv

121

therefore the leakage power increases. We also notice the MATM based task allocation has

higher leakage power consumption compare to the random allocation. This is because in order to

maintain the same maximum chip temperature, the higher fan speed needed for random

allocation makes its average temperature lower and hence it consumes less leakage power.

However, after combining the fan power, the MATM based allocation still has lower total power

consumption.

Figure 5.10 The overall power consumption break down

5.5 Chapter Summary

In this chapter, we studied the impact of task mapping on the overall power consumption

of a homogenous multi-core system. We formulated the task mapping problem as a zero-one

linear programming problem and presented an agent based distributed task migration approach to

solve this problem. Our agent based algorithm has good scalability as the number of processors

increases. Experimental results show that our policy achieves large power savings compare to a

random mapping policy.

0

200

400

600

800

1000

1200

1400

80 85 90 80 85 90

O
ve

ra
ll

P
o

w
er

 C
o

n
su

m
p

ti
o

n

Fan

Leakage

Dynamic

Random FDTM

122

In this chapter, we did not consider the effects of cooling fan speed on the inlet

temperature of servers in a data center environment. Generally, higher cooling fan speed will

cause more hot air be circulated back to the inlet. This could reduce the heat removing efficiency

of the cooling fan. Reference [46] considers the relation between the inlet temperature and task

allocation in a data center. In their work, the inlet temperature of a chassis is modeled as the

linear combination of server power consumptions and Air Conditioner temperature. Based on

this linear model, they found the optimal task allocation to maximize the Air Conditioner

temperature while satisfying the inlet temperature constraint using integer linear programming.

However, this work only considers the dynamic power but does not consider fan power and

leakage power. How to combine their inlet temperature model with our overall power

optimization technique in a data center environment will be our future work.

123

Chapter 6 Conclusions and

Future Directions

Increased power density has set up a “Power Wall” which blocks the micro-processor’s

performance improvement, and the clock frequency growth is restricted due to the temperature

issues. This is because unmanaged temperature could cause many reliability and performance

issues and increase leakage power as well as cooling cost. Dynamic thermal management

techniques are designed to tackle the problems and control the chip temperature as well as power

consumption. As long as the temperature is regulated, the system reliability can be improved,

leakage power can be reduced and cooling system lifetime can be extended significantly.

In this thesis, we have studied several learning based dynamic thermal management

techniques where the learning agent monitors the system dynamic and taking appropriate thermal

management actions intelligently.

For multimedia applications, the presented learning agent exploits the temporal

correlation in this class of application, learns the workload pattern based on the performance

counter readings and apply reinforcement learning algorithm to dynamically control the

operating frequency of the processor to optimize the performance while ensuring thermal safety.

We implemented our learning based DTM policy on a personal computer and tested it using real

application. Our experimental results show about 7.53% performance improvement with only

about 1.9% thermal violations compare to a thermal management policy that also based on

workload phase detection. And compared to another more aggressive policy which has fixed

124

frequency, our learning policy reduces thermal violation significantly while maintaining the

similar run time.

For a many-core system, we presented a distributed thermal management framework

where no centralized controller is needed. Each core has an agent which monitors the core

temperature, communicates and negotiates with neighboring agents to migrate and distribute

tasks evenly across the system. The agents use DTB-M policy for task migration. Our DTB-M

policy consists of two parts. The SSTM migration policy distributes different tasks in a

neighborhood based on their heat dissipation ability. The TPM migration policy ensures a good

mixture of hot tasks and cool tasks on processors in a neighborhood. We also presented a neural

network based prediction model that can be used not only for future temperature prediction but

also for agents to evaluate the rewards of proposed migration offers. We compared our neural

network predictor with an extended version of ARMA predictor and showed that our predictor

can make prediction faster and more accurate in the system where tasks start, complete and

migrate dynamically. We showed that our DTB-M policy reduces 29.8% hotspots and 80.68%

migration overhead with only 0.98% performance overhead compare to the PTB thermal

management.

Finally, we studied the impact of task mapping on the leakage power and cooling fan

power consumption of a homogenous many-core system. We formulated the task mapping

problem as a zero-one linear programming problem and presented an agent based distributed task

migration approach to solve this problem. Our agent based algorithm has good scalability as the

number of processors increases. The presented algorithm can achieve an average of 37.2% fan

power savings over random allocation while maintains the maximum chip temperature under the

thermal constraint and it could achieve 17.9% overall power savings when the temperature

125

constraint is 80
o
C. When the temperature constraint increases to 85

o
C and 90

o
C, the power

saving reduces to 5.1% and 1.2% respectively.

6.1 Future Directions

Dynamic thermal management is still an ongoing and active research area. New

technologies and computing platforms impose new challenges to existing DTM techniques. One

area that has not been well explored is thermal management of 3-D integrated circuits [21]. 3-D

IC is designed to tackle the large delay and high power associated with long interconnects.

However this new technology escalates the chip power density which has already been a severe

issue in 2-D design. Techniques work for 2-D platform might not be effective in 3-D platform,

for example, the forced-convection heat sink cooling solution could not work well in 3-D cases.

New thermal modeling tools, novel thermal management techniques need to be investigated for

this new platform.

In addition, new integration technology brings the opportunities of integrating

unconventional cooling solutions on the chip. For example, the authors in [12] investigate the

potential cooling power savings in a data center by inserting a Thermal electric (TEC) layer

between the silicon die layer and the heat spreader layer for CPUs. The TEC layer works as a

high-efficiency heat pump. When configured at appropriate size, TEC is very effective to pump

heat from its hot side to its cold side. Stacking the TEC layer on top of the silicon could quickly

remove the heat generated from the die and reduce the chip temperature. Therefore, the cooling

power consumed by other units like cooling fan and CRAC can be saved. However, the TEC

itself needs to consume power. Apparently, there is a trade-off between the power consumption

by TEC and other cooling units. The authors provide a detailed hierarchical power/thermal

model for different components in a data center including silicon die, TEC layer, heat spreader

126

layer, heat sink layer, cooling fan and finally CRAC. Their initial results show that, with the TEC

layer, the data center CRAC is able to increase its operating temperature from 288K to 294K,

which is equal to 24% power savings, without compromising the chip lifetime and reliability.

Many other research works also focus on applying liquid cooling techniques onto the chip

through the microchannels.

While the concept of dynamic thermal management was initially proposed to reduce the

cooling cost, the emerging packaging and cooling techniques will also effective relive the stress

of DTM. Many of the modern cooling techniques are now providing control knobs that could

tradeoff the cooling efficiency with energy cost, for example, adjustable fan speed, selective

turning on/off the TEC units, and adjustable liquid flow rate etc. As we can imagine, the most

effective DTM technique should have a holistic view of the entire system, which consists of the

software workload activity, the configuration of the integrated circuits, as well as the status of

the cooling system; and manage the whole system. This leads to many open questions, including

how to model the effects of these new cooling solutions on the heat generated by the silicon, how

to efficiently monitor and control the cooling system during runtime, and how to utilize its

potential to design management algorithm to achieve power/energy savings, to improve

performance and reliability. We believe that research in these areas will extend the potential of

thermal management and eventually lead to better, faster, and more reliable integrated system.

127

Bibliography

[1] “AMDPowerNow”, http://www.amd.com/us/products/technologies/powermanagement/Pages

/power-management.aspx

[2] “Enhanced Intel SpeedStep® Technology - How To Document”, http://www.intel.com/cd/

channel/reseller/asmo-na/eng/203838.htm

[3] Failure Mechanisms and Models for Semiconductor Devices, JEDEC Publication JEP122C.

http://www.jedec.org.

[4] International Technology Road Map for Semiconductor 2011 Edition System Drivers.

Available: http://www.itrs.net/Links/2011ITRS/2011Chapters/2011SysDrivers.pdf

[5] http://lpsolve.sourceforge.net/5.5/

[6] MediaBench: http://euler.slu.edu/~fritts/mediabench/

[7] Perfmon2: http://perfmon2.sourceforge.net/pfmon_usersguide.html

[8] Tile Processor Architecture: Technology Brief. Available: http://www.tilera.com/pdf/

ProductBrief_TileArchitecture_Web_v4.pdf.

[9] I. Aleksander, H. Morton, An Introduction to Neural Computing. International Thomson

Computer Press, 1995.

http://www.amd.com/us/products/technologies/powermanagement/Pages
http://www.amd.com/us/products/technologies/powermanagement/Pages/power-management.aspx
http://www.intel.com/cd/%20channel/reseller/asmo-na/eng/203838.htm
http://www.intel.com/cd/%20channel/reseller/asmo-na/eng/203838.htm
http://www.jedec.org/
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011SysDrivers.pdf
http://lpsolve.sourceforge.net/5.5/
http://euler.slu.edu/~fritts/mediabench/
http://perfmon2.sourceforge.net/pfmon_usersguide.html
http://www.tilera.com/pdf/%20ProductBrief_TileArchitecture_Web_v4.pdf
http://www.tilera.com/pdf/%20ProductBrief_TileArchitecture_Web_v4.pdf

128

[10] R. Ayoub, and T. Rosing, “Predict and act: dynamic thermal management for multi-core

processors,” In Proceedings of International Symposium on Low power Electronics and

Design, pages 99 – 104, 2009.

[11] R. Ayoub, S. Sharifi and T. Rosing, “GentleCool: Cooling Aware Proactive Workload

Scheduling in Multi-Machine Systems,” In Proceedings of Design Automation and Test in

Europe, pages 295 – 298, 2010.

[12] S. Biswas, M. Tiwari, T. Sherwood, L. Theogarajan, and F.T. Chong, “Fighting fire with

fire: modeling the datacenter-scale effects of targeted superlattice thermal management,” In

Proceeding of international symposium on Computer architecture, pages 331 – 340, 2011.

[13] S. Borkar, “Thousand Core Chips – A Technology Perspective,” In Proceedings of

Design Automation Conference, pages 746 – 749, 2007.

[14] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A Framework for Architectural Level

Power Analysis and Optimizations,” in Proceedings of International Symposium Computer

Architecture, pages 83 – 94, 2000.

[15] X. Chen, C. Xu, R. Dick, Z. Mao, “Performance and Power Modeling in a Multi-

Programmed Multi-Core Environment,” in Proceedings of Design Automation Conference,

pages 813 – 818, 2010.

[16] J. Choi, C. Cher, H. Franke, H. Hamann, A. Weger and P. Bose, “Thermal Aware Task

Scheduling at the System Software Level,” in Proceedings of International Symposium on

Low Power Electronics and Design, pages 213 – 218, 2007.

129

[17] R. Cochran, and S. Reda, “Consistent Runtime and Thermal Prediction and Control

Through Workload Phase Detection,” In Proceedings of Design Automation Conference,

pages 62 – 67, 2010.

[18] A. Coskun, T. Rosing, and K. Whisnant, “Temperature aware task scheduling in

MPSoCs,” in Proceedings of Design Automation and Test in Europe, pages 1659 – 1664,

2007.

[19] A. Coskun, T. Rosing, and K. Gross, “Proactive temperature balancing for low cost

thermal management in MPSoCs,” In Proceedings of International Conference on

Computer-Aided Design, pages 250-257, 2008.

[20] A. Coskun, T. Rosing, and K. Gross, “Utilizing predictors for efficient thermal

management in multiprocessor SoCs,” In IEEE Transaction on Computer Aided Design on

Integrated Circuits and System, vol. 28, no. 10, pp. 1503–1516, 2009.

[21] A. Coskun, J. Ayala, D. Atinza, T. Rosing, and Y. Leblebici, “Dynamic Thermal

Management in 3D Multicore Architectures,” In Proceedings of the Conference on Design,

Automation and Test in Europe, pages 1410-1415, 2009.

[22] W. Dally and B. Towles, “Route packets, not wires: on-chip interconnection networks,”

in Proceedings of Design Automation Conference, pages 684 – 689, 2001.

[23] G. Dhiman, and T. Rosing, "System-Level Power Management Using Online Learning,"

In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pages

676-689, 2009.

130

[24] J. Donald and M. Martonosi “Techniques for Multicore thermal Management:

classification and new exploration,” In Proceedings of International Symposium on

Computer Architecture, pages 78 – 88, 2006.

[25] T. Ebi, M. Al Faruque, and J. Henkel, “TAPE: Thermal-aware agent based power

economy for multi/many-core architectures,” In Proceedings of International Conference on

Computer Aided Design, pages 302–309, 2009.

[26] Y. Ge, P. Malani, and Q. Qiu, “Distributed Task Migration for Thermal Management in

Many-core Systems,” In Proceedings of Design Automation Conference (DAC), pages 579 –

584, 2010.

[27] H. Shen and Qinru Qiu, “Learning Based DVFS for Simultaneous Temperature,

Performance and Energy Management,” in Proceesings of International Symposium on

Quality Electronic Design, 2012.

[28] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson, N.

Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam, V.

Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,

T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson, “A 48-

Core IA-32 message-passing processor with DVFS in 45 nm CMOS,” in Proceedings of

International Solid-State Circuits Conference, pages 108 – 109, 2010.

[29] J. Hu, R. Marculescu, “Energy-aware mapping for tile-based NoC architectures under

performance constraints,” in Proceedings of Asia and South Pacific Design Automation

Conference, pages 233 – 239, 2003.

131

[30] W. Huang, M. Stan, K. Sankaranarayanan, R. Ribando and K. Skadron, “Many-Core

Design from a Thermal Perspective,” in Proceedings of Design Automation Conference,

pages 746 – 749, 2008.

[31] R. Jayaseelan and T. Mitra, “Dynamic Thermal Management via Architectural Adaption,”

In Proceedings of Design Automation Conference, pages 484-489, 2009.

[32] H. Jung, P. Rong and M. Pedram, “Stochastic Modeling of a Thermally-Managed Multi-

Core System,” In Proceedings of Design Automation Conference, page 728 – 733, June 2008.

[33] P. Kongetira, K. Aingaran, and K. Olukotun, “ Niagara: A 32-way multithreaded SPARC

processor,” in IEEE Micro, Vol. 25, Issue 2, pages 21–29, 2005.

[34] E. Kursun, C. Cher, A. Buyuktosunoglu, and P. Bose, “Investigating the Effects of Task

Scheduling on Thermal Behavior,” In Third Workshop on Temperature-Aware Computer

Systems, 2006.

[35] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler and T. Keller, “Energy

Management for Commercial Servers,” In IEEE Computer, Vol. 36, Issue 12, pages 39 – 48,

2003.

[36] W. Liao, L. He, and K. Lepak, “Temperature and supply voltage aware performance and

power modeling at microarchitecture level,” In IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 24, Issue 7, pages1042 – 1053, 2005.

[37] S. Liu, J. zhang, Q. Wu, and Q. Qiu, “Thermal-Aware Job Allocation and Scheduling for

Three Dimensional Chip Multiprocessor,” In Proceedings International Symposium on

Quality Electronics Design (ISQED), pages 390 – 398, 2010.

132

[38] Y. Liu, R. P. Dick, L. Shang and H. Yang, “Accurate temperature-dependent integrated

circuit leakage power estimation is easy,” In Proceedings of the conference on Design,

automation and test in Europe, pages 1526 – 1531, 2007.

[39] L. Ljung, “System Identification: Theory for the User (2nd Edition)”, Upper Saddle River,

NJ, Prentice-Hal PTR, 1999.

[40] R. Love, “Linux Kernel Development,” Addison-Wesley Professional, 2010.

[41] R. Marculescu, U. Ogras, L. Peh, N. Jerger, and Y. Hoskote, “Outstanding Research

Problems in NoC Design: System, Microarchitecture, and Circuit Perspectives,” In IEEE

Transaction on Computer -Aided Design Integrated Circuits and System, vol.28, no. 1, pages

3 – 21, 2009.

[42] P. Michaud, A. Seznec, D. Fetis, Y. Sazeides and T. Constantinou, “A study of thread

migration in temperature-constrained multicores,” In ACM Transaction of Architecture Code

Optimization, vol.4, no. 2, pp. 9-1 - 9-28, 2007.

[43] K. Modzelewski, J. Miller and A. Belay, “A unified operating system for Clouds and

Manycore: fos”, In MIT-CSAIL-TR-2009-059, 2009.

[44] J. Moorey, J. Chasey, P. Ranganathanz and R. Sharma, “Making Scheduling Cool:

Temperature-AwareWorkload Placement in Data Centers,” in Proceedings of USENIX

Annual Technical Conference, pages 5-18, Apr. 2005.

[45] F. Mulas, M. Pittau, M. Buttu, S. Carta, A. Acquaviva, L. Benini, D. Atienza and G. De

Micheli, “Thermal Balancing Policy for Streaming Computing on Multiprocessor

133

Architectures,” In Proceedings of Design Automation and Test in Europe (DATE), pages 734

– 739, 2008.

[46] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd and G. De Micheli,

“Temperature-aware processor frequency assignment for MPSoCs using convex

optimization,” In Proceedings of international conference on Hardware/software codesign

and system synthesis (CODES+ISSS), pages 111 – 116, 2007.

[47] V. Nollet, T. Marescaux and D. Verkest, “Operating System Controlled Network on

Chip,” In Proceedings of Design Automation Conference (DAC), pages 256 – 259, 2004.

[48] E. Pakbaznia, M. Ghasemazar, and M. Pedram,“Temperature Aware Dynamic Resource

Provisioning in a Power Optimized Datacenter,” In Proceedings of Design Automation and

Test in Europe, pages 124 – 129, 2010.

[49] V. Pamula and K. Chakrabarty “Cooling of Integrated Circuits Using Droplet-Based

Microfluidics,” In Proceedings of ACM Great Lakes symposium on VLSI, pages 84 – 87,

2003.

[50] R. Rao and S. Vrudhula, “Fast and accurate prediction of the steady state throughput of

multi-core processors under thermal constraints,” in IEEE Transaction Computer-Aided

Design Integrated Circuits System, vol. 28, no.10, pages 1559-1572, Oct. 2009.

[51] L. Shang, L. Peh, A. Kumar, and N. Jha, “Thermal Modeling, Characterization and

Management of On-chip Networks,” In International Symposium on Microarchitecture,

pages 67 – 78, 2004.

134

[52] S. Sharifi, A. Coskun, and T. Rosing “Hybrid Dynamic Energy and Thermal

Management in Heterogeneous Embedded Multiprocessor”, In Proceedings of Asia and

South Pacific Design Automation Conference (ASPDAC), pages 873 – 878, 2010.

[53] D. Shin, N. Chang, J. Choi, S. Chung and E. Chung, “Energy-Optimal Dynamic Thermal

Management for Green Computing,” In Proceedings of International Conference on

Computer-Aided Design, pages 652-657, 2009.

[54] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy and D. Tarjan,

“Temperature-Aware Microarchitecture: Modeling and Implementation,” In ACM

Transaction on Architecture and Code Optimization, Vol. 1, Issue 1, pages 94 – 125, 2004.

[55] J. Srinivasan and S. Adve, “Predictive dynamic thermal management for multimedia

applications,” In Proceedings of International Conference on Supercomputing, pages 109 –

120, 2003.

[56] R. Sutton and A. Barto, “Reinforcement Learning: An Introduction”, MIT Press, 1998.

[57] P. Tan, M. Steinbach, and V. Kumar, “Introduction to Data Mining”, Addison-Wesley,

2005.

[58] Y. Tan, W. Liu and Q. Qiu, “Adaptive Power Management Using Reinforcement

Learning,” In Proceedings of International Conference on Computer-Aided Design, pages

461 – 467, 2009.

[59] Q. Tang, S. Gupta and G. Varsamopoulos, “Energy-Efficient, Thermal-Aware Task

Scheduling for Homogeneous, High Performance Computing Data Centers: A Cyber-

135

Physical Approach,” In IEEE Transaction on Parallel and Distributed System, vol. 19, issue

11, pages 1458-1472, Nov. 2008.

[60] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Lyer, A.

Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote and N. Borkar “An 80-Tile 1.28

TFLOPS Network-on-Chip in 65nm CMOS,” In Proceedings of International Solid-State

Circuits Conference, pages 98 – 589, 2007.

[61] Y. Wang, K. Ma, and X. Wang. “Temperature-constrained power control for chip

multiprocessors with online model estimation,” In Proceedings of International Symposium

on Computer Architecture, pages 314 – 324, 2009.

[62] J. Wawrzynek, D. Patterson, M. Oskin, S. Lu, C. Kozyrakis, J. Hoe, D. Chiou, and K.

Asanovic, “RAMP: Research Accelerator for Multiple Processors,” In IEEE Micro, pages 46

– 57, 2007.

[63] I. Yeo, C. Liu, amd E. Kim, “Predictive Dynamic Thermal Management for Multicore

Systems,” In Proceedings of Design Automation Conference, pages 734 – 739, 2008.

[64] I. Yeo, E. Kim, “Hybrid Dynamic Thermal Management Based on Statistical

Characteristics of Multimedia Applications,” In Proceedings of International Symposium on

Low Power Electronics and Design, pages 321 – 326, 2008.

[65] F. Zanini, D. Atienza, and G. De Micheli, “A Control Theory Approach for Thermal

Balancing of MPSoC,” in Proceedings of Asia and South Pacific Design Automation

Conference (ASPDAC), pages 37 – 42, 2009.

136

[66] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan. “Hotleakage: a

temperature-aware model of subthreshold and gate leakage for architects,” University of

Virginia Dept. of Computer Science Technical Report, 2003.

[67] S. Zhang and K. Chatha, “Thermal aware task sequencing on embedded processors,” In

Proceedings of Design Automation Conference, pages 585 – 590, 2010.

137

Vita

Yang Ge was born in Hangzhou, Zhejiang, China on July 29
th

 1985, the son of Haitao Ge

and Mingyuan Chen. After completing his work at Hangzhou No.2 Middle School, he went to

Zhejiang University, China, where he studied telecommunication engineering and received his

Bachelor of Science in May 2007. He received his Master of Science degree in Electrical and

Computer Engineering from Binghamton University in 2009. He entered the Graduate School at

Syracuse University in 2011.

	Dynamic Thermal Management for Microprocessors
	Recommended Citation

	tmp.1361471458.pdf.ZiGOy

