242 research outputs found

    Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad Hoc Networks

    Get PDF
    International audienceIn practice, ad hoc networks are still too unreliable for standard mobile and vehicular communications. It is thus important to complement current protocols in this context, with schemes guaranteeing the exchange of critical data when needed. A promising approach in this realm is to use an overlay subgraph, over which critical messages are exchanged and acknowledged in a peer to peer fashion. Overlay nodes' local databases remain thus synchronized over time, at least concerning critical data. This paper elaborates on the problem of performance, related to the discovery and maintenance of such overlay networks in a mobile ad hoc context. We analyze SLOT, an overlay selected based on a Relative Neighbour Graph (RNG) scheme. We then apply SLOT to a standard IP protocol: OSPF, a popular routing protocol which has recently been extended, with RFC 5449 and RFC 5614, to work also on mobile ad hoc networks, and which makes use of a similar overlay synchronization subgraph. This paper compares the performance of these existing OSPF mechanisms with that of SLOT-OSPF, a novel OSPF extension for mobile ad hoc networks using SLOT. Simulations show that SLOT-OSPF produces drastically less control traffic than RFC 5449 or RFC 5614, allowing SLOT-OSPF to function correctly while the other existing approaches stall, when the number of routers in the domain is large

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    UUM Network Traffic Analysis and Users' Website Preferences

    Get PDF
    The current world is experiencing a revolution in Internet services and networking; a revolution that provided and continues to provide varying features and invaluable tools to computer networks. On the other hand, several problems are being faced by users and global organizations in networking including lack of bandwidth and packet loss during transmission which impacts Internet efficiency and the performance of network. These issues can be rectified through the measurement and analysis of the network’s performance. Moreover, for network performance enhancement, it is imperative to study users’ behaviour. Therefore, the main objectives of the present study are to identify UUM network performance through Internet traffic and to highlight users’ behaviour. A total of three methodological steps are carried out to meet the objectives of the study; the first one is the data collection phase whereby the source for data collection is taken from the presently used main distributed switch in an hour for each working day in a duration of one week; the second one is the data analysis phase where Wireshark is used to provide the statistics of traffic and finally; the third phase is the data presentation where Microsoft Excel is utilized to present data. Study findings presents valuable information of network bandwidth, data loss rates and Ethernet traffic distribution, in addition to the fact that is social websites are the most websites used in UUM. These findings leads to facilitate the enhancement of UUM network performance and Internet bandwidth strategies

    Generalized load sharing for packet-switching networks

    Get PDF
    In this paper, we propose a framework to study how to effectively perform load sharing in multipath communication networks. A generalized load sharing (GLS) model has been developed to conceptualize how traffic is split ideally on a set of active paths. A simple traffic splitting algorithm, called weighted fair routing (WFR), has been developed at two different granularity level, namely, the packet level, and the call level, to approximate GLS with the given routing weight vector. The packet-by-packet WFR (PWFR) mimics GLS by transmitting each packet as a whole, whereas the call-by-call WFR (CWFR) imitates GLS so that all packets belonging to a single flow are sent on the same path. We have developed some performance bounds for PWFR and found that PWFR is a deterministically fair traffic splitting algorithm. This attractive property is useful in the provision of service with guaranteed performance when multiple paths can be used simultaneously to transmit packets which belong to the same flow. Our simulation studies, based on a collection of Internet backbone traces, reveal that WFR outperforms two other traffic splitting algorithms, namely, generalized round robin routing (GRR), and probabilistic routing (PRR). These promising results form a basis for designing future adaptive constraint-based multipath routing protocols.published_or_final_versio

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Auto-bandwidth control in dynamically reconfigured hybrid-SDN MPLS networks

    Get PDF
    The proposition of this work is based on the steady evolution of bandwidth demanding technology, which currently and more so in future, requires operators to use expensive infrastructure capability smartly to maximise its use in a very competitive environment. In this thesis, a traffic engineering control loop is proposed that dynamically adjusts the bandwidth and route of flows of Multi-Protocol Label Switching (MPLS) tunnels in response to changes in traffic demand. Available bandwidth is shifted to where the demand is, and where the demand requirement has dropped, unused allocated bandwidth is returned to the network. An MPLS network enhanced with Software-defined Networking (SDN) features is implemented. The technology known as hybrid SDN combines the programmability features of SDN with the robust MPLS label switched path features along with traffic engineering enhancements introduced by routing protocols such as Border Gateway Patrol-Traffic Engineering (BGP-TE) and Open Shortest Path First-Traffic Engineering (OSPF-TE). The implemented mixed-integer linear programming formulation using the minimisation of maximum link utilisation and minimum link cost objective functions, combined with the programmability of the hybrid SDN network allows for source to destination demand fluctuations. A key driver to this research is the programmability of the MPLS network, enhanced by the contributions that the SDN controller technology introduced. The centralised view of the network provides the network state information needed to drive the mathematical modelling of the network. The path computation element further enables control of the label switched path's bandwidths, which is adjusted based on current demand and optimisation method used. The hose model is used to specify a range of traffic conditions. The most important benefit of the hose model is the flexibility that is allowed in how the traffic matrix can change if the aggregate traffic demand does not exceed the hose maximum bandwidth specification. To this end, reserved hose bandwidth can now be released to the core network to service demands from other sites

    A Cross-Layer Modification to the DSR Routing Protocol in Wireless Mesh Networks

    Get PDF
    A cross-layer modification to the DSR routing protocol that finds high throughput paths in WMNs has been introduced in this work. The Access Efficiency Factor (AEF) has been introduced in this modification as a local congestion avoidance metric for the DSR routing mechanism as an alternative to the hop count (Hc) metric. In this modification, the selected path is identified by finding a path with the highest minimum AEF (max_min_AEF) value. The basis of this study is to compare the performance of the Hc and max_min_AEF as routing metrics for the DSR protocol in WMNs using the OPNET modeler. Performance comparisons between max_min_AEF, Metric Path (MP), and the well known ETT metrics are also carried out in this work. The results of this modification suggest that employing the max_min_AEF as a routing metric outperforms the Hc, ETT, and MP within the DSR protocol in WMNs in terms of throughput. This is because the max_min_AEF is based upon avoiding directing traffic through congested nodes where significant packet loss is likely to occur. This throughput improvement is associated with an increment in the delay time due to the long paths taken to avoid congested regions. To overcome this drawback, a further modification to the routing discovery mechanism has been made by imposing a hop count limit (HCL) on the discovered paths. Tuning the HCL allows the network manager to tradeoff throughput against delay. The choice of congestion avoidance metric exhibits another shortcoming owing to its dependency on the packet size. It penalises the smaller packets over large ones in terms of path lengths. This has been corrected for by introducing a ModAEF metric that explicitly considers the size of the packet. The ModAEF metric includes a tuning factor that allows the operator determine the level of the weighting that should be applied to the packet size to correct for this dependence
    • 

    corecore