2,477 research outputs found

    Steering for a Class of Dynamic Nonholonomic Systems

    Get PDF
    In this paper we derive control algorithms for a class of dynamic nonholonomic steering problems, characterized as mechanical systems with nonholonomic constraints and symmetries. Recent research in geometric mechanics has led to a single, simplified framework that describes this class of systems, which includes examples such as wheeled mobile robots; undulatory robotic and biological locomotion systems, such as paramecia, inchworms, and snakes; and the reorientation of satellites and underwater vehicles. This geometric framework has also been applied to more unusual examples, such as the snakeboard robot, bicycles, the wobblestone, and the reorientation of a falling cat. We use this geometric framework as a basis for developing two types of control algorithms for such systems. The first is geared towards local controllability, using a perturbation approach to establish results similar to steering using sinusoids. The second method utilizes these results in applying more traditional steering algorithms for mobile robots, and is directed towards generating more non-local control methods of steering for this class of systems

    Modelling Locomotor Control: the advantages of mobile gaze

    No full text
    In 1958, JJ Gibson put forward proposals on the visual control of locomotion. Research in the last 50 years has served to clarify the sources of visual and nonvisual information that contribute to successful steering, but has yet to determine how this information is optimally combined under conditions of uncertainty. Here, we test the conditions under which a locomotor robot with a mobile camera can steer effectively using simple visual and extra-retinal parameters to examine how such models cope with the noisy real-world visual and motor estimates that are available to humans. This applied modeling gives us an insight into both the advantages and limitations of using active gaze to sample information when steering

    On Advanced Mobility Concepts for Intelligent Planetary Surface Exploration

    Get PDF
    Surface exploration by wheeled rovers on Earth's Moon (the two Lunokhods) and Mars (Nasa's Sojourner and the two MERs) have been followed since many years already very suc-cessfully, specifically concerning operations over long time. However, despite of this success, the explored surface area was very small, having in mind a total driving distance of about 8 km (Spirit) and 21 km (Opportunity) over 6 years of operation. Moreover, ESA will send its ExoMars rover in 2018 to Mars, and NASA its MSL rover probably this year. However, all these rovers are lacking sufficient on-board intelligence in order to overcome longer dis-tances, driving much faster and deciding autonomously on path planning for the best trajec-tory to follow. In order to increase the scientific output of a rover mission it seems very nec-essary to explore much larger surface areas reliably in much less time. This is the main driver for a robotics institute to combine mechatronics functionalities to develop an intelligent mo-bile wheeled rover with four or six wheels, and having specific kinematics and locomotion suspension depending on the operational terrain of the rover to operate. DLR's Robotics and Mechatronics Center has a long tradition in developing advanced components in the field of light-weight motion actuation, intelligent and soft manipulation and skilled hands and tools, perception and cognition, and in increasing the autonomy of any kind of mechatronic systems. The whole design is supported and is based upon detailed modeling, optimization, and simula-tion tasks. We have developed efficient software tools to simulate the rover driveability per-formance on various terrain characteristics such as soft sandy and hard rocky terrains as well as on inclined planes, where wheel and grouser geometry plays a dominant role. Moreover, rover optimization is performed to support the best engineering intuitions, that will optimize structural and geometric parameters, compare various kinematics suspension concepts, and make use of realistic cost functions like mass and consumed energy minimization, static sta-bility, and more. For self-localization and safe navigation through unknown terrain we make use of fast 3D stereo algorithms that were successfully used e.g. in unmanned air vehicle ap-plications and on terrestrial mobile systems. The advanced rover design approach is applica-ble for lunar as well as Martian surface exploration purposes. A first mobility concept ap-proach for a lunar vehicle will be presented

    The power dissipation method and kinematic reducibility of multiple-model robotic systems

    Get PDF
    This paper develops a formal connection between the power dissipation method (PDM) and Lagrangian mechanics, with specific application to robotic systems. Such a connection is necessary for understanding how some of the successes in motion planning and stabilization for smooth kinematic robotic systems can be extended to systems with frictional interactions and overconstrained systems. We establish this connection using the idea of a multiple-model system, and then show that multiple-model systems arise naturally in a number of instances, including those arising in cases traditionally addressed using the PDM. We then give necessary and sufficient conditions for a dynamic multiple-model system to be reducible to a kinematic multiple-model system. We use this result to show that solutions to the PDM are actually kinematic reductions of solutions to the Euler-Lagrange equations. We are particularly motivated by mechanical systems undergoing multiple intermittent frictional contacts, such as distributed manipulators, overconstrained wheeled vehicles, and objects that are manipulated by grasping or pushing. Examples illustrate how these results can provide insight into the analysis and control of physical systems

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Walking dynamics are symmetric (enough)

    Full text link
    Many biological phenomena such as locomotion, circadian cycles, and breathing are rhythmic in nature and can be modeled as rhythmic dynamical systems. Dynamical systems modeling often involves neglecting certain characteristics of a physical system as a modeling convenience. For example, human locomotion is frequently treated as symmetric about the sagittal plane. In this work, we test this assumption by examining human walking dynamics around the steady-state (limit-cycle). Here we adapt statistical cross validation in order to examine whether there are statistically significant asymmetries, and even if so, test the consequences of assuming bilateral symmetry anyway. Indeed, we identify significant asymmetries in the dynamics of human walking, but nevertheless show that ignoring these asymmetries results in a more consistent and predictive model. In general, neglecting evident characteristics of a system can be more than a modeling convenience---it can produce a better model.Comment: Draft submitted to Journal of the Royal Society Interfac
    • 

    corecore