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Abstract 

 

In deep submicron era, thermal hot spots and large temperature gradients significantly 

impact system reliability, performance, cost and leakage power. Dynamic thermal management 

techniques are designed to tackle the problems and control the chip temperature as well as power 

consumption. They refer to those techniques which enable the chip to autonomously modify the 

task execution and power dissipation characteristics so that lower-cost cooling solutions could be 

adopted while still guaranteeing safe temperature regulation. As long as the temperature is 

regulated, the system reliability can be improved, leakage power can be reduced and cooling 

system lifetime can be extended significantly. 

Multimedia applications are expected to form the largest portion of workload in general 

purpose PC and portable devices. The ever-increasing computation intensity of multimedia 

applications elevates the processor temperature and consequently impairs the reliability and 

performance of the system. In this thesis, we propose to perform dynamic thermal management 

using reinforcement learning algorithm for multimedia applications. The presented learning 

model does not need any prior knowledge of the workload information or the system thermal and 

power characteristics. It learns the temperature change and workload switching patterns by 

observing the temperature sensor and event counters on the processor, and finds the management 

policy that provides good performance-thermal tradeoff during the runtime. 

As the system complexity increases, it is more and more difficult to perform thermal 

management in a centralized manner because of state explosion and the overhead of monitoring 

the entire chip. In this thesis, we present a framework for distributed thermal management in 



 
 

many-core systems where balanced thermal profile can be achieved by proactive task migration 

among neighboring cores. The framework has a low cost agent residing in each core that 

observes the local workload and temperature and communicates with its nearest neighbor for 

task migration and exchange. By choosing only those migration requests that will result in 

balanced workload without generating thermal emergency, the presented framework maintains 

workload balance across the system and avoids unnecessary migration. Experimental results 

show that, our distributed management policy achieves almost the same performance as a global 

management policy when the tasks are initially randomly distributed. Compared with existing 

proactive task migration technique, our approach generates less hotspot, less migration overhead 

with negligible performance overhead. 

Temperature affects the leakage power and cooling power. In this thesis, we address the 

impact of task allocation on a processor’s leakage power and cooling fan power. Although the 

leakage power is determined by the average die temperature and the fan power is determined by 

the peak temperature, our analysis shows that the overall power can be minimized if a task 

allocation with minimum peak temperature is adopted together with an intelligent fan speed 

adjustment technique that finds the optimal tradeoff between fan power and leakage power. We 

further present a multi-agent distributed task migration technique that searches for the best task 

allocation during runtime. By choosing only those migration requests that will result chip 

maximum temperature reduction, the presented framework achieves large fan power savings as 

well as overall power reduction.  
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Chapter 1 Introduction 
 

Moore’s law states that the number of transistors on a chip doubles about every two years 

or less. With the unprecedented number of transistors integrated on a single chip, the current 

multi-core technology may soon progress to hundreds or thousands of cores era [13]. Examples 

of such system are the 80 tile network-on-chip that has been fabricated and tested by Intel [60], 

their 48 core single chip cloud computer [28] and Tilera’s 64 core TILE64 processor [8]. While 

the muti-core or many-core technology delivers extraordinary performance, they have to face the 

significant power and thermal challenges. This is because as we continue to shrink the chip sizes 

and extract the performance of our systems at the cost of higher power consumption, the ever-

increasing chip complexity and power density elevate peak temperatures of the chip and 

imbalance the thermal gradients. Raised peak temperatures reduce the life-time of the chip, 

deteriorate its performance, affect the reliability and increase the cooling cost [54]. The adverse 

positive feedback between leakage power and raised temperature creates the potential of thermal 

runaway. When mapped on a multi or many-core system, the diverse workload of applications 

may lead to power and temperature imbalance among different cores. Such temporal and spatial 

variation in temperature creates local temperature maxima on the chip called the hotspot [24]. An 

excessive spatial temperature variation, which is also referred to as the thermal gradient, 

increases clock skews and decreases performance and reliability. Elevated temperatures require 

more cooling efforts; to cool down the processor, a typical cooling fan can consume up to 51% 

power budget of a server [35][11].  

1.1 The Adverse Effects of Unmanaged Temperature 
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1.1.1 The Effects of Temperature on System Reliability 

One of the most obvious results of high power consumption is the elevated chip 

temperature, and the most serious consequence of high temperature is the harm to the system 

reliability. The followings are some common temperature related semi-conductor devices failure 

mechanism [3]: 

 Electromigration (EM): The deformation of the metal wire caused by the gradual 

movement of the ions in the metal wire due to the momentum transfer between 

conducting electrons and diffusing metal atoms. It could eventually break the 

metal wire and lead to device failure. 

 Stress Migration (SM): The deformation of the metal wire caused by the 

movement of metal atoms under the influence of mechanical stress gradients. The 

stress could be generated by differing thermal expansion rates of the materials. It 

could also break the metal wire and lead to device failure. 

 Dielectric Breakdown (DB): The dielectric fails when a conductive path forms in 

the dielectric, shorting the anode and cathode in the circuit. 

The failure rate Time-to-Failure (TF) due to these mechanisms could be expressed in the 

form of Arrhenius equation: 

                (1.1) 

 

Where   is a constant,    is the activation energy in electronvolts (eV) and   is the 

Boltzmann's constant (8.62x10
-5

 eV/K). They are all positive constants.   is the operating 

temperature of the device in Kelvin. Therefore, TF is a decreasing function of the temperature. 
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When the temperature increases, the TF will decrease exponentially. This means the device 

could fail more quickly. 

High temperature is not the only cause of system reliability issues. In addition, two other 

thermal phenomena, i.e. thermal cycling and thermal gradients, could also affect the reliability of 

the device severely. Thermal cycling means the temporal fluctuation of the operating 

temperature, and it could be caused by, for example, the normal power-up and power-down 

operation of the device. Other major sources of thermal cycling are from the variation of 

workload as well as the power management policy of the device, which could potentially switch 

the components of the device between several power modes very frequently. Thermal cycling 

could weaken the materials and cause different types of failures like dielectric cracking and 

solder fatigue etc. The failure rate due to thermal cycling could be expressed in the form of 

equation (1.2): 

         (1.2) 

 

Where    is the magnitude of the thermal cycle, while   is the frequency of the thermal 

cycle. The larger and the more frequent of the temperature swing, the bigger the failure rate is.  

Thermal gradient is the spatial imbalance of the temperature across the chip. It could be 

caused by the workload imbalance on today’s System-on-Chip (SoC) or the multi/many-core 

chip. The major problem caused by large thermal gradient is the imbalance of the interconnect 

resistance, which could lead to increased clock skew. This is very undesirable in synchronized 

digital circuits and could eventually result in timing violations.  

1.1.2 The Effects of Temperature on Leakage Power 
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Temperature is not only the consequence of the power; they actually interact as both 

cause and effect to some degree. This is because the leakage power consumption strongly 

depends on the operating temperature. According to ITRS roadmap [4], leakage power, which 

already contributes a significant portion of the total system power in current process, will 

continue to grow as the technology scales as shown in Figure 1.1. 

 

Figure 1.1 System-on-Chip (SOC) Consumer Portable Power Consumption Trends [4] 

 

Previous works have investigated the dependence between temperature and leakage 

power extensively [36][66]. And the leakage current could be formulated as: 

              
      

    

Where       and   are positive, temperature-independent constants for a given 

technology,     is the supply voltage and    is the reference leakage current for some given 
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temperature and supply voltage. We could see that the temperature scaling for the leakage 

current (and the leakage power) is       . Figure 1.2 shows the leakage current against the 

temperature curve.  

 

Figure 1.2 Leakage Current v.s. Temperature Relation[66] 

1.1.3 The Effects of Temperature on Cooling System 

Another obvious consequence of elevated temperature is the higher cooling cost. To 

guarantee that the chip operates normally, the chip has to be equipped with more expensive 

packaging. Or for a conventional heat-sink-based cooling solution, the cooling fan has to operate 

at higher speed to accommodate the extra heat generated by the chip. This is because the heat 

dissipation ability of the heat sink is determined by its thermal resistance      (h2a stands for 

heat sink to ambient) which is in turn determined by the cooling fan speed as shown in (1.3) [11].  
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(1.3) 

 

In this equation          and    are chip specific physical coefficients, and    is the fan 

speed. And the fan power consumption      is proportional to the cubic of the fan speed, i.e. 

       
 . This means high temperature not only raises the fan power consumption, but also 

reduces fan life time. 

1.2 Dynamic Thermal Management Techniques 

We have seen in the previous section that unmanaged temperature could lead to serious 

reliability, performance, power as well as cost issues. Dynamic Thermal Management (DTM) 

techniques are designed to tackle the aforementioned problems and control the chip temperature 

as well as power consumption. As long as the temperature is regulated, the system reliability can 

be improved. It has been pointed out that a moderate reduction in temperature by 10
o
C~15

o
C can 

extend the lifespan of the electronic device 2 times [34]. And a 10
o
C decrease in the magnitude 

of thermal cycles can achieve 16 times increase in mean-time-to-failure for metallic structures. 

Leakage power also drops significantly when temperature decreases. For every 9
o
C temperature 

reduction, there is 50% reduction in the leakage power [38]. This reduction is particularly 

important in the future System-on-Chip design, because the leakage power consumption is 

estimated to account for more than 50% of total chip power consumption [4]. Regulated 

temperature not only guarantees the system reliability and reduces leakage power consumption, 

but also boosts the performance. Transistor switching speed is faster in low temperature [49]. A 

balanced spatial gradient can mitigate the clock skew problem noticeably. 
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Dynamic thermal management refers to those techniques which enable the chip to 

autonomously modify the task execution and power dissipation characteristics so that lower-cost 

cooling solutions could be adopted while still guaranteeing safe temperature regulation. A DTM 

controller observes system information during runtime and takes thermal management actions 

accordingly. It maintains the system temperature below a safe threshold or reduces thermal 

violations as much as possible and produces thermal profile that is as smooth as possible with 

minimum performance overhead. 

The most important system information that is required to carry out the dynamic thermal 

management for a computing system is the chip temperature. This information can be read from 

the on-chip temperature sensors or estimated using a thermal model. In additional to the 

temperature information, application characteristics, task power consumptions, etc. are also 

needed by some state-of-the-art DTM techniques. 

1.2.1 The Difference between Dynamic Power Management (DPM) and Dynamic 

Thermal Management Techniques 

Although temperature is essentially the consequence of power consumption, and dynamic 

thermal management techniques also require modifying the power dissipation characteristics, 

and furthermore, both DPM and DTM share some actions like Dynamic Voltage Frequency 

Scaling (DVFS) and task migration, there are significant differences existing between thermal 

aware design and power aware design. First of all, the system thermal profile cannot be 

characterized by its power consumption profile alone. This is because the power consumption 

could change instantaneously, but the temperature is the cumulative effect of power consumption 

and changes gradually in time and space domain. To make up an analogy, power consumption 

acts like the current source in an RC circuit, while the temperature acts like the voltage on each 
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node. So temperature behaves like a low-pass filter, filtering out the high frequency component 

of the power consumption variation. Second, temperature is not proportional to power itself, but 

proportional to the power density, i.e.      , where   is the area. Therefore, even if it is 

impossible to reduce power consumption, but we still want to reduce the temperature, we could 

distribute the power consumption to a large area. For example, instead of consolidating all the 

threads onto one core and stressing only a small portion of the chip, it is better to assign them to 

multiple cores from a thermal perspective. Third, compared to thermal management policy, 

power management policy could have conflicting goals and potentially produce undesirable 

thermal profile. For example, a power management policy might switch the device to low power 

states very frequently to save power. This behavior could produce large and frequent thermal 

cycles and accelerate the package fatigue as mentioned in section 1.1.1. In order to achieve low 

power, power management policy might turn off some components and consolidate computation, 

which could create localized hotspots and large thermal gradients. 

1.3 Thesis Contributions 

As we could see, dynamic power management techniques are not able to tackle the 

problem related with unmanaged temperature and dynamic thermal management techniques are 

indeed necessary for thermal aware design. To perform the thermal management techniques 

effectively without hurting the system performance requires exploiting the workload 

characteristics to make intelligent management decisions. This thesis focuses on the design of 

low-overhead, performance-efficient, learning-based thermal management techniques that target 

on the computing platforms where workload information is unknown a priori (like the general 

purpose personal computer or high performance computing servers) and the thermal/power 

characteristics for different applications or even the different phases in the same application vary 



9 
 

 
 

significantly. These uncertainties impose remarkable challenges on the design and evaluation of 

DTM policy. 

The proposed learning based techniques assume there is a learning agent residing in the 

system (e.g. a delicate hardware unit or a subsystem in the OS), which is responsible for 

monitoring the system dynamics and taking appropriate thermal management actions. The 

learning agent always extracts some information from past system dynamics and fits them into a 

learning model. The learning model can be a prediction model, a reinforcement learning model 

or some other models that are suitable for the problem under investigation. Based on the given 

input, the learning model will make predictions about future system dynamics, like temperature, 

workload or some abstract reward/penalty values. The learning agent then makes control 

decisions which are most beneficial to the system (e.g. can reduce temperature most or maximize 

a reward function) based on the prediction. The learning models can be updated based on the 

outcome of the thermal management control actions. 

For applications with high temporal correlation, this work presents a learning agent that 

intelligently exploits their property and performs DTM actions at appropriate time granularity. 

For example, most of the multimedia applications such as MPEG movie clips or MP3 files are 

naturally arranged into frames. The computation load of processing each frame has high 

temporal correlation. Then the agent performs the learning-based DTM at a single frame 

granularity. 

Most of the existing dynamic thermal management techniques are centralized approaches. 

They require a controller that monitors the temperature and workload distribution of the entire 

chip and make global decisions of resource allocation. Such centralized approaches do not have 
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good scalability. As the number of processing elements grows, the complexity of solving the 

resource management problem grows super-linearly. Furthermore, a centralized monitoring and 

commanding framework incurs a large overhead, as communication between central controller 

and cores will increase exponentially [25].  

In this work, we present a framework of distributed thermal management where balanced 

thermal profile can be achieved by proactive thermal throttling as well as thermal-aware task 

migrations among neighboring cores. The framework has a low cost agent residing in each core. 

The agent observes the workload and temperature of local processor while communicating and 

exchanging tasks with its nearest neighbors. The goal of task migration is to distribute tasks to 

processors based on their heat dissipation capabilities and also ensure that each processor has a 

good mix of high power (i.e. “hot”) tasks and low power (i.e. “cool”) tasks. 

The contributions of this thesis are outlined as the following: 

 This thesis provides the reader an in-depth and detailed survey on the working 

principles and implementation details of some existing state-of-the-art dynamic 

thermal management techniques in Chapter 2. This thesis presents these 

techniques in three categories based on the actions they are: Temperature Aware 

Task Scheduling, Temperature Aware Dynamic Voltage and Frequency Scaling 

and Temperature Aware Task migration.  

 For multimedia applications, this thesis adopts a reinforcement learning-based 

algorithm to find the optimum thermal management policy during runtime. We 

consider the processor’s DTM controller as a learning agent and model the rest of 

the system, e.g., the operating temperature, the hardware and the application 
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status as the environment. After the learning agent, i.e. the DTM controller, takes 

an action (i.e., switching to a new operating frequency), it observes the 

environment and estimates the reward or penalty caused by this action. The agent 

learns from this experience and tries to improve its future action selections to 

maximize the reward (or minimize the penalty). The details of how to apply 

reinforcement learning to dynamic thermal management can be found in Chapter 

3. 

 For a many-core processor, this thesis presents a distributed thermal management 

framework where no centralized controller is required. The distributed thermal 

management agent resides in each processor, monitors its own power and 

temperature dynamics, communicates and exchanges tasks with its nearest 

neighbor so that each processor has a good mix of high power tasks and low 

power tasks. Because the communication and migration cost only happens 

between the nearest neighbors, the communication cost and migration overhead 

for each core does not increase when the number of cores in the system increases. 

 A neural network based peak temperature predictor is also presented in this thesis. 

It predicts the future peak temperature based on the workload statistics of the 

local processor and the maximum and minimum temperatures of the neighbors. 

Once trained, the neural network predictor has very low computation complexity. 

Because it takes the workload as one of the input parameters, it can give accurate 

prediction right after task migration. It can even be used to predict the temperature 

impact of a migration before the migration actually takes place as long as the 

power consumption of the task that will be migrated in or out is provided. 
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Therefore, the predictor is used not only to determine when to trigger a proactive 

task migration but also to evaluate whether a migration is beneficial. The 

predictor is part of the thermal management agent in each core. The details of the 

distributed thermal management policy and the design of the neural network 

temperature predictor are presented in Chapter 4. 

 This thesis also investigates the effects of task mapping on the joint optimization 

of cooling power and computation power for a many-core platform under a given 

workload. We show that different task mappings could change the temperature 

distribution across the system and could affect the leakage power and fan power. 

While the leakage power is determined by the average temperature, the fan power 

is determined by the peak power. Hence they require different optimization 

techniques. The detailed optimization techniques are presented in Chapter 5.   
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Chapter 2 A Survey of Dynamic 

Thermal Management 

Techniques 
 

The thermal management problem aims at finding the optimal resource management 

policy that could effectively control the peak temperature, the number of hot spots and the 

thermal gradient of a system on chip. Based on when the optimization takes place, the existing 

thermal management research can be divided into the following two major categories:  

 Offline approach: offline techniques usually target at the application specific 

embedded system that has predictable workload. They solve the temperature 

aware resource management problem at design time or compile time. 

 Online approach: online techniques target more general platform where workload 

information is unknown at the design time. They rely on state-of-the-art learning 

or control techniques to adaptively manage the hardware and software to control 

temperature. 

A great number of different dynamic thermal management actions have been investigated. 

These actions include clock gating, dynamic voltage frequency scaling, computation migration 

and hybrid methods which combine two or more techniques mentioned above. Although 

different techniques use different mechanisms and are applied in different computing 
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environments, they share the same key idea, that is, to modify the power dissipation 

characteristics of a computing system for less heat generation and a smoother heat distribution.  

The three most commonly used thermal management actions are listed as the following: 

 Temperature Aware Scheduling: This technique optimizes the task execution 

order to reduce temporal variation and peak temperature in the system. 

 Dynamic Voltage and Frequency Scaling (DVFS): This technique dynamically 

stalls the processor or scales the processor’s supply voltage and frequency to 

achieve a lower power density. 

 Temperature Aware Task Migration: This technique dynamically adjusts the task 

mapping to reduce spatial thermal gradients and peak temperature of the system. 

In this chapter, we will present one dynamic thermal management technique using each 

action. We focus on online techniques in this chapter. Unlike offline techniques, online 

techniques are usually applied to more general platforms such as general purpose personal 

computers or high performance computing servers is priori unknown and the thermal/power 

characteristics for different applications vary significantly. These uncertainties impose 

remarkable challenges on the design and evaluation of DTM policy. The core problem here is 

how the DTM policy reacts and adapts to the system dynamics (processors, applications and 

environments) so that the objectives (reliability, performance) can be well accomplished.  

2.1 Temperature Aware Task Scheduling 
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As we mentioned earlier, large temperature gradients and thermal cycles can cause clock 

skew and reliability issues. The authors of [18] aim at controlling task scheduling to achieve a 

temporally and spatially uniform temperature distribution. 

Many modern operating systems (e.g. Linux 2.6 [40]) for multiprocessors maintain a 

ready queue for each processor. A task generated on a processor would stay in the queue of the 

processor for cache affinity. The scheduler would not move the task to another processor’s queue 

arbitrarily for performance consideration. Only when there is an obvious load imbalance among 

processors, the scheduler will start to move tasks from the heavy loaded processor to light loaded 

processor. This scheduling scheme is called load balancing. However, this scheme does not take 

the temperature into consideration. Therefore it might not be able to achieve a balanced 

temperature profile. 

The authors of [18] propose several temperature aware scheduling schemes. The first 

scheme is referred as the Coolest, which sends a ready task to a processor with the lowest 

temperature. The authors further improve the Coolest method by considering the lateral heat 

transfer between neighboring processors. The second method is referred as Coolest-FLP. It sends 

tasks to those processors which have idle neighboring processors with higher priority. 

The third scheme is referred as Adaptive-Random. It is a probabilistic policy which 

considers both the performance benefits of load balancing policy and thermal benefits of Coolest 

policy. The general idea of this policy is to assign a probability value to each processor; when a 

task is ready to run, it will be sent to a processor based on its probability. The probability of a 

processor will be updated dynamically based on the following equation (2.1). 

             (2.1) 
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Where      and       are the probability after and before the update, and   is the 

incremental amount defined in the following way: If a processor’s temperature has crossed a 

temperature threshold      in the history window, then   is set to a negative value and   

      . This means that the probability of this processor drops to 0 and it will not be assigned 

with new tasks in near future. If the temperature of a processor drops below     , then   is set 

to a positive value and            , where      is the average temperature over the history 

window. This ensures that a processor with lower temperature will have a better chance to 

receive a new task. 

The authors validate the effectiveness of their scheduling policy on an 8-core 

UltraSPARC [33] based processor model using applications with different characteristics (e.g. 

CPU intensive, memory intensive and network intensive). The Adaptive-Random scheduling 

policy is able to control the hotspots (i.e., the running time above 85
o
C) down to 0.09% and the 

temporal variation (defined as the average temperature change over a window of 1000 seconds) 

down to 0.15%. This policy also reduces the spatial variation (defined as the percentage of time 

when there are cores whose temperature difference is more than 20
o
C) by about 70%. 

2.2 Temperature Aware DVFS for CMP Power Control 

In [61], the authors address the problem of joint management of chip power consumption 

and temperature distribution for a chip multiprocessor (CMP). The adopted control action is 

DVFS; and the control algorithm is based on the Model Predictive Control (MPC) theory, which 

is a well-established feedback control model with Multiple-input and Multiple-output (MIMO). 

Feedback control is an effective tool for power and temperature management due to its 

theoretically guaranteed control accuracy and stability. And MIMO controller is especially useful 
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for multiprocessor power/thermal management because first, the small overhead of per-core 

DVFS makes it possible to simultaneously change the DFVS level of multiple cores; second, the 

significant workload intensity variation and process variation among cores require them to 

response differently.  Figure 2.1 shows the system control loop architecture. At every control 

step, the power controller collects following information from CMP: the power consumption of 

the chip, the temperature of each core and the system level performance of each core. The total 

chip power consumption is the controlled variable of the control loop. Based on the collected 

information, the power controller computes the new DVFS level for each core of the CMP and 

DVFS modulator adjusts the DVFS level accordingly. The DVFS level of each core is the 

manipulated variable in the control loop. The power consumption of each core at control step   

is modeled as a variable linearly dependent on the operating frequency at step k as shown in 

equation (2.2) and its differential form is shown in equation (2.3). The total chip power 

consumption       is the summation of each core’s power consumption (2.4). Note that the 

       is the manipulated variable of the control loop and should be computed by the MPC 

controller. 

 

Figure 2.1 Feedback Control Loop for Temperature Aware CMP Power Control 
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                  (2.2) 

                        (2.3) 

               [       ] [
      

 
      

] (2.4) 

 

At control step k, the controller is going to decide the frequency settings (i.e. the 

manipulated variables)                                for the next   control steps 

such that the total chip power consumption (controlled variable) approaches the target power 

consumption following an exponential trajectory for the next   control steps while maximizing 

the system performance and satisfying the temperature constraints.   and   are called control 

horizon and prediction horizon respectively in MPC theory and they usually are equal. Based on 

these objectives, the cost function of the MIMO controller is designed as in (2.5). The first item 

in (2.5) is the difference between the chip power consumption and the reference trajectory, which 

represents the tracking error in MPC theory. And the second item represents the control penalty 

in MPC theory. The constraints for this optimization problem are the temperature constraint as 

well as the DVFS range limitation, which are all linear. Therefore at each control step, the 

controller just needs to solve a least-square optimization problem whose solution can easily be 

found using existing solvers. 

 

     ∑                         
 

   

 ∑                           
 

 

   

 

(2.5) 
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The authors of [61] implement the MPC controller on a real system with an Intel Xeon 

quad core processor and running Linux OS. The power measurements are obtained by a Digital 

Multimeter (DMM) which measures the current running through the power line to the processor. 

The temperature readings are obtained by the digital thermal sensor (DTS) residing in each core. 

The frequency scaling is enabled by the Intel Enhanced SpeedStep technology [1][2].  

2.3 Predictive Temperature Aware Task Migration 

Predictive DTM policies make control decisions based on projected future system 

dynamics. As long as the prediction is accurate, thermal emergency events can be avoided by 

taking appropriate actions in advance. Many predictive DTM policies have been proposed 

[20][17][63][10][19]. Their main difference lies in the adopted temperature prediction models 

and the DTM actions. In this section, we give a brief introduction of two predictive thermal 

management techniques [19][63]. Based on the adopted temperature prediction models, we refer 

them as “thermal aware task migration with RLS (Recursive Least Square) based temperature 

prediction” [63] and “thermal aware task migration with ARMA (Auto-Regression Moving 

Average) based temperature prediction” [19]. 

2.3.1 Thermal aware task migration with RLS temperature prediction 

The rate of temperature change of an application depends on two factors: (1) the 

difference of its current temperature and its steady state temperature; and (2) the characteristics 

of the application itself. The first factor accounts for the long term thermal behavior while the 

second factor accounts for the short term thermal behavior. Based on this observation, the RLS 

based temperature prediction model consists of two parts: Application Based Thermal Model 

(ABTM) for the short term prediction and Core Based Thermal Model (CBTM) for the long term 

prediction. 



20 
 

 
 

The ABTM predicts future temperature by observing the recent thermal behavior of the 

application and incorporating this information into a recursive least square regression model. In 

its general form, the RLS model can be expressed in equation (2.6). 

                             (2.6) 

 

where   is the variable that is going to be predicted,            are fixed functions, and 

  [          ]
  is the input vector of the model. In our case, y is the predicted future 

temperature,   are the n most recent temperature observations and   
      . Then equation 

(2.6) can be reduced to (2.7) 

                    (2.7) 

 

The   [          ] is the unknown coefficient vector which is going to be estimated 

by the RLS model. To find out  , we need a set of training data {   
   )        }. Let 

  [         ]  and   [          ] , then the relation between the variables     and 

  can be expressed in the following equation: 

      (2.8) 

 

And the coefficient vector can be solved by least square fitting using  

                (2.9) 

 

When a new set of training data   
   

       arrives, it is not necessary to use (2.9) 

again to compute new   (denoted as     ), because the computation complexity is too high 

when the size of the matrix grows. Instead, we can use the following recursive equation to update 
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 . Denote the    (   ) when we have   training data. Then, given the new training data, 

the    can be updated using the following equations: 

         
          

   

      
       

 (2.10) 

                           
     (2.11) 

 

In this way, the temperature prediction model is continuously updated as more training 

data is obtained during runtime. Please note that the dimension of the vectors and matrixes in 

(2.10) and (2.11) is always  , which is determined by the model order in (2.6). Therefore the 

computation complexity stays the same as new training data comes in. 

The CBTM model accounts for the long term thermal behavior of the application. It 

neglects the short term power variation of the application and assumes that the application runs 

at constant power. CBTM again adopts the temperature change formula given by (2.12) 

                           (2.12) 

 

where     is the steady state temperature,  and   is a thermal constant. In this equation, 

    are pre-computed for each application.   is also computed offline. It is calculated only once 

for all applications because it is determined by the thermal characteristics of the chip. Using 

(2.12), the processor temperature after time   can be predicted. 

To predict the temperature at a future time  , the authors of [63] apply both ABTM and 

CBTM and obtain two predicted temperatures       and      . The final prediction is the 

weighted sum of these two as shown in equation (2.13). 
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                          (2.13) 

 

Based on the above temperature prediction model, the authors propose a thermal aware 

task migration policy called Predictive Dynamic Thermal Management (PDTM). When a task 

running on a processor is projected to exceed the temperature threshold, it will be moved to a 

processor that is predicted to be the coolest in the future. 

The evaluation platform of this policy is an Intel Quad-core processor. Processor 

temperature can be read from the digital thermal sensor embedded in the cores. The applications 

running on the system are libquantum, perlbench, bzip2, hmmer from SPEC 2006 Benchmarks. 

The prediction model achieves very high accuracy and the temperature prediction error is only 

1.6%. Compared to the existing thermal management scheme, the proposed task migration policy 

reduces the average temperature by 7% and peak temperature by 3
o
C. 

2.3.2 Thermal aware task migration with ARMA temperature prediction 

The rationale behind the ARMA prediction model is that, when the workload is stationary, 

the temperature can be estimated accurately by regressing the past measurements. The 

formulation of the ARMA model, which is shown in equation (2.14), is similar to the RLS model 

because they are both linear regression based models. 

    ∑      

 

   

    ∑      

 

   

 (2.14) 

 

   in (2.14) is the temperature at time t and the    is called prediction error or residual 

noise. In the equation, ∑       
 
     is called the auto-regression (AR) part and the ∑       

 
    is 
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called the moving average (MA) part. Similar to the RLS model, the coefficients    and    of the 

ARMA model are obtained through online training.  

In contrast to the RLS model, the order of the AR model (i.e. p) and the order of the MA 

model (i.e.  ) are not known at the beginning of training. It is obvious that a large   and   can 

achieve higher prediction accuracy, but it will also increase the complexity of the model thus the 

runtime overhead. To get a good balance between accuracy and complexity, the training process 

adopts a trial-and-error strategy. It starts from a small order, say            , and gradually 

increases the order until some accuracy measurement achieves a satisfactory extent. The 

accuracy measurement used here is called Final Prediction Error (FPE) which is defined in 

equation (2.15) 

     
     

     
   (2.15) 

 

In this equation,   is the model order which is equal to    .   is the length of the 

training time series and   is the variance of the model residuals. Because the FPE takes both 

training error   and model complexity   into consideration, it provides a good tradeoff between 

accuracy and complexity.  

Another difference between ARMA model and RLS model is the way models get 

updated. In the RLS model, whenever a new training data arrives, the model will be updated. 

This means the model will be updated at regular time intervals, because the processor’s 

temperature is sampled periodically. This could incur some unnecessary computation overhead if 

the workload is stationary. The ARMA model uses the Sequential Probability Ratio Test (SPRT) 

to determine if the workload is drifting from the previous stationary state to a new state which 
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means there is a workload pattern change. When the workload is in stationary state, the 

prediction error sequence is a white noise signal; the error follows a fixed probability distribution 

which has zero mean and a small variance (e.g. a Gaussian distribution). When the workload 

changes, the prediction error drifts from the previous distribution which can be detected by 

SPRT. Instead of simply testing the mean and standard deviation of the prediction error, SPRT 

performs statistical hypothesis tests on the mean and variance of the residuals. 

In order to perform the hypothesis tests, a temperature prediction error history window is 

maintained online. When new temperature data arrive, the prediction error is computed and the 

history window moves forward, then the hypothesis test is performed by SPRT. Let the 

prediction error in the history window be denoted as [          ], then the SPRT tests the 

following two hypotheses: 

   :    is drawn from a distribution function with mean   and variance   .  

   :    is drawn from a distribution function with mean 0 and variance   . 

If SPRT decides    is true, then it considers the prediction error drifts from the current 

distribution and the workload pattern has changed. Therefore a model updating is needed. On the 

other hand, if    is true, then the workload pattern has not changed and is still stationary. 

Therefore, the ARMA model does not need to be updated. Please refer to [20] for more details in 

the SRPT test. 

Compared to the RLS model, the ARMA model has several advantages. First, it reduces 

the runtime model updating overhead. Second, the model order in RLS is fixed and has to be set 

manually. While in ARMA model, the model order can be a variable. This flexibility enables the 

ARMA model to achieve better tradeoff between prediction accuracy and model complexity. 
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Third, as shown in the experiments in [20], the ARMA predictor achieves higher accuracy than 

the RLS predictor when they predict a longer time in the future. The authors also show that the 

prediction accuracy of the ARMA predictor is superior compared with two other predictors, i.e. 

exponential averaging predictor and history table based predictor. 

Base on the ARMA predictor, the author proposed a Proactive Thermal Balancing (PTB) 

policy. Similar to the PDTM policy [63], this policy also moves the tasks from a processor which 

is predicted to be hotter to a processor which is predicted to be cooler.  The difference is that 

PDTM moves the current running tasks while PTB moves the tasks in the waiting queue. The 

benefits of moving tasks in waiting queue is that when current running task finishes, the 

processor has a period of idle time to cool down. Therefore, hotspots can be avoided. As a 

mechanism of migrating a waiting task in the ready queues has already been implemented in the 

OS scheduler for load balancing purposes, this technique does not introduce additional 

implementation overhead.  

Experimental results on an UltraSPARC T1 based processor model show that PTB 

reduces hot spot occurrences, spatial gradients, and thermal cycles by 60%, 80% and 75% 

respectively on average comparing to reactive thermal management. And it only incurs a 

performance cost of less than 2% with respect to the default scheduling policy for load balancing 

running on the system. 

2.4 Chapter Summary 

In this chapter, we survey four online dynamic thermal management techniques based on 

task scheduling, dynamic voltage and frequency scaling and task migration. Although the 

varieties of the application runtime characteristics and the uncertainties in user behaviors impose 
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significant challenges to online DTM, the techniques presented in this section are able to tackle 

thermal safety problems while still delivering high performance. While reactive techniques are 

able to respond to the changing of the system dynamics quickly, predictive techniques take 

actions in advance to avoid thermal emergencies.  
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Chapter 3  Dynamic Thermal 

Management for Multimedia 

Applications Using Machine 

Learning 
 

As shown in Chapter 2, dynamic thermal management techniques have been widely 

studied and employed to control the temperature for different computing platforms, from servers 

[48], general purpose computers [20], to embedded systems [66]. These works consider 

applications of various characteristics, including web applications [20], standard benchmarks 

[17][31] and multimedia applications [55][64]. Among these, multimedia applications are 

expected to form the largest portion of workload in general purpose personal computers and 

portable computing devices like smart phones [55]. In spite of their popularity, the computation 

intensity of multimedia applications is likely to produce high temperature in these platforms [64]. 

A thermal safe solution is to run the applications at lower speed or reduce the computation by 

decreasing the Quality of Service (QoS). However these solutions impact the user satisfactory. 

In this chapter, we consider the problem of dynamic thermal management for multimedia 

applications. We utilize the processor’s dynamic voltage and frequency scaling (DVFS) ability to 

control the operating temperature under a threshold while maximizing the system performance, 

i.e. minimizing the CPU time of the multimedia applications. Our DTM technique does not 

require to pre-characterize the system for its thermal and power model neither does it need any 
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prior knowledge of the workload information. It relies on machine learning algorithms to find the 

best management policy during the runtime. Compared to the existing DTM techniques [17][55] 

it provides considerable performance improvements with marginal increase in the percentage of 

thermal hotspot.  

We model the dynamic thermal management problem as a stochastic control process and 

adopt the reinforcement learning algorithm to find the optimum policy during runtime. As 

mentioned in Chapter 1, we consider the processor’s DTM controller as a learning agent and 

model the rest of the system, e.g. the operating temperature, the hardware and the application 

status as the environment. After the learning agent, i.e. the DTM controller, takes an action (i.e. 

switching to a new operating frequency), it observes the environment and estimates the reward or 

penalty caused by this action. The agent learns from this experience and tries to improve its 

future action selections to maximize the reward (or minimize the penalty).   

Most of the multimedia applications such as MPEG movie clips or MP3 files are 

naturally arranged into frames. The computation load of processing each frame has high 

temporal correlation. We exploit this property and perform the learning based DTM at a single 

frame granularity. The application status is characterized by its frame level computation load 

which can be obtained from the processor’s performance counter. 

The characteristics of the presented work in this chapter are summarized as the following: 

 This is the first work that applies reinforcement learning algorithm to solve the 

problem of dynamic thermal management. The presented approach is truly 

adaptive. The learning agent does not require having any prior knowledge of the 

environment or the system power/thermal characteristics. It learns from the 
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experience and adjusts the policy online. Therefore, it works robustly in different 

computing systems.  

 The presented learning algorithm explores the frame level temporal correlation in 

multimedia applications. The environment observation and policy adaptation are 

performed at single frame granularity. 

 The presented learning model has very small run time overhead. It only incurs a 

few table lookups and some simple arithmetic operations. 

 Instead of simply minimizing the thermal violation, our goal is to maximize the 

performance without increasing the thermal violation. 

 The presented learning model is validated on a Dell Dimension 9200 desktop PC 

with Intel Core 2 processor. All the experimental results data reported in this 

chapter are gathered with the consideration of the real implementation and control 

overhead.  

 Compared to running the application without dynamic thermal management and 

the existing DTM techniques that utilize the same event counter information, the 

learning based DTM provides better performance-thermal tradeoff. 

The rest of this chapter is organized as follows: Section 3.1 reviews the related work. We 

discuss how to apply the reinforcement learning model in detail in Section 3.2. Experimental 

results are reported in Section 3.3.  Finally, we conclude this chapter in Section 0. 

3.1 Related Work 
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Dynamic thermal management (DTM) has been studied for different types of applications 

from general purpose industry standard benchmarks to multimedia applications. Reference [31] 

and [17] focus on thermal management techniques for SPEC benchmarks. The authors of [31] 

propose to dynamically adapt some micro-architecture parameters, such as instruction window 

size, issue width, and fetch gating level, to the application characteristics and hence control the 

processor temperature. The authors of [17] propose to utilize the processor’s performance 

counter readings to detect the phase changes of application at run time and adjust the operating 

frequency accordingly to avoid thermal violations. Both these works perform the thermal 

management at a regular time interval. Although this is effective for standard benchmarks, as we 

will show in Section 3.2, it might not be the same for multimedia applications. 

There have also been a number of studies of thermal management for multimedia 

applications. Reference [64] proposes to profile the number of cycles to decode each frame. With 

this information and a temperature prediction model, an operating frequency is selected for a 

group of frames to guarantee the QoS while minimizing the temperature. Our work is different 

from [64] as we try to maximize performance while stratifying the thermal constraint. The 

thermal management scheme in [55] is based on the observation that the same type of frames has 

similar average IPC and power consumption, so the same configuration is applied to these 

frames.  

One common drawback for the aforementioned works is that they rely on certain system 

models or profiled information. For example, [31] utilizes a neural network model to predict 

future temperature for a set of architecture parameters and application characteristics while [17] 

uses a linear regression model to predict future temperature. Even though those prediction 

models are carefully characterized, they suffer from lack of adaptability. Once the model has 
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been trained or obtained, it cannot be modified. Any change in the system or environment (e.g. 

room temperature variation, chip aging) will invalidate the model and thus hit the performance of 

the thermal management scheme.  

Model free online learning techniques should be a solution to this problem. Previous 

work [58] has successfully applied the online learning model to dynamic power management 

(DPM) problems, but few works have applied the learning techniques to the DTM problem. 

3.2 Reinforcement Learning For Thermal Management 

In this section, we will first give the formulation of Q-learning in its standard form in 

Section 3.2.1 and then discuss how to apply this technique to the thermal management problem 

in Sections 3.2.2 ~ 3.2.5. 

3.2.1 The Reinforcement Learning Model 

Reinforcement learning [56] is an unsupervised machine intelligence approach that has 

been applied in many different areas. The general learning model consists of  

 An agent, with a finite action set A. 

 The environment that has a finite state space S. The actions of the agent will 

affect the future states of the environment, which in turn affects the options and 

opportunities available to the agent at later times. 

 A policy π that defines the behavior of the learning agent at any given time. It is a 

mapping from the set of environment states to the set of actions, i.e. π: S   A.  
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 A reward function r: S  A    R which maps each state-action pair to a single real 

number, (R is the real number set). A reward indicates the intrinsic desirability of 

taking an action at one particular state. 

The process of reinforcement learning is divided into multiple decision steps. We refer to 

each decision step as decision epoch. At each decision epoch, the agent takes an action according 

to current environment state. It then observes the environment for the reward/penalty caused by 

this action. The goal of the agent is to maximize the average long-term reward by trial-and-error 

interaction with a dynamic environment. It is achieved by learning the policy π, i.e. a mapping 

between the states and the actions. The agent might not select the optimum action at beginning, 

but its performance can be improved over time. 

The Q-learning algorithm is one of the most popular reinforcement learning algorithms. 

In Q-learning, the agent keeps a value function  
 
             , for each state-action pair 

and stores it in a Q-table. The value function represents the expected long-term reward if the 

system starts from state s, taking action a, and thereafter following policy π. Based on this value 

function, the agent decides which action should be taken in current state to achieve the maximum 

long-term rewards. An optimum policy    is a policy which achieves the maximum value 

function denoted as  
 
, i.e.  

 
  

  
           

 
     .  

The core of the Q-learning algorithm is to iteratively update the value function  
 
      as 

following [56]: 

                     [          
 

                  ] 
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In the above equation,   is the learning rate which determines how fast the Q value will 

adapt. The discounted factor   is between 0 and 1. 

3.2.2 Frame Based Decision Epoch 

How frequent an agent observes its environment, updates the policy and issues DTM 

command is determined by the length of the decision epoch. An appropriate decision epoch can 

help the system to learn and control effectively. Within a decision epoch, the system should have 

consistent behavior. Across multiple decision epochs, the system behavior should exhibits 

repeated patterns. Here we define a workload phase to be an execution interval during which the 

application has near identical power, temperature and performance characteristics [17]. It is 

obvious that the workload phase of an application determines the decision epoch of its DTM 

agent. 

For a multimedia application, the decision epoch can be divided in two ways: frame 

based decision epoch and equal time step decision epoch. An equal time step decision epoch at 

the granularity of 100 ms has been used for the DTM of SPEC CPU2006 benchmarks [17]. This 

is because the workload phase change of the applications in SPEC CPU2006 benchmarks can be 

detected at this granularity. (Those applications will stay in the same workload phase for several 

to tens of seconds before moving to next phase [17].) However, the same equal time step 

decision epoch is not suitable for multimedia applications. Figure 3.1 shows a segment of trace 

of retired instructions for the MPEG4 decoder from the MediaBench [6]. The upper part and 

lower part of the figure show at time interval of every 10 ms and every 5 ms respectively. The 

number of retired instructions has been reported as one of the architectural events that contribute 

most for the temperature change [17]. From this figure, we can see that instruction retired 

number is constantly vibrating and does not show obvious phase change. This is because equal 
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time epoch smoothes out the inner workload phase change of the application. On the other hand, 

Figure 3.2 demonstrates the trace of the retired instructions every frame for a total of about 200 

frames. As shown in this figure, phase change can be clearly observed with a regular pattern. 

Therefore in this work we choose frame based learning epoch. 

 

Figure 3.1 Variation of retired instructions for every 10 and 5 ms for MPEG4 decoder 

 

3.2.3 Interactions Between Agent and Environment 

Figure 3.3 presents the system model of our learning based DTM agent. The actions that 

the agent takes are the available frequency levels of the processor. At each decision epoch, the 

agent observes the current state of the environment and chooses the frequency level for the next 

frame according to the Q-values in the Q-table. The Intel’s speedstep technology [2] or AMD’s 
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PowerNow technology [1] can be used to dynamically switch the voltage and frequency of a 

processor. 

 

Figure 3.2 Variation of retired instructions at frame granularity 

 

Figure 3.3 System model 
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Everything outside the agent is considered as environment, including the processor, the 

applications and the thermal monitoring system (thermal sensors). The environment and the 

agent are closely coupled. For instance, the power consumption of the processor is linearly 

dependent on the operating frequency, which in turn determines the processor’s temperature. As 

another example, because the agent only changes the clock frequency of the processor not the 

clock frequency of the memory subsystem, its actions will affect the instruction per cycle (IPC) 

of the system. On the other hand, the environment status limits the agent’s actions in some cases 

by changing the reward/penalty value. For example, the agent is not allowed to run at full speed 

when the processor is approaching the temperature threshold. 

3.2.4 Classification of Environment States 

The environment can be characterized by many features, from the temperature and the 

power consumption of the processor, to the cache miss rate and IPC. The learning agent works 

under a discrete state space. How to map this huge and sometimes continuous feature space into 

a finite set of discrete state space has direct impact to the effectiveness of the learning algorithm. 

Here, two problems are involved.1) Which features should be selected to represent the 

environment; 2) How to discretize the selected feature space into the state space.  

The rules of thumb of selecting features to represent the environment are: first, those 

features should closely relate to our problem, i.e. performance optimization with thermal 

constraint; second, they could be observed easily. 

It is obvious that the processor’s temperature should be one of the features to represent 

the environment state as it is directly related to our optimization problem.  This information can 
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be obtained by reading the temperature sensors that are equipped on most state-of-the-art 

processors. 

We may also want to use the processor power consumption as one of the features for 

environment state, because it directly contributes to the temperature change of the processor. 

Unfortunately, this information is not easy to obtain. Therefore, we decided to use the readings 

of performance counters as a proxy for the power consumption as they reflect the processor’s 

switching activities. Besides power consumption, the performance counter readings, such as the 

execution cycles, instruction retired rate and cache miss rate, etc., also reflect the performance of 

the application programs, which is what we want to optimize. 

Our test platform, the Intel’s Core 2 Duo processor has 5 performance counters which 

could record 130 architectural events [7]. Among them, we select those events that contribute 

most to the temperature change and are most relevant to the system performance. Reference [17] 

utilizes the principle component analysis to find the contribution of each architectural event to 

the temperature change and suggests that 3 of them, i.e. the “instruction retired” event, the 

“floating point instructions executed” event and the “conditional instructions executed” event, 

play the most important roles in temperature change. However, our analysis shows that, for a 

typical multimedia application such as an MPEG-4 decoder, the variation of floating point 

instructions executed among different frames is very small. We also found that the number of 

conditional instructions executed has high correlation with the number of retired instructions and 

thus does not provide much additional information. 

We analyzed the correlations between different events and retired instructions that were 

recorded during an MPEG decoding process. TABLE 3.1 Correlation between different events 
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and retired instructions gives the selected results. The results indicate that the “last level cache 

miss” event has the least correlation with the “instruction retired” event and hence provides the 

most additional information about the system. Therefore we use the “last level cache miss” event 

together with the “instruction retired” event to represent the environment state. The former 

represents the memory activities while the latter specifies the computation activities. Combined 

together they provide a complete picture of the system. This choice also agrees with what is 

suggested in reference [32]. 

TABLE 3.1 Correlation between different events and retired instructions 

UOPS RETIRED 
BR_INST 

RETIRED 
BR_CND EXEC FP_INST EXEC 

BUS_MEM 

TRANS 

LAST_LEVEL 

$_MISS 

0.997 0.977 0.964 0.763 0.762 0.669 

 

Based on the above analysis, we will use the feature set       to characterize the 

environment, where T is the reading from the thermal sensors and   is a vector of selected event 

counter readings. In the next, we will discuss how to map the feature space into a finite state 

space to apply the reinforcement learning model. 

Note that T can be any real number within the working range, usually from 0
o
C ~ 100

o
C. 

Because it is a continuous variable, we have to discretize it to get a finite set of states. We divide 

the temperature working range into a set of disjoint intervals, i.e.      ], (     ], (     ], … , 

                   ],       , each interval         ] corresponds to a state   . Note that the 

(N+1)th interval covers all temperatures beyond the threshold. Although the temperature level 

  , …      can be set arbitrarily,  we would divide the region near the threshold temperature in 

finer granularity while leave the other region in coarse granularity. In this way when the 

temperature is approaching the threshold, the agent might take better control at finer resolution. 



39 
 

 
 

In order to classify the space of the event counter readings (i.e. P) we use the k-means 

clustering method as in [17]. We took 5 representative video clips and collect the retired 

instructions number and cache miss number for each frame, and classify them by the standard k-

means algorithm [57]. To find the optimum number of states (i.e. number of clusters), we start 

from a small number and gradually increase it until the classification error is less than 5%, which 

is defined as the ratio between square sum of all points’ within cluster distance and the square 

sum of their distance to the origin. Based on k-means clustering, we divide the event counter 

values into K states           } . Together with the N temperature states, the size of the 

resulting learning space is |N||K|. In our implementation, we set N=11 and K=10. 

3.2.5 Design of the Reward Function 

The state of the  th decision epoch is denoted as        , where    give the temperature 

at the beginning of the  th epoch and    gives the number of cache misses and the number of 

instruction retired during the  th epoch. The action taken by the agent during the  th epoch is 

denoted as   . At the end of the  th epoch (or the beginning of the      th epoch, the agent 

calculates the reward caused by the action and update the Q-function of state action pair 

          . The reward function is defined as the following: 

  (          )   {

                   

      (    )      (  )

                       

 (3.1) 

 

where      is the temperature state at the end of the ith epoch (or the beginning of the 

(i+1)th epoch), Inst(p
i
) is the number of retired instructions, Freq(a

i
) is the processor frequency 

selected by action a
i
, and state (N+1) is the temperature state that covers all temperatures beyond 
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the threshold. In this function, P, A and B are constants. The upper part of the reward function is 

the thermal violation penalty, which is a negative number. If at the end of the ith epoch, we reach 

a thermally unsafe state (i.e. T
i+1

 = N+1), then a negative reward will be received. A negative 

reward will decrease the Q-value of state action pair (T
i
, p

i
, a

i
) so that this action will be avoided 

at this state in the future.  

The lower part of the reward function is used when the system is thermally safe at the end 

of the ith epoch. In this scenario, we would like to increase the performance of the system. The 

first part of the reward function is the performance. We use the product of the number of retired 

instructions and the processor frequency to represent the performance reward.  This encourages 

the agent to select high frequency for frames with high computation demand. The intuition 

behind this is that use high frequency for complex frames can reduce more execution time than 

using it for simple frames. The second part of the reward function represents the thermal award. 

The parameters A and B provide tradeoff between temperature and performance. 

Generally, the convergence of the learning process depends on the recurrent visits of all 

possible state-action pair. We have several techniques to improve the convergence speed of the 

learning process. First, our learning policy encourages using higher frequency in each state as 

long as it is thermal safe. Therefore, the action space is reduced. So the number of recurrent 

visits on each action is increased. Second, the virtually visiting technique and variable learning 

rate technique proposed in reference [54] can be applied to further increasing the convergence 

speed. For example, if the state-action pair is              and the next state is            . 

Apparently,      is not dependent on the action. If      is in the thermal violation region, then 

we could update all state-action pair             , such that the frequency of    is bigger than 

that   . 
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3.3 Experimental Results 

3.3.1 Experiment Setups 

We carried out our experiments on a Dell Dimension 9200 desktop with Intel Core 2 Duo 

E6400 processor which has 2MB L2 cache and 1333 MHz FSB. The processor supports 8 

frequency levels: 267 MHz, 533 MHz, 800 MHz, 1.07 GHz, 1.33 GHz, 1.63 GHz, 1.87 GHz and 

2.13 GHz. The operating frequency of each core in the dual core processor can be adjusted 

separately. The operating system is Fedora 11 with Linux kernel 2.6.29. 

To monitor the temperature change of the processor, we utilize the thermal sensors 

available in each core [61]. The coretemp driver in the Linux kernel generates an interface under 

/sys/devices/ platform/coretemp.[X] directory (X is the index of each core), and the current 

temperature will be reported when the file temp1_input is read each time. The default driver only 

updates temperature readings once every 1 second. This granularity is too coarse for our frame 

based management scheme, because the decoding time for a frame is about tens of milliseconds. 

We modified the driver so that it could update its readings every 10 ms. 

We utilize Intel Enhanced SpeedStep [2] technology to adjust the frequency level. 

Similar to temperature readings, the Linux kernel provides the cpufreq driver for users to read 

and modify the operating frequency. Processors equipped with DVFS ability will have an 

interface under /sys/devices/system/cpu/cpu[X]/cpufreq/ directory (X is the index of each core). It 

has been reported in [61] that the overhead for each frequency adjustment is about 20 us, 

therefore the overhead for DVFS at every frame is under 2%. 



42 
 

 
 

To collect the performance counter readings, we utilize the pfmon 3.9 hardware 

monitoring tool [7]. Two event counters are monitored in our program, i.e. the instruction retired 

event and cache miss event. The monitoring is trigger at the end of each frame. 

We choose the MPEG-4 decoder from the MediaBench benchmark [6] as our application. 

Please note that the presented method can be readily applied to other multimedia applications, 

such as MPEG-2 decoder, H.264 decoder etc, because they have similar characteristics. We 

apply MPEG-4 decoder on 5 video clips extracted from recent movies of different genres, e.g. 

drama, action, animation.  

We compare our reinforcement learning based DVFS thermal management policy with 

the Phase-Aware dynamic thermal management policy proposed in [17]. In Phase-Aware DTM, 

performance counter values are collected every 100 ms. Then the readings are classified into 

different phases. Based on a linear temperature prediction model, the max frequency which is 

guaranteed to be thermal safe under current phase will be selected. It is important to point out the 

effectiveness of the phase aware DTM heavily relies on the accuracy of the temperature 

prediction model. We also compare our policy with two scenarios that run the entire application 

at 1.63 GHz and 1.87 GHz clock frequencies without any dynamic thermal management. 

Please note that although we use MPEG-4 decoder from MediaBench and the Dell 9200 

desktop as our platform, the proposed reinforcement learning model is not only limited to these 

specific application and platform. As long as we choose the proper decision epoch, the 

appropriate features to characterize the environment and an effective reward function, the 

proposed learning model could readily be applied to general applications under other 

architectures. For example, for a general benchmark, there is no frame based decision epoch. In 
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this case, an equal time interval decision epoch would be appropriate. On our current platform, 

the decoding process is completely implemented in software and runs on the CPU. Therefore, the 

control action is to change the frequency of the CPU. However, if the multimedia application 

runs on a IP-rich System-on-Chip, while the computation is mainly offloaded to the IP core, the 

control action could be changing the frequency of the audio or video codec. 

3.3.2 Results Analysis 

In the first set of experiments, we compare the run time and thermal violations among our 

reinforcement learning based policy, Phase-Aware policy, and two single operating frequencies 

and the results are shown in Figure 3.4 and TABLE 3.2. The thermal violation is defined as the 

percentage of time that the processor temperature is above the given threshold. We use 1.63 GHz 

as the base line frequency and set the peak temperature under this frequency as the thermal 

threshold. The reason that we use a floating temperature threshold instead of a fixed temperature 

threshold is to cancel the impact of the ambient temperature, which cannot be controlled by us. 

We do not distinguish the violation temperatures because we found in our experiments, all 

violation temperatures are within 5
o
C. Using the next available higher level frequency could 

reduce the run time significantly; however, without any thermal management, it also incurs large 

thermal violations. The average thermal violation for 1.87 GHz is 36.65%. On the other hand, 

learning based policy provides large performance improvement with very small thermal violation. 

For example, our Learning policy improves the run time by 22.15% and 7.53% over the 1.63 

GHz policy and the Phase-Aware policy, while only incurs 2.38% thermal violation. And 

compared to the 1.87 GHz clock frequency, the Learning policy reduces thermal violation 

significantly while maintaining the similar run time. The reason that the Learning policy has 

marginal higher thermal violation than the 1.63 GHz and the Phase-Aware policy is because, 
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unlike the Phase-Aware policy, it does not employ a temperature prediction model and has to try 

frequency settings at different states. Therefore, the Learning policy will make some mistakes 

“on purpose” in order to learn the optimum policy. 

 

Figure 3.4 Comparison of run time for different policies 
 

TABLE 3.2 Comparison of thermal violations in percentage of time 
Policy Clip1 Clip2 Clip3 Clip4 Clip5 

1.6G 0 0 0 0 0 

Phase-Aware 0.49 0.4 0.65 0.25 0 

Learning 1.78 3.31 2.83 1.26 2.7 

1.8G 33.66 60 21.95 42.65 24.98 

 

We observed in our experiments that Learning based policy is more aggressive than the 

Phase-Aware policy. This is illustrated in Figure 3.5 Temperature and frequency comparison 

between Learning and Phase-Aware, which shows the temperature variation (upper part) and 

operating frequency (lower part) for an interval of 100 frames. The green circle line shows the 

data for the Phase-Aware policy while the red dashed line shows the data for the learning policy. 

We also plot the number of instruction retired for each frame in the lower figure (the blue line). 

As shown in the figure, both control policies run at the thermal threshold 48
o
C for most of the 
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time, while the Learning policy incurs minor thermal violation. The Phase-Aware policy fix the 

frequency at 1.87 GHz. while Learning based algorithm is able to perceive the state change at the 

frame granularity and learns a control policy that alternates the clock frequency between 2.13 

GHz and 1.87 GHz. 

 

Figure 3.5 Temperature and frequency comparison between Learning and Phase-Aware 
 

Figure 3.6 shows the percentage of time that Learning and Phase-Aware policies run at 

each frequency. As shown in the figure, learning policy was able to run at the highest frequency 

for more than half the time, while the Phase-Aware policy is more conservative and runs at the 

second highest frequency for most of the time. 

Our Learning policy is very flexible. We can achieve different performance-thermal 

violation trade-offs by changing the parameters in the reward function. In the second set of 

experiments, we vary the thermal violation penalty PT in the reward function from 500, 1000 ~ 
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10000 by a step of 1000 and obtained a set of trade-off points which are shown in Figure 3.7. 

The value of PT is also shown in the figure. When the thermal violation penalty is small, the 

learned control policy tends to be more aggressive. On the other hand, when the penalty is large, 

the learned control policy tends to be more conservative. This trade-off is a unique property of 

our Learning policy and could not be achieved by the Phase-Aware policy. This property could 

be useful when the reliability is considered as a resource that can be used to trade for 

performance improvement. 

 

Figure 3.6 Percentage of time of each frequency for Learning and Phase-Aware policy 
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Figure 3.7 Trade-off between run time and thermal violation 

 

In the last set of experiments, we tested the impacts of different environment state 

representations to our learning policy. We tested three kinds of state representations: retired 

instructions with cache misses, retired instructions only and cache misses only. We applied the 

same Q-learning algorithm using these state representations and compared the run time and 

thermal violations. TABLE 3.3 shows that combining these two variables together could result in 

optimum performance. Compared to systems using only retired instructions or cache misses, in 

average, it reduces the run time by 3.82% and 5.16% respectively and also has 0.974% and 

1.108% lower thermal violations respectively. The results indicate that the learning agent 

receives more information about the environment when monitoring these two variables, and 

hence makes better control decisions. 

TABLE 3.3 Comparison of different state representation 

Clip # State Representation Inst + Cache Inst only Impr. (%) Cache only Impr. (%) 

Clip 1 
Violations (%) 3.80 4.65 0.85 5.58 1.78 

Run time (Sec) 40.70 42.61 4.71 43.53 6.96 

Clip 2 Violations (%) 4.90 5.16 0.26 4.94 0.04 
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Run time (Sec) 41.02 40.90 -0.28 42.81 4.37 

Clip 3 
Violations (%) 5.24 6.30 1.06 5.47 0.23 

Run time (Sec) 42.81 44.79 4.63 47.49 10.95 

Clip 4 
Violations (%) 3.66 5.90 2.24 6.25 2.59 

Run time (Sec) 45.32 47.40 4.60 45.20 -0.27 

Clip 5 
Violations (%) 2.53 2.99 0.46 3.43 0.90 

Run time (Sec) 37.35 39.38 5.45 38.77 3.79 

 

To compare our algorithm with other learning algorithm, we refer to the reference [27]. It 

proposed a reinforcement learning based algorithm similar to us with multiple optimization 

objectives, i.e. temperature, power and performance. And it compare with an expert-based 

learning algorithm proposed in [23]. Their results show that when the temperature constraint is 

tight, reinforcement learning based algorithm could finish the application faster than the expert-

based learning algorithm. 

3.4 Chapter Summary 

In this chapter, we presented reinforcement learning based dynamic thermal management 

method for multimedia applications. The agent learns the workload pattern of the application 

based on the performance counter readings, and adjusts the processor’s operating frequency at 

the beginning of each frame to optimize the performance while ensuring thermal safety. We 

implemented our learning based DTM policy on a personal computer and tested it using real 

application. Our experimental results show big performance improvement with only marginal 

thermal violations compare to a thermal management policy that also based on workload phase 

detection.  
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Chapter 4 Dynamic Thermal 

Management for Many-core 

System 
 

Most of these existing techniques [18][20][31][42][45][46][52][61] presented before or in 

the literature are centralized approaches. They require a controller that monitors the temperature 

and workload distribution of each core on the entire chip and make global decisions of resource 

allocation. Such centralized approaches do not have good scalability. First of all, as the number 

of processing elements grows, the complexity of solving the resource management problem 

grows exponentially. Secondly, a centralized resource management unit that monitors the status 

and issues DTM commands to each core generates a huge communication overhead in many-

core architecture, as communication between the central controller and cores will increase 

exponentially with the number of cores [25]. Such overhead will eventually affect the speed of 

data communication among user programs and also consume more power on the interconnect 

network. Finally, as the size and the complexity of the many-core system increase the 

communication latency between the central controller and the cores increases, this leads to a 

delayed response and sub-optimal control. 

In this chapter we present a framework of distributed thermal management where 

balanced thermal profile can be achieved by proactive thermal throttling as well as thermal-

aware task migrations among neighboring cores. The framework has a low cost agent residing in 

each processing element (PE). The agent observes the workload and temperature of the PE while 
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exchanging tasks with its nearest neighbors through negotiation and communication. The goal of 

the proposed task migration is to match the PE’s heat removal capability to its workload (i.e. the 

average power consumption) and at the same time create a good mix of high power (i.e. “hot”) 

tasks and low power (i.e. “cool”) tasks running on it. As each agent monitors only the local PE 

and communicates with its nearest neighbors, the presented framework achieves much better 

scalability than the centralized approach. We refer to the presented technique as distributed 

thermal balancing migration (DTB-M) as it aims at balancing the workload and temperature of 

the processors simultaneously. 

A steady state temperature based migration (SSTM) scheme as well as a temperature 

prediction based migration (TPM) scheme are presented in this chapter. The first migration 

scheme considers the long term thermal behavior of tasks, and distributes tasks to PEs based on 

their different heat removal capabilities. The second migration scheme predicts the thermal 

impact of different workload combinations and adjusts the task allocation in a neighborhood so 

that all the PEs get a good mixture of hot tasks and cool tasks. The two migration schemes are 

complementary to each other with the first considers long term average thermal effect and the 

second considers short term temporal thermal variations. Both SSTM and TPM methods are 

proactive migration schemes. Together they provide progressive improvement that reduces 

thermal gradients and prevents thermal throttling events. 

As part of the thermal management agent, a neural network based temperature predictor 

is also presented in this chapter. It predicts the future peak temperature based on the workload 

statistics of the local PE and some preliminary information from the neighboring PEs. 

Comparing to the temperature predictors proposed in previous works [20][63], our neural 

network predictor has several advantages. First of all, it only has to be trained once and after that 
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the recall process has very low computation complexity. Secondly, because it takes the workload 

information as one of the input parameters, it can give accurate prediction right after task 

migration. This is the major difference between our prediction model and the previous prediction 

models ([20] and [63]) which need an online adaptation phase when workload changes. Finally, 

our model can be used to predict the temperature impact of a migration before the migration 

physically takes place, as long as the power consumption of the task to be migrated in or out is 

known. Therefore, the predictor is used not only to determine when to trigger a proactive task 

migration but also to evaluate whether a migration is beneficial. 

The following summarizes the key contributions of the DTB-M thermal management 

framework. 

(1) No centralized controller is required in this framework. The distributed thermal 

management agent communicates and exchanges tasks only with its nearest 

neighbors. Therefore, the communication cost and migration overhead for each 

core does not increase as the number of PEs on the chip increases. 

(2) Comparing to the existing temperature prediction models ([20][63]), the neural 

network based peak temperature predictor works more robustly especially during 

the time when the workload changes, which usually happens after task migration. 

Comparing to the existing proactive thermal-aware task migration, the presented 

migration policy results in lower peak temperature and reduces the number of thermal throttling 

events. Experimental results show that, in average, the DTB-M reduces the occurrence of 

hotspots by 29.8% at 0.98% performance overhead compared to the Proactive Thermal 
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Balancing (PTB) algorithm proposed in [20]. Furthermore, the DTB-M also has much lower 

migration overhead due to its distributed nature. 

Comparing to the work in [26], this work provides the following two major extensions. 

The first major extension of the chapter is a thorough study of the performance of neural 

network model. The investigation covers three areas. (1) We varied the size (number of neurons) 

of the neural network model and compared their prediction accuracies. The results show that 

fairly good prediction accuracy could be achieved with very small size neural network. (2) We 

also examined the impact of input feature set selection on the prediction accuracy. The above 

analysis leads to an improved neural network model with better accuracy and computation 

complexity tradeoff than the one presented in our previous work [26]. (3) We compared our 

neural network model with an improved auto-regression moving average (ARMA) prediction 

model proposed in [20]. The improvement is added in order to have a fair comparison as the 

original ARMA model does not consider as many input information as we do in the neural 

network model, and this impairs the accuracy. We test the accuracies of these two models not 

only on systems with stable workload but also on systems with dynamic workload where tasks 

start, complete and migrate from time to time. 

The second major extension of the chapter is the enriched experimental results section. 

We investigated the impact of different prediction models on the efficiency of the presented 

migration policy. We also evaluated the performance of the SSTM and TPM policies separately 

in order to assess their individual contributions to the thermal management. The results show that 

the SSTM policy gives more hotspot reduction and leads to better system performance; therefore 

it should be assigned with higher priority during the runtime. However, using TPM following 
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SSTM can give us extra reduction in hotspots and improvements in system performance. We 

further demonstrate the effectiveness of using distributed control by applying the same migration 

policy in a global manner. The results show that although in average the global policy has about 

13% less hotspot than the distributed policy, its migration overhead is 58% higher. Finally, we 

compared our migration policy with the PTB policy proposed in [20]. 

The rest of the chapter is organized as follows: Section 4.1 reviews the previous work. 

Section 4.2 gives the semantics of the underlying many-core system and the application model. 

We give an overview of our thermal management policy in Section 4.3, while the detailed 

prediction model and migration schemes are presented in Section 4.4 and 4.5 respectively. 

Experimental results are reported in Section 4.6. Finally, we conclude this chapter in Section 4.7. 

4.1 Related Work 

In a many-core system, the heat dissipation capability differs from processor to processor. 

In [37] an algorithm is proposed to map and schedule tasks based on the thermal conductivity of 

different processors. In [52][42], the authors proposed a task allocation and frequency 

assignment algorithm which use exhaustive search to find a location and a voltage/frequency 

setting for incoming tasks to achieve energy saving and balanced temperature. The author in [42] 

proposed a clock gating and thread migration based method which maximizes system 

performance and minimize the number of migrations while maintaining the temperature under a 

desired constraint and guaranteeing fairness between threads. The throughput of an MPSoC 

system under a maximum temperature constraint has been studied in [50], and they derived an 

approximate analytic expression of system throughput depend on several parameters of interest. 
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Thermal management of on-chip interconnect network is addressed in [51]. The authors 

first proposed an architecture thermal model for on-chip networks. Based on this model, they 

further proposed ThermalHerd, a framework which uses distributed thermal throttling and 

thermal aware routing to tackle thermal emergencies.  

Proactive thermal management based on runtime task migration has been proposed in 

references [20] and [63]. Both of them predict the future temperature as a projection of the 

history temperature trace. Although these predictive models are very accurate in most 

circumstances, they have some limitations. First of all, both models have to be updated and 

adjusted at runtime. This could introduce adaption overhead. Secondly, both models predict the 

future temperature solely from the temperature history. For a system with frequent task 

migrations, history trace does not reflect future temperature because the workload changes 

dramatically. The predictor cannot give accurate prediction until it has adapted to the new 

workload which may take a long time.  

Unlike the prediction model proposed in [20] and [63], our neural network based 

prediction model can overcome the limitations mentioned previously. Our model does not rely 

on the history temperature. Instead it reveals the relation between temperature and workload. It is 

trained offline; and does not need an online adaption phase. As the model is trained separately 

for each core on the chip, it inherently takes into account the core location and heat dissipation 

ability. 

4.2 System Infrastructure 

A tile-based network-on-chip (NoC) architecture [22] is targeted here. Each tile is a 

processor with dedicated memory and an embedded router. It will also be referred to as core or 
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PE in this chapter. All the processors and routers are connected by an on-chip network where 

information is communicated via packet transmission. We refer to the cores that can reach to 

each other via one-hop communication as the nearest neighbors. The presented DTB-M 

algorithm moves tasks among nearest neighbors in order to reduce overhead and minimize the 

impact on the communication bandwidth.  

In an NoC, the latency and energy for transferring a data packet from one PE to another is 

proportional to the number of hops along the path [29][41]. If we consider the congestions, this 

relation could be super linear due to the buffering overhead at each router. Limiting the 

communication to nearest neighbors cuts the communication cost (including both latency and 

energy) by reducing the communication distances and eliminating congestions.  

We assume an existence of temperature sensor on each core. A temperature sensor can be 

a simple diode with reasonably fast and accurate response [24].  

We assume that a dedicated OS layer is running on each core that provides functions for 

scheduling, resource management as well as communication with other cores. This is a trend 

pointed out by some literatures in OS research for many-core and NoC (Network-on-Chip) 

systems [43][47]. Examples of such system are Intel’s single-chip cloud computing (SCC) 

platform [28] and RAMP (Research Accelater for Multiple Processors) [62].   

The presented DTB-M algorithm is implemented as part of the OS based resource 

management program which performs thermal-aware task migration. We assume that each core 

is a preemptive time-sharing/multitasking system. We focus on batch processing mode, where 

pending processes/tasks are enqueued and scheduled by the agent. Each task occupies an equal 

slice of operating time. Between two execution slices is the scheduling interval in which the 
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agent performs the presented DTB-M algorithm and the OS switches from one task to another. 

The scheduling intervals of different cores do not have to be synchronized. Because the context 

switch overhead is very small compare to the execution interval (e.g. in Linux), and our 

algorithm has very low overhead, we assume that the duration of the scheduling interval is 

negligible comparing to that of the execution interval.  

In this work, we do not consider cores that support for simultaneous multithreading (SMT) 

because it is anticipated ([13] and [30]) that future many-core platform is composed of large 

number of weaker and smaller cores with less transistors and power consumption, therefore, they 

are more likely to be single-threaded cores.  However, with some modification in the temperature 

prediction models, the same DTB-M algorithm could be applied to systems with SMT cores. 

4.3 Distributed Thermal Management Policy 

In this section we present the details of the distributed proactive thermal balancing 

migration (DTB-M) policy. TABLE 4.1 summarizes the notations that will be used in this 

chapter. 

TABLE 4.1 List of symbols and their definitions 

Symbol Definition 

LTi The list of tasks running on core i 

|LTi| The number of tasks running on core i 

i, A task in LTi 

Pi The power of i, 

Ti Current temperature of core i 

Ni The set of nearest neighbors of core i 

Tm Temperature threshold to trigger  the DTB-M algorithm 

Tdiff Threshold to trigger thermal balancing 

ntdiff Threshold to trigger workload balancing 

tslice Execution interval 
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As we mentioned before, each PEi is a preemptive system and has a set of tasks LTi. Each 

task occupies an equal slice of execution time tslice. Between two execution intervals is the 

scheduling interval. Our DTB-M policy is performed in scheduling interval. The PE also 

switches from one task to the next task at the scheduling interval. It is assumed that each task in 

LTi will be running for a relatively long period of time and its power consumption has been 

profiled or can be estimated. For example, it is reported in [15] that more than 95% accuracy can 

be achieved in power estimation using information provided by performance counters that are 

available in many modern processors. In the rest of the chapter, we refer to the power 

consumptions of all tasks in LTi as the “workload” of PEi and we refer to the different 

combinations of tasks in the LTi as different “workload patterns” of PEi. Both information can 

easily be observed by OS. 

 

Figure 4.1 Master-Slave execution protocol 
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The DTB-M policy basically can be divided into 3 phases: temperature checking and 

prediction, information exchange and task migration. Figure 4.1 shows the flowchart of the 

DTB-M execution in the ith core. A DTB-M agent could be in either master mode or slave mode. 

A DTB-M master initiates a task migration request while the DTB-M slave responds to a task 

migration request. Please note the master is equivalent to the sender and the slave is equivalent to 

the receiver in other multi-agent context. A DTB-M agent is in slave mode by default. It will 

enter the master mode if and only if any of the following three scenarios are true:  

(1) The local temperature Ti reaches a threshold Tm in the last execution interval. In this 

case, hotspots are generated, and the DTB-M agent will first throttle the processor to let it cool 

down before continue to execute.  

(2) The predicted future peak temperature exceeds the threshold Tm and the current peak 

temperature is larger than Tm-δ where δ is a temperature margin. Note that we do not take actions 

unless the difference between the current peak temperature and the threshold is less than the 

margin.  

(3) The temperature difference between the local core and the neighbor core exceeds the 

thermal balancing threshold Tdiff.  

Any of the above three scenarios could cause adverse effects. The first two scenarios 

indicate (potential) hotspots generation while the last scenario indicates high thermal gradients. 

Therefore, a task migration request will be initiated. 

A DTB-M master sends task migration requests to its nearest neighbors. Because the 

scheduling intervals in all processors are not synchronized, the requests are not likely to be 

checked and responded by the slave agents right away. On the other hand, because all cores 
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adopt the same execution and scheduling interval, it is guaranteed that all slave agents will 

respond within one tslice after the requests are issued. 

The asynchronous communication between master and slave agents is explained by the 

example shown in Figure 4.2. It shows a complete execution cycle of DTB-M policy starting 

from condition check phase to task migration. When an agent first enters its scheduling interval 

and becomes a master, it broadcasts a migration request in its neighborhood and then continues 

task execution. 

 

Figure 4.2 Master-slave communication 
 

After receiving the response, the master decides which tasks to migrate during its next 

scheduling interval and sends the migration command to slave. The tasks are migrated from 

master to slave at this time. After sending a response, the slave ignores any possible incoming 

requests from other master agents until it receives the migration command from the original 

master. Tasks can be migrated from slave to master at this time, which marks the end of DTB-M 

policy cycle.  

To make migration decisions, a master DTB agent considers both load balancing as well 

as thermal balancing. First, a load balancing process is triggered which migrates tasks one way to 
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balance the workload between the master and the slave if the workload difference between them 

exceeds the threshold ntdiff, which is measured by |      |   ||             . The detailed workload 

balancing policy is presented in section 4.5.4. If there is no workload imbalance, then the thermal 

balancing process is triggered.  

The main idea of the DTB-M policy is to exchange tasks between neighboring PEs, so 

that each PE can get a set of tasks that produces fewer hotspots. The DTB-M policy is composed 

of two techniques. Both of the techniques have quadratic complexities to the number of tasks in 

the local task queue. The first technique is a Steady State Temperature based Migration policy 

(SSTM). It distributes tasks to cores based on their different heat dissipation abilities. The second 

technique is a Temperature Prediction based Migration policy (TPM), which relies on predicted 

peak temperatures of different task combinations to make migration decisions. It ensures that 

each core can get a good mixture of high power and low power tasks without having thermal 

emergency. The two techniques are complementary to each other with the SSTM focuses on long 

term average thermal effect and the TPM focuses on short term temporal variations. The main 

computation of the SSTM is performed by the masters while the main computation of the TPM is 

performed by the slaves. 

The DTB-M agent is not a separate task but resides in the kernel code. For example, it 

can be integrated with the Linux task scheduler, which will be called each time when a task 

finishes its current time slice and gives up the CPU.  

4.4 Temperature Prediction Model 

Instead of projecting the future temperature based on a sequence of history temperatures, 

we model the peak temperature of a processor as a function of a set of features collected from 
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local processor and its neighboring processors within a history window, and approximate this 

function using a neural network. Our feature set includes not only the temperature information 

but also the workload information. Because the relation between temperature and workload is 

relatively stable when the layout and packaging style of the chip is given, the neural network 

needs to be trained only once.  

The rest of the section is organized as follows. Subsection 4.4.1 presents our neural 

network prediction model. Subsection 4.4.2 extends the ARMA prediction model proposed in 

[20]. And Subsection 4.4.3 compares the performance of the two prediction models. 

4.4.1 Neural Network Based Temperature Prediction Model 

The peak temperature predictor will be used in the temperature checking/prediction phase 

to determine if a master mode DTB-M will be triggered and also in the information exchange 

phase to find out if a TPM migration is beneficial or not. Therefore, it should not only give 

accurate peak temperature estimation when the PE continues the current workload pattern, but 

also project the temperature change before dramatic workload changes. 

Temperature prediction in a timesharing/multitasking system is challenging. For 

example, Linux system makes context switch every tens of milliseconds. Different tasks have 

different power consumptions and therefore display different thermal characteristics. When 

running the combination of these tasks, the temperature of a PE would oscillate rapidly, making 

accurate temperature prediction difficult. Fortunately, we observed that the local peak 

temperature for a given set of tasks changes much slower compared to the instantaneous 

temperature. For example, Figure 4.3 shows a 12 seconds long temperature trace of a processor 

time-multiplexed by a set of tasks randomly picked from SPEC 2000 benchmarks. We sampled 
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the trace at a time step of 50ms. We can see that, for a given workload pattern (i.e. a given 

combination of tasks in the ready queue), the instantaneous temperature variation of the PE can 

be as large as 8
o
C and it changes rapidly while the peak temperature changes much slower and 

the variation is less than 2
o
C. Similar observation has been reported in reference [16]. Our 

second observation is that the peak temperature strongly depends on the task combinations 

running on the PE. As shown in Figure 4.3, there are five different workload patterns running on 

the PE. The temperature curve exhibits different characteristics during each workload pattern and 

the local peak temperature is changing considerably from one pattern to another. Because a high 

peak temperature causes the thermal emergency, here we are interested in predicting the PE’s 

peak temperature in the near future given the set of tasks (i.e. the workload pattern) on this 

processor. 

 

Figure 4.3 Example of instantaneous and peak temperature change 
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We adopt the neural network model for the peak temperature prediction. Neural Network 

has been widely used in pattern recognition and data classification because of their remarkable 

ability to extract patterns and detect trends through complex or imprecise data [9]. It is composed 

of a number of interconnected processing elements (i.e. neurons) working together to solve a 

specific problem. A neural network model can be trained through a standard learning process. 

After the training process, the model can be used to provide projections on the new data of 

interest.  

The general architecture of a neural network model is shown in Figure 4.4. The model 

may have several layers, and each layer implements the function           where      is a 

transfer function, W is a weight matrix, b is a bias vector, and I and a are input and output 

vectors. The sizes of W and b are m-by-s and m-by-1, where s is the dimension of the input 

vector and m is the number of neurons in this layer. Consequently, the output vector a has the 

dimension m-by-1. For a multi-layer neural network, the relation between the input of the model 

and the output of the model can be characterized by equation (4.1), where fk is the transfer 

function, Wk is the weight matrix and bk is the bias vector for the kth layer respectively, and p is 

the input vector to the neural network. 

 

Figure 4.4 Neural network structure 
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                              (4.1) 
 

The training of the neural network predictor is an offline procedure and needs to be done 

only once. Therefore, here we only consider the complexity of the recall procedure, which is 

used online to predict the peak temperature. The recall procedure has very low complexity, 

which involves only ms+m multiplications and ms+2m+1 additions. 

In this chapter, a two-layer neural network as shown in Figure 4.5 is applied for peak 

temperature prediction. It has a hidden layer, and an output layer. There is only one neuron in the 

output layer because the output has to be a scalar variable. The number of neurons in the hidden 

layer should be selected to provide a good balance between the prediction accuracy and 

computing complexity. Later in this section we will show that, one neuron in the hidden layer is 

enough to provide good prediction accuracy. We use tansig and purelin functions as the transfer 

functions for the hidden layer (f1) and the output layer (f2) respectively. They are defined as the 

following two equations. 

           
 

          
   (4.2) 

              (4.3) 
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Figure 4.5 Neural network predictor architecture 

A set of features relevant to the peak temperature prediction are selected as the inputs to 

the neural network. They can be divided into 2 categories, i.e. features collected from local 

processor and features collected from neighbor processors. The local feature consists of two 

variables. They give the average power consumption and maximum power consumption of tasks 

running on the local processor. For the ith core, they can be calculated as∑    
            

, and 

         
    

  respectively. The feature set for neighbor information consists of 3 variables for 

each neighboring processor. They specify the recent highest temperatures in a history window, 

the average power consumption and the maximum power consumption of each neighboring 

processor. Overall there will be      input variables to the neural network where n is the 

number of neighboring processors of the current PE. 

A neural network based peak temperature predictor is trained for each processor. The 

training process uses the fast and memory efficient Levenberg-Marquardt algorithm [31] 

provided by Matlab neural network toolbox. The training set is generated by running 600 groups 

of randomly picked synthetic workload on our many-core simulator and recording the peak 
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temperature of each PE for different workloads. Each group of workload consists of 144 

artificially generated software programs randomly distributed across the many-core system. Each 

software program in the training workload has constant power consumption. Note that these 

artificially generated software programs are used only for the training purpose. All our 

experiments in the rest of the chapter are based on benchmarks randomly picked from SPEC 

2000, Mediabench and MiBench. There is no overlapping between our testing set and training set. 

More details on the testing programs are provided in Section 4.6. Because the neural network 

model is trained for each core on the chip separately, these models are able to capture the core to 

core process variations. 

It is important to point out that the neural network model is based on an assumption that 

the peak temperature of a core is a deterministic function of all the features aforementioned plus 

some white noise. A training set that covers all possible feature settings will yield the best model. 

Therefore, the longer training set gives better training quality. However, it also increases the 

training time. The size of our training set (i.e. 600 vectors) is selected for a balanced training 

time and quality.  

In general, the accuracy of the prediction can be improved by adding more neurons in the 

hidden layer. However, this will also increase the complexity of training and recall. Experiments 

have been conducted to evaluate the sensitivity of the prediction accuracy to the size of the 

neural network. TABLE 4.2 gives the relation between the size of the neural network and its 

accuracy for the peak temperature prediction. The first row specifies the number of neurons in 

the hidden layer while the second row gives the Mean Square Error (MSE) of the estimation. 

When there is 1 neuron in the hidden layer, the MSE is 0.068. Further increasing the value of m 
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will not improve the accuracy significantly but introduce higher computation complexity. 

Therefore we set m equal to 1 for all PEs. 

TABLE 4.2 Prediction Accuracy vs. the Size of Neural Network 

Order 1 2 3 4 5 7 10 15 

MSE 0.068 0.225 0.040 0.038 0.090 0.044 0.045 0.048 

Avg. err. -2e-05 -0.0020 -0.0017 -0.0013 0.0077 -0.0030 -0.0018 0.0010 

 

Because the complexity of the neural network is proportional to the size of its input 

vector, next, we investigate the effect of feature selections on the prediction accuracy in order to 

find out the set of features that gives the best tradeoff between prediction accuracy and 

computing complexity. We divide the input into 4 groups: (1) local average power, (2) local 

maximum power, (3) neighbor temperature information, and (4) neighbor power information. 

We carried out extensive random simulations of a 6-by-6 many-core processor to find out how 

the feature selections can affect the peak temperature prediction. Details of the simulator are 

provided in section 4.6. 

 

Figure 4.6 Prediction error for neural networks based on different feature groups 
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Figure 4.6 gives the MSE and the input size of neural network models based on different 

combinations of feature groups. It is not surprising that including all 4 feature groups can result 

in the most accurate model and the smallest MSE, which is 0.041. If only self power and 

neighbor temperature (i.e. feature groups 1, 2 and 3) are considered, the MSE is 0.433. Finally, if 

the model only takes neighbor information (i.e. feature groups 3 or 4) as the input, the derived 

model is most inaccurate and the MSE can be as high as 4.977. Therefore, in this work, we build 

our neural network based on the entire four feature groups. 

Unlike other prediction models [20] and [63], we do not invoke the prediction at every 

time step. Instead, the predictor will be invoked when the core temperature exceeds the predicted 

value or when the workload pattern in the PE changes. Note that the workload pattern is 

determined by the set of tasks in the current ready queue. It will be changed if a task is 

generated, completed or migrated. These events can be monitored by the OS. For a task with 

several phases that have different power and thermal characteristics, we consider each phase a 

single task. New predictions will be made whenever a phase change is detected. Techniques for 

program phase change detection can be found in [17]. 
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Figure 4.7 The temperature prediction of neural network model 

As an example, Figure 4.7 shows the temperature trace of a PE and the predicted peak 

temperature given by the neural network. The temperature trace is generated by running several 

CPU benchmarks on our many-core simulator. During 12 seconds simulation time, tasks migrate, 

start or complete randomly. The workload information at different time is denoted at the bottom 

of the figure. While the blue line gives the trace of the real temperature, the green line gives the 

predicted peak temperature. As we can see, the predictor is invoked every time the workload 

pattern changes and it is able to track the peak temperature accurately.  

4.4.2 Generalized ARMA Prediction Model 

In [20], Coskun et al. proposed to utilize the auto-regression moving average model to 

predict a PE’s future temperature based on the previous temperature trace. The model is given by 

equation (4.4), where    is the temperature at time t,     is the prediction error,    and    are the 

coefficients. It consists of an auto-regressive (AR) part up to order p, which is on the left side of 

the equation, and a moving average (MA) part up to order q, which is on the right side of the 
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equation. To utilize the ARMA model, we need to first identify the order of the model, and then 

compute the coefficients using least square fitting, and finally check the residuals to ensure the 

validity of the parameters. 

    ∑        

 

   

    ∑        

 

   

 (4.4) 

 

This model works very well when the temperature changes smoothly or there is a 

repeated pattern in the temperature change. However, it has two major limitations. Firstly, in a 

multitasking system where threads start, finish and migrate dynamically, the adaptation time for 

the ARMA model is overwhelming. For example, in our experiment, we observed that the 

adaptation can be more than 50% of the execution time. Second, as we mentioned earlier, we are 

not only interested in predicting the future temperature when the current workload pattern 

continues, but also like to predict the temperature for a new workload pattern that has not 

physically been executed in order to assess the potential benefits of a task migration. This is not 

achievable using the ARMA model. While the first limitation is a fundamental issue related to all 

auto regression based predictors, the second limitation can be improved by including some 

workload information in the original ARMA model.  

In order to obtain a fair comparison between our neural network model and the existing 

prediction model, we extend the ARMA model to include the workload information as the 

exogenous inputs. The new model will be referred to as ARMAX [39] (i.e. auto-regressive 

moving average with exogenous inputs.)  It is described by equation (4.5), where    is the 

average power consumption of the task running at time t and    is the coefficient. Because we 

have already included the history temperature in the model, the input part could be reduced to 
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only one item, i.e. biui-1. Therefore, the next temperature of the PE depends on p history 

temperature samples and the power consumption of the task it is currently running.  

    ∑        

 

   

    ∑        

 

   

 ∑        

 

   

 (4.5) 

 

 

Figure 4.8 The temperature prediction of ARMAX model 

Figure 4.8 shows the temperature trace of a PE in a 6x6 many-core system obtained from 

Hotspot simulation and the temperature prediction made by the ARMAX model.  The PE is time 

multiplexed by 4 tasks. Their execution order is fixed; therefore the temperature trace shows a 

rough periodic pattern. Similar to reference [20] we set p and q to 8 and 0 respectively. The trace 

is 12s long; we sampled 2 data points for each time slice and collected 240 temperature sample 

data. The results show that the Final Prediction Error (FPE) [20] is 0.0265. 

4.4.3 Comparing the Neural Network Predictor with ARMA Predictor  
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We compare our neural network based temperature predictor with ARMAX based 

predictor. Figure 4.9 shows a sequence of simulated temperature trace and the predicted 

temperature from the neural network and ARMAX models. The PE is initially running 4 tasks, 

after 3.25 seconds the PE exchanges its high power task with a low power task running on its 

nearest neighbor.  As we can see, the neural network predictor adjusts its prediction to the correct 

level immediately after the migration while the ARMAX model takes more than 0.2 seconds to 

adapt to the right value. We refer this adaptation time as black-out period as the prediction 

results are not usable during this period of time. 

 

Figure 4.9 The adaption ability of ARMAX model and neural network model 
 

We further compare the two models’ capabilities to estimate the potential thermal impact 

before the migration. We simulate a 36-core system with 144 tasks randomly selected from real 

benchmarks listed in TABLE 4.3. Approximately 200 migrations are randomly generated. Figure 

4.10 shows the absolute prediction error of the neural network model and the ARMAX model. 
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As shown in the figure, the average prediction error of the neural network model is 

0.67
o
C and the maximum prediction error is 2.5

o
C. The average prediction error of the ARMAX 

is 1.2
o
C which is 79% higher than that of the neural network predictor while its maximum error 

is 5.8
o
C, which is 132% higher than that of the neural network model. For 99.75% of time the 

prediction error of the neural network is under 2
o
C, while for 20% of time the prediction error of 

the ARMAX is above 2
o
C.  The difference is mainly because the ARMAX model has to take 

some time to adapt to the new workload after migration, and cannot make accurate prediction 

immediately. 

 

Figure 4.10 Comparison of peak temperature prediction error 

 

Please note that the testing programs used in our experiments are different from the 

training programs. Our training set is artificially-generated programs with constant power 

consumptions. And the testing set consists of real benchmarks. However, the training set and 

testing set do share some similarity in those general features used for temperature prediction. For 

example, the ranges of power consumptions of the applications in the training and testing sets are 

very close. As long as two workloads have the same feature, their peak temperatures will be 

close to each other. Because the selected feature set is not extremely large, the 600 training 
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vectors give reasonable coverage of possible scenarios. However, a larger training set can lead to 

more accurate model. 

4.5 Distributed Task Migration Policy 

In this section, we present our distributed task migration policy. Section 4.5.1 discusses 

the steady state temperature based migration (SSTM) policy. Section 4.5.2 discusses the 

temperature prediction based migration (TPM) policy. Both of the SSTM and TPM have O(n
2
) 

time complexities, where n is the number of tasks in local ready queue of a processor. Section 0 

shows how to combine the two migration algorithms together. Finally, section 4.5.4 presents the 

workload balancing algorithm. 

4.5.1 Steady State Temperature Based Task Migration (SSTM) 

Due to variant heat dissipation abilities, a task running on different processors have 

different steady state temperatures. The SSTM policy balances high power tasks and low power 

tasks among neighbor PEs to lower the average steady state temperature of the whole chip. It 

considers the lateral heat transfer between neighbor PEs and their different heat dissipation 

capabilities.  

Before introducing the SSTM policy, we first give some definitions. We use n to denote 

the number of all thermal nodes in the system, including those in the heat sink layer and heat 

spread layer, and N to denote the number of processors in the system. The relation between n and 

N is determined by the equation n = 2×N+14 [50]. We use TSSi and    to denote the steady state 

temperature and average power consumption of node i. Pi is 0 if node i belongs to the heat sink 

layer or heat spread layer. The vectors of TSSi and Pi, where 1≤i≤n, are denoted as TSS and P. 

When the system reaches the steady state, for each thermal node, its temperature is a linear 
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function of power consumptions P1, P2, …, Pn. The relation can be represented by the following 

equation 

          (4.6) 

 

where     [   ] is the inverse of thermal conductance matrix G. We simplify equation 

(4.6) by keeping only the thermal nodes related to the PEs: 
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) (4.7) 

 

where N is the number of processors, and    ∑       
 
      is a set of constants, 

because the power (  ) of those nodes not related with processors do not change. The coefficients 

gij and Di 1≤i, j≤N can be obtained by offline analysis. Equation (4.7) shows that the steady state 

temperature of each PE is a linear function of average power consumptions on other PEs and 

increasing or reducing the power consumption of one PE will have an impact on the steady state 

temperature of all other PEs.  

Assume that PEi and PEj exchange some tasks, and their average power consumptions 

altered by     and     respectively. Using equation (4.7), the total steady state temperature 

change of all processors after task migration can be calculated as: 

 ∑    

 

   
               (4.8) 

 

where Gi and Gj are the sums of the ith and jth column of the thermal conductance matrix, 

i.e.    ∑    
 
       ∑    

 
   . Because the thermal conductance matrix of a chip does not 
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change once the hardware is given, the values of Gi and Gj are constants and can be pre-

characterized. Overall, it takes only 2 multiplications and 1 addition to calculate ∑    
 
   . As 

we mentioned earlier, the goal of the SSTM policy is to reduce the average steady state 

temperature of the many-core system. Therefore it exchanges task pairs to keep ∑   
 
    

decreasing, i.e. ∑    
 
     . 

The main computation of SSTM is done on the master PE. Algorithm 1 gives the SSTM 

policy. A master DTB-M agent in PEi first forms all task pairs (     )                    

with    
    

. Then for each task pair, equation (4.8) is evaluated. The task pair which gives the 

minimum     is selected and tasks are swapped. The process continues until ∑    
 
      for 

all task pairs. In this way, the master can maintain fairness of workload and reduce its own 

operating temperature as well as the system’s average steady state temperature. 

Algorithm 1 SSTM 

1. for each        

2.       for each                    
    

 

3.                                

4. do {                  

5.          if (       )    swap(     )  

6. } while (       ) 

 

4.5.2 Temperature Prediction Based Migration 

The SSTM reduces the average steady state temperature of the whole chip. Although very 

effective, it has several limitations. First, it is possible that the SSTM moves all high power tasks 
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in a neighborhood to one core whose G value is the minimum. Furthermore, if the G value of a 

core is less than the G value of all its neighbors, then using SSTM policy the core will not be 

able to exchange its high power task with a low power task in its neighborhood when it is 

overheated because this will increase the average steady state temperature of the chip. 

Algorithm 2 TPM (Slave Process) 

1. Input: LTi (list of tasks on local PE) and LTj (list of tasks on master PE) 

2. Sort LTi based on the ascending order of task power consumption 

3. Sort LTj based on the descending order of task power consumption 

4. For each task τiLTi 

5.     For each task τjLTj 

6.         If (   
    

)  

7.             Tp = Predicted local peak temperature after task exchange; 

8.             If (Tp < Tm) return (     ) to the master and exit; 

9. Return NULL to the master and exit; 

 

To escape from the above mentioned situation, we further present the Temperature 

Prediction Based Migration (TPM). The TPM policy guides high temperature core to exchange 

tasks with its cooler neighbors as long as those task exchanges will not cause any thermal 

emergency in both cores. This is achieved by using the prediction model introduced in section 

4.4. 

Algorithm 2 shows the main computation of the TPM policy which is performed by the 

slave DTB-M agent. The algorithm scans the list of local tasks (i.e. LTi) based on the ascending 

order of task power consumption and the list of tasks on the master PE (i.e. LTj) based on the 
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descending order of task power consumption. For each task pair τiLTi and τjLTj, if the power 

consumption of the local task is lower than that of the remote task, the slave DTB-M agent 

employs the neural network based predictor to determine whether the local peak temperature will 

exceed the thermal threshold Tm after    and    are exchanged. The algorithm stops when first 

such task pair is found. The task pair is returned to the master DTB-M agent as an offer for 

potential task migration. Because of the way that the LTi and LTj are sorted, this offer specifies 

the highest power task that can be taken from the master PE and the lowest power task that will 

be given to the master PE without generating any thermal problem. 

On the master side, algorithm 2.1 is executed. Upon receiving all offers from its 

neighbors, the master agent selects the offer that enables it to move out the task with the highest 

power consumption. If there is a tie, then it further selects the offer that enables it to move in the 

task with the lowest power. 

Algorithm 2 TPM (Master Process) 

1. Input: S = {(i, j) | (i, j) are offers from neighbors} 

2. Select the offer (i, j)   S whose    
 is the maximum  

3. If there is a tie, select the offer (i, j)   S whose    
 is the minimum 

 

4.5.3 The Combined Migration Policy 

As discussed in the previous sections, the SSTM algorithm reduces the overall chip 

temperature by considering the thermal conductance of the chip. So that in a neighborhood, high 

power tasks can quickly be moved to the PEs that have better heat dissipation abilities, while low 

power tasks can be moved to the PEs that are more easily to heat up. On the other hand, the TPM 
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algorithm prevents a core with stronger heat dissipation in a neighborhood from being 

overheated by proactively exchanging its high power tasks with low power tasks in the 

neighborhood.  

The presented DTB-M policy is a combination of both SSTM and TPM. After the master 

DTB-M agent triggers a migration request, it waits for the response from the slaves. In this 

request, the master sends out the list of its local tasks. Once the slave receives the request, it 

performs the TPM algorithm (slave process). In the reply message, it sends TPM offer together 

with the list of local tasks to the master. The master then performs SSTM to search for task pairs 

that, once exchanged, could bring down the average chip temperature. If such task pair is found, 

then the master will issue a task migration command. Otherwise it performs the TPM algorithm 

(master process). 

We employ a simple technique to schedule the execution of tasks. All tasks in a PE’s 

ready queue are sorted based on their average power consumption. The thermal aware scheduler 

will execute hot and cool tasks alternatively starting from the coolest and the hottest tasks, then 

the second coolest tasks and the second hottest, until all tasks have been executed once. It will 

then start a new round of execution again. This simple yet effective scheduling technique reduces 

the core temperature by interleaving hot and cool tasks. 

Similar as many other research works in thermal management of multi-core systems [24], 

we assume that the peak temperature of each core can be captured by one sensor located in the 

hottest module, e.g. the register file. However, even if multiple hotspots exist in a core, the 

presented DTB-M algorithm can still be applied as long as we are able to predict the peak 

temperature of all the hotspots, and then the same decision process will be carried on based on 
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the highest temperature. In order to predict multiple temperature readings, we can add more 

neurons in the output layer of the neural network predictor so that it generates multiple outputs. 

The feature set should also be modified to include the information such as the switching 

activities of those hot modules. As the model becomes more complicated, it also needs larger 

training set to be properly trained.  

Finally, the proposed DTB-M is a runtime thermal management technique. It can be used 

together with any design time thermal optimization techniques such as hot-core and cold-cache 

interleaving [43]. 

4.5.4 Workload Balancing Policy 

Workload balancing is triggered when a master PEi finds the workload difference 

between itself and a slave PEj exceeds the threshold ntdiff, that is |      |   ||             . The goal 

of workload balancing is to maintain approximately equal number of tasks on each core and 

therefore improve worst case latency and response time.  

The master will pick the slave which gives the maximum workload difference. Then, 

tasks are migrated one by one from the PE with more tasks to the PE with fewer tasks until their 

difference is less than or equal to one. In every migration, equation (4.8) is evaluated and the task 

which minimizes the ∑    
 
    will be selected. It can be proved that if       and       

|   |, the migration from PEi to PEj will start from the task with the highest power. On the other 

hand, if       and       |   |, the migration from PEj to PEi will start from the task with the 

lowest power. 

4.6 Experimental Results 
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We implemented a power trace driven behavioral simulator of a many-core system using 

C++. Hotspot [54] is integrated to our simulator to simulate the system thermal behavior. 

Although the model is scalable for any number of cores, a 36-core system with 6x6 grids is 

chosen for our experiments due to the limitation of simulation time. Each core has a size of 4mm 

x 4mm with silicon layer of 24mm x 24mm. We set the thermal sampling interval of Hotspot to 

30  , in order to speed up the simulation without significantly reducing the accuracy. 

We evaluated the presented thermal management policy using both static workload and 

dynamic workload. The system performance is characterized by the number of completed jobs 

within a given period of time. We assume that the temperature threshold Tm to trigger thermal 

throttling is 80
o
C and during thermal throttling, the CPU stalls its current execution. In all 

experiments, unless otherwise specified, the parameters of the DTB-M policy are set as the 

following: ntdiff = 2, tslice = 100ms, Tdiff = 10
o
C, =0.5

o
C. 

The following criteria are considered to measure the quality of a thermal management 

policy:  

 Hotspot: The time spent above a temperature threshold which is 80
o
C in our case. 

 FT: The finish time of the last task in the system. This criterion measures the 

performance in a system with static workload. 

 NT: The number of tasks completed within a given period of time. This criterion 

measures the performance in a system with dynamic workload. 

 Mig: Total number of migrations occurred during execution. This criterion 

measures the migration overhead. 
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We carried out experiments using power sequences collected from real applications. We 

used 9 different CPU benchmarks comprising of 3 SPEC 2000 benchmarks (bzip2, applu and 

mesa), 4 Mediabench applications (mpeg2enc, mpeg2dec, jpegdec, jpegenc) and 2 telecom 

applications (crc32 and fft) from MiBench benchmark suite. Because each invocation of a 

benchmark program runs only on a single core, its power consumption can be obtained using 

conventional single processor power estimation tool. We collected their power traces by using 

the Wattch power analysis tool [14]. The average power consumptions and steady state 

temperatures of each task are summarized in TABLE 4.3. The workloads of the following 

experiments are random combinations of multiple copies of these 9 benchmarks. All experiment 

results reported below are the average of 10 runs. 

TABLE 4.3 Average Power and Steady State Temperature of CPU Benchmarks 

No. 1 2 3 4 5 6 7 8 9 

Benchmarks crc32 mp2 enc mp2 dec fft applu mesa bzip2 jpeg dec jpeg enc 

Avg. Power 

(mW) 
24.4 19.4 19 18.5 17.4 17.3 13.3 10.7 10.4 

Steady 

Temp. (
o
C) 

99.42 84.17 82.95 81.42 78.07 77.76 65.56 57.63 56.72 

 

4.6.1 Workloads Generation 

We used both static and dynamic workload in our experiments to evaluate the 

performance of the DTB-M algorithm. For static workload, each task set is a randomly mixture 

of 144 CPU benchmarks which are initially distributed evenly across all the 36 PEs. Each PE has 

4 tasks. The number of each benchmark in the task set follows a specific discrete probability 
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distribution of its average power consumption. Figure 4.11 shows the 5 different distributions 

tested in the experiment. 

  

  

 
Figure 4.11 Different task set generation probability distribution 

 

Uniform distribution evenly generates tasks with different average power consumptions. 

Triangular (cool) distribution generates more low power tasks than high power tasks, whereas 
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of tasks whose power consumption is mostly clustered around the medium power; while inverse 

normal distribution generates more high power tasks and low power tasks than the medium 

power tasks. 

Unlike the static workload, where all tasks are ready from the beginning of the simulation 

and all of them have the same execution time, with dynamic workload, tasks can be randomly 

generated on each PE and their execution time follows random distribution. The initial task set is 

a set of uniformly distributed CPU benchmarks generated as described above. In every execution 

interval, a new task is generated on a PE with 0.02 probabilities. 

4.6.2 The Comparison between Neural Network and ARMAX Predictor under 

Static Workload 

In the first set of experiments, we investigate the impact of the temperature predictor on 

the performance of DTB-M policy under static workload. TABLE 4.4 shows the comparison 

between the performances of the DTB-M with the neural network model and the ARMAX model 

for different task distributions. 

We can see that with the neural network predictor, the DTB-M is able to reduce the 

hotspot by 33.5% on average comparing to the ARMAX model. This is because the neural 

network predictor makes more accurate prediction for the thermal impact of the workload pattern 

that will be generated after task migration, and helps both the master and slave agents to make 

thermal safe decisions.  

TABLE 4.4 Comparison between ARMAX and Neural Network Model 

Workload 

Distribution 
Predictor Uni. Tri. (cool) Tri. (hot) Norm. Inv. Norm. 
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Hotspot 

NN 4986.1 940.2 14223.7 5535.7 4713.1 

ARMAX 8106.4 1722.5 16569 7886.1 7808.7 

%Impr. 38.49 45.42 14.15 29.80 39.64 

FT 

NN 38140.2 36985.4 40450 38369.7 38053.1 

ARMAX 38392.9 37779 40559.2 38514.6 38453.8 

%Impr. 0.66 2.10 0.27 0.38 1.04 

# of Mig. 

NN 453.2 242.6 466 406.5 402 

ARMAX 519 556.8 402.8 501 525.7 

%Impr. 12.68 56.43 -15.69 18.86 23.53 

 

The prediction accuracy also affects the number of migrations. Because using the neural 

network predictor maintains a more balanced thermal profile and reduces hotspots, the migration 

request is triggered less often than the system using the ARMAX predictor. On average, the 

neural network predictor could reduce migration overhead by 19.16%. Note that the ARMAX 

has less number of migrations in hot triangular distributed workload compared to other four 

cases. This is because the ARMAX model adapts to the high power tasks and high temperature, 

and tends to give conservative temperature prediction.  

Also note that although the neural network predictor produces much less hotspot, and 

invokes thermal throttling less frequently, it does not improve the finish time of the system a lot. 

This is due to two reasons. First, the thermal throttling time is much shorter compared to the task 

execution time. Second, the finish time is determined by the last task completed by the PE which 
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invokes the most thermal throttling. The worst case numbers of thermal throttling in a system 

using the neural network predictor and the ARMAX predictor are about the same. 

In this experiment, we did not show the comparisons of thermal gradients and thermal 

cycles. Because both systems have high CPU utilizations and both of them have low thermal 

gradients and thermal cycles. 

4.6.3 The Comparison between Dynamic Workload 

In the second set of experiments, we compare the impact of different temperature 

predictors on the performance of the DTB-M policy under dynamic workload. The execution 

time of the task is uniformly distributed between 15 to 30 execution intervals, which is 

equivalent to 1.5 to 3 seconds. We simulate both systems for equal length of period and compare 

their performance. 

TABLE 4.5 Performance with Dynamic Workloads 

Predictor Hotspot NT # of Mig. 

ARMAX 16025.5 196.5 1048.5 

Neural Network 11230.3 202.9 806.5 

Improvement (%) 29.92 3.26 23.08 

 

As shown in TABLE 4.5, compared to the DTB-M with ARMAX predictor, the DTB-M 

with neural network predictor improves the system performance by 3.26%, reduces the hotspots 

by 29.92% with 23.08% less migration overhead. Note that under the dynamic workload, we can 

see more system performance improvement as the result of using a better temperature predictor 

than that with the static workload. This is because the number of tasks is not fixed in dynamic 
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workload. The less thermal throttling occurs, the more time could be used for tasks and hence 

more tasks are completed. While with static workload, the performance is determined by the PE 

who spends the longest time in thermal throttling. 

4.6.4 The Comparison between SSTM and TPM Policies 

In the third set of experiments, we evaluate the individual performance of the SSTM and 

TPM policy.  

 

Figure 4.12 Comparison of hotspots 
 

 

Figure 4.13 Comparison of performance 
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Figure 4.14 Comparison of number of migrations 

 

Figure 4.12 through Figure 4.14 shows the hotspot, performance and migration overhead 

of the combined migration scheme (i.e. DTB-M) as well as those for the individual SSTM and 

TPM migrations. As we could expect, the migration overhead for using the combined scheme is 

larger than employing any one of these two schemes individually. However, it is less than the 

sum of those individual schemes. This is because the migration decisions made by SSTM and 

TPM are not mutually exclusive. 

Figure 4.12 shows that the DTB-M reduces hotspots by 9.12% over SSTM and 39.06% 

over TPM on average. We can see that the SSTM is more effective in hotspot reduction 

compared to the TPM. This is because the SSTM reduces hotspots by mapping tasks according 
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important role in preventing the high temperature than interleaving low power tasks and high 
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As we mentioned at the beginning of the chapter, distributed thermal management has 

lower control and monitoring overhead than centralized thermal management. However, it also 

has limitations such as low convergence speed, sub-optimal solutions, etc. In the fourth set of 

experiments, we compare the DTB-M policy with a global version of the same migration scheme 

to assess the significance of these limitations. 

TABLE 4.6 Comparison between Global and Distributed Policy 

Workload 

Distribution 
Policy Uniform Cool tri. Hot tri. Norm. Inv. Norm. 

Hotspot 

Distributed 4986.1 940.2 14223.7 5535.7 4713.1 

Global 4343 783.5 13943.7 4737.4 4176.4 

%Impr. 14.81% 20.00% 2.01% 16.85% 12.85% 

FT 

Distributed 38140.2 36985.4 40450 38369.7 38053.1 

Global 37375.4 36501.7 38662.5 37534.7 37334.3 

%Impr. 2.05% 1.33% 4.62% 2.22% 1.93% 

# of Mig 

Distributed 453.2 242.6 466 406.5 402 

Global 391.9 273.7 508.5 384.3 386.8 

%Impr. 15.64% -11.36% -8.36% 5.78% 3.93% 

 

The global policy performs the same DTB-M migration with the assumption that all PEs 

on the same chip are the nearest neighbor to each other, therefore, task migration could happen 

between any two PEs. The experiment assumes that there is a central controller in the system and 

it controls the task exchange and migration between any PEs. The experiment also assumes that 

all information exchange between PEs and the controller take the same amount of time. This 
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gives a bias to the global policy whose communication time actually should be longer due to 

multi-hop communication path.  

TABLE 4.6 Comparison between Global and Distributed Policy shows the comparison 

between DTB-M policy and the global policy in terms of the number of hotspots, system 

performance and the number of migrations under static workload. In average, the global policy 

reduces the hotspots by 13.3%, finishes all tasks 2.43% faster and has 1.13% less number of 

migrations compared to the distributed policy. It is not surprising that the global policy 

outperforms the distributed policy in all aspects, because it can move the task to a better position 

more quickly. 

 

Figure 4.15 Comparison of migration distance 
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the performance improvement of the global policy is not as significant as the increase of the 

overhead. 

TABLE 4.7 Comparison between Global and Distributed Policy Under Extreme Cases 

Workload 

Distribution 
Policy Uniform Cool tri. Hot tri. Norm. Inv. Norm. 

Hotspot 

Dist. Corner 18088 12152.1 25106.9 17570.1 19107.9 

Glob. Corner 3659.7 554.3 13239.3 4203.8 3915.6 

Dist. Center 9239.4 3854.6 14931.4 10198.5 7246.3 

Glob. Center 3713.4 908.6 13167.9 4520.5 3848.2 

FT 

Dist. Corner 43869.2 41064.1 45404.6 44510 44063.4 

Glob. Corner 37270.8 36477 39235.9 37744.4 37408.6 

Dist. Center 41280.8 38400 44792.4 43483.1 38942.6 

Glob. Center 37445.5 36472.8 39178.8 38050.3 37288.2 

Migration 

Distance 

Dist. Corner 69.25 55.85 83.95 75.4 64.75 

Glob. Corner 813.8 527.1 1027.8 743.7 834.1 

Dist. Center 193.5 143.2 182.1 160.8 193.5 

Glob. Center 861.3 622.9 1144.1 862 861.3 

 

In the previous experiment, the initial task mapping is randomly generated. Therefore, the 

high power tasks and low power tasks are evenly distributed across the system. In next 

experiment, we test two extreme cases, both of which have high concentration of high power 

tasks in a small area in the initial mapping. The further a PE is away from this area, the higher 

probability that it will be assigned to a low power task. In the first test case, the “hot area” is 
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located at the corner of the chip, while in the second test case it is located at the center of the 

chip.  

TABLE 4.7 presents the performance of the global policy and the distributed policy for 

the two extreme cases. Comparing the results in TABLE 4.6 and TABLE 4.7, we can see that the 

performance of the global policy is hardly affected by the initial task mapping. On the other 

hand, the performance of the distributed policy is significantly affected by the initial task 

allocation and it performs much worse under these two extreme cases. It is because the 

distributed policy relies on a rippling process to pass out high power tasks and it can be very 

slow. 

 

Figure 4.16 Comparison of hotspots between multi-hops distributed policy and global 

policy 

 

Figure 4.17 Comparison of migration distance between multi-hops distributed policy and 

global policy 
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Figure 4.18 Comparison of finish time between multi-hops distributed policy and global 

policy 
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Finally, we want to point out that in a real system, such extreme cases of initial task 

allocation rarely happen because it can be avoided by simple random mapping of the tasks. 

4.6.6 The Comparison between PTB and DTB-M 

In this set of experiments, we compare the DTB-M policy with the Predictive Thermal 

Balancing (PTB) policy proposed in [20]. PTB reduces hotspots by proactively exchanging tasks 

between a core which is predicted to be hot and a core which is predicted to be cool. Note that 

the PTB is not a distributed policy and those two cores do not have to be the nearest neighbors. 

To obtain a fair comparison, we duplicate the experiment settings in [20] and assign only one 

task to each core. The original PTB policy employs AMAR model for temperature prediction. To 

separate the disturbance from different temperature prediction models, we replace the AMAR 

model in the PTB policy with our neural network model and name it PTB-NN. 

TABLE 4.8 Comparison between DTB-M, PTB and PTB-NN 

Workload 

Distribution 
Policy Uniform Cool tri. Hot tri. Norm. Inv. Norm. 

Hotspot 

DTB-M 1204.5 212.3 5496.9 1455.3 1079.4 

PTB 2355.3 184.8 7318.6 2053.1 2769.5 

%Impr. 48.86% -14.88% 24.89% 29.12% 61.03% 

PTB-NN 1394.1 157.2 6249.4 1430.5 1699.7 

%Impr. 15.74% -25.95% 13.69% -1.70% 57.47% 

FT 

DTB-M 10655.5 9632.4 12820.9 10922.2 10595.8 

PTB 11166.3 9252.5 11725.6 10800.3 11167.2 

%Impr. 4.57% -4.11% -9.34% -1.13% 5.12% 

PTB-NN 10445.3 9219.1 12137.1 10709.7 10639.3 
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%Impr. -1.97% -4.29% -5.33% -1.95% 0.41% 

# of Mig 

DTB-M 43.4 18.2 49.4 41.4 44.6 

PTB 265.8 54.2 464.6 189.3 314.3 

%Impr. 83.67% 66.42% 89.37% 78.13% 85.81% 

PTB-NN 129.7 25.2 351.8 116.4 142.4 

%Impr. 66.54% 27.78% 85.96% 64.43% 68.68% 

 

TABLE 4.8 shows the comparison among the DTB-M policy, the original PTB policy 

and the PTB-NN policy. Compared to the PTB and PTB-NN policies, the DTB-M policy 

successfully reduces the hotspots by 29.8% and 11.85%, reduces migration overhead by 80.68% 

and 62.68%, while only has 0.98% and 2.63% performance degradation on average respectively. 

This is because a PE using DTB-M policy always analyzes the workload before offering task 

exchange. If the task migration will not be benefit or, even worse, will cause hotspots, it will not 

be performed. However, such analysis does not take place in PTB and PTB-NN. Because the 

DTB-M does not perform any unnecessary migrations, its migration overhead is also lower. Note 

that the PTB and PTB-NN policy are global policies; the thermal throttling time is more evenly 

distributed among all cores than DTB-M, but since they trigger more thermal throttling time, the 

performance is only slightly better than that of the DTB-M policy for some test cases. 

4.6.7 The Impacts of Migration Overhead 

In the last experiment, we evaluate the impact of migration overhead to the performance 

of the overall system. We compare the system using DTB-M to a system without any task 

migration. When two tasks are exchanged between nearest neighbors, both of them would 

experience a delay tdelay. In this experiment, we vary the value of tdelay from 1% of the execution 
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interval tslice to 100% of tslice and record the finish time for different static workload distributions. 

The results are shown in Figure 4.19. As we can see, when the tdelay is 1% of the tslice, the system 

using DTB-M is 23.08% faster than the simple system without task migration. This number 

reduces to 10.34% when tdelay is 100% of tslice, which is very unlikely to be true in a real system. 

The results show that a system that migrates tasks extremely slow still runs faster than a system 

that does not migrate tasks at all. This is because the simple system that does not perform task 

migration will be slowed down by lots of thermal throttling events. 

 

Figure 4.19 Comparison of finish time for different migration overhead 
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neural network based prediction model that can be used not only for future temperature 

prediction but also for agents to evaluate the rewards of proposed migration offers.  

We compared our neural network predictor with an extended version of ARMA predictor 

and showed that our predictor can make prediction faster and more accurate in the system where 

tasks start, complete and migrate dynamically. We showed that our DTB-M policy reduces 

hotspot by 29.8% and migration overhead by 80.68% with only 0.98% performance overhead 

compare to the PTB thermal management.  
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Chapter 5 Task Allocation for 

Cooling and Leakage Power 

Optimization 
 

As shown in the last chapter, even in a homogenous many/multi-core system, highly 

heterogeneous workload on different cores can produce local hotspot and create large thermal 

gradient. Elevated core temperature increases leakage current and stresses the cooling system. 

The cooling fan has to operate at a sufficiently high speed to accommodate the worst case power 

density and guarantee the chip temperature under a safe threshold anywhere and anytime. This 

would require the fan operating at higher speed to maintain high air flow and strong heat 

dissipation ability. However, operating at high speed for long time consume more energy and 

reduce fan life time [11]. 

In this chapter, we address the impact of task mapping on the overall power consumption 

of a homogenous multi-core system. The system power consists of three components, dynamic 

power, static power, and fan power. Due to the homogeneity, different task mappings have little 

impact on the dynamic power. However, they change the temperature distribution across the 

system and can potentially affect the leakage power and fan power.  While the leakage power is 

determined by the average temperature, the fan power is determined by the peak temperature. 

Hence they require different optimization techniques. However, as we will show in Section 5.2 

that the impact on leakage power from task mapping is negligible if the fan speed is given. For a 

given workload, the chip leakage power can be approximated to a linear function of the 
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convective resistance of the cooling system while the fan power is an inverse cubic function of 

the same parameter. Our analysis shows that the overall power can be minimized if a task 

allocation with minimum peak temperature is adopted together with an intelligent fan speed 

adjustment technique that finds the optimal tradeoff between fan power and leakage power. 

Furthermore, the impact of task allocation on the overall system power is significant when the 

temperature constraint is tight. When the temperature constraint is loose, the overall system 

power is insensitive to task allocation. 

We further investigate the techniques to search for the task allocation for minimum peak 

temperature. We formulate the task allocation problem as a zero-one linear programming. 

Because solving the binary linear programming problem does not scale well for large system, we 

presented an agent based distributed task migration approach for peak temperature reduction. 

Our agent based algorithm has good scalability as the number of processors increases. It achieves 

up to 18% power savings compare to a random mapping policy. 

The rest of the chapter is organized as follows: Section 5.1 introduces the many core 

system model, the system power and thermal model and cooling system model. We formulate the 

task allocation problem in section 5.2. In Section 5.3 we present the temperature aware 

distributed task migration framework. Experimental results are reported in Section 5.4.  Finally, 

we conclude the chapter in Section 5.5. 

5.1 System Model 

5.1.1 Processor Model 

In this chapter, we consider a tile-based network-on-chip many-core architecture [26]. 

Each tile is a processor with dedicated memory and an embedded router. It will also be referred 
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to as core or processing element (PE) in this chapter. All the processors and routers are 

connected by an on-chip network where information is communicated via packet transmission. 

We refer to the cores that can reach to each other via one-hop communication as the nearest 

neighbors. Note that a pair of cores that are nearest neighbors sometimes does not have to be 

close to each other geometrically. 

We assume the existence of a temperature sensor on each core. A temperature sensor can 

be a simple diode with reasonably fast and accurate response [24]. We also assume that a 

dedicated OS layer is running on each core that provides functions for scheduling, resource 

management as well as communication with other cores. 

5.1.2 Processor Thermal Model 

Due to the duality between heat transfer and RC circuits, we abstract the many-core 

system as an RC network. Let n denote the number of all thermal nodes in the system, including 

those in the heat sink layer and heat spread layer. Let N denote the number of processors in the 

system. The relation between n and N is determined by the equation n = 4×N+12 [50]. Let TSSi 

and    denote the steady state temperature and average power consumption of node i. Pi is 0 if 

node i belongs to the heat sink layer or heat spread layer because they does not consume any 

power. Let TSS and P denote vectors of TSSi and Pi, 1≤i≤n. When the system reaches the steady 

state, for each thermal node, its temperature is a linear function of power consumptions P1, 

P2, …, Pn. The relation can be represented by the following equation 

          (5.1) 
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where     [   ] is the inverse matrix of thermal conductance matrix G. We simplify 

equation (5.1) by keeping only the thermal nodes related to the PEs: 

 (
  

 
  

)  (

       

   
       

)(
  

 
  

)  (
  

 
  

) (5.2) 

 

where N is the number of processors, and    ∑       
 
      is a set of constants, 

because the power consumption    of those thermal nodes which are not related with processors 

(e.g. the thermal nodes on heat sink and heat spreader) does not change. The coefficients gij and 

Di 1≤i, j≤N can be obtained by offline analysis. Equation (5.2) shows that the steady state 

temperature of each PE is a linear function of average power consumptions on other PEs and 

increasing/decreasing the power consumption of one PE will have an impact on the steady state 

temperature of all other PEs. 

5.1.3 Processor Cooling Model 

In this chapter, we assume one standard heat sink and fan cooling system for the entire 

many-core chip as the configuration of the TILERA TILE64 processor [8]. Our cooling system 

modeling follows the similar techniques described in the previous works [11][53]. 

           
  

 
  (5.3) 

 

We next model the relation between the convective resistance and the die temperature. 

Although the Hotspot [54] provides a detailed and accurate thermal model at micro-architecture 

level, its complexity is too high to be used analytically. And it does not directly reveal the 

relation between convective resistance and the die temperature. Therefore, we adopted a simple 
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yet accurate model as shown in Figure 5.1 [11]. In this model, Pi, Ci, and Ri are the power 

consumption, thermal conductance and die to package thermal resistance of processor i 

respectively. Rconv is the convective resistance. 

 

Figure 5.1 Simplified multiprocessor thermal model 
 

Similar to the previous works [53] we are only interested in the temperature at steady 

state when the system reaches the equilibrium. Therefore all the capacitors in the system are 

open circuit and only thermal resistances will be considered. Then the die temperature Ti of core 

i can be computed as 

              ∑  

 

   

 (5.4) 

 

where Pi is the power consumption of core i and Ri is the approximation thermal 

resistance from die to package. If the power consumption of core i does not change, the die 

temperature of core i is a linear function of Rconv. To verify the simple model, we run the 

simulation in Hotspot to obtain the die temperature of core by varying the convective thermal 

……
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resistance. Figure 5.2 shows that the simulated core temperature and the core temperature 

predicted by the linear model matches very well. 

 

Figure 5.2 Linear approximation of relation between die temperature and convective 

resistance 
 

5.1.4 Leakage power model 

The leakage power consumption of a processor depends on the die temperature, supply 

voltage and a number of other factors. If the supply voltage is constant, the leakage power 

consumption can be expressed as follows: 

           
  

  
      (5.5) 

 

Where A1, A2 and A3 are constants which are dependent on processing technology and 

supply voltage, Td is the die temperature. It has been pointed out in [38] that the leakage power 

can be approximated using a linear model and the resulting error is expected to be less than 5% 
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for a large temperature range from 20
o
C to 120

o
C. We approximate the leakage power using its 

first order Taylor expansion at 80
o
C and compare the linear approximation model with the 

original model in Figure 5.3. The green line is the linear approximation while the red line is the 

original model given by equation (5.5). Figure 5.3 shows that the linear model has very small 

error compare to the original model in the normal operating range, which is between 60
o
C and 

100
o
C. 

 

Figure 5.3 Linear approximation of leakage power model 

 

Based on this observation, we approximate the leakage power of the ith core using a 

linear model                , where      is the   average die temperature of the core , a and b 

are two scalars. The total leakage power consumption can be simply calculated as            

 ∑                     where        ∑     
 
    ⁄  is the average temperature of N 

cores. Thus the total chip leakage power can be approximated as a linear function of average die 

330 340 350 360 370 380
10

10.5

11

11.5

12

12.5

13

13.5

temperature (K)

le
a
k
a
g
e
 p

o
w

e
r 

(m
W

)

 

 

accurate model

linear

approxiamation



105 
 

 
 

temperature.  Because      is linearly proportional to      , the leakage power            is also a 

linear function of the convective resistance. 

5.2 Problem Formulation and Analysis 

In this chapter, we study the impact of task allocation on the overall system power. The 

overall power consumption is the sum of the CPU power consumption and the fan power 

consumption while the CPU power consumption consists of dynamic power and leakage power. 

Therefore the overall power consumption model can be written as follows. 

                        (5.6) 

 

In a homogenous multi-core system, task allocation has little impact on the dynamic 

power consumption because all cores are identical. However, because task allocation changes the 

temperature distribution across the system, it has the potential to change the leakage power and 

fan power which are temperature related power consumptions.  

To show the relation between task allocation and leakage power consumption, we 

randomly generated 100 groups of task allocation for a given workload and compare their 

leakage power consumption on a 36 core chip multiprocessor. The workload consists of 36 tasks 

whose power consumption varies from 10mW to 20mw (details about workload generation are 

described in section 5.4.) Figure 5.4 shows the leakage power for all 100 groups as the 

convective resistance increases. The leakage power consumption for the worst mapping and the 

best mapping differs only by less than 1% for a given convective resistance. This is intuitively 

correct. The leakage power is linearly proportional to the average die temperature which is 

determined by the average power density across the chip. Since the task allocation has little 
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impact on the processor dynamic power consumption, which is still the dominant part of the 

CPU power consumption when it is actively running, it does not significantly change the average 

chip temperature either. Consequently, the leakage power remains stable. Figure 5.5 (a) shows 

the average die temperature for those 100 different random mappings as the convective 

resistance increases. (The blue line that lies at the bottom corresponds to the task allocation 

scheme that is found by our multi-agent distributed task migration framework that will be 

introduced in the next section.) As we can see, the maximum difference in average die 

temperature is less than 1
o
C. 

 

Figure 5.4 The relation between full chip leakage power consumption and different task 

allocations 
 

Based on the experimental results we have two observations, (1) for a given      , the 

leakage power can be considered to be independent to the task allocation, (2) when the workload 
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is given, the only parameter that controls the leakage power is the fan speed which is reflected by 

     . Their relation can be represented by a linear function:                 . 

 

a) 

 

b) 

Figure 5.5 Comparison of maximum temperature of 3 different task allocations 
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On the other hand, different task allocation significantly affects the peak temperature. In 

order to bring the peak temperature below the constraint, the fan speed needs to be adjusted 

accordingly, which in turn leads to different       . For example, Figure 5.5 (b) shows the 

maximum chip temperature of 100 different mappings as the convective resistance increases. 

(Again, the blue line that lies at the bottom corresponds to the task allocation that is found by our 

multi-agent distributed task migration framework.) We can see that the difference in peak 

temperature is more than 10
o
C. Note that because the average temperatures for different 

allocations are almost the same, the task allocation that gives the lowest peak temperature is the 

one that generates the most balanced temperature distribution. A task allocation that generates 

highly unbalanced temperature distribution will force the cooling fan to work harder (and 

consumes more power) to keep the peak temperature under the constraint. However, as the speed 

of cooling fan increases, the average chip temperature will decrease and therefore bring down the 

leakage power. When searching for the optimal task mapping, we need to consider the tradeoff 

between fan power and leakage power. 

Because      is independent to thermal convective resistance,       is linearly 

proportional to convective resistance and      is an inverse cubic function of the convective 

resistance, the overall power consumption is a convex function on the convective resistance. 

There will be an optimal convective resistance      
  (corresponding to the optimal fan speed) 

which minimizes the overall system power. Furthermore, for a given workload, task allocation 

cannot change the relation between the overall power consumption and the convective resistance. 
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a) 

 
b) 

Figure 5.6 The overall power consumption depend on convective resistance 

 

Figure 5.6 shows the overall power consumption and the peak temperature under 

different task allocations as functions of the convective resistance. Figure 5.6 (a) shows the 

scenario when the temperature constraint is strict and the convective resistance (i.e.    and   ) 

that could bring the peak temperature to the constraint are located to the left of      
 . In this case 

the overall power is dominated by the fan power. Increasing the fan speed can only increase the 

overall power consumption. The best task allocation that minimizes the overall system power is 

allocation 2 which minimizes the peak temperature. Figure 5.6 (b) shows the scenario when the 

temperature constraint is loose and the convective resistance that could bring the peak 
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temperature to the constraint are located to the right of      
 . In this case the leakage power 

dominates the overall power. If the fan speed is set to exactly satisfy the temperature constraint 

(i.e. the convective resistance is set to    or   ) then the best allocation is scheme 1 which has 

higher peak temperature. We denote the maximum       that keeps the peak temperature under 

constraint as     . Obviously, any convective resistance that is less than      can keep the 

system in safe temperature zone. This includes      
 . For both allocation 1 and 2, setting the 

convective resistance to      
  can minimizes the overall power while satisfying the temperature 

constraint. Because with a loose temperature constraint, the fan power does not dominate the 

overall power alone, leakage power plays an important role as well. Increase the fan speed would 

increase the fan power but could reduce the temperature and leakage power. In this case, power 

consumption is not sensitive to task allocation. Any allocation scheme whose      is greater than 

     
  could be used to find the optimal tradeoff point between the fan power and the leakage 

power. Obviously, among all possible task allocations, the allocation that minimizes the peak 

temperature is most likely to satisfy this property. 

5.3 Power Optimal Task Allocation 

Based on these observations, we concluded that, to optimize the overall power 

consumption, there are two steps. First is to find the task allocation that minimizes the peak 

temperature. Second is to adjust the fan speed to find the optimal tradeoff point between fan 

power and leakage power such that the overall power consumption is minimized and the 

temperature constraint is satisfied. The latter step could be achieved by using feedback control 

while former step will be discussed in detail in the following sections. 

5.3.1 An Exact Formulation 
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Given a floorplan of a multi-processor system with n cores integrated on a chip, we 

assume that the thermal conductance matrix can be characterized by offline training. We further 

assume that the given workload consist of n different tasks {τ1, τ2, … , τn} whose power 

consumption {P1, P2, … , Pn} can be obtained through offline training or online estimation by 

observing the event counter. We assume the power consumption is a constant for each task, 

because we are only concerned about the steady state temperature. Here we assume that the core 

does not support multitasking and the number of tasks is equal to the number of cores. If the 

number of tasks is less than the number of cores, we can simply add some dummy tasks with 0 

power consumption.  

Our goal is to obtain a mapping between the n tasks and the processors such that the 

resulting maximum temperature among all the cores is minimized. For each task k and processor 

j, there is a variable    . Variable     is 1 when task k is mapped to processor j, otherwise it is 0. 

We formulate the problem as a zero-one min-max linear programming as follows: 

       
 

 ∑∑          

 

   

 

   

    (5.7) 

Subject to 

 ∑   

 

   

             (5.8)  

 ∑    

 

   

             (5.9)  

         } (5.10) 

 

Constraint (5.8) guarantees that a processor is only occupied by one task and constraint 

(5.9) ensures that a task can only be mapped to one processor. The item within the min-max 
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operator in the objective function is the temperature of the ith core. To see this, we rewrite the 

equation (5.2) as follows: 

 (
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) (5.11) 

 

where   [   ] is a permutation matrix which assigns the n tasks to the processors. 

Expand the right hand side the equation would give the equation            . Then the 

objective function min-max(Ti) is to minimize the maximum temperature among all n processors.  

By some simple transformation, the min-max problem can be converted to traditional 

linear programming: 

       (5.12) 

Subject to: 

  ∑∑          

 

   

 

   

                (5.13) 
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             (5.14) 
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             (5.15) 

         } (5.16) 

 

The above zero-one min-max linear programming is an exact formulation of the task 

allocation problem. However, it is extremely difficult to solve. For example, for a problem with 

36 cores there will be 1296 binary variables, it would take more than two days to solve this 

problem using the open source linear programming solver lp_solver [5] on a 3.2GHz Quad core 
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Xeon processor. Therefore, it is infeasible to use the solution online for power and thermal 

optimization in the future many-core platform as the core counter could go up to hundreds and 

thousands [13]. Instead of solving this min-max problem directly, we present the following 

online heuristic. 

5.3.2 Distributed Task Migration 

In this section, we presented our distributed task migration framework that searches the 

optimal task allocation during runtime.  

We denote our multi-agent task migration algorithm as MATM. The framework has a 

low cost agent residing in each core. It is implemented as part of the OS based resource 

management program which performs thermal-aware task migration. The agent observes the 

workload and temperature of local processor while communicating and exchanging tasks with its 

nearest neighbors. The agent based distributed framework has better scalability compared to the 

centralized method as the communication cost and migration overhead for each core does not 

increase when the number of cores in the system increases.  

The proposed MATM adopts a task exchange based migration scheme. By exchanging 

tasks, the processors can maintain a balanced temperature distribution and hence reduces the 

peak temperature. 

Communication protocol 
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Figure 5.7 Diagram of communication protocol 
 

Each core running a MATM agent can be in two phases: execution phase and 

communication phase. These two phases are interleaved. During the execution phase the core 

executes the current computing task while during the communication phase it initiates task 

migration request to its nearest neighbor or respond to the task migration request from its nearest 

neighbor.  The communication phase can further be divided into four sub-phases: broadcasting 

self workload to neighboring cores, receiving workload information from neighbors, sending 

migration requests to neighbors, exchanging tasks with neighbors. Figure 5.7 shows the diagram 

of the communication protocol. We assume that a MPI (Message Passing Interface) based 

communication is adopted. Therefore two cores do not have to enter the communication phase 

synchronously in order to communicate to each other. We also refer the communication phase as 

scheduling interval. 
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At the beginning of each scheduling interval, an agent on a processor would broadcast its 

own work load to neighbors and request them sending back their workload. Because the 

scheduling intervals in all processors are not synchronized, the request is not likely to be checked 

and responded by neighbor agents right away. On the other hand, because all processors adopt 

the same execution and scheduling interval, it is guaranteed that all neighboring agents will 

response before the next scheduling interval after the request is issued.  

After receiving the response of neighbor workloads, the agent performs the MATM 

algorithm to decide whether to exchange task with neighbors and select which neighbor to 

exchange task with. Then it will send a migration request to the selected processor. For all other 

neighboring processors, the agent will also send an acknowledgement to them which indicates no 

task exchange. After that, the agent waits for the migration response from the selected processor. 

MATM distributed migration algorithm 

The FDTM algorithm distributes the tasks among processors based on their heat 

dissipation. It moves high power tasks to processors with strong heat dissipation capability and 

moves low power tasks to processors with weak heat dissipation capability.  By distributing tasks 

in this way, local hotspots can be mitigated and thus peak temperature of the chip can be reduced. 

To determine if an exchange of tasks between two processors is beneficial to the whole 

system, we consider equation (5.2) again.  Assume that PEi and PEj exchange tasks, and their 

average power consumptions are altered by     and     respectively. Using equation (5.2), the 

total die temperature change of all processors in the system after task migration can be calculated 

as: 
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 ∑    

 

   
               (5.17)  

 

where    (or   ) is a parameter that characterizes the heat dissipation ability of processor  

i (or j) .    ∑    
 
       ∑    

 
   . The temperature contributed by processor i running task 

k can be calculated as     . If      ,  then the temperature contribution made by processor i 

will be less than the contribution made by processor j when running the same task, which means 

processor i can dissipate heat better. Thus running high power task on processor i have smaller 

chance to produce high peak temperature than running high power task on processor j. Therefore, 

if       and      , it is reasonable to switch the tasks on the two processors. This leads to 

∑    
 
      in (5.17). In conclusion, if a task exchange between two neighbor processors leads 

to ∑    
 
     , then this task exchange is beneficial for the system and the task exchange 

should be carried out. 

If an agent found that it is beneficial to exchange task with several neighbor agent, the 

agent will select a neighbor that lead to maximum temperature reduction, i.e. the minimum 

∑    
 
    (because it is negative), and send migration request to the selected neighbor. If an 

agent received several migration requests from neighbors, it will follow the same criterion to 

select a neighbor to exchange tasks. We summarized the MATM in the following algorithm. 

Algorithm 5.1 MATM 

1. for each neighbor processor j, compute 

2.                                

3.                 

4.  Select processor j, and send migration request to it 
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5.4 Experimental Results 

The simulation infrastructure and the workload are exactly same as presented in section 

4.6.1, so we skip the experimental setup description here. 

5.4.1 Fan Power Savings 

 

Figure 5.8 Convective resistance comparison between Random allocation and FDTM 

allocation 

Figure 5.8 compares the      (i.e. the maximum thermal convective resistance that is 

required to exactly meet the temperature constraint) between the random allocation and MATM 

based allocation with the temperature constraint setting to 85
o
C. The results show that, to 

maintain the whole system under the temperature constraint, the minimum fan speed required by 

MATM based allocation is 14.5% less than that is required by the random task allocation.  The 

reduced fan speed could bring cubic savings in fan power for the system.  And TABLE 5.1 

shows the fan power savings of our proposed MATM policy compared to the random allocation 
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policy. The MATM can achieve an average of 37.2% fan power savings over random allocation 

while maintains the maximum chip temperature under the thermal constraint.  

The reason that the MATM policy can achieve power savings is that through agent 

negotiation and task migration, tasks can be distributed among processors evenly according to a 

processor’s heat dissipation ability, i.e. high power tasks are moved to cores with stronger heat 

dissipation ability while lower power tasks are moved to cores with weaker heat dissipation. 

Therefore the processors’ temperatures are distributed more evenly across the chip and the 

maximum temperature is reduced. The fan can run at a relatively lower speed to guarantee the 

temperature constraint. Therefore the fan power savings is achieved. 

TABLE 5.1 Fan power savings of FDTM compare to the random task allocation 

Workload Uniform Cool triangle Hot triangle Norm Inv Norm 

Fan power 

savings 
38.79% 29.35% 35.58% 35.78% 46.60% 

 

5.4.2 Overall system power consumption 

In the second experiment, we examine the effect of temperature constraint and task 

allocation on the overall system power consumption, i.e. the power consumption summation of 

dynamic power, leakage power and fan power. We select the uniform workload distribution in 

this experiment. We vary the temperature constraint for 80
o
C, 85

o
C and 90

o
C and compare the 

power consumption between MATM based task allocation and random allocation. For both 

systems, optimal tradeoff point between fan power and leakage power will be searched after the 

system reaches stable state. As shown in TABLE 5.2, MATM based allocation policy could 

achieve 17.9% overall power savings when the temperature constraint is 80
o
C. When the 
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temperature constraint increases to 85
o
C and 90

o
C, the power saving reduces to 5.1% and 1.2% 

respectively.  

TABLE 5.2 Overall system power consumption comparison under different temperature 

constraints 

Overall System Power Consumption (mW) 

Temp. Constraint 80
o
C 85

o
C 90

o
C 

Random Mapping 1268.9 1110.8 1067.3 

FDTM 1076.6 1057 1055.1 

 

The experimental results show a diminishing power savings as the constraint temperature 

increases from the TABLE 5.2, and task allocation gives large power savings especially when 

temperature constraint is strict. To understand this, we draw the overall power consumption and 

fan power consumption against the convective resistance curve in Figure 5.9. When temperature 

constraint is strict, the convective resistance has to be small to satisfy the constraint. When fan 

working in this area, the curve slope is sharp and a little decrease in convective resistance would 

increase the fan power as well as the overall system power significantly; therefore a better task 

allocation which reduces maximum chip temperature can achieve large power savings. On the 

other hand, when temperature constraint is loose, the convective resistance does not have to be 

small to satisfy the constraint. In this case, the curve slope is flat and the difference in convective 

resistance does not affect the fan power and overall power consumption significantly. Therefore, 

different task allocation achieves similar overall system power consumptions. If we further relax 

the temperature constraint so that the      of both random and MATM allocations are located to 

the right side of      
 , the MATM allocation will not give any power saving over the random 

allocation as both of them can work at the optimal tradeoff point. 
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Figure 5.9 Power consumption against convective thermal resistance curve 
 

Figure 5.10 shows each component in the overall system power consumption. The fan 

power consumption plays an important part in the random allocation when temperature 

constraint is strict. It accounts for 21.1% of total consumption. When the constraint is relaxed, 

the share of fan power decreases. The MATM allocation reduces maximum chip temperature and 

the fan can be maintained in a low speed. Therefore the fan power consumption is small, less 

than 6% for all temperature constraint. We also notice that the dynamic power stays the same for 

all constraint while the leakage power increase as the constraint is relaxed. This is because 

allowing higher maximum chip temperature will also increase the average chip temperature, 
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therefore the leakage power increases. We also notice the MATM based task allocation has 

higher leakage power consumption compare to the random allocation. This is because in order to 

maintain the same maximum chip temperature, the higher fan speed needed for random 

allocation makes its average temperature lower and hence it consumes less leakage power. 

However, after combining the fan power, the MATM based allocation still has lower total power 

consumption. 

 

Figure 5.10 The overall power consumption break down 

5.5 Chapter Summary 

In this chapter, we studied the impact of task mapping on the overall power consumption 

of a homogenous multi-core system. We formulated the task mapping problem as a zero-one 

linear programming problem and presented an agent based distributed task migration approach to 

solve this problem. Our agent based algorithm has good scalability as the number of processors 

increases. Experimental results show that our policy achieves large power savings compare to a 

random mapping policy. 
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In this chapter, we did not consider the effects of cooling fan speed on the inlet 

temperature of servers in a data center environment. Generally, higher cooling fan speed will 

cause more hot air be circulated back to the inlet. This could reduce the heat removing efficiency 

of the cooling fan. Reference [46] considers the relation between the inlet temperature and task 

allocation in a data center. In their work, the inlet temperature of a chassis is modeled as the 

linear combination of server power consumptions and Air Conditioner temperature. Based on 

this linear model, they found the optimal task allocation to maximize the Air Conditioner 

temperature while satisfying the inlet temperature constraint using integer linear programming. 

However, this work only considers the dynamic power but does not consider fan power and 

leakage power. How to combine their inlet temperature model with our overall power 

optimization technique in a data center environment will be our future work. 
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Chapter 6 Conclusions and 

Future Directions 
 

Increased power density has set up a “Power Wall” which blocks the micro-processor’s 

performance improvement, and the clock frequency growth is restricted due to the temperature 

issues. This is because unmanaged temperature could cause many reliability and performance 

issues and increase leakage power as well as cooling cost. Dynamic thermal management 

techniques are designed to tackle the problems and control the chip temperature as well as power 

consumption. As long as the temperature is regulated, the system reliability can be improved, 

leakage power can be reduced and cooling system lifetime can be extended significantly. 

In this thesis, we have studied several learning based dynamic thermal management 

techniques where the learning agent monitors the system dynamic and taking appropriate thermal 

management actions intelligently. 

For multimedia applications, the presented learning agent exploits the temporal 

correlation in this class of application, learns the workload pattern based on the performance 

counter readings and apply reinforcement learning algorithm to dynamically control the 

operating frequency of the processor to optimize the performance while ensuring thermal safety. 

We implemented our learning based DTM policy on a personal computer and tested it using real 

application. Our experimental results show about 7.53% performance improvement with only 

about 1.9% thermal violations compare to a thermal management policy that also based on 

workload phase detection. And compared to another more aggressive policy which has fixed 
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frequency, our learning policy reduces thermal violation significantly while maintaining the 

similar run time. 

For a many-core system, we presented a distributed thermal management framework 

where no centralized controller is needed. Each core has an agent which monitors the core 

temperature, communicates and negotiates with neighboring agents to migrate and distribute 

tasks evenly across the system. The agents use DTB-M policy for task migration. Our DTB-M 

policy consists of two parts. The SSTM migration policy distributes different tasks in a 

neighborhood based on their heat dissipation ability. The TPM migration policy ensures a good 

mixture of hot tasks and cool tasks on processors in a neighborhood. We also presented a neural 

network based prediction model that can be used not only for future temperature prediction but 

also for agents to evaluate the rewards of proposed migration offers. We compared our neural 

network predictor with an extended version of ARMA predictor and showed that our predictor 

can make prediction faster and more accurate in the system where tasks start, complete and 

migrate dynamically. We showed that our DTB-M policy reduces 29.8% hotspots and 80.68% 

migration overhead with only 0.98% performance overhead compare to the PTB thermal 

management. 

Finally, we studied the impact of task mapping on the leakage power and cooling fan 

power consumption of a homogenous many-core system. We formulated the task mapping 

problem as a zero-one linear programming problem and presented an agent based distributed task 

migration approach to solve this problem. Our agent based algorithm has good scalability as the 

number of processors increases. The presented algorithm can achieve an average of 37.2% fan 

power savings over random allocation while maintains the maximum chip temperature under the 

thermal constraint and it could achieve 17.9% overall power savings when the temperature 
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constraint is 80
o
C. When the temperature constraint increases to 85

o
C and 90

o
C, the power 

saving reduces to 5.1% and 1.2% respectively. 

6.1 Future Directions 

Dynamic thermal management is still an ongoing and active research area. New 

technologies and computing platforms impose new challenges to existing DTM techniques. One 

area that has not been well explored is thermal management of 3-D integrated circuits [21]. 3-D 

IC is designed to tackle the large delay and high power associated with long interconnects. 

However this new technology escalates the chip power density which has already been a severe 

issue in 2-D design. Techniques work for 2-D platform might not be effective in 3-D platform, 

for example, the forced-convection heat sink cooling solution could not work well in 3-D cases. 

New thermal modeling tools, novel thermal management techniques need to be investigated for 

this new platform. 

In addition, new integration technology brings the opportunities of integrating 

unconventional cooling solutions on the chip. For example, the authors in [12] investigate the 

potential cooling power savings in a data center by inserting a Thermal electric (TEC) layer 

between the silicon die layer and the heat spreader layer for CPUs. The TEC layer works as a 

high-efficiency heat pump. When configured at appropriate size, TEC is very effective to pump 

heat from its hot side to its cold side. Stacking the TEC layer on top of the silicon could quickly 

remove the heat generated from the die and reduce the chip temperature. Therefore, the cooling 

power consumed by other units like cooling fan and CRAC can be saved. However, the TEC 

itself needs to consume power. Apparently, there is a trade-off between the power consumption 

by TEC and other cooling units. The authors provide a detailed hierarchical power/thermal 

model for different components in a data center including silicon die, TEC layer, heat spreader 
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layer, heat sink layer, cooling fan and finally CRAC. Their initial results show that, with the TEC 

layer, the data center CRAC is able to increase its operating temperature from 288K to 294K, 

which is equal to 24% power savings, without compromising the chip lifetime and reliability. 

Many other research works also focus on applying liquid cooling techniques onto the chip 

through the microchannels.  

While the concept of dynamic thermal management was initially proposed to reduce the 

cooling cost, the emerging packaging and cooling techniques will also effective relive the stress 

of DTM. Many of the modern cooling techniques are now providing control knobs that could 

tradeoff the cooling efficiency with energy cost, for example, adjustable fan speed, selective 

turning on/off the TEC units, and adjustable liquid flow rate etc. As we can imagine, the most 

effective DTM technique should have a holistic view of the entire system, which consists of the 

software workload activity, the configuration of the integrated circuits, as well as the status of 

the cooling system; and manage the whole system. This leads to many open questions, including 

how to model the effects of these new cooling solutions on the heat generated by the silicon, how 

to efficiently monitor and control the cooling system during runtime, and how to utilize its 

potential to design management algorithm to achieve power/energy savings, to improve 

performance and reliability. We believe that research in these areas will extend the potential of 

thermal management and eventually lead to better, faster, and more reliable integrated system. 
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