8,760 research outputs found

    ANGELAH: A Framework for Assisting Elders At Home

    Get PDF
    The ever growing percentage of elderly people within modern societies poses welfare systems under relevant stress. In fact, partial and progressive loss of motor, sensorial, and/or cognitive skills renders elders unable to live autonomously, eventually leading to their hospitalization. This results in both relevant emotional and economic costs. Ubiquitous computing technologies can offer interesting opportunities for in-house safety and autonomy. However, existing systems partially address in-house safety requirements and typically focus on only elder monitoring and emergency detection. The paper presents ANGELAH, a middleware-level solution integrating both ”elder monitoring and emergency detection” solutions and networking solutions. ANGELAH has two main features: i) it enables efficient integration between a variety of sensors and actuators deployed at home for emergency detection and ii) provides a solid framework for creating and managing rescue teams composed of individuals willing to promptly assist elders in case of emergency situations. A prototype of ANGELAH, designed for a case study for helping elders with vision impairments, is developed and interesting results are obtained from both computer simulations and a real-network testbed

    Computational tools for low energy building design : capabilities and requirements

    Get PDF
    Integrated building performance simulation (IBPS) is an established technology, with the ability to model the heat, mass, light, electricity and control signal flows within complex building/plant systems. The technology is used in practice to support the design of low energy solutions and, in Europe at least, such use is set to expand with the advent of the Energy Performance of Buildings Directive, which mandates a modelling approach to legislation compliance. This paper summarises IBPS capabilities and identifies developments that aim to further improving integrity vis-Ă -vis the reality

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    Jellyfish galaxies with the IllustrisTNG simulations: I. Gas-stripping phenomena in the full cosmological context

    Full text link
    We use IllustrisTNG, a suite of gravity and MHD simulations, to study the demographics and properties of jellyfish galaxies in the full cosmological context. By jellyfish galaxies, we mean satellites orbiting in massive groups and clusters that exhibit highly asymmetric distributions of gas and gas tails. We use the TNG100 run and select galaxies at redshifts z≀0.6z\le0.6 with stellar mass exceeding 109.5M⊙10^{9.5}{\rm M_\odot} and with host halo masses of 1013−1014.6 M⊙10^{13}-10^{14.6}\,{\rm M_\odot}. Among more than about 6000 (2600) galaxies with stars (and some gas), we identify 800 jellyfish galaxies by visually inspecting their gas and stellar mass maps in random projections. About 31%31\% of cluster satellites are found with signatures of ram-pressure stripping and gaseous tails stemming from the main luminous bodies. This is a lower limit, since the random orientation entails a loss of about 30%30\% of galaxies that in an optimal projection would otherwise be identified as jellyfish. The connection with ram-pressure stripping is further confirmed by a series of findings: jellyfish galaxies are more frequent at intermediate and large cluster-centric distances (r/R200c≳0.25r/R_{\rm 200c}\gtrsim 0.25); they move through the ICM with larger bulk velocities and Mach numbers than the general cluster population, typically orbiting supersonically and experiencing larger ram pressures. Furthermore, the gaseous tails usually extend in opposite directions to the galaxy trajectory, with no relation between tail orientation and the host's center. The frequency of jellyfish galaxies shows a very weak dependence on redshift (0≀z≀0.6)(0\le z\le0.6) but larger fractions of disturbed gaseous morphologies occur in more massive hosts and at smaller satellite masses. Finally, jellyfish galaxies are late infallers (<2.5−3< 2.5-3 Gyrs ago, at z=0z=0) and the emergence of gaseous tails correlates well with the presence of bow shocks in the ICM.Comment: 25 pages, 15 figures, Accepted for publication on MNRAS after minor revision

    A simulation-enhanced lean design process

    Get PDF
    A traditional lean transformation process does not validate the future state before implementation, relying instead on a series of iterations to modify the system until performance is satisfactory. An enhanced lean process that includes future state validation before implementation is presented. Simulation modeling and experimentation is proposed as the primary validation tool. Simulation modeling and experimentation extends value stream mapping to include time, the behavior of individual entities, structural variability, random variability, and component interaction effects. Experiments to analyze the model and draw conclusions about whether the lean transformation effectively addresses the current state gap can be conducted. Industrial applications of the enhanced lean process show it effectivenessPeer Reviewe

    Classical Computational Models

    Get PDF
    • 

    corecore